Homework 6 Solutions

Problem 1 [14.2.23] Let K be a Galois extension of F with cyclic Galois group of order n generated by σ . Suppose $\alpha \in K$ has $N_{K/F}(\alpha) = 1$. Prove that $\alpha = \frac{\beta}{\sigma\beta}$ for some nonzero $\beta \in K$.

Proof. By the linear independence of the characters $1, \sigma, \ldots, \sigma^{n-1}$ (Th 7, Sec 14.2), $\exists \theta \in K$ such that

$$\beta := \theta + \alpha \ \sigma(\theta) + (\alpha \ \sigma\alpha)\sigma^2(\theta) + \dots + (\alpha\sigma\alpha\dots\sigma^{n-2}\alpha)\sigma^{n-1}(\theta) \neq 0.$$

Considering that $\sigma^n(\theta) = \theta$ and $N(\alpha) = \alpha \ \sigma \alpha \ \dots \ \sigma^{n-1}\alpha = 1$ we obtain

$$\sigma(\beta) = \sigma(\theta) + \sigma(\alpha) \ \sigma^{2}(\theta) + \dots + (\sigma(\alpha) \dots \sigma^{n-1}(\alpha))\sigma^{n}(\theta)$$

= $\sigma(\theta) + \sigma(\alpha) \ \sigma^{2}(\theta) + \dots + \frac{1}{\alpha} \cdot \theta$
= $\frac{\alpha\sigma(\theta) + \alpha\sigma(\alpha) \ \sigma^{2}(\theta) + \dots + \theta}{\alpha}$
= $\frac{\beta}{\alpha}$, showing that $\alpha = \frac{\beta}{\sigma\beta}$.

- 12		
н		1

Problem 2 [14.2.29] Let k be a field and let k(t) be the field of rational functions in the variable t. Define the maps σ and τ of k(t) to itself by $\sigma f(t) = f(\frac{1}{1-t})$ and $\tau f(t) = f(\frac{1}{t})$ for $f(t) \in k(t)$.

- (a) Prove that σ and τ are automorphisms of k(t) and that $G := \langle \sigma, \tau \rangle \cong S_3$.
- (b) Prove that the element $s = \frac{(t^2 t + 1)^3}{t^2(t-1)^2}$ is fixed by all the elements of G.
- (c) Prove that k(s) is precisely the fixed field if G in k(t).

Proof. (a) From HW 4 ([14.1.8])we know that the automorphisms of k(t) are given by the fractional linear transformation $t \mapsto \frac{at+b}{ct+d}$, with $ad - bc \neq 0$. Clearly, the maps $\sigma : t \mapsto \frac{1}{1-t}$ and $\tau : t \mapsto \frac{1}{t}$ satisfy this requirement, so σ and τ are automorphisms of k(t).

Moreover, it's easy to check that $\sigma^3 = \tau^2 = 1$ and $\tau \sigma \tau = \sigma^{-1}$, which is a presentation for the dihedral group of order 6. Thus $G = \langle \sigma, \tau \rangle \cong D_6 \cong S_3$.

(b) It's enough to verify that s is fixed by the two generators of G. Indeed

$$\sigma(s) = \frac{\left(\left(\frac{1}{1-t}\right)^2 - \frac{1}{1-t} + 1\right)^3}{\left(\frac{1}{1-t}\right)^2 \left(\frac{1}{1-t} - 1\right)^2} = \frac{(t^2 - t + 1)^3}{t^2(t-1)^2} = s \text{ and } \tau(s) = \frac{\left(\frac{1}{t^2} - \frac{1}{t} + 1\right)^3}{\frac{1}{t^2} \left(\frac{1}{t} - 1\right)^2} = \frac{(t^2 - t + 1)^3}{t^2(t-1)^2} = s.$$

(c) If $(k(t))^G$ is the fixed field of G in k(t), then in view of (b): $k(s) \subseteq (k(t))^G \subseteq k(t)$. Now by (a) we find that $[k(t) : (k(t))^G] = |G| = |S_3| = 6$. Moreover, by HW 3 ([13.2.18]) we infer that $[k(t) : k(s)] = \max(\deg(t^2 - t + 1)^3, \deg t^2(t - 1)^2) = 6$. By the multiplicativity of degrees $[k(t) : k(s)] = [k(t) : (k(t))^G][(k(t))^G : k(s)]$, which implies that $[(k(t))^G : k(s)] = 1$ and hence $(k(t))^G = k(s)$.

