Homework 5 Solutions

Problem 1 [14.2.3] Determine the Galois group of $(x^2 - 2)(x^2 - 3)(x^2 - 5)$. Determine all the subfields of the splitting field of this polynomial.

Solution. It is easy to see that $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ is the splitting field of the polynomial $f(x) = (x^2 - 2)(x^2 - 3)(x^2 - 5)$ over \mathbb{Q} . Moreover $\{1, \sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{6}, \sqrt{10}, \sqrt{15}, \sqrt{30}\}$ is a \mathbb{Q} -basis for K and thus $[K : \mathbb{Q}] = 8$. So if $G = Gal(K/\mathbb{Q})$ then |G| = 8.

Consider the following automorphisms (of order 2 in G)

$$\sigma_2 : \begin{cases} \sqrt{2} \mapsto -\sqrt{2} \\ \sqrt{3} \mapsto \sqrt{3} \\ \sqrt{5} \mapsto \sqrt{5} \end{cases} \qquad \sigma_3 : \begin{cases} \sqrt{2} \mapsto \sqrt{2} \\ \sqrt{3} \mapsto -\sqrt{3} \\ \sqrt{5} \mapsto \sqrt{5} \end{cases} \qquad \sigma_5 : \begin{cases} \sqrt{2} \mapsto \sqrt{2} \\ \sqrt{3} \mapsto \sqrt{3} \\ \sqrt{5} \mapsto -\sqrt{5} \end{cases}$$

then obviously

$$G = \langle \sigma_2, \sigma_3, \sigma_5 \rangle \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$$

Notice that G is abelian, implying that all of its subgroups are normal. Now by the Fundamental Theorem of Galois theory, every normal subgroup $H \leq G$ corresponds to a subfield K^H , which is a splitting field over \mathbb{Q} . Since |H| divides 8, we distinguish 4 cases:

- |H| = 1, then clearly $K^H = K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}).$
- |H| = 2, then H contains the identity and an element of order 2, so it can be any of the following 7 groups: $\{1, \sigma_2\}, \{1, \sigma_3\}, \{1, \sigma_5\}, \{1, \sigma_2\sigma_3\}, \{1, \sigma_3\sigma_5\}, \{1, \sigma_5\sigma_2\}, \{1, \sigma_2\sigma_3\sigma_5\}$. By looking at the action on the basis elements we find that the corresponding fixed subfields of the above groups are $\mathbb{Q}(\sqrt{3}, \sqrt{5}), \mathbb{Q}(\sqrt{2}, \sqrt{5}), \mathbb{Q}(\sqrt{2}, \sqrt{3}), \mathbb{Q}(\sqrt{5}, \sqrt{6}), \mathbb{Q}(\sqrt{2}, \sqrt{15}), \mathbb{Q}(\sqrt{3}, \sqrt{10}), \mathbb{Q}(\sqrt{6}, \sqrt{10})$.
- |H| = 4, then H contains the identity, two distinct elements of order 2, and their product so it can be any of the following 7 groups: $\{1, \sigma_2, \sigma_3, \sigma_2\sigma_3\}, \{1, \sigma_3, \sigma_5, \sigma_3\sigma_5\}, \{1, \sigma_5, \sigma_2, \sigma_5\sigma_2\}, \{1, \sigma_2, \sigma_3\sigma_5, \sigma_2\sigma_3\sigma_5\}, \{1, \sigma_3, \sigma_2\sigma_5, \sigma_2\sigma_3\sigma_5\}, \{1, \sigma_5, \sigma_2\sigma_3\sigma_5\}, \{1, \sigma_2\sigma_3, \sigma_3\sigma_5, \sigma_5\sigma_2\}$. Their corresponding fixed subfields are $\mathbb{Q}(\sqrt{5}), \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{15}), \mathbb{Q}(\sqrt{10}), \mathbb{Q}(\sqrt{6}), \mathbb{Q}(\sqrt{30})$.

•
$$|H| = 8$$
, then $K^H = \mathbb{Q}$.

Problem 2 [14.2.16]

- (a) Prove that $x^4 2x^2 2$ is irreducible over \mathbb{Q} .
- (b) Show that the roots of this quartic are $\alpha_1 = \sqrt{1+\sqrt{3}}$, $\alpha_2 = \sqrt{1-\sqrt{3}}$, $\alpha_3 = -\sqrt{1+\sqrt{3}}$, $\alpha_4 = -\sqrt{1-\sqrt{3}}$.
- (c) Let $K_1 = \mathbb{Q}(\alpha_1)$ and $K_2 = \mathbb{Q}(\alpha_2)$. Show that $K_1 \neq K_2$ and $K_1 \cap K_2 = \mathbb{Q}(\sqrt{3}) = F$.
- (d) Prove that K_1, K_2 and K_1K_2 are Galois over F with $Gal(K_1K_2/F)$ the Klein 4-group. Write out the elements of $Gal(K_1K_2/F)$ explicitly. Determine all the subgroups of the Galois group and give their corresponding fixed subfields of K_1K_2 containing F.

