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The complex representation theory of GL(2) over finite fields is explained well in many places, and it an
excellent toy setting for graduate students who want to study Jacquet-Langlands. For other sources see for
instance Piatetski-Shapiro’s book and Paul Garrett’s notes.

These exercises are intended for graduate students who want to study the representation theory of
GL(2,Fq) hands-on, as a guide to the various results.
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1 Representation theory of finite groups

1.1 Basic properties and constructions

Exercise 1.1.1 (Representations as modules over the group ring) Let G be a group.

1. Suppose (V, ρ) is a representation of G on the K-vector space V . Show that V is a K[G]-module under∑
ag[g] · v =

∑
agρ(g)(v).

2. Suppose V is a K[G]-module. Show that ρ(g)v := g · v defines a representation of G.

Exercise 1.1.2 (Semisimplicity of representations: Maschke’s theorem) Let K be a field and G a finite
group such that either charK = 0 or charK - |G|. Let V be a representation of G and W ⊂ V a G-
subrepresentation.

1. Let π : V → W be any vector space projection, i.e., a linear map such that π|W is the identity map.
Show that σ : V →W given by σ(v) = 1

|G|
∑
g∈G π(ρ(g)(v)) is a well-defined G-equivariant linear map.

2. Show that U = kerσ ⊂ V is aG-subrepresentation and V = W⊕U is aG-representation decomposition.

3. Conclude that all finite dimensional G-representations are semisimple.

4. Show that the representation of Z/2Z acting on F2
2 such that 1 ∈ Z/2Z sends (x, y) to (x + y, y) is a

non-semisimple representation.

Exercise 1.1.3 (Dual representations) Let (V, ρ) be a representation of G over a field K. Let V ∨ =
HomK(V,K) and (ρ∨(g)f)(v) = f(ρ(g)−1(v)).

1. Show that (V ∨, ρ∨) is a representation of G.
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2. Show that V ⊗ V ∨ ∼= EndK(V ) where G acts on f ∈ EndK(V ) by (gf)(v) = ρ(g)(f(ρ(g)−1(v))).

3. Show that the scalar matrices in EndK(V ) form a one-dimensional irreducible subrepresentation of
V ⊗ V ∨ isomorphic to the trivial character.

4. Show that V is irreducible if and only if dim HomK(1, V ⊗ V ∨) = 1. [Hint: Use Schur’s lemma.]

Exercise 1.1.4 (Induced representations) Let G be a profinite group and H a finite index subgroup.

1. Let (V, ρ) be a representation of H over a field K. Define (IndGH V, IndGH ρ) as follows: IndGH V is the
vector space {f : G → V |f(hg) = ρ(h)(f(g)),∀h ∈ G, g ∈ G} and if g ∈ G and f ∈ IndGH V then the
action is ((IndGH ρ)(g)f)(x) = f(xg). Show that IndGH V is a representation of G.

2. Let M be an H-module, by which we mean an abelian group with an action of G. Define IndGHM
analogously. Show that IndGHM is a G-module.

1.2 Induced representations

Exercise 1.2.1 (Induction as an operation on modules over the group ring) Let H, G and (ρ, V ) be as in
Exercise 1.1.4. Fix representatives G/H = ∪gjH and a basis vi of V .

1. Show that IndGH V has as basis functions fvi,gj : G→ V taking gj to vi and gk to 0 for k 6= j.

2. Show that the map V ⊗K[H] K[G]→ IndGH V∑
avi,gjvi ⊗ [gj ] 7→

∑
avi,gjfvi,gj

is a G-equivariant isomorphism of K-vector spaces.

Exercise 1.2.2 (Frobenius reciprocity) Suppose H is a finite index subgroup of a profinite group G, M is
an H-module and N is a G-module. Show that

HomG(N, IndGHM) ∼= HomH(N,M)

sending a G-equivariant map f : N → IndGHM to the H-equivariant map n 7→ f(n)(1) in HomH(M,N) and
the H-equivariant map g to the G-equivariant map n 7→ (g 7→ f(g(n))) in HomG(N, IndGHM).

Exercise 1.2.3 (Restriction of induced representations) Let H and N be finite index subgroups of a profinite
group G and let (ρ, V ) be a representation of H over a field K.

