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Homework 1

Solutions

Problem 1 [13.1.5] Suppose α is a rational root of a monic polynomial in Z[X]. Prove that α ∈ Z.

Proof. By the rational root theorem (Prop. 11, Ch.9) if α = p
q ∈ Q is a root of the monic polynomial

and (p, q) = 1 then q | 1 and therefore α ∈ Z.

Problem 2 [13.1.8] Prove that x5 − ax− a ∈ Z[X] is irreducible unless a = 0, 2 or −1.

Proof. Let f(x) = x5 − ax− 1. If f is reducible, there are two possible cases: it has a linear factor
or it factors as the product of an irreducible quadratic with an irreducible cubic.

In the first case it follows that f has a root r ∈ Z. By the rational root theorem we know that
r divides the constant term, so r = ±1. Now f(1) = 0 implies a = 0, and f(−1) = 0 implies a = 2.

For the second case, assume that

f(x) = (Ax2 + bx+ c)(Bx3 + dx2 + ex+ g).

Since f is monic we must have A = B = 1 or A = B = −1. WLOG, we’ll assume that A = B = 1 :

f(x) = x5 + (b+ d)x4 + (c+ e+ bd)x3 + (g + cd+ be)x2 + (bg + ce)x+ cg.

Therefore d = −b, c+ e = b2, b(c− e) = g, bg + ce = −a, cg = −1.
If c = −1, then g = 1 and thus −b(e + 1) = 1, implying e = 0 or e = −2. In either case,

b2 = c+ e < 0, which is a contradiction.
If c = 1, then g = −1 and thus b(e − 1) = 1, implying e = 2 or e = 0. If e = 2 then b2 = 3,

which is a contradiction. So e = 0 and hence b = −1 and a = −1, giving the factorization:

f(x) = (x2 − x+ 1)(x3 + x2 − 1).

Problem 3 [13.2.3] Determine the minimal polynomial over Q for the element 1 + i.

Solution. Clearly 1 + i ∈ Q(i) and since [Q(i) : Q] = 2 we see that the degree of the minimal
polynomial should be 2. Notice that (i+ 1)2 − 2(i+ 1) + 2 = 0 and the polynomial x2 − 2x+ 2 is
irreducible by the Eisenstein’s criterion, therefore it is the minimal polynomial of i+ 1.
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Problem 4 [13.2.13] Suppose F = Q(α1, α2, . . . , αn) where α2
i ∈ Q. Prove that 3

√
2 /∈ F .

Proof. Observe that each αi satisfies x
2 − α2

i ∈ Q[x], hence

[Q(α1, . . . , αi) : Q(α1, . . . , αi−1)] = 1 or 2.

Therefore, [F : Q] = 2t, for some natural number t ≤ n. If 3
√
2 ∈ F , then Q ⊂ Q( 3

√
2) ⊆ F , so

2t = [F : Q] = [F : Q(
3
√
2)][Q(

3
√
2) : Q] = 3 · [F : Q(

3
√
2)],

implying 3|2t, which is a contradiction. Thus, 3
√
2 /∈ F .

Problem 5. Let m,n ≥ 1 be positive integers such that Fpn/Fpm is an extension of finite fields.
Show that m|n.

Proof. We shall use the following result.

Lemma 1. Let F/K be a finite field extension such that K has q elements. Then F has qn elements,
where n = [F : K].

Proof. Let α1, . . . , αn be a basis of F (as a vector space) over K. Then each element of F can be
written as a linear combination c1α1 + . . .+ cnαn, where ci ∈ K. Since each ci can take q possible
values, it follows that F has qn elements.

Now, if d = [Fpn : Fpm ] then by the lemma it follows that pn = (pm)d, showing that m|n.
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