Homework 6 Solutions

Problem 1 [14.2.23] Let K be a Galois extension of F with cyclic Galois group of order n generated by σ. Suppose $\alpha \in K$ has $N_{K / F}(\alpha)=1$. Prove that $\alpha=\frac{\beta}{\sigma \beta}$ for some nonzero $\beta \in K$.
Proof. By the linear independence of the characters $1, \sigma, \ldots, \sigma^{n-1}$ (Th 7 , Sec 14.2), $\exists \theta \in K$ such that

$$
\beta:=\theta+\alpha \sigma(\theta)+(\alpha \sigma \alpha) \sigma^{2}(\theta)+\cdots+\left(\alpha \sigma \alpha \ldots \sigma^{n-2} \alpha\right) \sigma^{n-1}(\theta) \neq 0
$$

Considering that $\sigma^{n}(\theta)=\theta$ and $N(\alpha)=\alpha \sigma \alpha \ldots \sigma^{n-1} \alpha=1$ we obtain

$$
\begin{aligned}
\sigma(\beta) & =\sigma(\theta)+\sigma(\alpha) \sigma^{2}(\theta)+\cdots+\left(\sigma(\alpha) \ldots \sigma^{n-1}(\alpha)\right) \sigma^{n}(\theta) \\
& =\sigma(\theta)+\sigma(\alpha) \sigma^{2}(\theta)+\cdots+\frac{1}{\alpha} \cdot \theta \\
& =\frac{\alpha \sigma(\theta)+\alpha \sigma(\alpha) \sigma^{2}(\theta)+\cdots+\theta}{\alpha} \\
& =\frac{\beta}{\alpha}, \text { showing that } \alpha=\frac{\beta}{\sigma \beta} .
\end{aligned}
$$

Problem 2 [14.2.29] Let k be a field and let $k(t)$ be the field of rational functions in the variable t. Define the maps σ and τ of $k(t)$ to itself by $\sigma f(t)=f\left(\frac{1}{1-t}\right)$ and $\tau f(t)=f\left(\frac{1}{t}\right)$ for $f(t) \in k(t)$.
(a) Prove that σ and τ are automorphisms of $k(t)$ and that $G:=\langle\sigma, \tau\rangle \cong S_{3}$.
(b) Prove that the element $s=\frac{\left(t^{2}-t+1\right)^{3}}{t^{2}(t-1)^{2}}$ is fixed by all the elements of G.
(c) Prove that $k(s)$ is precisely the fixed field if G in $k(t)$.

Proof. (a) From HW 4 ([14.1.8])we know that the automorphisms of $k(t)$ are given by the fractional linear transformation $t \mapsto \frac{a t+b}{c t+d}$, with $a d-b c \neq 0$. Clearly, the maps $\sigma: t \mapsto \frac{1}{1-t}$ and $\tau: t \mapsto \frac{1}{t}$ satisfy this requirement, so σ and τ are automorphisms of $k(t)$.

Moreover, it's easy to check that $\sigma^{3}=\tau^{2}=1$ and $\tau \sigma \tau=\sigma^{-1}$, which is a presentation for the dihedral group of order 6 . Thus $G=\langle\sigma, \tau\rangle \cong D_{6} \cong S_{3}$.
(b) It's enough to verify that s is fixed by the two generators of G. Indeed

$$
\sigma(s)=\frac{\left(\left(\frac{1}{1-t}\right)^{2}-\frac{1}{1-t}+1\right)^{3}}{\left(\frac{1}{1-t}\right)^{2}\left(\frac{1}{1-t}-1\right)^{2}}=\frac{\left(t^{2}-t+1\right)^{3}}{t^{2}(t-1)^{2}}=s \text { and } \tau(s)=\frac{\left(\frac{1}{t^{2}}-\frac{1}{t}+1\right)^{3}}{\frac{1}{t^{2}}\left(\frac{1}{t}-1\right)^{2}}=\frac{\left(t^{2}-t+1\right)^{3}}{t^{2}(t-1)^{2}}=s
$$

(c) If $(k(t))^{G}$ is the fixed field of G in $k(t)$, then in view of (b): $k(s) \subseteq(k(t))^{G} \subseteq k(t)$. Now by (a) we find that $\left[k(t):(k(t))^{G}\right]=|G|=\left|S_{3}\right|=6$. Moreover, by HW 3 ([13.2.18]) we infer that $[k(t): k(s)]=\max \left(\operatorname{deg}\left(t^{2}-t+1\right)^{3}, \operatorname{deg} t^{2}(t-1)^{2}\right)=6$. By the multiplicativity of degrees $[k(t): k(s)]=\left[k(t):(k(t))^{G}\right]\left[(k(t))^{G}: k(s)\right]$, which implies that $\left[(k(t))^{G}: k(s)\right]=1$ and hence $(k(t))^{G}=k(s)$.
Problem 3 [14.2.31] Let K be a finite extension of F of degree n. Let α be an element of K.
(a) Prove that α acting by left multiplication on K is an F-linear transformation T_{α} of K.
(b) Prove that the minimal polynomial for α over F is the same as the minimal polynomial for the linear transformation T_{α}.
(c) Prove that the trace $T r_{K / F}(\alpha)$ is the trace of the $n \times n$ matrix defined by T_{α}. Prove that the norm is the determinant of T_{α}.