1. For g ∈ G define V g = V and ρg(x) = ρ(gxg−1). Show that (ρg, V g) is a representation of g−1Hg.

2. Show that f 7→ fg (defined as fg(x) = f(gxg−1) gives an isomorphism (IndGH V )g ∼= IndGg−1Hg(V
g).

3. Show that the map φ 7→ ⊕g∈H\G/N (n 7→ φ(ng)) gives an isomorphism of N -representations

(IndGH V )|N ∼= ⊕g∈H\G/N (IndgNg
−1

H∩gNg−1 W )g ∼= ⊕g∈H\G/N IndNg−1Hg∩N (W g)

4. In the special case when N is a normal subgroup of G show that

(IndGH V )|N ∼= ⊕g∈H\G/N (IndNH∩N V )g

Exercise 1.2.4 (Irreducibility of induced representations) Let H be a finite index subgroup of a profinite
group G and V a G-representation.

1. Suppose V |H = W1 ⊕ · · · ⊕Wn where Wi are non-isomorphic irreducible H-representations. Suppose
that for any i 6= j there exists g ∈ G and w ∈ Wi such that the projection of g(w) to Wj is nonzero.
Show that V is irreducible.
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2. Suppose H C G and W is an H-representation such that W g 6∼= W for any g ∈ G − H. Show that
IndGHW is an irreducible G-representation.

Exercise 1.2.5 (Induction and tensor product) Let H be an open subgroup of the profinite group G.

1. Suppose V is an H-representation and W is a G-representation. Show that

IndGH(V )⊗W ∼= IndGH(V ⊗W |H)

2. Suppose V,W are representations of H. Show that

IndGH V ⊗ IndGHW
∼= ⊕g∈H\G/H IndGH((IndgHg

−1

H∩gHg−1 V )g ⊗W )

Exercise 1.2.6 (Induced characters) Let H ⊂ G be finite groups and V a representation of H. Show that

Tr IndGH(ρ)(g) =
∑

k∈H\G

Tr(ρ(kgk−1))

1.3 Explicit examples of representations of finite groups

Exercise 1.3.1 (The standard representation of S3) Consider the character τ : A3
∼= Z/3Z → C× sending

(123) to ζ3. Show that IndS3

A3
τ is isomorphic to the permutation representation of S3 on {(x, y, z) ∈ C|x +

y + z = 0}.

Exercise 1.3.2 (The standard representation of Sn) Let (V, ρ) be the permutation representation of Sn on
Cn.

1. Show that U = {(x, . . . , x) ∈ Cn|x ∈ C} and W = {(x1, . . . , xn)|
∑
xi = 0} are Sn-subrepresentations

of V and V = U ⊕W .

2. Show that if σ ∈ Sn then Tr ρ(σ) is the number of fixed points of the permutation σ.

3. Let sn,k be the number of σ ∈ Sn with exactly k fixed points. Show that

||χV ||2 =
1

n!

n∑
k=0

k2sn,k

4. Show that

sn,0 =

n∑
k=0

(−1)k
(
n

k

)
(n− k)! ≈ n!

e

and that

sn,k =

(
n

k

)
sn−k,0

5. Conclude that
||χV ||2 ≈ 2

and use the fact that ||χv||2 is an integer to show that it is 2.

6. Deduce that W is irreducible. This is the standard representation of Sn.

Exercise 1.3.3 (The irreducible representations of S4)

1. Show that the dimensions of the irreducible complex representations of S4 are 1, 1, 2, 3, 3. [Hint: You
already know two characters (the trivial and the sign) and the three dimensional standard.]

2. If ε is the sign character show that the two 3-dimensional representations are std and std⊗ε.
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3. Show that [A4, A4] = V = {1, (12)(34), (13)(24), (14)(23)} ∼= (Z/2Z)2 and thus the abelizanization of
A4 is Z/3Z ∼= {1, (123), (132)}. Let τ be the character of A4 sending (123) to ζ3. Show that IndS4

A4
τ is

the irreducible 2-dimensional representation.

4. An alternate construction of the irreducible 2-dimensional representation of S4. Show that S4/V ∼= S3

and thus that the irreducible 2 dimensional representation of S4 is the standard representation of S3.

Exercise 1.3.4 (Representations of finite Heisenberg groups) Let p be a prime, q = pm for some m ≥ 1 and
G be the set of matrices (n+ 2)× (n+ 2) of the form

m(ai, bi, c) =


1 a1 . . . an c

1 0 . . . b1
. . .

...
1 bn

1


where ai, bi, c ∈ Fq.

1. Show that under matrix multiplication G is a group of size q2n+1. (It is called the Heisenberg group.)

2. Let H ⊂ G be the subset of matrices m(ai, bi, c) with a1 = . . . = an = 0. Show that H is an abelian
subgroup of G, isomorphic to Fn+1

q .

3. Show that Z(G) consists of those m(ai, bi, c) with ai = 0 and bi = 0 for all i.

4. Show that [G,G] = Z(G). (A p-group whose commutant equals its center and is isomorphic to a cyclic
group of size p is said to be extraspecial. When q = p this shows that G is an extraspecial group.)

