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HOMEWORK 6
SOLUTIONS

Problem 1 [14.2.23] Let K be a Galois extension of F' with cyclic Galois group of order n
generated by o. Suppose a € K has Ng,p(a) = 1. Prove that a = % for some nonzero § € K.

Proof. By the linear independence of the characters 1,0,...,0"! (Th 7, Sec 14.2), 3 § € K such
that
B:=0+ac®)+(aca)o?(0)+- -+ (aoa...c" 2a)c™ " (0) £ 0.

Considering that 0™(f) = 6 and N(a) = a oa ... 0" la =1 we obtain
o(8) = o(0) +o(a) o*(0) + -+ + (o(a) ...0a" "} (a))o" (0)
= o(0) +0(a) ?(0) +++ 0

ac(0) + ao(a) o?(0) +---+0

= é, showing that a = ﬁ
!

af
O

Problem 2 [14.2.29] Let k be a field and let k(t) be the field of rational functions in the variable

t. Define the maps o and 7 of k(t) to itself by o f(t) = f(1X;) and 7f(t) = f(1) for f(t) € k(t).

(a) Prove that o and 7 are automorphisms of k(t) and that G := (o, 7) = S;.

(b) Prove that the element s = % is fixed by all the elements of G.

(c) Prove that k(s) is precisely the fixed field if G in k(t).

Proof. (a) From HW 4 ([14.1.8])we know that the automorphisms of k(¢) are given by the fractional
linear transformation ¢ — ffig, with ad — bc # 0. Clearly, the maps o : t — % and 7 : t — %
satisfy this requirement, so o and 7 are automorphisms of k(t).

Moreover, it’s easy to check that ¢ = 72 = 1 and 707 = ¢!, which is a presentation for the
dihedral group of order 6. Thus G = (0, 7) = Dg = 5.

(b) It’s enough to verify that s is fixed by the two generators of G. Indeed

() - +1)° @41y
e

=sand 7(s) = (—z+1 = (-t 17 _
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(c) If (k(t))€ is the fixed field of G in k(t), then in view of (b): k(s) C (k(t))¢ C k(t). Now
y (a) we find that [k(t) : (k(t))¢] = |G| = |S3] = 6. Moreover, by HW 3 ([13.2.18]) we infer
hat [k(t) : k(s)] = max(de (t2 —t +1)3,degt?(t — 1)2) = 6. By the multiplicativity of degrees
E ((t))) k(s )}( 5 [k(t) : (K@)C][(k()C : k(s)], which implies that [(k(t)) : k(s)] = 1 and hen([:]e
k(t

Problem 3 [14.2.31] Let K be a finite extension of F of degree n. Let o be an element of K.
(a) Prove that « acting by left multiplication on K is an F-linear transformation 7T, of K.

(b) Prove that the minimal polynomial for o over F is the same as the minimal polynomial for the
linear transformation T, .

(c) Prove that the trace Trg /() is the trace of the n x n matrix defined by T,,. Prove that the
norm is the determinant of T,,.

Proof. (a) Let T, : K — K be defined as T,,(z) = ax, for all x € K. Pick any z,y € K and a € F,
then T, (ax 4+ y) = a(ax + y) = aax + ay = aT,(z) + Ta(y), showing that T, is F-linear.

(b) Let m(z) = 2%+ ...+ a1z + ap be the minimal polynomial of a over F, and let f(z) be the
minimal polynomial of T,. Since m(a) = 0 and TJ*(z) = o™z (for all integers m) we get that

(m(T))(z) = (T2 + ...+ a1Ts + ao)(z) = (@@ + ... + a1a + ag)x = 0.

Hence m(T,) = 0, which implies that f(x)|m(x). Since m(z) is irreducible, we should necessarily
have m(z) = f(x).
(c) Let p(x) = 2™+ ...+ byx + by be the characteristic polynomial of T,,. From Ma 1b (or Prop
20, Sec. 12.2), we know that p(x) and m(x) have the same roots (not counting multiplicities) and
m(x)|p(z). As m(z) is irreducible, all irreducible factors of p(x) should be equal to m(z) and thus
p(z) is a power of m(z), i.e. d|n and p(z) = (m(x))"/¢. Then by [14.2.17] and [14.2.18] we obtain
that Trp(e) = —2ag_1 = —by_1 = Tr(T,) and Ng/p(a) = (=1)"af/* = (=1)"by = det(T,).
O

Problem 4 [14.3.7] Prove that one of 2,3 or 6 is a square in [, for every prime p. Conclude that
the polynomial
f(z) = 2% — 112" + 3627 — 36 = (2 — 2)(2® — 3) (2 — 6)

has a root modulo p for every prime p but has no root in Z.

