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HOMEWORK 5
SOLUTIONS

Problem 1 [14.2.3] Determine the Galois group of (22 — 2)(2? — 3)(2% — 5). Determine all the
subfields of the splitting field of this polynomial.

Solution. Tt is easy to see that K = Q(v/2,v/3,v/5) is the splitting field of the polynomial f(z) =
(22 — 2)(2? — 3)(2® — 5) over Q. Moreover {1,v/2,v/3,/5,v6,v10,1/15,4/30} is a Q-basis for K
and thus [K : Q] = 8. So if G = Gal(K/Q) then |G| = 8.

Consider the following automorphisms (of order 2 in G)

V2 =2 V2 /2 V2 V2
o9 \/§'->\/§ o3 . \/ﬁ'-)-\/g o5 . \/§’-)\/§
V55 V55 V5= —V5

then obviously
G =< 09,03,05 >X7/27 X 7/27 X 7] 27Z.

Notice that G is abelian, implying that all of its subgroups are normal. Now by the Fundamental
Theorem of Galois theory, every normal subgroup H < G corresponds to a subfield K, which is
a splitting field over Q. Since |H| divides 8, we distinguish 4 cases:

e |H| =1, then clearly K = K = Q(v/2,v3,V5).

e |H| = 2, then H contains the identity and an element of order 2, so it can be any of the

following 7 groups: {1,02}, {1,053}, {1,035}, {1,0203}, {1,0305}, {1,0502}, {1,020305}. By
looking at the action on the basis elements we find that the corresponding fixed subfields of the

above groups are Q(v/3,V5), Q(v2,V5), Q(v2,V3), Q(V5,V6), Q(v2,V15), Q(V3,V10),
Q(V6,v/10).

e |H| =4, then H contains the identity, two distinct elements of order 2, and their product so
it can be any of the following 7 groups: {1,049, 03,0203}, {1,03,05,0305}, {1,05,02,0502},
{1,0’2,0’30’5,0’20’30’5}, {1,0’3,0’20’5,0’20’30’5}, {1,0’570'20'370'20'30'5}, {170'20'370'3(75,0'50'2}. Their

corresponding fixed subficlds are Q(v5), Q(v2), Q(v3), Q(v13), Q(v10), Q(v6), Q(v/30).
e |H| =38, then K =Q.
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Problem 2 [14.2.16]

(a) Prove that o* — 222 — 2 is irreducible over Q.

(b) Show that the roots of this quartic are a; = V1 ++V3, as = V1 -3, a3 = —V/14+/3,
Qg = —V 1-— \/3

(c) Let K; = Q(av1) and Ky = Q(a). Show that K; # K, and K7 N Ky = Q(v/3) = F.

(d) Prove that K, Ky and KK, are Galois over F with Gal(K;K>/F) the Klein 4-group. Write
out the elements of Gal(K1Ks>/F) explicitly. Determine all the subgroups of the Galois group
and give their corresponding fixed subfields of K; K5 containing F'.

(e) Prove that the splitting field of #* — 222 — 2 over Q is of degree 8 with dihedral Galois group.
Proof. (a) The polynomial x* — 222 — 2 is irreducible by Eisenstein’s criterion for p = 2.
(b) Note that (£v/1+£+v3)* —2(£v/14+3)2 —2=(4+2V/3) - 2(1+3)—-2=0.

(c) Observe that ay is real, while and as is complex, so Ky # Ka. Now F C K1 N Ks. K, Ko
are each of degree 4, and they’re not equal, so 2 < [K; N K5 : Q] < 4. Therefore K1 N Ky = F.

(d) We have the following factorization
2t =222 — 2= (22 -1 - V3)(2? — 1+ V3) € Fla],

and clearly K is the splitting field of 22 — 1 — /3 € F[x] so K;/F is Galois. Similarly, K,/F is
also Galois.
Now KK, is the splitting field of the polynomial 2% — 222 — 2 over F and Gal(K;K»/F) is

generated by
a1 — o a1 = a3
T g
Qg > Oy Q9o — (o

so it has the structure of the Klein 4-group. The subgroup {1, 7} corresponds to the fixed field K,
{1,0} corresponds to Ko, {1,067} corresponds to F(y/—2), the identity subgroup corresponds to
K1Ks, and {1,0, 7,07} corresponds to F.

