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Homework 5

Solutions

Problem 1 [14.2.3] Determine the Galois group of (x2 − 2)(x2 − 3)(x2 − 5). Determine all the
subfields of the splitting field of this polynomial.

Solution. It is easy to see that K = Q(
√
2,
√
3,
√
5) is the splitting field of the polynomial f(x) =

(x2 − 2)(x2 − 3)(x2 − 5) over Q. Moreover {1,
√
2,
√
3,
√
5,
√
6,
√
10,

√
15,

√
30} is a Q-basis for K

and thus [K : Q] = 8. So if G = Gal(K/Q) then |G| = 8.
Consider the following automorphisms (of order 2 in G)

σ2 :


√
2 7→ −

√
2√

3 7→
√
3√

5 7→
√
5

σ3 :


√
2 7→

√
2√

3 7→ −
√
3√

5 7→
√
5

σ5 :


√
2 7→

√
2√

3 7→
√
3√

5 7→ −
√
5

then obviously
G =< σ2, σ3, σ5 >∼= Z/2Z× Z/2Z× Z/2Z.

Notice that G is abelian, implying that all of its subgroups are normal. Now by the Fundamental
Theorem of Galois theory, every normal subgroup H ≤ G corresponds to a subfield KH , which is
a splitting field over Q. Since |H| divides 8, we distinguish 4 cases:

• |H| = 1, then clearly KH = K = Q(
√
2,
√
3,
√
5).

• |H| = 2, then H contains the identity and an element of order 2, so it can be any of the
following 7 groups: {1, σ2}, {1, σ3}, {1, σ5}, {1, σ2σ3}, {1, σ3σ5}, {1, σ5σ2}, {1, σ2σ3σ5}. By
looking at the action on the basis elements we find that the corresponding fixed subfields of the
above groups are Q(

√
3,
√
5), Q(

√
2,
√
5), Q(

√
2,
√
3), Q(

√
5,
√
6), Q(

√
2,
√
15), Q(

√
3,
√
10),

Q(
√
6,
√
10).

• |H| = 4, then H contains the identity, two distinct elements of order 2, and their product so
it can be any of the following 7 groups: {1, σ2, σ3, σ2σ3}, {1, σ3, σ5, σ3σ5}, {1, σ5, σ2, σ5σ2},
{1, σ2, σ3σ5, σ2σ3σ5}, {1, σ3, σ2σ5, σ2σ3σ5}, {1, σ5, σ2σ3, σ2σ3σ5}, {1, σ2σ3, σ3σ5, σ5σ2}. Their
corresponding fixed subfields are Q(

√
5), Q(

√
2), Q(

√
3), Q(

√
15), Q(

√
10), Q(

√
6), Q(

√
30).

• |H| = 8, then KH = Q.
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Problem 2 [14.2.16]

(a) Prove that x4 − 2x2 − 2 is irreducible over Q.

(b) Show that the roots of this quartic are α1 =
√

1 +
√
3, α2 =

√
1−

√
3, α3 = −

√
1 +

√
3,

α4 = −
√
1−

√
3.

(c) Let K1 = Q(α1) and K2 = Q(α2). Show that K1 ̸= K2 and K1 ∩K2 = Q(
√
3) = F .

(d) Prove that K1,K2 and K1K2 are Galois over F with Gal(K1K2/F ) the Klein 4-group. Write
out the elements of Gal(K1K2/F ) explicitly. Determine all the subgroups of the Galois group
and give their corresponding fixed subfields of K1K2 containing F .

(e) Prove that the splitting field of x4 − 2x2 − 2 over Q is of degree 8 with dihedral Galois group.

Proof. (a) The polynomial x4 − 2x2 − 2 is irreducible by Eisenstein’s criterion for p = 2.

(b) Note that (±
√

1±
√
3)4 − 2(±

√
1±

√
3)2 − 2 = (4± 2

√
3)− 2(1±

√
3)− 2 = 0.

(c) Observe that α1 is real, while and α2 is complex, so K1 ̸= K2. Now F ⊆ K1 ∩K2. K1, K2

are each of degree 4, and they’re not equal, so 2 ≤ [K1 ∩K2 : Q] < 4. Therefore K1 ∩K2 = F .

(d) We have the following factorization

x4 − 2x2 − 2 = (x2 − 1−
√
3)(x2 − 1 +

√
3) ∈ F [x],

and clearly K1 is the splitting field of x2 − 1 −
√
3 ∈ F [x] so K1/F is Galois. Similarly, K2/F is

also Galois.
Now K1K2 is the splitting field of the polynomial x4 − 2x2 − 2 over F and Gal(K1K2/F ) is

generated by

τ :

{
α1 7→ α1

α2 7→ α4

σ :

{
α1 7→ α3

α2 7→ α2

so it has the structure of the Klein 4-group. The subgroup {1, τ} corresponds to the fixed field K1,
{1, σ} corresponds to K2, {1, στ} corresponds to F (

√
−2), the identity subgroup corresponds to

K1K2, and {1, σ, τ, στ} corresponds to F .

(e) Since K1K2 is the splitting field of x4 − 2x2 − 2 over Q we obtain [K1K2 : Q] = [K1K2 :
F ][F : Q] = 4 · 2 = 8 so G = Gal(K1K2/Q) is of order 8. From the previous part, we see that G
has at least 3 subgroups of order 2. Also, G is not abelian. Since the only nonabelian subgroups of
order 8 are D8 and Q8, we conclude that G must be the dihedral group.