Problem 3 [14.2.31] Let K be a finite extension of F of degree n. Let α be an element of K.

- (a) Prove that α acting by left multiplication on K is an F-linear transformation T_{α} of K.
- (b) Prove that the minimal polynomial for α over F is the same as the minimal polynomial for the linear transformation T_{α} .
- (c) Prove that the trace $Tr_{K/F}(\alpha)$ is the trace of the $n \times n$ matrix defined by T_{α} . Prove that the norm is the determinant of T_{α} .

Proof. (a) Let $T_{\alpha}: K \to K$ be defined as $T_{\alpha}(x) = \alpha x$, for all $x \in K$. Pick any $x, y \in K$ and $a \in F$, then $T_{\alpha}(ax + y) = \alpha(ax + y) = a\alpha x + \alpha y = aT_{\alpha}(x) + T_{\alpha}(y)$, showing that T_{α} is F-linear.

(b) Let $m(x) = x^d + \ldots + a_1 x + a_0$ be the minimal polynomial of α over F, and let f(x) be the minimal polynomial of T_{α} . Since $m(\alpha) = 0$ and $T_{\alpha}^m(x) = \alpha^m x$ (for all integers m) we get that

$$(m(T_{\alpha}))(x) = (T_{\alpha}^{d} + \ldots + a_{1}T_{\alpha} + a_{0})(x) = (\alpha^{d} + \ldots + a_{1}\alpha + a_{0})x = 0.$$

Hence $m(T_{\alpha}) = 0$, which implies that f(x)|m(x). Since m(x) is irreducible, we should necessarily have m(x) = f(x).

(c) Let $p(x) = x^n + \ldots + b_1 x + b_0$ be the characteristic polynomial of T_α . From Ma 1b (or Prop 20, Sec. 12.2), we know that p(x) and m(x) have the same roots (not counting multiplicities) and m(x)|p(x). As m(x) is irreducible, all irreducible factors of p(x) should be equal to m(x) and thus p(x) is a power of m(x), i.e. d|n and $p(x) = (m(x))^{n/d}$. Then by [14.2.17] and [14.2.18] we obtain that $Tr_{K/F}(\alpha) = -\frac{n}{d}a_{d-1} = -b_{n-1} = Tr(T_\alpha)$ and $N_{K/F}(\alpha) = (-1)^n a_0^{n/d} = (-1)^n b_0 = \det(T_\alpha)$.

Problem 4 [14.3.7] Prove that one of 2, 3 or 6 is a square in \mathbb{F}_p for every prime p. Conclude that the polynomial

$$f(x) = x^{6} - 11x^{4} + 36x^{2} - 36 = (x^{2} - 2)(x^{2} - 3)(x^{2} - 6)$$

has a root modulo p for every prime p but has no root in \mathbb{Z} .

Proof. Let y be a generator of the cyclic group \mathbb{F}_p^{\times} . Then $n \in \mathbb{F}_p^{\times}$ is a square iff it is an even power of y. Consequently, if 2 and 3 are not squares in F_p , it follows that $2 \equiv y^{2k+1} \pmod{p}$ and $3 \equiv y^{2l+1} \pmod{p}$, for some $k, l \in \mathbb{Z}$. Hence $6 \equiv y^{2(k+l+1)} \pmod{p}$ is a square in \mathbb{F}_p .

Now f(x) clearly doesn't have any integer roots. However, by the above analysis we know that there exists $\gamma \in \{2, 3, 6\}$ such that $\gamma = \alpha^2$, for some $\alpha \in \mathbb{F}_p$. Then $x - \alpha \mid x^2 - \gamma \mid f(x)$ so α is a root of f in \mathbb{F}_p .

Remark. Alternatively, a group-theoretic approach is also possible: Consider the group homomorphism $\phi : \mathbb{F}_p^{\times} \to \mathbb{F}_p^{\times}$, given by $x \mapsto x^2$. If $H := Im(\phi)$ then $H \cong \mathbb{F}_p^{\times} / \ker(\phi)$, and since $\ker(\phi) = \{\pm 1\}$ it follows that H has index $[\mathbb{F}_p^{\times} : H] = 2$ in \mathbb{F}_p^{\times} . This means that H has precisely 2 cosets in \mathbb{F}_p^{\times} . If 2 and 3 are not squares in \mathbb{F}_p then 2,3 $\notin H$, so they belong to the same coset, i.e.

