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Homework 6

Solutions

Problem 1 [14.2.23] Let K be a Galois extension of F with cyclic Galois group of order n
generated by σ. Suppose α ∈ K has NK/F (α) = 1. Prove that α = β

σβ for some nonzero β ∈ K.

Proof. By the linear independence of the characters 1, σ, . . . , σn−1 (Th 7, Sec 14.2), ∃ θ ∈ K such
that

β := θ + α σ(θ) + (α σα)σ2(θ) + · · ·+ (ασα . . . σn−2α)σn−1(θ) ̸= 0.

Considering that σn(θ) = θ and N(α) = α σα . . . σn−1α = 1 we obtain

σ(β) = σ(θ) + σ(α) σ2(θ) + · · ·+ (σ(α) . . . σn−1(α))σn(θ)

= σ(θ) + σ(α) σ2(θ) + · · ·+ 1

α
· θ

=
ασ(θ) + ασ(α) σ2(θ) + · · ·+ θ

α

=
β

α
, showing that α =

β

σβ
.

Problem 2 [14.2.29] Let k be a field and let k(t) be the field of rational functions in the variable
t. Define the maps σ and τ of k(t) to itself by σf(t) = f

(
1

1−t

)
and τf(t) = f

(
1
t

)
for f(t) ∈ k(t).

(a) Prove that σ and τ are automorphisms of k(t) and that G := ⟨σ, τ⟩ ∼= S3.

(b) Prove that the element s = (t2−t+1)3

t2(t−1)2 is fixed by all the elements of G.

(c) Prove that k(s) is precisely the fixed field if G in k(t).

Proof. (a) From HW 4 ([14.1.8])we know that the automorphisms of k(t) are given by the fractional
linear transformation t 7→ at+b

ct+d , with ad − bc ̸= 0. Clearly, the maps σ : t 7→ 1
1−t and τ : t 7→ 1

t
satisfy this requirement, so σ and τ are automorphisms of k(t).

Moreover, it’s easy to check that σ3 = τ2 = 1 and τστ = σ−1, which is a presentation for the
dihedral group of order 6. Thus G = ⟨σ, τ⟩ ∼= D6

∼= S3.
(b) It’s enough to verify that s is fixed by the two generators of G. Indeed

σ(s) =

((
1

1−t

)2 − 1
1−t + 1

)3(
1

1−t

)2( 1
1−t − 1

)2 =
(t2 − t+ 1)3

t2(t− 1)2
= s and τ(s) =

(
1
t2 − 1

t + 1
)3

1
t2

(
1
t − 1

)2 =
(t2 − t+ 1)3

t2(t− 1)2
= s.
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(c) If (k(t))G is the fixed field of G in k(t), then in view of (b): k(s) ⊆ (k(t))G ⊆ k(t). Now
by (a) we find that [k(t) : (k(t))G] = |G| = |S3| = 6. Moreover, by HW 3 ([13.2.18]) we infer
that [k(t) : k(s)] = max(deg (t2 − t+ 1)3, deg t2(t− 1)2) = 6. By the multiplicativity of degrees
[k(t) : k(s)] = [k(t) : (k(t))G][(k(t))G : k(s)], which implies that [(k(t))G : k(s)] = 1 and hence
(k(t))G = k(s).

Problem 3 [14.2.31] Let K be a finite extension of F of degree n. Let α be an element of K.

(a) Prove that α acting by left multiplication on K is an F -linear transformation Tα of K.

(b) Prove that the minimal polynomial for α over F is the same as the minimal polynomial for the
linear transformation Tα.

(c) Prove that the trace TrK/F (α) is the trace of the n× n matrix defined by Tα. Prove that the
norm is the determinant of Tα.

Proof. (a) Let Tα : K → K be defined as Tα(x) = αx, for all x ∈ K. Pick any x, y ∈ K and a ∈ F ,
then Tα(ax+ y) = α(ax+ y) = aαx+ αy = aTα(x) + Tα(y), showing that Tα is F -linear.

(b) Let m(x) = xd + . . .+ a1x+ a0 be the minimal polynomial of α over F , and let f(x) be the
minimal polynomial of Tα. Since m(α) = 0 and Tm

α (x) = αmx (for all integers m) we get that

(m(Tα))(x) = (T d
α + . . .+ a1Tα + a0)(x) = (αd + . . .+ a1α+ a0)x = 0.

Hence m(Tα) = 0, which implies that f(x)|m(x). Since m(x) is irreducible, we should necessarily
have m(x) = f(x).

(c) Let p(x) = xn + . . .+ b1x+ b0 be the characteristic polynomial of Tα. From Ma 1b (or Prop
20, Sec. 12.2), we know that p(x) and m(x) have the same roots (not counting multiplicities) and
m(x)|p(x). As m(x) is irreducible, all irreducible factors of p(x) should be equal to m(x) and thus
p(x) is a power of m(x), i.e. d|n and p(x) = (m(x))n/d. Then by [14.2.17] and [14.2.18] we obtain

that TrK/F (α) = −n
d ad−1 = −bn−1 = Tr(Tα) and NK/F (α) = (−1)na

n/d
0 = (−1)nb0 = det(Tα).

