MA 1A (SECTION 1) HW6 SOLUTIONS

Problem 1.

For $r>0$ compute $\lim _{n \rightarrow \infty} n\left(r^{\frac{1}{n}}-1\right)$.
Solution. $\lim _{n \rightarrow \infty} n\left(r^{\frac{1}{n}}-1\right)=\lim _{n \rightarrow \infty} \frac{r^{\frac{1}{n}-r^{0}}}{\frac{1}{n}-0}=\left.\frac{d}{d x} r^{x}\right|_{x=0}=\log r$.

Problem 2.

Let $0<a<b$ and T_{n} the following partition:

$$
T_{n}=\left[a, a\left(\frac{b}{a}\right)^{\frac{1}{n}}\right] \cup\left[a\left(\frac{b}{a}\right)^{\frac{1}{n}}, a\left(\frac{b}{a}\right)^{\frac{2}{n}}\right] \cup \cdots \cup\left[a\left(\frac{b}{a}\right)^{\frac{j-1}{n}}, a\left(\frac{b}{a}\right)^{\frac{j}{n}}\right] \cup \cdots \cup\left[a\left(\frac{b}{a}\right)^{\frac{n-1}{n}}, b\right]
$$

(a) Show that $f:[a, b] \rightarrow \mathbb{R}$ given by $f(x)=\frac{1}{x}$ is integrable.
(b) Compute $\lim _{n \rightarrow \infty} L\left(f, T_{n}\right)$ and deduce that

$$
\int_{a}^{b} \frac{d x}{x}=\log b-\log a
$$

Solution. (a) Let $s_{n}, t_{n}:[a, b] \rightarrow \mathbb{R}$ be such that for all $x \in\left[a\left(\frac{b}{a}\right)^{\frac{j-1}{n}}, a\left(\frac{b}{a}\right)^{\frac{j}{n}}\right], s_{n}(x)=\frac{1}{a}\left(\frac{a}{b}\right)^{\frac{j}{n}}$ and $t_{n}(x)=\frac{1}{a}\left(\frac{a}{b}\right)^{\frac{j-1}{n}}, j=1,2, \ldots, n$.
$\int_{a}^{b} s_{n}(x) d x=\sum_{j=1}^{n} \frac{1}{a}\left(\frac{a}{b}\right)^{\frac{j}{n}}\left[a\left(\frac{b}{a}\right)^{\frac{j}{n}}-a\left(\frac{b}{a}\right)^{\frac{j-1}{n}}\right]=n\left(1-\left(\frac{a}{b}\right)^{\frac{1}{n}}\right) \xrightarrow{n \rightarrow \infty}-\log \frac{a}{b}$ by Problem 1, and $\int_{a}^{b} t_{n}(x) d x=\sum_{j=1}^{n} \frac{1}{a}\left(\frac{a}{b}\right)^{\frac{j-1}{n}}\left[a\left(\frac{b}{a}\right)^{\frac{j}{n}}-a\left(\frac{b}{a}\right)^{\frac{j-1}{n}}\right]=n\left(\left(\frac{b}{a}\right)^{\frac{1}{n}}-1\right) \xrightarrow{n \rightarrow \infty} \log \frac{b}{a}$ by Problem 1. As $-\log \frac{a}{b}=\log \frac{b}{a}=\log b-\log a$, the upper and lower integrals of f are equal. By Theorem 1.9, f is integrable over $[a, b]$.
(b) By part (a), $\lim _{n \rightarrow \infty} L\left(f, T_{n}\right)=\log \frac{b}{a}=\log b-\log a$. By Theorem 1.9, $\lim _{n \rightarrow \infty} L\left(f, T_{n}\right)=$ $\log b-\log a$.

Problem 3. (Apostol 2.4.1)

Let $f(x)=4-x^{2}, g(x)=0, a=-2, b=2$. Compute the area of the region S between the graphs of f and g over the interval $[a, b]$. Make a sketch of the two graphs and indicate S by shading.

Solution. For all $x \in[-2,2], f(x)=4-x^{2} \geq 4-4=0=g(x)$. Hence, the area of S $=\int_{-2}^{2} f(x)-g(x)=\int_{-2}^{2} 4-x^{2}=4 x-\left.\frac{x^{3}}{3}\right|_{-2} ^{2}=16-\frac{16}{3}=\frac{32}{3}$.

Problem 4. (Apostol 2.4.15)
The graphs of $f(x)=x^{2}$ and $g(x)=c x^{3}$, where $c>0$, intersect at the points $(0,0)$ and $\left(\frac{1}{c}, \frac{1}{c^{2}}\right)$. Find c so that the region which lies between these graphs and over the interval $\left[0, \frac{1}{c}\right]$

Date: Fall 2011.
has area $\frac{2}{3}$.
Solution. For all $x \in\left[0, \frac{1}{c}\right], f(x)=x^{2} \geq x^{2} \frac{x}{\frac{1}{c}}=c x^{3}=g(x)$. Hence, the area of the region $=\int_{0}^{\frac{1}{c}} f(x)-g(x) d x=\int_{0}^{\frac{1}{c}} x^{2}-c x^{3}=\frac{x^{3}}{3}-\left.c^{\frac{x^{4}}{4}}\right|_{0} ^{\frac{\overline{1}}{c}}=\frac{1}{3 c^{3}}-\frac{1}{4 c^{3}}=\frac{1}{12 c^{3}}=\frac{2}{3} \Rightarrow 8 c^{3}=1 \Rightarrow c=\frac{1}{2}$.

Problem 5. (Apostol 1.15.7)
Let $[x]$ denote the greatest integer $\leq x$.
(a) Compute $\int_{0}^{9}[\sqrt{t}] d t$.
(b) If n is a positive integer, prove that $\int_{0}^{n^{2}}[\sqrt{t}] d t=\frac{n(n-1)(4 n+1)}{6}$.

Solution. (a) $[\sqrt{t}]=\left\{\begin{array}{ll}0 & \text { if } 0 \leq t<1 ; \\ 1 & \text { if } 1 \leq t<4 ; \\ 2 & \text { if } 4 \leq t<9 .\end{array}\right.$. So $\int_{0}^{9}[\sqrt{t}] d t=0(1-0)+1(4-1)+2(9-4)=13$.
(b) When $n=1$, L.H.S. $=\int_{0}^{1^{2}}[\sqrt{t}] d t=0$, and R.H.S. $=\frac{1(1-1)(4 \times 1+1)}{6}=0=$ L.H.S.

Assume that $\int_{0}^{k^{2}}[\sqrt{t}] d t=\frac{k(k-1)(4 k+1)}{6}$ for some $k \in \mathbb{N}$. When $n=k+1$, L.H.S. $=$ $\int_{0}^{(k+1)^{2}}[\sqrt{t}] d t=\int_{0}^{k^{2}}[\sqrt{t}] d t+\int_{k^{2}}^{(k+1)^{2}}[\sqrt{t}] d t=\frac{k(k-1)(4 k+1)}{6}+k\left((k+1)^{2}-k^{2}\right)=k\left(\frac{4 k^{2}-3 k-1}{6}+\right.$ $2 k+1)=\frac{k(k+1)(4 k+1)}{6}=$ R.H.S. Hence, by induction, $\int_{0}^{n^{2}}[\sqrt{t}] d t=\frac{n(n-1)(4 n+1)}{6}$ for all $n \in \mathbb{N}$.

