Homework 5 Solutions

Problem 1 [14.2.3] Determine the Galois group of $\left(x^{2}-2\right)\left(x^{2}-3\right)\left(x^{2}-5\right)$. Determine all the subfields of the splitting field of this polynomial.

Solution. It is easy to see that $K=\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ is the splitting field of the polynomial $f(x)=$ $\left(x^{2}-2\right)\left(x^{2}-3\right)\left(x^{2}-5\right)$ over \mathbb{Q}. Moreover $\{1, \sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{6}, \sqrt{10}, \sqrt{15}, \sqrt{30}\}$ is a \mathbb{Q}-basis for K and thus $[K: \mathbb{Q}]=8$. So if $G=\operatorname{Gal}(K / \mathbb{Q})$ then $|G|=8$.

Consider the following automorphisms (of order 2 in G)

$$
\sigma_{2}:\left\{\begin{array}{l}
\sqrt{2} \mapsto-\sqrt{2} \\
\sqrt{3} \mapsto \sqrt{3} \\
\sqrt{5} \mapsto \sqrt{5}
\end{array} \quad \sigma_{3}:\left\{\begin{array}{l}
\sqrt{2} \mapsto \sqrt{2} \\
\sqrt{3} \mapsto-\sqrt{3} \\
\sqrt{5} \mapsto \sqrt{5}
\end{array} \quad \sigma_{5}:\left\{\begin{array}{l}
\sqrt{2} \mapsto \sqrt{2} \\
\sqrt{3} \mapsto \sqrt{3} \\
\sqrt{5} \mapsto-\sqrt{5}
\end{array}\right.\right.\right.
$$

then obviously

$$
G=<\sigma_{2}, \sigma_{3}, \sigma_{5}>\cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}
$$

Notice that G is abelian, implying that all of its subgroups are normal. Now by the Fundamental Theorem of Galois theory, every normal subgroup $H \leq G$ corresponds to a subfield K^{H}, which is a splitting field over \mathbb{Q}. Since $|H|$ divides 8 , we distinguish 4 cases:

- $|H|=1$, then clearly $K^{H}=K=\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$.
- $|H|=2$, then H contains the identity and an element of order 2, so it can be any of the following 7 groups: $\left\{1, \sigma_{2}\right\},\left\{1, \sigma_{3}\right\},\left\{1, \sigma_{5}\right\},\left\{1, \sigma_{2} \sigma_{3}\right\},\left\{1, \sigma_{3} \sigma_{5}\right\},\left\{1, \sigma_{5} \sigma_{2}\right\},\left\{1, \sigma_{2} \sigma_{3} \sigma_{5}\right\}$. By looking at the action on the basis elements we find that the corresponding fixed subfields of the above groups are $\mathbb{Q}(\sqrt{3}, \sqrt{5}), \mathbb{Q}(\sqrt{2}, \sqrt{5}), \mathbb{Q}(\sqrt{2}, \sqrt{3}), \mathbb{Q}(\sqrt{5}, \sqrt{6}), \mathbb{Q}(\sqrt{2}, \sqrt{15}), \mathbb{Q}(\sqrt{3}, \sqrt{10})$, $\mathbb{Q}(\sqrt{6}, \sqrt{10})$.
- $|H|=4$, then H contains the identity, two distinct elements of order 2, and their product so it can be any of the following 7 groups: $\left\{1, \sigma_{2}, \sigma_{3}, \sigma_{2} \sigma_{3}\right\},\left\{1, \sigma_{3}, \sigma_{5}, \sigma_{3} \sigma_{5}\right\},\left\{1, \sigma_{5}, \sigma_{2}, \sigma_{5} \sigma_{2}\right\}$, $\left\{1, \sigma_{2}, \sigma_{3} \sigma_{5}, \sigma_{2} \sigma_{3} \sigma_{5}\right\},\left\{1, \sigma_{3}, \sigma_{2} \sigma_{5}, \sigma_{2} \sigma_{3} \sigma_{5}\right\},\left\{1, \sigma_{5}, \sigma_{2} \sigma_{3}, \sigma_{2} \sigma_{3} \sigma_{5}\right\},\left\{1, \sigma_{2} \sigma_{3}, \sigma_{3} \sigma_{5}, \sigma_{5} \sigma_{2}\right\}$. Their corresponding fixed subfields are $\mathbb{Q}(\sqrt{5}), \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{15}), \mathbb{Q}(\sqrt{10}), \mathbb{Q}(\sqrt{6}), \mathbb{Q}(\sqrt{30})$.
- $|H|=8$, then $K^{H}=\mathbb{Q}$.

