Homework 4 Solutions

Problem 1 [14.1.7]

- (a) Prove that any $\sigma \in Aut(\mathbb{R}/\mathbb{Q})$ takes squares to squares and takes positive reals to positive reals. Conclude that a < b implies $\sigma(a) < \sigma(b)$ for every $a, b \in \mathbb{R}$.
- (b) Prove that $-\frac{1}{m} < a b < \frac{1}{m}$ implies $-\frac{1}{m} < \sigma a \sigma(b) < \frac{1}{m}$ for every positive integer m. Conclude that σ is a continuous map on \mathbb{R} .
- (c) Prove that any continuous map on \mathbb{R} which is the identity on \mathbb{Q} is the identity map, hence $Aut(R/\mathbb{Q}) = 1$.

Proof. Let $\sigma \in \operatorname{Aut}(\mathbb{R}/\mathbb{Q})$, and let $a, b \in \mathbb{R}$ be arbitrary real numbers.

(a) Obviously, $\sigma(a^2) = (\sigma(a))^2$ so σ takes positive reals to positive reals. If a < b then since \mathbb{Q} is dense in \mathbb{R} there exists $u \in \mathbb{Q}$ such that a < u < b. We obtain

$$u = \sigma(u) = \sigma(u - a + a) = \sigma(u - a) + \sigma(a) > \sigma(a),$$

and similarly $u < \sigma(b)$, yielding $\sigma(a) < u < \sigma(b)$.

(b) Suppose that $|a-b| < \frac{1}{m}$, for some $m \in \mathbb{Z}$. In view of (a), we get

$$-\frac{1}{m} = \sigma\left(-\frac{1}{m}\right) < \sigma(a-b) = \sigma(a) - \sigma(b) < \sigma\left(\frac{1}{m}\right) = \frac{1}{m}.$$

By definition σ is continuous if for any $\epsilon > 0$, $\exists \delta > 0$ such that $|\sigma(x) - \sigma(y)| < \epsilon$, whenever $|x - y| < \delta$. Now fixing $\epsilon > 0$, let $\delta = \frac{1}{m} < \epsilon$, for some $m \in \mathbb{Z}$. If $|x - y| < \delta$, then by the above

$$|\sigma(x) - \sigma(y)| < \frac{1}{m} < \epsilon,$$

showing that σ is continuous.

(c) Let $x \in \mathbb{R}$ and $\epsilon > 0$. Since σ is continuous $\exists \delta > 0$ such that $|\sigma(x) - \sigma(y)| < \frac{\epsilon}{2}$, whenever $|x - y| < \delta$. Set $\rho = \min(\frac{\epsilon}{2}, \delta)$ and let $a \in \mathbb{Q}$ such that $|x - a| < \rho$. Then

$$\begin{aligned} |\sigma(x) - x| &= |\sigma(x) - a + (a - x)| \\ &\leq |\sigma(x) - \sigma(a)| + |a - x| \\ &< \frac{\epsilon}{2} + \rho \leq \epsilon, \text{ implying that } \sigma(x) = x \end{aligned}$$

Consequently, the only automorphism of \mathbb{R} fixing \mathbb{Q} is just the identity.

Problem 2 [14.1.8] Prove that the automorphisms of the rational function field k(t) which fix k are precisely the *fractional linear transformations* determined by $t \mapsto \frac{at+b}{ct+d}$ for $a, b, c, d \in k$, $ad-bc \neq 0$.

Proof. Let $\phi : k(t) \to k(t)$ be defined by $\phi(f(t)) = f\left(\frac{at+b}{ct+d}\right)$, for $f(t) \in k(t)$. If $f, g \in k(t)$ then

$$\begin{split} \phi((f+g)(t)) &= (f+g)\left(\frac{at+b}{ct+d}\right) = f\left(\frac{at+b}{ct+d}\right) + g\left(\frac{at+b}{ct+d}\right) = \phi(f(t)) + \phi(g(t)) \\ \phi((fg)(t)) &= (fg)\left(\frac{at+b}{ct+d}\right) = f\left(\frac{at+b}{ct+d}\right)g\left(\frac{at+b}{ct+d}\right) = \phi(f(t))\phi(g(t)), \end{split}$$

so ϕ is a homomorphism.

Assume $\phi((f(t)) = \phi(g(t))$ for some $f(t), g(t) \in k(t)$. Then

$$f\left(\frac{at+b}{ct+d}\right) = g\left(\frac{at+b}{ct+d}\right) \Longrightarrow f = g \text{ in } k\left(\frac{at+b}{ct+d}\right).$$

By [13.2.18] we infer that

$$\left[k(t): k\left(\frac{at+b}{ct+d}\right)\right] = \max(\deg(at+b), \deg(ct+d)) = 1,$$

so $k(t) = k\left(\frac{at+b}{ct+d}\right)$ and thus f = g in k(t), showing that ϕ is injective. Moreover, the above implies that $Im(\phi) = k\left(\frac{at+b}{ct+d}\right) = k(t)$, so ϕ is surjective. In conclusion, ϕ is an automorphism. It remains to see that ϕ fixes the constant functions, which are precisely the elements of k, hence ϕ fixes k.