(e) Since K1 K, is the splitting field of 2* — 222 — 2 over Q we obtain [K1Ks : Q] = [K1 K> :
Fl[F:Q =4-2=8s0G=Gal(K1K5/Q) is of order 8. From the previous part, we see that G
has at least 3 subgroups of order 2. Also, G is not abelian. Since the only nonabelian subgroups of

order 8 are Dg and g, we conclude that G must be the dihedral group.
O

Problem 3 [14.2.17] Let K/F be any finite extension and let o € K. Let L be a Galois extension
of F containing K and let H < Gal(L/F) be the subgroup corresponding to K. Define the norm

of o from K to F to be
Nisr(a) =[] o(e),

where the product is taken over all F-embeddings of K into an algebraic closure of F' (so over a set
of coset representatives for H in Gal(L/F) by the Fundamental Theorem of Galois Theory). This
is a product of conjugates of «.
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(a) Prove that Nk, p(a) € F.
(b
(c

(d) Let mq(z) = 2% +ag_127 ' +...+ a1z + ag € F[z] be the minimal polynomial for a € K over
F. Let n = [K : F]. Prove that d|n, that there are d distinct Galois conjugates of o which are

all repeated n/d times in the product above and conclude that Ny, p(a) = (—1)"ag/d.

Prove that the norm is a multiplicative map.

)
)
) Let K — F(v/D, prove that Ng,r(a+ bV D) = a® — Db>.
)

Proof. (a) First we need to check that the product in the definition of the norm is well defined.
Indeed, since K is the fixed field of H, the elements of a coset cH C Gal(L/F) all correspond to
the same embedding o. So if I and J are two sets of coset representatives for H, then

H ola) = H o)
oel ocelJ

showing that Ny, p(a) is well defined.
Now if I is a set of coset representatives for H, then for any 7 € Gal(L/F), 71 is also a complete
set of representatives, say S. This implies that

TNk r(a —THO' HTJ(@): Ha(a):NK/p(a).
oel o€l oesS
In other words Ng,p(a) is fixed by Gal(L/F), so it lies in F.
(b) Note that

Ng/r(ap) = HO’ af) = Ha(a)Ha(ﬁ) = Ng/r(@)Ng/p(B).

(c) If K = F(v/D) is a quadratic extension of F, then K/F is necessarily Galois. In this case,
the only non-identity element of Gal(K/F) is the map v/D — —/D. Hence

Ng/r(a+bVD) = (a+bVD)(a - bV/D) = a® — Db?.

(d) Because F' C F(a) C K, it is clear that d = [F(«) : F] divides n = [K : F].

Now FF C K C L and L is separable over F' (being Galois), thus K is also separable over F.
Recall that the roots of the minimal polynomial must be precisely the Galois conjugates of «, and
in view of the above m, doesn’t have multiple roots. Since deg(m,) = d, there are exactly d of
them.

Furthermore, there are n embeddings of K into an algebraic closure of F. Each of these em-
beddings sends « to a Galois conjugate (of which there are d), hence each conjugate appears n/d
times in the product defining the norm. So if {aq,...,aq} are the roots of m,, then

d
Ng/r(a HU = ([ e
i=1
Considering that ag = (—1)¢ H?:l a; we obtain

Nic/p(a) = (=1)"af’".
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Problem 4 [14.2.18] With the notation as in the previous problem, define the trace of « from K

to F' to be
Trisp(a) = o),

o

a sum of Galois conjugates of «.
(a) Prove that Trg p(a) € F.
(b

(c

(d) Let mq(z) as in the previous problem. Prove that Trg/p(a) = —5aq—1.

Prove that the trace is an additive map.

)
) Let K — F(v/D, prove that Tri/r(a+ bV D) = 2a.
)

Proof. (a) This follows by the same reasoning as in the problem above.

(b) Notice that

Trgr(a+pB) = ZJ(Q +8) = Za(a) + Za(ﬂ) =Trr/r(e) + Tri/r(B).

g g
(¢) In view of the previous problem

Trir(a+bVD) = (a+bVD) + (a — bVD) = 2a.

(d) As we saw in the previous problem, each of the d distinct Galois conjugates of K is repeated
n/d times in the sum defining the trace. Hence

n
Trrr(a) = E(Z ;).

i=1
Since 2?21 a; = —aq_1, it follows that Trg/p(a) = —5ag_1.

O

Problem 5 [14.2.22] Suppose that K/F is a Galois extension and let o be an element of the
Galois group.

(a) Suppose a € K is of the form o = % for some nonzero 3 € K. Prove that Nk, p(a) = 1.
(b) Suppose o € K is of the form o =  — o3 for some 3 € K. Prove that Ty p(a) = 0.
Proof. a) By the definition of the norm we have that for § € K and 0 € G = Gal(K/F):

Nisp(oB) = [[ 7(e8) = [] B = Ni/r(B)-

T€EG peG
. N 8
Thus if a = 2 then Ny/p(a) = #F(gg) —1.
b) Similarly, one has that Trg,p(8) = Trg/r(cf). Hence, if a = 8 — 0f then Trg p(a) =
T’I"K/F(ﬂ)—T’I"K/F(O'ﬁ) =0. 0