Problem 2 [14.2.16]

(a) Prove that $x^{4}-2 x^{2}-2$ is irreducible over \mathbb{Q}.
(b) Show that the roots of this quartic are $\alpha_{1}=\sqrt{1+\sqrt{3}}, \alpha_{2}=\sqrt{1-\sqrt{3}}, \alpha_{3}=-\sqrt{1+\sqrt{3}}$, $\alpha_{4}=-\sqrt{1-\sqrt{3}}$.
(c) Let $K_{1}=\mathbb{Q}\left(\alpha_{1}\right)$ and $K_{2}=\mathbb{Q}\left(\alpha_{2}\right)$. Show that $K_{1} \neq K_{2}$ and $K_{1} \cap K_{2}=\mathbb{Q}(\sqrt{3})=F$.
(d) Prove that K_{1}, K_{2} and $K_{1} K_{2}$ are Galois over F with $\operatorname{Gal}\left(K_{1} K_{2} / F\right)$ the Klein 4-group. Write out the elements of $\operatorname{Gal}\left(K_{1} K_{2} / F\right)$ explicitly. Determine all the subgroups of the Galois group and give their corresponding fixed subfields of $K_{1} K_{2}$ containing F.
(e) Prove that the splitting field of $x^{4}-2 x^{2}-2$ over \mathbb{Q} is of degree 8 with dihedral Galois group.

Proof. (a) The polynomial $x^{4}-2 x^{2}-2$ is irreducible by Eisenstein's criterion for $p=2$.
(b) Note that $(\pm \sqrt{1 \pm \sqrt{3}})^{4}-2(\pm \sqrt{1 \pm \sqrt{3}})^{2}-2=(4 \pm 2 \sqrt{3})-2(1 \pm \sqrt{3})-2=0$.
(c) Observe that α_{1} is real, while and α_{2} is complex, so $K_{1} \neq K_{2}$. Now $F \subseteq K_{1} \cap K_{2}$. K_{1}, K_{2} are each of degree 4 , and they're not equal, so $2 \leq\left[K_{1} \cap K_{2}: \mathbb{Q}\right]<4$. Therefore $K_{1} \cap K_{2}=F$.
(d) We have the following factorization

$$
x^{4}-2 x^{2}-2=\left(x^{2}-1-\sqrt{3}\right)\left(x^{2}-1+\sqrt{3}\right) \in F[x],
$$

and clearly K_{1} is the splitting field of $x^{2}-1-\sqrt{3} \in F[x]$ so K_{1} / F is Galois. Similarly, K_{2} / F is also Galois.

Now $K_{1} K_{2}$ is the splitting field of the polynomial $x^{4}-2 x^{2}-2$ over F and $\operatorname{Gal}\left(K_{1} K_{2} / F\right)$ is generated by

$$
\tau:\left\{\begin{array}{l}
\alpha_{1} \mapsto \alpha_{1} \\
\alpha_{2} \mapsto \alpha_{4}
\end{array} \quad \sigma:\left\{\begin{array}{l}
\alpha_{1} \mapsto \alpha_{3} \\
\alpha_{2} \mapsto \alpha_{2}
\end{array}\right.\right.
$$

so it has the structure of the Klein 4 -group. The subgroup $\{1, \tau\}$ corresponds to the fixed field K_{1}, $\{1, \sigma\}$ corresponds to $K_{2},\{1, \sigma \tau\}$ corresponds to $F(\sqrt{-2})$, the identity subgroup corresponds to $K_{1} K_{2}$, and $\{1, \sigma, \tau, \sigma \tau\}$ corresponds to F.
(e) Since $K_{1} K_{2}$ is the splitting field of $x^{4}-2 x^{2}-2$ over \mathbb{Q} we obtain $\left[K_{1} K_{2}: \mathbb{Q}\right]=\left[K_{1} K_{2}\right.$: $F][F: \mathbb{Q}]=4 \cdot 2=8$ so $G=\operatorname{Gal}\left(K_{1} K_{2} / \mathbb{Q}\right)$ is of order 8 . From the previous part, we see that G has at least 3 subgroups of order 2. Also, G is not abelian. Since the only nonabelian subgroups of order 8 are D_{8} and Q_{8}, we conclude that G must be the dihedral group.