Conversely, let ϕ be an automorphism of k(t) fixing k, and $f(t) = \frac{\sum_{i=1}^{m} a_i t^i}{\sum_{i=1}^{n} b_i t^i} \in k(t)$. Observe that

$$\phi(f(t)) = \frac{\phi(\sum_i^m a_i t^i)}{\phi(\sum_i^n b_i t^i)} = \frac{\sum_i^m a_i \phi(t^i)}{\sum_i^n b_i \phi(t^i)} = f(h(t)),$$

where $h(t) = \frac{P(t)}{Q(t)}$ and P, Q are relatively prime over k.

Now $Im(\phi) = k(h(t)) = k\left(\frac{P(t)}{Q(t)}\right)$, and since ϕ is an automorphism $Im(\phi) = k(t)$. Hence by [13.2.18],

$$\max(\deg(P(t)), \deg(Q(t))) = [k(t) : k(h(t))] = 1,$$

proving that P(t) = at + b and Q(t) = ct + d, for some $a, b, c, d \in k$. Finally, note that if c = 0 then $a \neq 0$ (and clearly $d \neq 0$), for otherwise P and Q would be constants, and not relatively prime. Similarly, if $c \neq 0$ then $\frac{ad}{c} \neq b$, for otherwise $at+b = \frac{a}{c}(ct+d)$. In either case, $ad-bc \neq 0$. Therefore, the automorphisms of the rational function field k(t) that fix k are precisely the fractional linear transformations.

Problem 3 [14.2.13] Prove that if the Galois group of the splitting field of a cubic over \mathbb{Q} is the cyclic group of order 3 then all the roots of the cubic are real.

Proof. Let f be a cubic with a splitting field K over \mathbb{Q} , such that $G := Gal(K/\mathbb{Q})$ is the cyclic group of order 3. If f has only one real root, then the remaining two form a pair of conjugates. Now, complex conjugation τ fixes \mathbb{Q} , so $\tau \in G$. However the order of τ is 2, which does not divide |G| = 3, leading to a contradiction.

Problem 4. If α is a complex root of $x^6 + x^3 + 1$ find all field homomorphisms $\phi : \mathbb{Q}(\alpha) \to \mathbb{C}$.

Proof. Any field homomorphism will map the identity to 0 or to 1, so it will either be the zero homomorphism or it will fix \mathbb{Q} . Thus it's enough to find all homomorphisms σ fixing \mathbb{Q} . Now $\alpha^6 + \alpha^3 + 1 = 0$ implies that $\sigma(\alpha)^6 + \sigma(\alpha)^3 + 1 = 0$, showing that any homomorphism sends α to another root of $x^6 + x^3 + 1$. Since $x^9 - 1 = (x^3 - 1)(x^6 + x^3 + 1)$, the roots of $x^6 + x^3 + 1$ are just $\{\omega_k = e^{2\pi i \frac{k}{9}} \mid k = 1, 2, 4, 5, 7, 8\}$. Note that each automorphism is determined by where ω_1 gets send to. For instance, if $\sigma(\omega_1) = \omega_2$, then $\sigma(\omega_2) = \omega_4$, $\sigma(\omega_4) = \omega_8$, $\sigma(\omega_5) = \omega_1$, $\sigma(\omega_7) = \omega_5$ and $\sigma(\omega_8) = \omega_7$. Thus the possible homomorphisms are just the ones mapping ω_1 to ω_k , for k = 1, 2, 4, 5, 7, 8.

Problem 5. Let d > 0 be a square-free integer. Show that $\mathbb{Q}(\sqrt[8]{d}, i)/\mathbb{Q}(\sqrt{d})$ is Galois and determine its Galois group explicitly. Show that $Gal(\mathbb{Q}(\sqrt[8]{d}, i)/Q(\sqrt{d}))$ is isomorphic to the dihedral group with 8 elements by giving an explicit isomorphism.

Proof. Note that $Aut(\mathbb{Q}(\sqrt[8]{d}, i)/\mathbb{Q}(\sqrt{d}))$ is determined by the action on the generators $\theta = \sqrt[8]{d}$ and i. Consider

$$r: \begin{cases} \sqrt[8]{d} \mapsto \zeta^6 \sqrt[8]{d} \\ i \mapsto i \end{cases} \quad \text{ and } s: \begin{cases} \sqrt[8]{d} \mapsto \sqrt[8]{d} \\ i \mapsto -i \end{cases}$$

Then it is not hard to see that any automorphism generated by r and s fixes $Q(\sqrt{d})$. Moreover, $\mathbb{Q}(\sqrt[8]{d}, i)$ is an extension of degree 8 over $\mathbb{Q}(\sqrt{d})$. Note that $r^4 = s^2 = 1$ and rsr = s, which is a presentation of the dihedral group. Therefore

$$8 = |D_8| = |\langle r, s \mid r^4 = s^2 = 1, \ rsr = s \rangle |\leq |Aut(\mathbb{Q}(\sqrt[8]{d}, i)/\mathbb{Q}(\sqrt{d}))| \leq [\mathbb{Q}(\sqrt[8]{d}, i) : \mathbb{Q}(\sqrt{d})] = 8,$$

showing that $\mathbb{Q}(\sqrt[8]{d}, i)/\mathbb{Q}(\sqrt{d})$ is Galois, and $Gal(\mathbb{Q}(\sqrt[8]{d}, i)/\mathbb{Q}(\sqrt{d})) = D_8.$