MA 1A (SECTION 1) HW5 SOLUTIONS

Problem 1. (Apostol 4.15.4)

Let $f(x) = 1 - x^{\frac{2}{3}}$. Show that f(1) = f(-1) = 0, but that f'(x) is never zero in the interval [-1, 1]. Explain how this is possible, in view of Rolle's theorem.

Solution. $f(1) = 1 - 1^{\frac{2}{3}} = 0$, and $f(-1) = 1 - [(-1)^2]^{\frac{1}{3}} = 1 - 1 = 0$. $f'(x) = \frac{2}{3}x^{-\frac{1}{3}} = \frac{2}{3\sqrt[3]{x}} \neq 0$ for all $x \in \mathbb{R} \setminus \{0\}$, and f'(x) does not exist at x = 0, so f'(x) is never zero in the interval [-1, 1].

Rolle's theorem works only if f'(x) exists for all x in the interval (-1, 1). As f'(x) does not exist at x = 0, we cannot apply the theorem.

Problem 2. (Apostol 4.15.8)

Use the mean-value theorem to deduce the following inequalities:

(a) $|\sin x - \sin y| \le |x - y|$.

(b) $ny^{n-1}(x-y) \le x^n - y^n \le nx^{n-1}(x-y)$ if $0 < y \le x, n \in \mathbb{N}$.

Solution. (a). Without loss of generality, let $x \ge y$. $f(t) = \sin t$ is continuous on [y, x] and is differentiable on (y, x), with $f'(t) = \cos t$. By mean-value theorem, there exists $z \in (x, y)$ such that $\sin x - \sin y = \cos z(x - y)$, so $|\sin x - \sin y| = |\cos z||x - y| \le |x - y|$. (b). $f(t) = t^n$ is continuous on [y, x] and is differentiable on (y, x), with $f'(t) = nt^{n-1}$. By

mean-value theorem, there exists $z \in (x, y)$ such that $x^n - y^n = nt^{n-1}(x - y)$. Note that $f(t) = t^n$ is increasing on $[0, +\infty)$, so $ny^{n-1}(x-y) < x^n - y^n < nx^{n-1}(x-y)$.

Problem 3. (Apostol 4.19.4)

 $f(x) = x^3 - 6x^2 + 9x + 5.$

- (a) Find all points x such that f'(x) = 0.
- (b) Examine the sign of f' and determine those intervals in which f is monotonic.
- (c) Examine the sign of f'' and determine those intervals in which f' is monotonic.
- (d) Make a sketch of the graph f.

Solution. (a) $f'(x) = 3x^2 - 12x + 9 = 3(x - 1)(x - 3)$, so f'(x) = 0 if and only if x = 1 or 3. (b) f'(x) = 3(x-1)(x-3), so f'(x) > 0 if x < 1 or x > 3, and f'(x) < 0 if 1 < x < 3. Hence, f(x) is increasing on $(-\infty, 1] \cup [3, \infty)$ and decreasing on [1, 3].

(c) f''(x) = 6x - 12 = 0 if x = 2, f''(x) > 0 if x > 2, and f''(x) < 0 if x < 2. Hence, f'(x) is increasing on $[2,\infty)$ and decreasing on $(-\infty,2]$.

(d) Local maximum at x = 1 with f(x) = 9 and local minimum at x = 3 with f(x) = 5. y-intercept is 5.

Date: Fall 2011.

Problem 4. (Apostol 4.21.4)

Given S > 0. Prove that among all positive numbers x and y with x + y = S, the sum $x^2 + y^2$ is smallest when x = y.

Solution. y = S - x, so $x^2 + y^2 = x^2 + (S - x)^2 = 2x^2 - 2xS + S^2$. Taking the derivative with respect to x, we get 4x - 2S, which is zero if and only if $x = \frac{S}{2}$. As the second derivative is 4 > 0, $x^2 + y^2$ has a local minimum at $x = \frac{S}{2}$. As $f(x) \to \infty$ when $x \to \pm \infty$, $x^2 + y^2$ has the global minimum at $x = \frac{S}{2}$, and this is exactly when x = y.

Problem 5. (Apostol 4.21.20)

A cylinder is obtained by revolving a rectangle about the x-axis, the base of the rectangle lying on the x-axis and the entire rectangle lying in the region between the curve $y = \frac{x}{x^2+1}$ and the x-axis. Find the maximum possible volume of the cylinder.

Solution. $y = \frac{x}{x^2+1}$ is an odd function. By symmetry, we take the branch $x, y \ge 0$. $y = \frac{x}{x^2+1} \Rightarrow x = \frac{1\pm\sqrt{1-4y^2}}{2y}$, so for each given $0 \le y \le \frac{1}{2}$, the length of the base on the x-axis is $\frac{1+\sqrt{1-4y^2}}{2y} - \frac{1-\sqrt{1-4y^2}}{2y} = \frac{\sqrt{1-4y^2}}{y}$, and the corresponding volume of the cylinder is $\pi y^2 \frac{\sqrt{1-4y^2}}{y^2} = \pi y \sqrt{1-4y^2}$. Taking the derivative with respect to y, we get $\sqrt{1-4y^2} + y\frac{1}{2}\frac{-8y}{\sqrt{1-4y^2}} = \frac{1-8y^2}{\sqrt{1-4y^2}}$, which is zero if and only if $y = \frac{\sqrt{2}}{4}$. As the second derivative at $y = \frac{\sqrt{2}}{4}$ is $\frac{-12y+32y^3}{(1-4y^2)^2}\Big|_{y=\frac{\sqrt{2}}{4}} = -8 < 0$, $\pi y \sqrt{1-4y^2}$ has local maximum at $y = \frac{\sqrt{2}}{4}$. $\pi y \sqrt{1-4y^2}\Big|_{y=0} = 0$ and $\pi y \sqrt{1-4y^2}\Big|_{y=\frac{1}{2}} = 0$, so $\pi y \sqrt{1-4y^2}$ has the global maximum at $y = \frac{\sqrt{2}}{4}$.