
Caltech Math 5c Spring 2013

Homework 4

Solutions

Problem 1 [14.1.7]

(a) Prove that any σ ∈ Aut(R/Q) takes squares to squares and takes positive reals to positive reals.
Conclude that a < b implies σ(a) < σ(b) for every a, b ∈ R.

(b) Prove that − 1
m < a − b < 1

m implies − 1
m < σa − σ(b) < 1

m for every positive integer m.
Conclude that σ is a continuous map on R.

(c) Prove that any continuous map on R which is the identity on Q is the identity map, hence
Aut(R/Q) = 1.

Proof. Let σ ∈ Aut(R/Q), and let a, b ∈ R be arbitrary real numbers.

(a) Obviously, σ(a2) = (σ(a))2 so σ takes positive reals to positive reals. If a < b then since Q
is dense in R there exists u ∈ Q such that a < u < b. We obtain

u = σ(u) = σ(u− a+ a) = σ(u− a) + σ(a) > σ(a),

and similarly u < σ(b), yielding σ(a) < u < σ(b).

(b) Suppose that |a− b| < 1
m , for some m ∈ Z. In view of (a), we get

− 1

m
= σ

(
− 1

m

)
< σ(a− b) = σ(a)− σ(b) < σ

(
1

m

)
=

1

m
.

By definition σ is continuous if for any ϵ > 0, ∃ δ > 0 such that |σ(x) − σ(y)| < ϵ, whenever
|x− y| < δ. Now fixing ϵ > 0, let δ = 1

m < ϵ, for some m ∈ Z. If |x− y| < δ, then by the above

|σ(x)− σ(y)| < 1

m
< ϵ,

showing that σ is continuous.

(c) Let x ∈ R and ϵ > 0. Since σ is continuous ∃ δ > 0 such that |σ(x) − σ(y)| < ϵ
2 , whenever

|x− y| < δ. Set ρ = min( ϵ2 , δ) and let a ∈ Q such that |x− a| < ρ. Then

|σ(x)− x| = |σ(x)− a+ (a− x)|
≤ |σ(x)− σ(a)|+ |a− x|

<
ϵ

2
+ ρ ≤ ϵ, implying that σ(x) = x.

Consequently, the only automorphism of R fixing Q is just the identity.
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Problem 2 [14.1.8] Prove that the automorphisms of the rational function field k(t) which fix k are
precisely the fractional linear transformations determined by t 7→ at+b

ct+d for a, b, c, d ∈ k, ad− bc ̸= 0.

Proof. Let ϕ : k(t) → k(t) be defined by ϕ(f(t)) = f
(

at+b
ct+d

)
, for f(t) ∈ k(t).

If f, g ∈ k(t) then

ϕ((f + g)(t)) = (f + g)

(
at+ b

ct+ d

)
= f

(
at+ b

ct+ d

)
+ g

(
at+ b

ct+ d

)
= ϕ(f(t)) + ϕ(g(t)),

ϕ((fg)(t)) = (fg)

(
at+ b

ct+ d

)
= f

(
at+ b

ct+ d

)
g

(
at+ b

ct+ d

)
= ϕ(f(t))ϕ(g(t)),

so ϕ is a homomorphism.
Assume ϕ((f(t)) = ϕ(g(t)) for some f(t), g(t) ∈ k(t). Then

f

(
at+ b

ct+ d

)
= g

(
at+ b

ct+ d

)
=⇒ f = g in k

(
at+ b

ct+ d

)
.

By [13.2.18] we infer that[
k(t) : k

(
at+ b

ct+ d

)]
= max(deg(at+ b), deg(ct+ d)) = 1,

so k(t) = k
(

at+b
ct+d

)
and thus f = g in k(t), showing that ϕ is injective. Moreover, the above implies

that Im(ϕ) = k
(

at+b
ct+d

)
= k(t), so ϕ is surjective. In conclusion, ϕ is an automorphism. It remains

to see that ϕ fixes the constant functions, which are precisely the elements of k, hence ϕ fixes k.