Problem 3 [14.2.17] Let K / F be any finite extension and let $\alpha \in K$. Let L be a Galois extension of F containing K and let $H \leq \operatorname{Gal}(L / F)$ be the subgroup corresponding to K. Define the norm of α from K to F to be

$$
N_{K / F}(\alpha)=\prod_{\sigma} \sigma(\alpha),
$$

where the product is taken over all F-embeddings of K into an algebraic closure of F (so over a set of coset representatives for H in $\operatorname{Gal}(L / F)$ by the Fundamental Theorem of Galois Theory). This is a product of conjugates of α.
(a) Prove that $N_{K / F}(\alpha) \in F$.
(b) Prove that the norm is a multiplicative map.
(c) Let $K-F\left(\sqrt{D}\right.$, prove that $N_{K / F}(a+b \sqrt{D})=a^{2}-D b^{2}$.
(d) Let $m_{\alpha}(x)=x^{d}+a_{d-1} x^{d-1}+\ldots+a_{1} x+a_{0} \in F[x]$ be the minimal polynomial for $\alpha \in K$ over F. Let $n=[K: F]$. Prove that $d \mid n$, that there are d distinct Galois conjugates of α which are all repeated n / d times in the product above and conclude that $N_{K / F}(\alpha)=(-1)^{n} a_{0}^{n / d}$.
Proof. (a) First we need to check that the product in the definition of the norm is well defined. Indeed, since K is the fixed field of H, the elements of a coset $\sigma H \subset G a l(L / F)$ all correspond to the same embedding σ. So if I and J are two sets of coset representatives for H, then

$$
\prod_{\sigma \in I} \sigma(\alpha)=\prod_{\sigma \in J} \sigma(\alpha)
$$

showing that $N_{K / F}(\alpha)$ is well defined.
Now if I is a set of coset representatives for H, then for any $\tau \in \operatorname{Gal}(L / F), \tau I$ is also a complete set of representatives, say S. This implies that

$$
\tau N_{K / F}(\alpha)=\tau \prod_{\sigma \in I} \sigma(\alpha)=\prod_{\sigma \in I} \tau \sigma(\alpha)=\prod_{\sigma \in S} \sigma(\alpha)=N_{K / F}(\alpha)
$$

In other words $N_{K / F}(\alpha)$ is fixed by $\operatorname{Gal}(L / F)$, so it lies in F.
(b) Note that

$$
N_{K / F}(\alpha \beta)=\prod_{\sigma} \sigma(\alpha \beta)=\prod_{\sigma} \sigma(\alpha) \prod_{\sigma} \sigma(\beta)=N_{K / F}(\alpha) N_{K / F}(\beta)
$$

(c) If $K=F(\sqrt{D})$ is a quadratic extension of F, then K / F is necessarily Galois. In this case, the only non-identity element of $\operatorname{Gal}(K / F)$ is the map $\sqrt{D} \mapsto-\sqrt{D}$. Hence

$$
N_{K / F}(a+b \sqrt{D})=(a+b \sqrt{D})(a-b \sqrt{D})=a^{2}-D b^{2}
$$

(d) Because $F \subseteq F(\alpha) \subseteq K$, it is clear that $d=[F(\alpha): F]$ divides $n=[K: F]$.

Now $F \subseteq K \subseteq L$ and L is separable over F (being Galois), thus K is also separable over F. Recall that the roots of the minimal polynomial must be precisely the Galois conjugates of α, and in view of the above m_{α} doesn't have multiple roots. Since $\operatorname{deg}\left(m_{\alpha}\right)=d$, there are exactly d of them.

