Homework 3 Solutions

Problem 1 [13.2.18] Let k be a field and let $k(x)$ be the field of rational functions in x with coefficients from k. Let $t \in k(x)$ be the rational function $\frac{P(x)}{Q(x)}$ with relatively prime polynomials $P(x), Q(x) \in k[x]$, with $Q(x) \neq 0$.
(a) Show that the polynomial $P(X)-t Q(X)$ in the variable X and coefficients in $k(t)$ is irreducible over $k(t)$ and has x as a root.
(b) Show that the degree of $P(X)-t Q(X)$ as a polynomial in X with coefficients in $k(t)$ is the maximum of the degrees of $P(x)$ and $Q(x)$.
(c) Show that $[k(x): k(t)]=\left[k(x): k\left(\frac{P(x)}{Q(x)}\right)\right]=\max (\operatorname{deg} P(x), \operatorname{deg} Q(x))$.

Proof. (a) Since $k[t]$ is an UFD and $k(t)$ is its fields of fractions, Gauss' Lemma tells us that the polynomial $P(X)-t Q(X)$ is irreducible over $(k(t))[X]$ if and only if it is irreducible in $(k[t])[X]$. Now $(k[t])[X]=(k[X])[t]$, and $P(X)-t Q(X)$ is linear, and thus irreducible in $(k[X])[t]$. By the above, it is irreducible over $k(t)$. In addition, $P(x)-t Q(x)=P(x)-\frac{P(x)}{Q(x)} Q(x)=0$, so x is a root.
(b) Let $n=\max (\operatorname{deg} P(x), \operatorname{deg} Q(x))$. Then $P(x)=a_{n} x^{n}+($ lower degree terms) and $Q(x)=$ $b_{n} x^{n}+$ (lower degree terms), and at least one of a_{n} and b_{n} is not zero. Clearly, $\operatorname{deg}(P(X)-t Q(X)) \leq$ n. Note that the coefficient of X^{n} in $P(X)-t Q(X)$ is $a_{n}-t b_{n}$. Since $t \in k(x)$, but $t \notin k$ (as P and Q are relatively prime) it follows that $a_{n}-t b_{n} \neq 0$, and thus $\operatorname{deg}(P(X)-t Q(X))=n$.
(c) We know from (a) that $P(X)-t Q(X)$ is irreducible over $k(t)$ and has x as a root, so $P(X)-t Q(X)$ is the minimal polynomial of x over $k(t)$. By (b)

$$
[k(x): k(t)]=\operatorname{deg}(P(X)-t Q(X))=\max (\operatorname{deg}(P(x)), \operatorname{deg}(Q(x)))
$$

Problem 2 [13.5.7] Suppose K is a field of characteristic p which is not a perfect field: $K \neq K^{p}$. Prove there exist irreducible inseparable polynomials over K. Conclude that there exist inseparable finite extensions of K.

Proof. Since $K \neq K^{p}$ there exists an element $c \in K$ such that $c \notin K^{p}$. Consider $f(x)=x^{p}-$ $c \in K[x]$, and let α be a root of f in an algebraic closure of K, i.e. $c=\alpha^{p}$. We obtain that $f(x)=x^{p}-c=x^{p}-\alpha^{p}=(x-\alpha)^{p}$ so α is the unique root (of multiplicity p) of f, showing that f is inseparable over K.

Now suppose that $g(x) \in K[x]$ is an irreducible factor of $f(x)$. By the above, it must be of the form $g(x)=(x-\alpha)^{q}$ for some $q \leq p$. By the binomial expansion $g(x)=(x-\alpha)^{q}=$ $x^{q}-q x^{r-1} \alpha+\ldots+(-\alpha)^{q} \in K[x]$. In particular $q \alpha \in K$, and since $\alpha \notin K$ (for otherwise, $c=\alpha^{p} \in K^{p}$) we infer that $q=p$ and $g=f$. Therefore, $f(x)$ is an irreducible inseparable polynomial over K. In conclusion, $K(\alpha)$ is an inseparable finite extension of K.