2H = 3H. Therefore H = (2H)(2H) = (2H)(3H) = 6H, which shows that $6 \in H$ and thus 6 is a square in \mathbb{F}_p^{\times} . This proves that one of 2,3 or 6 is a square in \mathbb{F}_p .

Problem 5 [14.3.8] Determine the splitting field of the polynomial $f(x) = x^p - x - a$ over \mathbb{F}_p where $a \neq 0, a \in \mathbb{F}_p$. Show explicitly that the Galois group is cyclic.

Proof. Let α be a root of f, then $f(\alpha + 1) = (\alpha + 1)^p - (\alpha + 1) - a = \alpha^p - \alpha - a = 0$ showing that $\alpha + 1$ is also a root. Hence the p roots of f are just $\mathcal{R} := \{\alpha + k \mid 1 \leq k \leq p\}$ (in particular f is separable). Moreover $\alpha \notin \mathbb{F}_p$, for otherwise $\alpha^p = \alpha$ and so $a = \alpha^p - \alpha = 0$, which is a contradiction. Therefore $\mathbb{F}_p(\alpha)$ is the splitting field of the separable polynomial f over \mathbb{F}_p , hence $\mathbb{F}_p(\alpha)/\mathbb{F}_p$ is a Galois extension.

Consider the endomorphism $\sigma : \mathbb{F}_p(\alpha) \to \mathbb{F}_p(\alpha)$, which sends $\alpha \mapsto \alpha + 1$ and fixes \mathbb{F}_p . Note that σ has a two-sided inverse defined by a map that sends $\alpha \mapsto \alpha - 1$ and fixes \mathbb{F}_p . This shows that $\sigma \in Gal(\mathbb{F}_p(\alpha)/\mathbb{F}_p)$.

Any other element $\tau \in Gal(\mathbb{F}_p(\alpha)/\mathbb{F}_p)$ must fix \mathbb{F}_p and it must send α to a root of f, so τ is of the form $\tau : \alpha \mapsto \alpha + k$ for some $k \in \mathbb{F}_p$ (recall that \mathcal{R} is the set of all the roots of f). We obtain that $\sigma^k(\alpha) = \alpha + k = \tau(\alpha)$, while σ^k and τ fix \mathbb{F}_p , hence $\sigma^k = \tau$. Therefore, every element of $Gal(\mathbb{F}_p(\alpha)/\mathbb{F}_p)$ is a power of σ , and since $\sigma^p = 1$ we conclude that the Galois group is cyclic, of order p, generated by σ .

Remark. The minimal polynomial m_{α,\mathbb{F}_p} of α over \mathbb{F}_p divides $x^p - x - \alpha$ (since α is a root of f), implying that

$$[\mathbb{F}_p(\alpha) : \mathbb{F}_p] = \deg m_{\alpha, \mathbb{F}_p} \le \deg f = p.$$

Here are two ways you can notice that f is irreducible over \mathbb{F}_p (and hence the equality holds above):

(i) Suppose

$$f(x) = \prod_{i=1}^{p} (x - (\alpha + i)) = g(x)h(x) \text{ in } \mathbb{F}_{p}[x].$$

Then the roots of g form a subset of \mathcal{R} . If $d := \deg(g) \ge 1$ then the of the coefficient a_{d-1} of x^{d-1} in g(x) is the sum of d elements of the form $-(\alpha+k)$, so it is equal to $-d\alpha+N$ for some integer N. However $a_{d-1} \in \mathbb{F}_p$ implies that $d\alpha \in \mathbb{F}_p$, which contradicts the fact that $\alpha \notin \mathbb{F}_p$. Consequently, f(x) is irreducible over \mathbb{F}_p and thus it's the minimal polynomial of α over \mathbb{F}_p .

(ii) Let $p_1(x), \ldots, p_t(x)$ be the irreducible factors of f. By adjoining any root of f to \mathbb{F}_p we obtain a splitting field of f, thus each quotient $F_p[x]/(p_i(x))$ is a splitting field of f, implying that all these fields are isomorphic. In particular, this means that deg $p_1 = \ldots$ deg $p_t = d$. But then $d \cdot t = p$, which is possible only when d = p and t = 1 (note that d = 1 and t = p is impossible because f doesn't have linear factors). So f has only one irreducible factor, i.e. it's irreducible.