Problem 4 [14.3.7] Prove that one of 2, 3 or 6 is a square in Fp for every prime p. Conclude that
the polynomial

f(x) = x6 − 11x4 + 36x2 − 36 = (x2 − 2)(x2 − 3)(x2 − 6)

has a root modulo p for every prime p but has no root in Z.

Proof. Let y be a generator of the cyclic group F×
p . Then n ∈ F×

p is a square iff it is an even

power of y. Consequently, if 2 and 3 are not squares in Fp, it follows that 2 ≡ y2k+1( mod p) and
3 ≡ y2l+1( mod p), for some k, l ∈ Z. Hence 6 ≡ y2(k+l+1)( mod p) is a square in Fp.

Now f(x) clearly doesn’t have any integer roots. However, by the above analysis we know that
there exists γ ∈ {2, 3, 6} such that γ = α2, for some α ∈ Fp. Then x − α | x2 − γ | f(x) so α is a
root of f in Fp.

Remark. Alternatively, a group-theoretic approach is also possible: Consider the group homo-
morphism ϕ : F×

p → F×
p , given by x 7→ x2. If H := Im(ϕ) then H ∼= F×

p / ker(ϕ), and since
ker(ϕ) = {±1} it follows that H has index [F×

p : H] = 2 in F×
p . This means that H has precisely 2

cosets in F×
p . If 2 and 3 are not squares in Fp then 2, 3 /∈ H, so they belong to the same coset, i.e.
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2H = 3H. Therefore H = (2H)(2H) = (2H)(3H) = 6H, which shows that 6 ∈ H and thus 6 is a
square in F×

p . This proves that one of 2, 3 or 6 is a square in Fp.

Problem 5 [14.3.8] Determine the splitting field of the polynomial f(x) = xp − x − a over Fp

where a ̸= 0, a ∈ Fp. Show explicitly that the Galois group is cyclic.

Proof. Let α be a root of f , then f(α+ 1) = (α+ 1)p − (α+ 1)− a = αp − α− a = 0 showing that
α + 1 is also a root. Hence the p roots of f are just R := {α + k | 1 ≤ k ≤ p} (in particular f is
separable). Moreover α /∈ Fp, for otherwise α

p = α and so a = αp−α = 0, which is a contradiction.
Therefore Fp(α) is the splitting field of the separable polynomial f over Fp, hence Fp(α)/Fp is a
Galois extension.

Consider the endomorphism σ : Fp(α) → Fp(α), which sends α 7→ α+1 and fixes Fp. Note that
σ has a two-sided inverse defined by a map that sends α 7→ α − 1 and fixes Fp. This shows that
σ ∈ Gal(Fp(α)/Fp).

Any other element τ ∈ Gal(Fp(α)/Fp) must fix Fp and it must send α to a root of f , so τ is
of the form τ : α 7→ α + k for some k ∈ Fp (recall that R is the set of all the roots of f). We
obtain that σk(α) = α+ k = τ(α), while σk and τ fix Fp, hence σk = τ . Therefore, every element
of Gal(Fp(α)/Fp) is a power of σ, and since σp = 1 we conclude that the Galois group is cyclic, of
order p, generated by σ.

Remark. The minimal polynomial mα,Fp of α over Fp divides xp − x− α (since α is a root of f),
implying that

[Fp(α) : Fp] = degmα,Fp ≤ deg f = p.

Here are two ways you can notice that f is irreducible over Fp (and hence the equality holds above):

(i) Suppose

f(x) =

p∏
i=1

(x− (α+ i)) = g(x)h(x) in Fp[x].

Then the roots of g form a subset of R. If d := deg(g) ≥ 1 then the of the coefficient ad−1 of
xd−1 in g(x) is the sum of d elements of the form −(α+k), so it is equal to −dα+N for some
integer N . However ad−1 ∈ Fp implies that dα ∈ Fp, which contradicts the fact that α /∈ Fp.
Consequently, f(x) is irreducible over Fp and thus it’s the minimal polynomial of α over Fp.

(ii) Let p1(x), . . . , pt(x) be the irreducible factors of f . By adjoining any root of f to Fp we obtain
a splitting field of f , thus each quotient Fp[x]/(pi(x)) is a splitting field of f , implying that
all these fields are isomorphic. In particular, this means that deg p1 = . . .deg pt = d. But
then d · t = p, which is possible only when d = p and t = 1 (note that d = 1 and t = p is
impossible because f doesn’t have linear factors). So f has only one irreducible factor, i.e. it’s
irreducible.
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