Proof. (a) Let $T_{\alpha}: K \rightarrow K$ be defined as $T_{\alpha}(x)=\alpha x$, for all $x \in K$. Pick any $x, y \in K$ and $a \in F$, then $T_{\alpha}(a x+y)=\alpha(a x+y)=a \alpha x+\alpha y=a T_{\alpha}(x)+T_{\alpha}(y)$, showing that T_{α} is F-linear.
(b) Let $m(x)=x^{d}+\ldots+a_{1} x+a_{0}$ be the minimal polynomial of α over F, and let $f(x)$ be the minimal polynomial of T_{α}. Since $m(\alpha)=0$ and $T_{\alpha}^{m}(x)=\alpha^{m} x$ (for all integers m) we get that

$$
\left(m\left(T_{\alpha}\right)\right)(x)=\left(T_{\alpha}^{d}+\ldots+a_{1} T_{\alpha}+a_{0}\right)(x)=\left(\alpha^{d}+\ldots+a_{1} \alpha+a_{0}\right) x=0 .
$$

Hence $m\left(T_{\alpha}\right)=0$, which implies that $f(x) \mid m(x)$. Since $m(x)$ is irreducible, we should necessarily have $m(x)=f(x)$.
(c) Let $p(x)=x^{n}+\ldots+b_{1} x+b_{0}$ be the characteristic polynomial of T_{α}. From Ma 1b (or Prop 20, Sec. 12.2), we know that $p(x)$ and $m(x)$ have the same roots (not counting multiplicities) and $m(x) \mid p(x)$. As $m(x)$ is irreducible, all irreducible factors of $p(x)$ should be equal to $m(x)$ and thus $p(x)$ is a power of $m(x)$, i.e. $d \mid n$ and $p(x)=(m(x))^{n / d}$. Then by [14.2.17] and [14.2.18] we obtain that $\operatorname{Tr}_{K / F}(\alpha)=-\frac{n}{d} a_{d-1}=-b_{n-1}=\operatorname{Tr}\left(T_{\alpha}\right)$ and $N_{K / F}(\alpha)=(-1)^{n} a_{0}^{n / d}=(-1)^{n} b_{0}=\operatorname{det}\left(T_{\alpha}\right)$.

Problem 4 [14.3.7] Prove that one of 2,3 or 6 is a square in \mathbb{F}_{p} for every prime p. Conclude that the polynomial

$$
f(x)=x^{6}-11 x^{4}+36 x^{2}-36=\left(x^{2}-2\right)\left(x^{2}-3\right)\left(x^{2}-6\right)
$$

has a root modulo p for every prime p but has no root in \mathbb{Z}.
Proof. Let y be a generator of the cyclic group \mathbb{F}_{p}^{\times}. Then $n \in \mathbb{F}_{p}^{\times}$is a square iff it is an even power of y. Consequently, if 2 and 3 are not squares in F_{p}, it follows that $2 \equiv y^{2 k+1}(\bmod p)$ and $3 \equiv y^{2 l+1}(\bmod p)$, for some $k, l \in \mathbb{Z}$. Hence $6 \equiv y^{2(k+l+1)}(\bmod p)$ is a square in \mathbb{F}_{p}.

Now $f(x)$ clearly doesn't have any integer roots. However, by the above analysis we know that there exists $\gamma \in\{2,3,6\}$ such that $\gamma=\alpha^{2}$, for some $\alpha \in \mathbb{F}_{p}$. Then $x-\alpha\left|x^{2}-\gamma\right| f(x)$ so α is a root of f in \mathbb{F}_{p}.

Remark. Alternatively, a group-theoretic approach is also possible: Consider the group homomorphism $\phi: \mathbb{F}_{p}^{\times} \rightarrow \mathbb{F}_{p}^{\times}$, given by $x \mapsto x^{2}$. If $H:=\operatorname{Im}(\phi)$ then $H \cong \mathbb{F}_{p}^{\times} / \operatorname{ker}(\phi)$, and since $\operatorname{ker}(\phi)=\{ \pm 1\}$ it follows that H has index $\left[\mathbb{F}_{p}^{\times}: H\right]=2$ in \mathbb{F}_{p}^{\times}. This means that H has precisely 2 cosets in \mathbb{F}_{p}^{\times}. If 2 and 3 are not squares in \mathbb{F}_{p} then $2,3 \notin H$, so they belong to the same coset, i.e.
$2 H=3 H$. Therefore $H=(2 H)(2 H)=(2 H)(3 H)=6 H$, which shows that $6 \in H$ and thus 6 is a square in \mathbb{F}_{p}^{\times}. This proves that one of 2,3 or 6 is a square in \mathbb{F}_{p}.