(e) Prove that the splitting field of $x^4 - 2x^2 - 2$ over \mathbb{Q} is of degree 8 with dihedral Galois group. *Proof.* (a) The polynomial $x^4 - 2x^2 - 2$ is irreducible by Eisenstein's criterion for p = 2.

(b) Note that $(\pm\sqrt{1\pm\sqrt{3}})^4 - 2(\pm\sqrt{1\pm\sqrt{3}})^2 - 2 = (4\pm2\sqrt{3}) - 2(1\pm\sqrt{3}) - 2 = 0.$

(c) Observe that α_1 is real, while and α_2 is complex, so $K_1 \neq K_2$. Now $F \subseteq K_1 \cap K_2$. K_1, K_2 are each of degree 4, and they're not equal, so $2 \leq [K_1 \cap K_2 : \mathbb{Q}] < 4$. Therefore $K_1 \cap K_2 = F$.

(d) We have the following factorization

$$x^{4} - 2x^{2} - 2 = (x^{2} - 1 - \sqrt{3})(x^{2} - 1 + \sqrt{3}) \in F[x],$$

and clearly K_1 is the splitting field of $x^2 - 1 - \sqrt{3} \in F[x]$ so K_1/F is Galois. Similarly, K_2/F is also Galois.

Now K_1K_2 is the splitting field of the polynomial $x^4 - 2x^2 - 2$ over F and $Gal(K_1K_2/F)$ is generated by

$$\tau: \begin{cases} \alpha_1 \mapsto \alpha_1 \\ \alpha_2 \mapsto \alpha_4 \end{cases} \quad \sigma: \begin{cases} \alpha_1 \mapsto \alpha_3 \\ \alpha_2 \mapsto \alpha_2 \end{cases}$$

so it has the structure of the Klein 4-group. The subgroup $\{1, \tau\}$ corresponds to the fixed field K_1 , $\{1, \sigma\}$ corresponds to K_2 , $\{1, \sigma\tau\}$ corresponds to $F(\sqrt{-2})$, the identity subgroup corresponds to K_1K_2 , and $\{1, \sigma, \tau, \sigma\tau\}$ corresponds to F.

(e) Since K_1K_2 is the splitting field of $x^4 - 2x^2 - 2$ over \mathbb{Q} we obtain $[K_1K_2 : \mathbb{Q}] = [K_1K_2 : F][F : \mathbb{Q}] = 4 \cdot 2 = 8$ so $G = Gal(K_1K_2/\mathbb{Q})$ is of order 8. From the previous part, we see that G has at least 3 subgroups of order 2. Also, G is not abelian. Since the only nonabelian subgroups of order 8 are D_8 and Q_8 , we conclude that G must be the dihedral group.

Problem 3 [14.2.17] Let K/F be any finite extension and let $\alpha \in K$. Let L be a Galois extension of F containing K and let $H \leq Gal(L/F)$ be the subgroup corresponding to K. Define the norm of α from K to F to be

$$N_{K/F}(\alpha) = \prod_{\sigma} \sigma(\alpha),$$

where the product is taken over all F-embeddings of K into an algebraic closure of F (so over a set of coset representatives for H in Gal(L/F) by the Fundamental Theorem of Galois Theory). This is a product of conjugates of α .

- (a) Prove that $N_{K/F}(\alpha) \in F$.
- (b) Prove that the norm is a multiplicative map.
- (c) Let $K F(\sqrt{D})$, prove that $N_{K/F}(a + b\sqrt{D}) = a^2 Db^2$.
- (d) Let $m_{\alpha}(x) = x^d + a_{d-1}x^{d-1} + \ldots + a_1x + a_0 \in F[x]$ be the minimal polynomial for $\alpha \in K$ over F. Let n = [K : F]. Prove that d|n, that there are d distinct Galois conjugates of α which are all repeated n/d times in the product above and conclude that $N_{K/F}(\alpha) = (-1)^n a_0^{n/d}$.

Proof. (a) First we need to check that the product in the definition of the norm is well defined. Indeed, since K is the fixed field of H, the elements of a coset $\sigma H \subset Gal(L/F)$ all correspond to the same embedding σ . So if I and J are two sets of coset representatives for H, then

$$\prod_{\sigma \in I} \sigma(\alpha) = \prod_{\sigma \in J} \sigma(\alpha).$$

showing that $N_{K/F}(\alpha)$ is well defined.

Now if I is a set of coset representatives for H, then for any $\tau \in Gal(L/F)$, τI is also a complete set of representatives, say S. This implies that

$$\tau N_{K/F}(\alpha) = \tau \prod_{\sigma \in I} \sigma(\alpha) = \prod_{\sigma \in I} \tau \sigma(\alpha) = \prod_{\sigma \in S} \sigma(\alpha) = N_{K/F}(\alpha).$$

In other words $N_{K/F}(\alpha)$ is fixed by Gal(L/F), so it lies in F.

