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HOMEWORK 4
SOLUTIONS

Problem 1 [14.1.7]

(a) Prove that any o € Aut(R/Q) takes squares to squares and takes positive reals to positive reals.

Conclude that a < b implies o(a) < o(b) for every a,b € R.
(b) Prove that —X < a —b < L implies — L
Conclude that o is a continuous map on R.

< oa—o(b) < % for every positive integer m.

(c) Prove that any continuous map on R which is the identity on Q is the identity map, hence
Aut(R/Q) = 1.

Proof. Let o € Aut(R/Q), and let a,b € R be arbitrary real numbers.

(a) Obviously, o(a?) = (c(a))? so o takes positive reals to positive reals. If a < b then since Q
is dense in R there exists u € Q such that a < u < b. We obtain

u=oc(u)=oclu—a+a)=oc(u—a)+o(a) >o(a),
and similarly u < o(b), yielding o(a) < u < o(b).
(b) Suppose that [a — b| < L, for some m € Z. In view of (a), we get
1 1 1 1
=0 (_m> <ola=b)=o0(a)—o(b) <o (m) =

By definition ¢ is continuous if for any € > 0, 3 § > 0 such that |o(z) — 0(y)| < €, whenever
|z — y| < 6. Now fixing € > 0, let § = L < ¢, for some m € Z. If |z — y| < 4, then by the above

o) o) < - <e.

showing that o is continuous.
(c) Let x € R and € > 0. Since o is continuous 3 § > 0 such that |o(z) — o(y)| < §, whenever
|z —y| < d. Set p=min(5,0) and let a € Q such that [z —a| < p. Then
o(z) — 2| = |o(z) —a+ (a — )|
<lo(z) —o(a)l +la — |
€ . .
< 3 + p < ¢, implying that o(z) = z.

Consequently, the only automorphism of R fixing Q is just the identity.
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Problem 2 [14.1.8] Prove that the automorphisms of the rational function field k(¢) which fix k are

precisely the fractional linear transformations determined by t — Ztt—is for a,b,c,d € k, ad—bc # 0.

Proof. Let ¢ : k() — k(1) be defined by ¢(f(1)) = f (g;ig), for f(t) € k(t).
If f,g € k(t) then

o5+t = (¢ +9) (i) =1 (5g) +o (5mg) = o) + o(a(0),

ct+d ct+d
stra®) = o) (505 ) =1 (s ) o (5mg) = U @netato.

S0 ¢ is a homomorphism.
Assume ¢((f(t)) = ¢(g(t)) for some f(¢), g(t) € k(t). Then

f at +b B at +b gk at +b
d+d)  I\a+d —9 d+d)”

By [13.2.18] we infer that

{k(t) Tk (Zfi;ﬂ — max(deg(at + b), deg(ct +d)) = 1,

so k(t) =k (‘;f—idb) and thus f = ¢ in k(¢), showing that ¢ is injective. Moreover, the above implies

that I'm(¢) = k (gfjrrdb) = k(t), so ¢ is surjective. In conclusion, ¢ is an automorphism. It remains

to see that ¢ fixes the constant functions, which are precisely the elements of k, hence ¢ fixes k.

Conversely, let ¢ be an automorphism of k(t) fixing k, and f(t) = zz:;: Z’; € k(t). Observe that

_ Sl at) _ N aid(t) _
(T bitt) Y bip(t) = f(h(t)),

where h(t) = % and P, Q are relatively prime over k.
Now Im(¢) = k(h(t)) = k (%} and since ¢ is an automorphism Im(¢) = k(t). Hence by
13.2.18],

o(f(1))

max(deg(P(t)), deg(Q(t))) = [k(t) : k(h(t))] =1,

proving that P(t) = at + b and Q(t) = ct + d, for some a,b,c,d € k. Finally, note that if ¢ = 0 then
a # 0 (and clearly d # 0), for otherwise P and @ would be constants, and not relatively prime.
Similarly, if ¢ # 0 then %d # b, for otherwise at+b = %(ct+d). In either case, ad—bc # 0. Therefore,
the automorphisms of the rational function field k(¢) that fix k are precisely the fractional linear

transformations.
O

Problem 3 [14.2.13] Prove that if the Galois group of the splitting field of a cubic over Q is the
cyclic group of order 3 then all the roots of the cubic are real.
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Proof. Let f be a cubic with a splitting field K over Q, such that G := Gal(K/Q) is the cyclic
group of order 3. If f has only one real root, then the remaining two form a pair of conjugates.
Now, complex conjugation 7 fixes QQ, so 7 € G. However the order of 7 is 2, which does not divide
|G| = 3, leading to a contradiction. O

Problem 4. If a is a complex root of % 4+ 23 + 1 find all field homomorphisms ¢ : Q(a)) — C.

Proof. Any field homomorphism will map the identity to 0 or to 1, so it will either be the zero
homomorphism or it will fix Q. Thus it’s enough to find all homomorphisms ¢ fixing Q. Now
ab + a® + 1 = 0 implies that ()% 4+ o(a)? + 1 = 0, showing that any homomorphism sends « to
another root of x% + 23 + 1. Since 2% — 1 = (2% — 1)(2® + 2 + 1), the roots of 2° + 2% + 1 are
just {wr = e2mis | K =1,2,4,5,7,8}. Note that each automorphism is determined by where w;
gets send to. For instance, if o(w1) = wa, then o(ws) = wy, o(wy) = ws, o(ws) = wy, o(wr) = ws
and o(wg) = wy. Thus the possible homomorphisms are just the ones mapping w; to wg, for
k=1,2,4,57,8. 0

Problem 5. Let d > 0 be a square-free integer. Show that Q(+/d,i)/Q(+/d) is Galois and determine
its Galois group explicitly. Show that Gal(Q(¥/d,i)/Q(+v/d)) is isomorphic to the dihedral group
with 8 elements by giving an explicit isomorphism.

Proof. Note that Aut(Q(~¥/d,i)/Q(+v/d)) is determined by the action on the generators = v/d and
1. Consider

{%nga {%Hs/&
Tl ) and s: < )
11 1= —1

Then it is not hard to see that any automorphism generated by r and s fixes Q(\/&) Moreover,
Q(V/d, i) is an extension of degree 8 over Q(v/d). Note that 7 = s> = 1 and rsr = s, which is a
presentation of the dihedral group. Therefore

8=|Ds|=|<rs|rit=s>=1, rsr=s>|<|Auwt(Q(Vd,i)/Q(Wd))| < [Q(Vd,i): Q(Wd)] =8,
showing that Q(v/d,7)/Q(v/d) is Galois, and Gal(Q(¥/d,i)/Q(V/d)) = Ds. O



