
MA 1A (SECTION 1) HW5 SOLUTIONS

Problem 1. (Apostol 4.15.4)

Let f(x) = 1 − x
2
3 . Show that f(1) = f(−1) = 0, but that f ′(x) is never zero in the

interval [−1, 1]. Explain how this is possible, in view of Rolle’s theorem.

Solution. f(1) = 1− 1
2
3 = 0, and f(−1) = 1− [(−1)2]

1
3 = 1− 1 = 0.

f ′(x) = 2
3
x−

1
3 = 2

3 3√x 6= 0 for all x ∈ R\{0}, and f ′(x) does not exist at x = 0, so f ′(x) is

never zero in the interval [−1, 1].
Rolle’s theorem works only if f ′(x) exists for all x in the interval (−1, 1). As f ′(x) does not
exist at x = 0, we cannot apply the theorem.

Problem 2. (Apostol 4.15.8)
Use the mean-value theorem to deduce the following inequalities:

(a) | sinx− sin y| ≤ |x− y|.
(b) nyn−1(x− y) ≤ xn − yn ≤ nxn−1(x− y) if 0 < y ≤ x, n ∈ N.

Solution. (a). Without loss of generality, let x ≥ y. f(t) = sin t is continuous on [y, x] and
is differentiable on (y, x), with f ′(t) = cos t. By mean-value theorem, there exists z ∈ (x, y)
such that sin x− sin y = cos z(x− y), so | sinx− sin y| = | cos z||x− y| ≤ |x− y|.
(b). f(t) = tn is continuous on [y, x] and is differentiable on (y, x), with f ′(t) = ntn−1. By
mean-value theorem, there exists z ∈ (x, y) such that xn − yn = ntn−1(x − y). Note that
f(t) = tn is increasing on [0,+∞), so nyn−1(x− y) ≤ xn − yn ≤ nxn−1(x− y).

Problem 3. (Apostol 4.19.4)
f(x) = x3 − 6x2 + 9x+ 5.

(a) Find all points x such that f ′(x) = 0.
(b) Examine the sign of f ′ and determine those intervals in which f is monotonic.
(c) Examine the sign of f ′′ and determine those intervals in which f ′ is monotonic.
(d) Make a sketch of the graph f .

Solution. (a) f ′(x) = 3x2− 12x+ 9 = 3(x− 1)(x− 3), so f ′(x) = 0 if and only if x = 1 or 3.
(b) f ′(x) = 3(x − 1)(x − 3), so f ′(x) > 0 if x < 1 or x > 3, and f ′(x) < 0 if 1 < x < 3.
Hence, f(x) is increasing on (−∞, 1] ∪ [3,∞) and decreasing on [1, 3].
(c) f ′′(x) = 6x− 12 = 0 if x = 2, f ′′(x) > 0 if x > 2, and f ′′(x) < 0 if x < 2. Hence, f ′(x) is
increasing on [2,∞) and decreasing on (−∞, 2].
(d) Local maximum at x = 1 with f(x) = 9 and local minimum at x = 3 with f(x) = 5.
y-intercept is 5.
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Problem 4. (Apostol 4.21.4)
Given S > 0. Prove that among all positive numbers x and y with x + y = S, the sum

x2 + y2 is smallest when x = y.

Solution. y = S−x, so x2 +y2 = x2 +(S−x)2 = 2x2−2xS+S2. Taking the derivative with
respect to x, we get 4x− 2S, which is zero if and only if x = S

2
. As the second derivative is

4 > 0, x2 + y2 has a local minimum at x = S
2
. As f(x) → ∞ when x → ±∞, x2 + y2 has

the global minimum at x = S
2
, and this is exactly when x = y.

Problem 5. (Apostol 4.21.20)
A cylinder is obtained by revolving a rectangle about the x-axis, the base of the rectangle

lying on the x-axis and the entire rectangle lying in the region between the curve y = x
x2+1

and the x-axis. Find the maximum possible volume of the cylinder.

Solution. y = x
x2+1

is an odd function. By symmetry, we take the branch x, y ≥ 0.

y = x
x2+1

⇒ x =
1±
√

1−4y2
2y

, so for each given 0 ≤ y ≤ 1
2
, the length of the base

on the x-axis is
1+
√

1−4y2
2y

− 1−
√

1−4y2
2y

=

√
1−4y2
y

, and the corresponding volume of the

cylinder is πy2
√

1−4y2
y

= πy
√

1− 4y2. Taking the derivative with respect to y, we get√
1− 4y2 + y 1

2
−8y√
1−4y2

= 1−8y2√
1−4y2

, which is zero if and only if y =
√
2
4

. As the second deriv-

ative at y =
√
2
4

is −12y+32y3

(1−4y2)
3
2

∣∣∣∣
y=

√
2

4

= −8 < 0, πy
√

1− 4y2 has local maximum at y =
√
2
4

.

πy
√

1− 4y2
∣∣∣
y=0

= 0 and πy
√

1− 4y2
∣∣∣
y= 1

2

= 0, so πy
√

1− 4y2 has the global maximum at

y =
√
2
4

, and πy
√

1− 4y2
∣∣∣
y=

√
2

4

= π
4
.
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