Problem 3 [13.6.6] Prove that for n odd, $n>1, \Phi_{2 n}(x)=\Phi_{n}(-x)$.
Proof. Let $-\zeta_{n}$ be a root of $\Phi_{n}(-x)$, then $\left(-\zeta_{n}\right)^{2 n}=(-1)^{2}=1$ and so $-\zeta_{n}$ is a root of $\Phi_{2 n}(x)$.
Conversely, if $\zeta_{2 n}$ is a root of $\Phi_{2 n}(x)$ then $\zeta_{2 n}=e^{2 k i \pi / 2 n}=e^{k i \pi / n}$ for some positive integer k, which is relatively prime to $2 n$. Hence $-\left(\zeta_{2 n}\right)^{n}=-e^{k i \pi}=1$, showing that $\zeta_{2 n}$ is a root if $\Phi_{n}(-x)$.

Consequently, the two polynomials $\Phi_{2 n}(x)$ and $\Phi_{n}(-x)$ share the same roots. Moreover, both of them are monic, irreducible, and of the same degree (as $\phi(2 n)=\phi(2) \phi(n)=\phi(n)$ for n-odd) meaning that they should in fact be equal.

Problem 4. Let α be a real number such that $\alpha^{4}=5$.
(a) Is $\mathbb{Q}\left(i \alpha^{2}\right)$ normal over \mathbb{Q} ?
(b) Is $\mathbb{Q}(\alpha+i \alpha)$ normal over $\mathbb{Q}\left(i \alpha^{2}\right)$?
(c) Is $\mathbb{Q}(\alpha+i \alpha)$ normal over \mathbb{Q} ?

Solution. (a) The roots of the polynomial $x^{2}+5 \in \mathbb{Q}[x]$ are $\pm i \alpha^{2}$, so this polynomial splits completely in $\mathbb{Q}\left(i \alpha^{2}\right)$. Therefore $\mathbb{Q}\left(i \alpha^{2}\right) / \mathbb{Q}$ is normal.
(b) The roots of the polynomial $x^{2}-2 i \alpha^{2} \in \mathbb{Q}\left(i \alpha^{2}\right)[x]$ are $\pm(\alpha+i \alpha)$, so this polynomial splits completely in $\mathbb{Q}(\alpha+i \alpha)$. Therefore $\mathbb{Q}(\alpha+i \alpha) / \mathbb{Q}\left(i \alpha^{2}\right)$ is normal.
(c) Since $\alpha+i \alpha$ satisfies the polynomial $f(x)=x^{4}+20$ we get that $F=\mathbb{Q}(\alpha+i \alpha)$ is an extension of degree at most 4 over \mathbb{Q}. Now if F / \mathbb{Q} were normal, then this extension would contain all roots of f, so in particular $\alpha-i \alpha \in F$. But then α and i are in F, so $\mathbb{Q}(\alpha, i) \subset F$. However, it is not hard to see that $\mathbb{Q}(\alpha, i)$ is of degree 8 over \mathbb{Q} which contradicts the above fact that $[F: \mathbb{Q}] \leq 4$. In conclusion, F is not normal over \mathbb{Q}.

Remark. Notice that every degree 2 extension is normal. Indeed, if $[K: F]=2$ then $K=F(\alpha)$, where α is a root of an irreducible (quadratic) polynomial f over F. But then $f(x)=(x-\alpha) g(x)$ with $\operatorname{deg} g=1$. Therefore f splits in K, so K / F is normal.

Problem 5. Let K be a field of characteristic p. If L is a finite extension of K such that $[L: K]$ is relatively prime to p, show that L is separable over K.

Proof. Since L / K is a finite extension we can write $L=K\left(\alpha_{1}, \ldots \alpha_{n}\right)$. It is enough to show that each α_{i} is separable over F. Choose any α_{i} (call it α) and let $f(x)$ be its minimal polynomial over K. If $f(x)$ were not separable over K, then (by Proposition 33, Sec 13.5) $f(x)$ and $D_{x}(f(x)$) would not be relatively prime. By definition $f(x)$ is irreducible, so it must be the case that $f(x) \mid D_{x}(f(x))$. Since $|f(x)|>\left|D_{x}(f(x))\right|$ it follows that $D_{x}(f(x))=0$.

Now denote by $m=\operatorname{deg}(f(x))$, then clearly $m \mid[L: K]$. Since p is a prime not dividing $[L: K]$, we have that $p \nmid m$, and thus the derivative $D_{x}(f(x))$ is not identically 0 , which is a contradiction. Therefore, $f(x)$ is separable over K.