Problem 5 [14.3.8] Determine the splitting field of the polynomial $f(x)=x^{p}-x-a$ over \mathbb{F}_{p} where $a \neq 0, a \in \mathbb{F}_{p}$. Show explicitly that the Galois group is cyclic.

Proof. Let α be a root of f, then $f(\alpha+1)=(\alpha+1)^{p}-(\alpha+1)-a=\alpha^{p}-\alpha-a=0$ showing that $\alpha+1$ is also a root. Hence the p roots of f are just $\mathcal{R}:=\{\alpha+k \mid 1 \leq k \leq p\}$ (in particular f is separable). Moreover $\alpha \notin \mathbb{F}_{p}$, for otherwise $\alpha^{p}=\alpha$ and so $a=\alpha^{p}-\alpha=0$, which is a contradiction. Therefore $\mathbb{F}_{p}(\alpha)$ is the splitting field of the separable polynomial f over \mathbb{F}_{p}, hence $\mathbb{F}_{p}(\alpha) / \mathbb{F}_{p}$ is a Galois extension.

Consider the endomorphism $\sigma: \mathbb{F}_{p}(\alpha) \rightarrow \mathbb{F}_{p}(\alpha)$, which sends $\alpha \mapsto \alpha+1$ and fixes \mathbb{F}_{p}. Note that σ has a two-sided inverse defined by a map that sends $\alpha \mapsto \alpha-1$ and fixes \mathbb{F}_{p}. This shows that $\sigma \in \operatorname{Gal}\left(\mathbb{F}_{p}(\alpha) / \mathbb{F}_{p}\right)$.

Any other element $\tau \in \operatorname{Gal}\left(\mathbb{F}_{p}(\alpha) / \mathbb{F}_{p}\right)$ must fix \mathbb{F}_{p} and it must send α to a root of f, so τ is of the form $\tau: \alpha \mapsto \alpha+k$ for some $k \in \mathbb{F}_{p}$ (recall that \mathcal{R} is the set of all the roots of f). We obtain that $\sigma^{k}(\alpha)=\alpha+k=\tau(\alpha)$, while σ^{k} and τ fix \mathbb{F}_{p}, hence $\sigma^{k}=\tau$. Therefore, every element of $\operatorname{Gal}\left(\mathbb{F}_{p}(\alpha) / \mathbb{F}_{p}\right)$ is a power of σ, and since $\sigma^{p}=1$ we conclude that the Galois group is cyclic, of order p, generated by σ.

Remark. The minimal polynomial $m_{\alpha, \mathbb{F}_{p}}$ of α over \mathbb{F}_{p} divides $x^{p}-x-\alpha($ since α is a root of $f)$, implying that

$$
\left[\mathbb{F}_{p}(\alpha): \mathbb{F}_{p}\right]=\operatorname{deg} m_{\alpha, \mathbb{F}_{p}} \leq \operatorname{deg} f=p
$$

Here are two ways you can notice that f is irreducible over \mathbb{F}_{p} (and hence the equality holds above):
(i) Suppose

$$
f(x)=\prod_{i=1}^{p}(x-(\alpha+i))=g(x) h(x) \text { in } \mathbb{F}_{p}[x]
$$

Then the roots of g form a subset of \mathcal{R}. If $d:=\operatorname{deg}(g) \geq 1$ then the of the coefficient a_{d-1} of x^{d-1} in $g(x)$ is the sum of d elements of the form $-(\alpha+k)$, so it is equal to $-d \alpha+N$ for some integer N. However $a_{d-1} \in \mathbb{F}_{p}$ implies that $d \alpha \in \mathbb{F}_{p}$, which contradicts the fact that $\alpha \notin \mathbb{F}_{p}$. Consequently, $f(x)$ is irreducible over \mathbb{F}_{p} and thus it's the minimal polynomial of α over \mathbb{F}_{p}.
(ii) Let $p_{1}(x), \ldots, p_{t}(x)$ be the irreducible factors of f. By adjoining any root of f to \mathbb{F}_{p} we obtain a splitting field of f, thus each quotient $F_{p}[x] /\left(p_{i}(x)\right)$ is a splitting field of f, implying that all these fields are isomorphic. In particular, this means that $\operatorname{deg} p_{1}=\ldots \operatorname{deg} p_{t}=d$. But then $d \cdot t=p$, which is possible only when $d=p$ and $t=1$ (note that $d=1$ and $t=p$ is impossible because f doesn't have linear factors). So f has only one irreducible factor, i.e. it's irreducible.

