Homework 4 Solutions

Problem 1 [14.1.7]

(a) Prove that any $\sigma \in \operatorname{Aut}(\mathbb{R} / \mathbb{Q})$ takes squares to squares and takes positive reals to positive reals. Conclude that $a<b$ implies $\sigma(a)<\sigma(b)$ for every $a, b \in \mathbb{R}$.
(b) Prove that $-\frac{1}{m}<a-b<\frac{1}{m}$ implies $-\frac{1}{m}<\sigma a-\sigma(b)<\frac{1}{m}$ for every positive integer m. Conclude that σ is a continuous map on \mathbb{R}.
(c) Prove that any continuous map on \mathbb{R} which is the identity on \mathbb{Q} is the identity map, hence $\operatorname{Aut}(R / \mathbb{Q})=1$.
Proof. Let $\sigma \in \operatorname{Aut}(\mathbb{R} / \mathbb{Q})$, and let $a, b \in \mathbb{R}$ be arbitrary real numbers.
(a) Obviously, $\sigma\left(a^{2}\right)=(\sigma(a))^{2}$ so σ takes positive reals to positive reals. If $a<b$ then since \mathbb{Q} is dense in \mathbb{R} there exists $u \in \mathbb{Q}$ such that $a<u<b$. We obtain

$$
u=\sigma(u)=\sigma(u-a+a)=\sigma(u-a)+\sigma(a)>\sigma(a)
$$

and similarly $u<\sigma(b)$, yielding $\sigma(a)<u<\sigma(b)$.
(b) Suppose that $|a-b|<\frac{1}{m}$, for some $m \in \mathbb{Z}$. In view of (a), we get

$$
-\frac{1}{m}=\sigma\left(-\frac{1}{m}\right)<\sigma(a-b)=\sigma(a)-\sigma(b)<\sigma\left(\frac{1}{m}\right)=\frac{1}{m} .
$$

By definition σ is continuous if for any $\epsilon>0, \exists \delta>0$ such that $|\sigma(x)-\sigma(y)|<\epsilon$, whenever $|x-y|<\delta$. Now fixing $\epsilon>0$, let $\delta=\frac{1}{m}<\epsilon$, for some $m \in \mathbb{Z}$. If $|x-y|<\delta$, then by the above

$$
|\sigma(x)-\sigma(y)|<\frac{1}{m}<\epsilon
$$

showing that σ is continuous.
(c) Let $x \in \mathbb{R}$ and $\epsilon>0$. Since σ is continuous $\exists \delta>0$ such that $|\sigma(x)-\sigma(y)|<\frac{\epsilon}{2}$, whenever $|x-y|<\delta$. Set $\rho=\min \left(\frac{\epsilon}{2}, \delta\right)$ and let $a \in \mathbb{Q}$ such that $|x-a|<\rho$. Then

$$
\begin{aligned}
|\sigma(x)-x| & =|\sigma(x)-a+(a-x)| \\
& \leq|\sigma(x)-\sigma(a)|+|a-x| \\
& <\frac{\epsilon}{2}+\rho \leq \epsilon, \text { implying that } \sigma(x)=x
\end{aligned}
$$

Consequently, the only automorphism of \mathbb{R} fixing \mathbb{Q} is just the identity.

Problem 2 [14.1.8] Prove that the automorphisms of the rational function field $k(t)$ which fix k are precisely the fractional linear transformations determined by $t \mapsto \frac{a t+b}{c t+d}$ for $a, b, c, d \in k, a d-b c \neq 0$.

Proof. Let $\phi: k(t) \rightarrow k(t)$ be defined by $\phi(f(t))=f\left(\frac{a t+b}{c t+d}\right)$, for $f(t) \in k(t)$.
If $f, g \in k(t)$ then

$$
\begin{gathered}
\phi((f+g)(t))=(f+g)\left(\frac{a t+b}{c t+d}\right)=f\left(\frac{a t+b}{c t+d}\right)+g\left(\frac{a t+b}{c t+d}\right)=\phi(f(t))+\phi(g(t)), \\
\phi((f g)(t))=(f g)\left(\frac{a t+b}{c t+d}\right)=f\left(\frac{a t+b}{c t+d}\right) g\left(\frac{a t+b}{c t+d}\right)=\phi(f(t)) \phi(g(t)),
\end{gathered}
$$

so ϕ is a homomorphism.
Assume $\phi((f(t))=\phi(g(t))$ for some $f(t), g(t) \in k(t)$. Then

$$
f\left(\frac{a t+b}{c t+d}\right)=g\left(\frac{a t+b}{c t+d}\right) \Longrightarrow f=g \text { in } k\left(\frac{a t+b}{c t+d}\right) .
$$

By [13.2.18] we infer that

$$
\left[k(t): k\left(\frac{a t+b}{c t+d}\right)\right]=\max (\operatorname{deg}(a t+b), \operatorname{deg}(c t+d))=1
$$

so $k(t)=k\left(\frac{a t+b}{c t+d}\right)$ and thus $f=g$ in $k(t)$, showing that ϕ is injective. Moreover, the above implies that $\operatorname{Im}(\phi)=k\left(\frac{a t+b}{c t+d}\right)=k(t)$, so ϕ is surjective. In conclusion, ϕ is an automorphism. It remains to see that ϕ fixes the constant functions, which are precisely the elements of k, hence ϕ fixes k.