Proof. Let y be a generator of the cyclic group IF;. Then n € IF; is a square iff it is an even
power of y. Consequently, if 2 and 3 are not squares in F},, it follows that 2 = y***1( mod p) and
3 = »?*1( mod p), for some k,I € Z. Hence 6 = y>**++D( mod p) is a square in Fp.

Now f(z) clearly doesn’t have any integer roots. However, by the above analysis we know that
there exists v € {2,3,6} such that v = o?, for some o € F,. Then z —a | 22 — v | f(z) so a is a
root of f in F,.

O

Remark. Alternatively, a group-theoretic approach is also possible: Consider the group homo-
morphism ¢ : FX — FX, given by x — 2. If H := Im(¢p) then H = FX /ker(¢), and since
ker(¢) = {£1} it follows that H has index [F : H] = 2 in F)\. This means that H has precisely 2
cosets in ). If 2 and 3 are not squares in IF), then 2,3 ¢ H, so they belong to the same coset, i.e.
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2H = 3H. Therefore H = (2H)(2H) = (2H)(3H) = 6H, which shows that 6 € H and thus 6 is a
square in F;. This proves that one of 2,3 or 6 is a square in Fp,.

Problem 5 [14.3.8] Determine the splitting field of the polynomial f(z) = 2 — x — a over F),
where a # 0, a € Fp. Show explicitly that the Galois group is cyclic.

Proof. Let a be a root of f, then f(a+1) = (a+1)? —(a+1) —a = a” —a —a = 0 showing that
a + 1 is also a root. Hence the p roots of f are just R := {a+k | 1 < k < p} (in particular f is
separable). Moreover a ¢ F,, for otherwise o = o and so a = o —a = 0, which is a contradiction.
Therefore F,(a) is the splitting field of the separable polynomial f over F,, hence F,(«)/F, is a
Galois extension.

Consider the endomorphism o : Fp(a) — F, (), which sends o — a+ 1 and fixes F,,. Note that
o has a two-sided inverse defined by a map that sends o — o — 1 and fixes F),. This shows that
o € Gal(Fp(a)/Fyp).

Any other element 7 € Gal(F,(a)/F,) must fix F, and it must send « to a root of f, so 7 is
of the form 7 : o — « + k for some k € F, (recall that R is the set of all the roots of f). We
obtain that o*(a) = a + k = 7(a), while 0% and 7 fix F,, hence o* = 7. Therefore, every element
of Gal(F,(«)/F,) is a power of o, and since o? = 1 we conclude that the Galois group is cyclic, of

order p, generated by o.
O

Remark. The minimal polynomial mar, of a over F, divides ¥ —x — « (since o is a root of f),
implying that
[Fp(a) : Fp] = degmar, < deg f = p.

Here are two ways you can notice that f is irreducible over F), (and hence the equality holds above):

(i) Suppose
p

f@) = []@ = (a+1) = g(@)h(z) in Fyla].
i=1
Then the roots of g form a subset of R. If d := deg(g) > 1 then the of the coefficient aq—1 of
2971 in g(x) is the sum of d elements of the form —(a+k), so it is equal to —da+ N for some
integer N. However aq_1 € F), implies that da € F),, which contradicts the fact that o ¢ F,.
Consequently, f(z) is irreducible over F,, and thus it’s the minimal polynomial of o over Fp,.

(i1) Let p1(x),...,p:(x) be the irreducible factors of f. By adjoining any root of f to F), we obtain
a splitting field of f, thus each quotient F,[x]/(pi(x)) is a splitting field of f, implying that
all these fields are isomorphic. In particular, this means that degp; = ...degp; = d. But
then d -t = p, which is possible only when d = p and t = 1 (note that d =1 and t = p is
impossible because [ doesn’t have linear factors). So f has only one irreducible factor, i.e. it’s
irreducible.