Conversely, let ϕ be an automorphism of k(t) fixing k, and f(t) =
∑m

i ait
i∑n

i biti
∈ k(t). Observe that

ϕ(f(t)) =
ϕ(
∑m

i ait
i)

ϕ(
∑n

i bit
i)

=

∑m
i aiϕ(t

i)∑n
i biϕ(t

i)
= f(h(t)),

where h(t) = P (t)
Q(t) and P,Q are relatively prime over k.

Now Im(ϕ) = k(h(t)) = k
(

P (t)
Q(t)

)
, and since ϕ is an automorphism Im(ϕ) = k(t). Hence by

[13.2.18],
max(deg(P (t)), deg(Q(t))) = [k(t) : k(h(t))] = 1,

proving that P (t) = at+ b and Q(t) = ct+ d, for some a, b, c, d ∈ k. Finally, note that if c = 0 then
a ̸= 0 (and clearly d ̸= 0), for otherwise P and Q would be constants, and not relatively prime.
Similarly, if c ̸= 0 then ad

c ̸= b, for otherwise at+b = a
c (ct+d). In either case, ad−bc ̸= 0. Therefore,

the automorphisms of the rational function field k(t) that fix k are precisely the fractional linear
transformations.

Problem 3 [14.2.13] Prove that if the Galois group of the splitting field of a cubic over Q is the
cyclic group of order 3 then all the roots of the cubic are real.
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Proof. Let f be a cubic with a splitting field K over Q, such that G := Gal(K/Q) is the cyclic
group of order 3. If f has only one real root, then the remaining two form a pair of conjugates.
Now, complex conjugation τ fixes Q, so τ ∈ G. However the order of τ is 2, which does not divide
|G| = 3, leading to a contradiction.

Problem 4. If α is a complex root of x6 + x3 + 1 find all field homomorphisms ϕ : Q(α) → C.

Proof. Any field homomorphism will map the identity to 0 or to 1, so it will either be the zero
homomorphism or it will fix Q. Thus it’s enough to find all homomorphisms σ fixing Q. Now
α6 + α3 + 1 = 0 implies that σ(α)6 + σ(α)3 + 1 = 0, showing that any homomorphism sends α to
another root of x6 + x3 + 1. Since x9 − 1 = (x3 − 1)(x6 + x3 + 1), the roots of x6 + x3 + 1 are

just {ωk = e2πi
k
9 | k = 1, 2, 4, 5, 7, 8}. Note that each automorphism is determined by where ω1

gets send to. For instance, if σ(ω1) = ω2, then σ(ω2) = ω4, σ(ω4) = ω8, σ(ω5) = ω1, σ(ω7) = ω5

and σ(ω8) = ω7. Thus the possible homomorphisms are just the ones mapping ω1 to ωk, for
k = 1, 2, 4, 5, 7, 8.

Problem 5. Let d > 0 be a square-free integer. Show that Q( 8
√
d, i)/Q(

√
d) is Galois and determine

its Galois group explicitly. Show that Gal(Q( 8
√
d, i)/Q(

√
d)) is isomorphic to the dihedral group

with 8 elements by giving an explicit isomorphism.

Proof. Note that Aut(Q( 8
√
d, i)/Q(

√
d)) is determined by the action on the generators θ = 8

√
d and

i. Consider

r :

{
8
√
d 7→ ζ6 8

√
d

i 7→ i
and s :

{
8
√
d 7→ 8

√
d

i 7→ −i

Then it is not hard to see that any automorphism generated by r and s fixes Q(
√
d). Moreover,

Q( 8
√
d, i) is an extension of degree 8 over Q(

√
d). Note that r4 = s2 = 1 and rsr = s, which is a

presentation of the dihedral group. Therefore

8 = |D8| = | < r, s | r4 = s2 = 1, rsr = s > | ≤ |Aut(Q(
8
√
d, i)/Q(

√
d))| ≤ [Q(

8
√
d, i) : Q(

√
d)] = 8,

showing that Q( 8
√
d, i)/Q(

√
d) is Galois, and Gal(Q( 8

√
d, i)/Q(

√
d)) = D8.
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