5. Choose a collection of characters χi, ηj : Fq → C× for 1 ≤ i, j ≤ n. Show that

χ(m(ai, bi, c)) =
∏

χi(ai)
∏

ηj(bj)

gives a character χ : G→ C×.

6. Suppose η, χ1, . . . , χn : Fq → C× and define χ(m(0, bi, c)) = η(c)
∏
χi(bi).

(a) Show that χ is a character of H.

(b) If η is not the trivial character show that IndGH χ is an irreducible representation of dimension qn.

(c) If η is as above show that
Tr IndGH χ(m(0, 0, c)) = qnη(c)

and conclude that different characters η give nonisomorphic induced representations.

7. Show that the irreducible complex representations of G are the q2n characters and the q−1 irreducible
induced representations above. [Hint: Look at dimensions.]

1.4 Complex representations of GL(2) over finite fields

The exercises of this section are consecutive and the notation is common.

Exercise 1.4.1 (Structure of GL(2) over finite fields) Let p be a prime and G = GL(2,Fq) where q = pr.
Let B ⊂ G be the upper triangular matrices (the Borel subgroup) and let T ⊂ B be the diagonal matrices.

1. Let w =

(
1

−1

)
. Show that G = B tBwB and conclude that B\G/B = {1, w}.

2. Show that B\G ∼= P1(Fq).
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3. Let g ∈ GL(2,Fq) with characteristic polynomial Pg(X) with roots λ1, λ2 ∈ Fq.

(a) If λ1 = λ2 = λ show that λ ∈ Fq and that g is conjugate in GL(2,Fq) to(
λ

λ

)
or

(
λ 1

λ

)
and there are q−1 conjugacy classes of the first type (called semisimple singular) and q−1 of the
second type (called nonsemisimple singular). [Remark: the characteristic 2 case requires special
care.]

(b) If λ1, λ2 ∈ Fq show that g is conjugate in GL(2,Fq) to(
λ1

λ2

)
This is the split regular case and show that there are (q − 1)(q − 2)/2 split regular conjugacy
classes.

(c) If λ1, λ2 /∈ Fq then λ1, λ2 ∈ Fq2 and λ1 = τ(λ2) where τ is Frobenius on Fq. Writing λ = λ2 show
that g is conjugate in GL(2,Fq) to (

−NFq2/Fq (λ)

1 TrFq2/Fq (λ)

)

This is the nonsplit regular case and show that there are (q2 − q)/2 nonsplit regular conjugacy
classes.

Exercise 1.4.2 (The principal series representations) Suppose χ1, χ2 : F×q → C× are two characters.

1. Show that

η

((
a b

d

))
:= χ1(a)χ2(d)

defines a character of B.

2. We denote I(η) := IndGB η. Show that I(η)∨ ∼= I(η−1). [Hint: Show that (IndGH V )∨ ∼= IndGH(V ∨).]

3. Show that I(η)|B ∼= ⊕x∈B\G/B IndBB∩xBx−1(ηx) where ηx : B ∩ xBx−1 → C is defined by ηx(b) =
η(x−1bx).

4. Deduce that
I(η)⊗ I(η)∨ ∼= I(1)⊕ IndGT (ηw/η)

[Hint: Recall that if K ⊂ H ⊂ G and V is a representation of K then IndGK V
∼= IndGH IndHK V .]

5. Show that
dim Hom(1, I(η)⊗ I(η)) = 1 + dim HomT (1, ηx/η)

and conclude that I(η) is irreducible if and only if χ1 6= χ2 in which case I(η) is called the principal
series representation of (χ1, χ2). If F×q = 〈a〉 show that the map attaching to I(χ1, χ2) the matrix(
χ1(a)

χ2(a)

)
gives a bijection between the principal series representations and the split regular

conjugacy classes.

6. If χ1 = χ2 = χ show that G→ C× given by g 7→ χ(det(g)) is a 1-dimensional subrepresentation of I(η).

Show that the map χ ◦ det 7→
(
χ(a)

χ(a)

)
gives a bijection between the 1-dimensional irreducible

representations of G and the semisimple singular conjugacy classes.
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7. When χ1 = χ2 = χ decompose I(η) = χ ◦ det⊕Stχ where Stχ is called the Steinberg representation.

Show that Stχ is irreducible and that Stχ ∼= St1⊗χ. Show that the map Stχ 7→
(
χ(a) 1

χ(a)

)
gives a

bijection between the Steinberg representations and the nonsemisimple singular conjugacy classes.

