MA 1A (SECTION 1) HW5 SOLUTIONS

Problem 1. (Apostol 4.15.4)
Let $f(x)=1-x^{\frac{2}{3}}$. Show that $f(1)=f(-1)=0$, but that $f^{\prime}(x)$ is never zero in the interval $[-1,1]$. Explain how this is possible, in view of Rolle's theorem.

Solution. $f(1)=1-1^{\frac{2}{3}}=0$, and $f(-1)=1-\left[(-1)^{2}\right]^{\frac{1}{3}}=1-1=0$. $f^{\prime}(x)=\frac{2}{3} x^{-\frac{1}{3}}=\frac{2}{3 \sqrt[3]{x}} \neq 0$ for all $x \in \mathbb{R} \backslash\{0\}$, and $f^{\prime}(x)$ does not exist at $x=0$, so $f^{\prime}(x)$ is never zero in the interval $[-1,1]$.
Rolle's theorem works only if $f^{\prime}(x)$ exists for all x in the interval $(-1,1)$. As $f^{\prime}(x)$ does not exist at $x=0$, we cannot apply the theorem.

Problem 2. (Apostol 4.15.8)
Use the mean-value theorem to deduce the following inequalities:
(a) $|\sin x-\sin y| \leq|x-y|$.
(b) $n y^{n-1}(x-y) \leq x^{n}-y^{n} \leq n x^{n-1}(x-y)$ if $0<y \leq x, n \in \mathbb{N}$.

Solution. (a). Without loss of generality, let $x \geq y . f(t)=\sin t$ is continuous on $[y, x]$ and is differentiable on (y, x), with $f^{\prime}(t)=\cos t$. By mean-value theorem, there exists $z \in(x, y)$ such that $\sin x-\sin y=\cos z(x-y)$, so $|\sin x-\sin y|=|\cos z||x-y| \leq|x-y|$.
(b). $f(t)=t^{n}$ is continuous on $[y, x]$ and is differentiable on (y, x), with $f^{\prime}(t)=n t^{n-1}$. By mean-value theorem, there exists $z \in(x, y)$ such that $x^{n}-y^{n}=n t^{n-1}(x-y)$. Note that $f(t)=t^{n}$ is increasing on $[0,+\infty)$, so $n y^{n-1}(x-y) \leq x^{n}-y^{n} \leq n x^{n-1}(x-y)$.

Problem 3. (Apostol 4.19.4)
$f(x)=x^{3}-6 x^{2}+9 x+5$.
(a) Find all points x such that $f^{\prime}(x)=0$.
(b) Examine the sign of f^{\prime} and determine those intervals in which f is monotonic.
(c) Examine the sign of $f^{\prime \prime}$ and determine those intervals in which f^{\prime} is monotonic.
(d) Make a sketch of the graph f.

Solution. (a) $f^{\prime}(x)=3 x^{2}-12 x+9=3(x-1)(x-3)$, so $f^{\prime}(x)=0$ if and only if $x=1$ or 3 .
(b) $f^{\prime}(x)=3(x-1)(x-3)$, so $f^{\prime}(x)>0$ if $x<1$ or $x>3$, and $f^{\prime}(x)<0$ if $1<x<3$. Hence, $f(x)$ is increasing on $(-\infty, 1] \cup[3, \infty)$ and decreasing on $[1,3]$.
(c) $f^{\prime \prime}(x)=6 x-12=0$ if $x=2, f^{\prime \prime}(x)>0$ if $x>2$, and $f^{\prime \prime}(x)<0$ if $x<2$. Hence, $f^{\prime}(x)$ is increasing on $[2, \infty)$ and decreasing on $(-\infty, 2]$.
(d) Local maximum at $x=1$ with $f(x)=9$ and local minimum at $x=3$ with $f(x)=5$. y-intercept is 5 .

Date: Fall 2011.

Problem 4. (Apostol 4.21.4)
Given $S>0$. Prove that among all positive numbers x and y with $x+y=S$, the sum $x^{2}+y^{2}$ is smallest when $x=y$.

Solution. $y=S-x$, so $x^{2}+y^{2}=x^{2}+(S-x)^{2}=2 x^{2}-2 x S+S^{2}$. Taking the derivative with respect to x, we get $4 x-2 S$, which is zero if and only if $x=\frac{S}{2}$. As the second derivative is $4>0, x^{2}+y^{2}$ has a local minimum at $x=\frac{S}{2}$. As $f(x) \rightarrow \infty$ when $x \rightarrow \pm \infty, x^{2}+y^{2}$ has the global minimum at $x=\frac{S}{2}$, and this is exactly when $x=y$.

Problem 5. (Apostol 4.21.20)
A cylinder is obtained by revolving a rectangle about the x-axis, the base of the rectangle lying on the x-axis and the entire rectangle lying in the region between the curve $y=\frac{x}{x^{2}+1}$ and the x-axis. Find the maximum possible volume of the cylinder.

Solution. $y=\frac{x}{x^{2}+1}$ is an odd function. By symmetry, we take the branch $x, y \geq 0$. $y=\frac{x}{x^{2}+1} \Rightarrow x=\frac{1 \pm \sqrt{1-4 y^{2}}}{2 y}$, so for each given $0 \leq y \leq \frac{1}{2}$, the length of the base on the x-axis is $\frac{1+\sqrt{1-4 y^{2}}}{2 y}-\frac{1-\sqrt{1-4 y^{2}}}{2 y}=\frac{\sqrt{1-4 y^{2}}}{y}$, and the corresponding volume of the cylinder is $\pi y^{2} \frac{\sqrt{1-4 y^{2}}}{y}=\pi y \sqrt{1-4 y^{2}}$. Taking the derivative with respect to y, we get $\sqrt{1-4 y^{2}}+y \frac{1}{2} \frac{-8 y}{\sqrt{1-4 y^{2}}}=\frac{1-8 y^{2}}{\sqrt{1-4 y^{2}}}$, which is zero if and only if $y=\frac{\sqrt{2}}{4}$. As the second derivative at $y=\frac{\sqrt{2}}{4}$ is $\left.\frac{-12 y+32 y^{3}}{\left(1-4 y^{2}\right)^{\frac{3}{2}}}\right|_{y=\frac{\sqrt{2}}{4}}=-8<0, \pi y \sqrt{1-4 y^{2}}$ has local maximum at $y=\frac{\sqrt{2}}{4}$. $\left.\pi y \sqrt{1-4 y^{2}}\right|_{y=0}=0$ and $\left.\pi y \sqrt{1-4 y^{2}}\right|_{y=\frac{1}{2}}=0$, so $\pi y \sqrt{1-4 y^{2}}$ has the global maximum at $y=\frac{\sqrt{2}}{4}$, and $\left.\pi y \sqrt{1-4 y^{2}}\right|_{y=\frac{\sqrt{2}}{4}}=\frac{\pi}{4}$.