(b) Note that

$$N_{K/F}(\alpha\beta) = \prod_{\sigma} \sigma(\alpha\beta) = \prod_{\sigma} \sigma(\alpha) \prod_{\sigma} \sigma(\beta) = N_{K/F}(\alpha) N_{K/F}(\beta).$$

(c) If $K = F(\sqrt{D})$ is a quadratic extension of F, then K/F is necessarily Galois. In this case, the only non-identity element of Gal(K/F) is the map $\sqrt{D} \mapsto -\sqrt{D}$. Hence

$$N_{K/F}(a+b\sqrt{D}) = (a+b\sqrt{D})(a-b\sqrt{D}) = a^2 - Db^2.$$

(d) Because $F \subseteq F(\alpha) \subseteq K$, it is clear that $d = [F(\alpha) : F]$ divides n = [K : F].

Now $F \subseteq K \subseteq L$ and L is separable over F (being Galois), thus K is also separable over F. Recall that the roots of the minimal polynomial must be precisely the Galois conjugates of α , and in view of the above m_{α} doesn't have multiple roots. Since deg $(m_{\alpha}) = d$, there are exactly d of them.

Furthermore, there are n embeddings of K into an algebraic closure of F. Each of these embeddings sends α to a Galois conjugate (of which there are d), hence each conjugate appears n/d times in the product defining the norm. So if $\{\alpha_1, \ldots, \alpha_d\}$ are the roots of m_{α} , then

$$N_{K/F}(\alpha) = \prod_{\sigma} \sigma(\alpha) = (\prod_{i=1}^{d} \alpha_i)^{n/d}.$$

Considering that $a_0 = (-1)^d \prod_{i=1}^d \alpha_i$ we obtain

$$N_{K/F}(\alpha) = (-1)^n a_0^{n/d}.$$

Problem 4 [14.2.18] With the notation as in the previous problem, define the trace of α from K to F to be

$$Tr_{K/F}(\alpha) = \sum_{\sigma} \sigma(\alpha),$$

a sum of Galois conjugates of α .

(a) Prove that $Tr_{K/F}(\alpha) \in F$.

(b) Prove that the trace is an additive map.

(c) Let $K - F(\sqrt{D})$, prove that $Tr_{K/F}(a + b\sqrt{D}) = 2a$.

(d) Let $m_{\alpha}(x)$ as in the previous problem. Prove that $Tr_{K/F}(\alpha) = -\frac{n}{d}a_{d-1}$.

Proof. (a) This follows by the same reasoning as in the problem above.

(b) Notice that

$$Tr_{K/F}(\alpha + \beta) = \sum_{\sigma} \sigma(\alpha + \beta) = \sum_{\sigma} \sigma(\alpha) + \sum_{\sigma} \sigma(\beta) = Tr_{K/F}(\alpha) + Tr_{K/F}(\beta).$$

(c) In view of the previous problem

$$Tr_{K/F}(a+b\sqrt{D}) = (a+b\sqrt{D}) + (a-b\sqrt{D}) = 2a.$$

(d) As we saw in the previous problem, each of the d distinct Galois conjugates of K is repeated n/d times in the sum defining the trace. Hence

$$Tr_{K/F}(\alpha) = \frac{n}{d} (\sum_{i=1}^{d} \alpha_i).$$

Since $\sum_{i=1}^{d} \alpha_i = -a_{d-1}$, it follows that $Tr_{K/F}(\alpha) = -\frac{n}{d}a_{d-1}$.

Problem 5	[14.2.22]	Suppose	that	K/I	F	is a	Galois	extension	and	let	σ	be	an	element	of	the
Galois group).															

- (a) Suppose $\alpha \in K$ is of the form $\alpha = \frac{\beta}{\sigma\beta}$ for some nonzero $\beta \in K$. Prove that $N_{K/F}(\alpha) = 1$.
- (b) Suppose $\alpha \in K$ is of the form $\alpha = \beta \sigma\beta$ for some $\beta \in K$. Prove that $Tr_{K/F}(\alpha) = 0$.

Proof. a) By the definition of the norm we have that for $\beta \in K$ and $\sigma \in G = Gal(K/F)$:

$$N_{K/F}(\sigma\beta) = \prod_{\tau \in G} \tau(\sigma\beta) = \prod_{\rho \in G} \rho\beta = N_{K/F}(\beta).$$

Thus if $\alpha = \frac{\beta}{\sigma\beta}$ then $N_{K/F}(\alpha) = \frac{N_{K/F}(\beta)}{N_{K/F}(\sigma\beta)} = 1.$

b) Similarly, one has that $Tr_{K/F}(\beta) = Tr_{K/F}(\sigma\beta)$. Hence, if $\alpha = \beta - \sigma\beta$ then $Tr_{K/F}(\alpha) = Tr_{K/F}(\beta) - Tr_{K/F}(\sigma\beta) = 0$.