Furthermore, there are n embeddings of K into an algebraic closure of F. Each of these embeddings sends α to a Galois conjugate (of which there are d), hence each conjugate appears n / d times in the product defining the norm. So if $\left\{\alpha_{1}, \ldots, \alpha_{d}\right\}$ are the roots of m_{α}, then

$$
N_{K / F}(\alpha)=\prod_{\sigma} \sigma(\alpha)=\left(\prod_{i=1}^{d} \alpha_{i}\right)^{n / d}
$$

Considering that $a_{0}=(-1)^{d} \prod_{i=1}^{d} \alpha_{i}$ we obtain

$$
N_{K / F}(\alpha)=(-1)^{n} a_{0}^{n / d}
$$

Problem 4 [14.2.18] With the notation as in the previous problem, define the trace of α from K to F to be

$$
\operatorname{Tr}_{K / F}(\alpha)=\sum_{\sigma} \sigma(\alpha)
$$

a sum of Galois conjugates of α.
(a) Prove that $\operatorname{Tr}_{K / F}(\alpha) \in F$.
(b) Prove that the trace is an additive map.
(c) Let $K-F\left(\sqrt{D}\right.$, prove that $\operatorname{Tr}_{K / F}(a+b \sqrt{D})=2 a$.
(d) Let $m_{\alpha}(x)$ as in the previous problem. Prove that $\operatorname{Tr}_{K / F}(\alpha)=-\frac{n}{d} a_{d-1}$.

Proof. (a) This follows by the same reasoning as in the problem above.
(b) Notice that

$$
\operatorname{Tr}_{K / F}(\alpha+\beta)=\sum_{\sigma} \sigma(\alpha+\beta)=\sum_{\sigma} \sigma(\alpha)+\sum_{\sigma} \sigma(\beta)=\operatorname{Tr}_{K / F}(\alpha)+\operatorname{Tr}_{K / F}(\beta)
$$

(c) In view of the previous problem

$$
T r_{K / F}(a+b \sqrt{D})=(a+b \sqrt{D})+(a-b \sqrt{D})=2 a
$$

(d) As we saw in the previous problem, each of the d distinct Galois conjugates of K is repeated n / d times in the sum defining the trace. Hence

$$
\operatorname{Tr}_{K / F}(\alpha)=\frac{n}{d}\left(\sum_{i=1}^{d} \alpha_{i}\right)
$$

Since $\sum_{i=1}^{d} \alpha_{i}=-a_{d-1}$, it follows that $\operatorname{Tr}_{K / F}(\alpha)=-\frac{n}{d} a_{d-1}$.

Problem 5 [14.2.22] Suppose that K / F is a Galois extension and let σ be an element of the Galois group.
(a) Suppose $\alpha \in K$ is of the form $\alpha=\frac{\beta}{\sigma \beta}$ for some nonzero $\beta \in K$. Prove that $N_{K / F}(\alpha)=1$.
(b) Suppose $\alpha \in K$ is of the form $\alpha=\beta-\sigma \beta$ for some $\beta \in K$. Prove that $\operatorname{Tr}_{K / F}(\alpha)=0$.

Proof. a) By the definition of the norm we have that for $\beta \in K$ and $\sigma \in G=G a l(K / F)$:

$$
N_{K / F}(\sigma \beta)=\prod_{\tau \in G} \tau(\sigma \beta)=\prod_{\rho \in G} \rho \beta=N_{K / F}(\beta)
$$

Thus if $\alpha=\frac{\beta}{\sigma \beta}$ then $N_{K / F}(\alpha)=\frac{N_{K / F}(\beta)}{N_{K / F}(\sigma \beta)}=1$.
b) Similarly, one has that $\operatorname{Tr}_{K / F}(\beta)=\operatorname{Tr}_{K / F}(\sigma \beta)$. Hence, if $\alpha=\beta-\sigma \beta$ then $\operatorname{Tr}_{K / F}(\alpha)=$ $\operatorname{Tr}_{K / F}(\beta)-\operatorname{Tr}_{K / F}(\sigma \beta)=0$.