Conversely, let ϕ be an automorphism of $k(t)$ fixing k, and $f(t)=\frac{\sum_{i}^{m} a_{i} t^{i}}{\sum_{i}^{n} b_{i} t^{i}} \in k(t)$. Observe that

$$
\phi(f(t))=\frac{\phi\left(\sum_{i}^{m} a_{i} t^{i}\right)}{\phi\left(\sum_{i}^{n} b_{i} t^{i}\right)}=\frac{\sum_{i}^{m} a_{i} \phi\left(t^{i}\right)}{\sum_{i}^{n} b_{i} \phi\left(t^{i}\right)}=f(h(t))
$$

where $h(t)=\frac{P(t)}{Q(t)}$ and P, Q are relatively prime over k.
Now $\operatorname{Im}(\phi)=k(h(t))=k\left(\frac{P(t)}{Q(t)}\right)$, and since ϕ is an automorphism $\operatorname{Im}(\phi)=k(t)$. Hence by [13.2.18],

$$
\max (\operatorname{deg}(P(t)), \operatorname{deg}(Q(t)))=[k(t): k(h(t))]=1
$$

proving that $P(t)=a t+b$ and $Q(t)=c t+d$, for some $a, b, c, d \in k$. Finally, note that if $c=0$ then $a \neq 0$ (and clearly $d \neq 0$), for otherwise P and Q would be constants, and not relatively prime. Similarly, if $c \neq 0$ then $\frac{a d}{c} \neq b$, for otherwise $a t+b=\frac{a}{c}(c t+d)$. In either case, $a d-b c \neq 0$. Therefore, the automorphisms of the rational function field $k(t)$ that fix k are precisely the fractional linear transformations.

Problem 3 [$\mathbf{1 4 . 2 . 1 3]}$ Prove that if the Galois group of the splitting field of a cubic over \mathbb{Q} is the cyclic group of order 3 then all the roots of the cubic are real.

Proof. Let f be a cubic with a splitting field K over \mathbb{Q}, such that $G:=\operatorname{Gal}(K / \mathbb{Q})$ is the cyclic group of order 3. If f has only one real root, then the remaining two form a pair of conjugates. Now, complex conjugation τ fixes \mathbb{Q}, so $\tau \in G$. However the order of τ is 2 , which does not divide $|G|=3$, leading to a contradiction.

Problem 4. If α is a complex root of $x^{6}+x^{3}+1$ find all field homomorphisms $\phi: \mathbb{Q}(\alpha) \rightarrow \mathbb{C}$.
Proof. Any field homomorphism will map the identity to 0 or to 1 , so it will either be the zero homomorphism or it will fix \mathbb{Q}. Thus it's enough to find all homomorphisms σ fixing \mathbb{Q}. Now $\alpha^{6}+\alpha^{3}+1=0$ implies that $\sigma(\alpha)^{6}+\sigma(\alpha)^{3}+1=0$, showing that any homomorphism sends α to another root of $x^{6}+x^{3}+1$. Since $x^{9}-1=\left(x^{3}-1\right)\left(x^{6}+x^{3}+1\right)$, the roots of $x^{6}+x^{3}+1$ are just $\left\{\left.\omega_{k}=e^{2 \pi i \frac{k}{9}} \right\rvert\, k=1,2,4,5,7,8\right\}$. Note that each automorphism is determined by where ω_{1} gets send to. For instance, if $\sigma\left(\omega_{1}\right)=\omega_{2}$, then $\sigma\left(\omega_{2}\right)=\omega_{4}, \sigma\left(\omega_{4}\right)=\omega_{8}, \sigma\left(\omega_{5}\right)=\omega_{1}, \sigma\left(\omega_{7}\right)=\omega_{5}$ and $\sigma\left(\omega_{8}\right)=\omega_{7}$. Thus the possible homomorphisms are just the ones mapping ω_{1} to ω_{k}, for $k=1,2,4,5,7,8$.

Problem 5. Let $d>0$ be a square-free integer. Show that $\mathbb{Q}(\sqrt[8]{d}, i) / \mathbb{Q}(\sqrt{d})$ is Galois and determine its Galois group explicitly. Show that $\operatorname{Gal}(\mathbb{Q}(\sqrt[8]{d}, i) / Q(\sqrt{d}))$ is isomorphic to the dihedral group with 8 elements by giving an explicit isomorphism.

Proof. Note that $\operatorname{Aut}(\mathbb{Q}(\sqrt[8]{d}, i) / \mathbb{Q}(\sqrt{d}))$ is determined by the action on the generators $\theta=\sqrt[8]{d}$ and i. Consider

$$
r:\left\{\begin{array}{l}
\sqrt[8]{d} \mapsto \zeta \sqrt[8]{d} \\
i \mapsto i
\end{array} \quad \text { and } s:\left\{\begin{array}{l}
\sqrt[8]{d} \mapsto \sqrt[8]{d} \\
i \mapsto-i
\end{array}\right.\right.
$$

Then it is not hard to see that any automorphism generated by r and s fixes $Q(\sqrt{d})$. Moreover, $\mathbb{Q}(\sqrt[8]{d}, i)$ is an extension of degree 8 over $\mathbb{Q}(\sqrt{d})$. Note that $r^{4}=s^{2}=1$ and $r s r=s$, which is a presentation of the dihedral group. Therefore
$8=\left|D_{8}\right|=|<r, s| r^{4}=s^{2}=1, r s r=s>|\leq|\operatorname{Aut}(\mathbb{Q}(\sqrt[8]{d}, i) / \mathbb{Q}(\sqrt{d}))| \leq[\mathbb{Q}(\sqrt[8]{d}, i): \mathbb{Q}(\sqrt{d})]=8$,
showing that $\mathbb{Q}(\sqrt[8]{d}, i) / \mathbb{Q}(\sqrt{d})$ is Galois, and $\operatorname{Gal}(\mathbb{Q}(\sqrt[8]{d}, i) / Q(\sqrt{d}))=D_{8}$.

