Homework 1 Solutions

Problem 1 [13.1.5] Suppose α is a rational root of a monic polynomial in $\mathbb{Z}[X]$. Prove that $\alpha \in \mathbb{Z}$.
Proof. By the rational root theorem (Prop. 11, Ch.9) if $\alpha=\frac{p}{q} \in \mathbb{Q}$ is a root of the monic polynomial and $(p, q)=1$ then $q \mid 1$ and therefore $\alpha \in \mathbb{Z}$.

Problem 2 [13.1.8] Prove that $x^{5}-a x-a \in \mathbb{Z}[X]$ is irreducible unless $a=0,2$ or -1 .
Proof. Let $f(x)=x^{5}-a x-1$. If f is reducible, there are two possible cases: it has a linear factor or it factors as the product of an irreducible quadratic with an irreducible cubic.

In the first case it follows that f has a root $r \in \mathbb{Z}$. By the rational root theorem we know that r divides the constant term, so $r= \pm 1$. Now $f(1)=0$ implies $a=0$, and $f(-1)=0$ implies $a=2$.

For the second case, assume that

$$
f(x)=\left(A x^{2}+b x+c\right)\left(B x^{3}+d x^{2}+e x+g\right)
$$

Since f is monic we must have $A=B=1$ or $A=B=-1$. WLOG, we'll assume that $A=B=1$:

$$
f(x)=x^{5}+(b+d) x^{4}+(c+e+b d) x^{3}+(g+c d+b e) x^{2}+(b g+c e) x+c g .
$$

Therefore $d=-b, c+e=b^{2}, b(c-e)=g, b g+c e=-a, c g=-1$.
If $c=-1$, then $g=1$ and thus $-b(e+1)=1$, implying $e=0$ or $e=-2$. In either case, $b^{2}=c+e<0$, which is a contradiction.

If $c=1$, then $g=-1$ and thus $b(e-1)=1$, implying $e=2$ or $e=0$. If $e=2$ then $b^{2}=3$, which is a contradiction. So $e=0$ and hence $b=-1$ and $a=-1$, giving the factorization:

$$
f(x)=\left(x^{2}-x+1\right)\left(x^{3}+x^{2}-1\right)
$$

Problem 3 [13.2.3] Determine the minimal polynomial over \mathbb{Q} for the element $1+i$.
Solution. Clearly $1+i \in \mathbb{Q}(i)$ and since $[\mathbb{Q}(i): \mathbb{Q}]=2$ we see that the degree of the minimal polynomial should be 2 . Notice that $(i+1)^{2}-2(i+1)+2=0$ and the polynomial $x^{2}-2 x+2$ is irreducible by the Eisenstein's criterion, therefore it is the minimal polynomial of $i+1$.

Problem $4[\mathbf{1 3 . 2 . 1 3}]$ Suppose $F=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ where $\alpha_{i}^{2} \in \mathbb{Q}$. Prove that $\sqrt[3]{2} \notin F$.
Proof. Observe that each α_{i} satisfies $x^{2}-\alpha_{i}^{2} \in \mathbb{Q}[x]$, hence

$$
\left[\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{i}\right): \mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)\right]=1 \text { or } 2
$$

Therefore, $[F: \mathbb{Q}]=2^{t}$, for some natural number $t \leq n$. If $\sqrt[3]{2} \in F$, then $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2}) \subseteq F$, so

$$
2^{t}=[F: \mathbb{Q}]=[F: \mathbb{Q}(\sqrt[3]{2})][\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=3 \cdot[F: \mathbb{Q}(\sqrt[3]{2})]
$$

implying $3 \mid 2^{t}$, which is a contradiction. Thus, $\sqrt[3]{2} \notin F$.

Problem 5. Let $m, n \geq 1$ be positive integers such that $\mathbb{F}_{p^{n}} / \mathbb{F}_{p^{m}}$ is an extension of finite fields. Show that $m \mid n$.

Proof. We shall use the following result.
Lemma 1. Let F / K be a finite field extension such that K has q elements. Then F has q^{n} elements, where $n=[F: K]$.

Proof. Let $\alpha_{1}, \ldots, \alpha_{n}$ be a basis of F (as a vector space) over K. Then each element of F can be written as a linear combination $c_{1} \alpha_{1}+\ldots+c_{n} \alpha_{n}$, where $c_{i} \in K$. Since each c_{i} can take q possible values, it follows that F has q^{n} elements.

Now, if $d=\left[F_{p^{n}}: F_{p^{m}}\right]$ then by the lemma it follows that $p^{n}=\left(p^{m}\right)^{d}$, showing that $m \mid n$.