Problem 3 [14.2.17] Let K/F be any finite extension and let α ∈ K. Let L be a Galois extension
of F containing K and let H ≤ Gal(L/F ) be the subgroup corresponding to K. Define the norm
of α from K to F to be

NK/F (α) =
∏
σ

σ(α),

where the product is taken over all F -embeddings of K into an algebraic closure of F (so over a set
of coset representatives for H in Gal(L/F ) by the Fundamental Theorem of Galois Theory). This
is a product of conjugates of α.

2



Caltech Math 5c Spring 2013

(a) Prove that NK/F (α) ∈ F .

(b) Prove that the norm is a multiplicative map.

(c) Let K − F (
√
D, prove that NK/F (a+ b

√
D) = a2 −Db2.

(d) Let mα(x) = xd + ad−1x
d−1 + . . .+ a1x+ a0 ∈ F [x] be the minimal polynomial for α ∈ K over

F . Let n = [K : F ]. Prove that d|n, that there are d distinct Galois conjugates of α which are

all repeated n/d times in the product above and conclude that NK/F (α) = (−1)na
n/d
0 .

Proof. (a) First we need to check that the product in the definition of the norm is well defined.
Indeed, since K is the fixed field of H, the elements of a coset σH ⊂ Gal(L/F ) all correspond to
the same embedding σ. So if I and J are two sets of coset representatives for H, then∏

σ∈I

σ(α) =
∏
σ∈J

σ(α),

showing that NK/F (α) is well defined.
Now if I is a set of coset representatives for H, then for any τ ∈ Gal(L/F ), τI is also a complete

set of representatives, say S. This implies that

τNK/F (α) = τ
∏
σ∈I

σ(α) =
∏
σ∈I

τσ(α) =
∏
σ∈S

σ(α) = NK/F (α).

In other words NK/F (α) is fixed by Gal(L/F ), so it lies in F .

(b) Note that

NK/F (αβ) =
∏
σ

σ(αβ) =
∏
σ

σ(α)
∏
σ

σ(β) = NK/F (α)NK/F (β).

(c) If K = F (
√
D) is a quadratic extension of F , then K/F is necessarily Galois. In this case,

the only non-identity element of Gal(K/F ) is the map
√
D 7→ −

√
D. Hence

NK/F (a+ b
√
D) = (a+ b

√
D)(a− b

√
D) = a2 −Db2.

(d) Because F ⊆ F (α) ⊆ K, it is clear that d = [F (α) : F ] divides n = [K : F ].
Now F ⊆ K ⊆ L and L is separable over F (being Galois), thus K is also separable over F .

Recall that the roots of the minimal polynomial must be precisely the Galois conjugates of α, and
in view of the above mα doesn’t have multiple roots. Since deg(mα) = d, there are exactly d of
them.

Furthermore, there are n embeddings of K into an algebraic closure of F . Each of these em-
beddings sends α to a Galois conjugate (of which there are d), hence each conjugate appears n/d
times in the product defining the norm. So if {α1, . . . , αd} are the roots of mα, then

NK/F (α) =
∏
σ

σ(α) = (
d∏

i=1

αi)
n/d.

Considering that a0 = (−1)d
∏d

i=1 αi we obtain

NK/F (α) = (−1)na
n/d
0 .
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Problem 4 [14.2.18] With the notation as in the previous problem, define the trace of α from K
to F to be

TrK/F (α) =
∑
σ

σ(α),

a sum of Galois conjugates of α.

(a) Prove that TrK/F (α) ∈ F .

(b) Prove that the trace is an additive map.

(c) Let K − F (
√
D, prove that TrK/F (a+ b

√
D) = 2a.

(d) Let mα(x) as in the previous problem. Prove that TrK/F (α) = −n
d ad−1.

Proof. (a) This follows by the same reasoning as in the problem above.

(b) Notice that

TrK/F (α+ β) =
∑
σ

σ(α+ β) =
∑
σ

σ(α) +
∑
σ

σ(β) = TrK/F (α) + TrK/F (β).

(c) In view of the previous problem

TrK/F (a+ b
√
D) = (a+ b

√
D) + (a− b

√
D) = 2a.

(d) As we saw in the previous problem, each of the d distinct Galois conjugates of K is repeated
n/d times in the sum defining the trace. Hence

TrK/F (α) =
n

d
(

d∑
i=1

αi).

Since
∑d

i=1 αi = −ad−1, it follows that TrK/F (α) = −n
d ad−1.

Problem 5 [14.2.22] Suppose that K/F is a Galois extension and let σ be an element of the
Galois group.

(a) Suppose α ∈ K is of the form α = β
σβ for some nonzero β ∈ K. Prove that NK/F (α) = 1.

(b) Suppose α ∈ K is of the form α = β − σβ for some β ∈ K. Prove that TrK/F (α) = 0.

Proof. a) By the definition of the norm we have that for β ∈ K and σ ∈ G = Gal(K/F ):

NK/F (σβ) =
∏
τ∈G

τ(σβ) =
∏
ρ∈G

ρβ = NK/F (β).

Thus if α = β
σβ then NK/F (α) =

NK/F (β)

NK/F (σβ) = 1.

b) Similarly, one has that TrK/F (β) = TrK/F (σβ). Hence, if α = β − σβ then TrK/F (α) =
TrK/F (β)− TrK/F (σβ) = 0.
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