Exercise 1.4.3 (Jacquet modules) Let U = {
(

1 x
1

)
∈ GL(2,Fq)}, the unipotent radical of B and

T = {
(
x

y

)
the diagonal torus in GL(2,Fq)}. If (V, ρ) is a representation then JU (ρ) is the quotient

representation V/VU where VU ⊂ V is the subspace generated by the vectors {ρ(u)v − v|u ∈ U, v ∈ V }.

1. Show that VU is the set of v ∈ V such that ∑
u∈U

ρ(u)v = 0

2. Show that if t ∈ T then ρ(t) is an automorphism of JU (ρ) and thus JU (ρ) is a T -representation. [Hint:
Use the previous criterion.]

3. Show that a G-equivariant morphism f : V → W where V,W are two G-representations gives a
T -equivariant morphism JU (V ) → JU (W ) and thus JU is a functor from G-representations to T -
representations.

4. Show that JU is an exact functor, i.e., if 0→ A→ B → C → 0 is an exact sequence of G-representations
then

0→ JU (A)→ JU (B)→ JU (C)→ 0

is an exact sequence of T -representations.

5. Suppose χ : B → C× is a character. Show that HomB(V |B , χ) ∼= HomT (JU (V ), χ) and conclude that

HomG(V, IndGB χ) ∼= HomT (JU (V ), χ)

6. Show that every finite dimensional representation of T is abelian and thus a representation V of G can
be realized inside some IndGB χ if and only if JU (V ) 6= 0.

Exercise 1.4.4 (The cuspidal representations, the ones corresponding to the nonsplit regular conjugacy

classes) Let M = {
(
a b

1

)
∈ GL(2,Fq)}, called the mirabolic subgroup. A representation V of G is said to

be cuspidal if JU (V ) = 0, which, by the previous part, is equivalent to V 6⊂ IndGB χ for any χ. We already
classified the non-cuspidal representations and would like to classify and construct the cuspidal ones.

1. Show that there are q(q − 1)/2 nonisomorphic irreducible cuspidal representations of G.

2. Suppose V is an irreducible cuspidal representation of G. Show that HomU (1, V ) = 0 and conclude that
V |U , which is a finite dimensional representation of the abelian group U , is a direct sum of nontrivial
characters of U .

3. Let ψ : U ∼= Fq → C× be such a nontrivial character contained in V |U . Show that IndMU ψ is irreducible
of dimension q − 1.

4. Deduce that V |M contains IndMU ψ and thus that cuspidal representations have dimension ≥ q − 1.

5. Use the dimension formula
∑

(dimVi)
2 = |G| to show that every cuspidal representation has dimension

exactly q − 1.
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Exercise 1.4.5 (Whittaker models for noncuspidal representations) A Whittaker model for aG-representation
V is any nonzero map V → W (ψ) = IndGU ψ. Suppose V = IndGB η where η = (χ1, χ2) is a character on T
extended to B by acting trivially on U .

1. Show that for nontrivial ψ : U → C×

HomU (IndGB η, ψ) = ⊕g∈B\G/U HomU∩g−1Ug(η
g, ψ)

2. Show thatB\G/U = {1, w} and conclude that dim HomU (IndGB η, ψ) = 1 and thus that dim HomG(IndGB η, IndGU (ψ)) =
1, which means that noncuspidal representations have Whittaker models.

Exercise 1.4.6 (L-parameters) Let Γq = Gal(Fq/Fq).

1. Show that as profinite topological groups Γq ∼= Ẑ := lim←−Z/nZ generated topologically by Frobq taking
x to xq.

2. Show that a homomorphism ρ : Γq → GL(2,C) is continuous if and only if ker ρ ⊂ Γq is an open
subgroup.

3. The Weil group of Fq is Wq = FrobZ
q ⊂ Γq and denote by Wq,n its projection to Gal(Fqn/Fq). Show

that the natural action of Gal(Fqn/Fq) on Fqn gives an extension

1→ F×qn → Γ̃q,n → Gal(Fqn/Fq)→ 1

such that (Γq,n)n forms an inverse system.

4. Let Γ̃q = lim←− Γ̃q,n and let W̃q ⊂ Γ̃q be the preimage of Wq ⊂ Γq under the natural projection map

Γ̃q → Γq. Show that every continuous homomorphism ρ : W̃q → GL(2,C) factors through Γ̃q,n.

5. An L-parameter for GL(2,Fq) is a finite dimensional continuous complex representation φ of W̃q ×
SL(2,C). Show that if φ is irreducible then φ = ρ ⊗ τ where ρ is an irreducible representation of W̃q

and τ is a finite dimensional representation of SL(2,C). Moreover, dimφ = dim ρ dim τ .

6. Every character χ : F×q → C× can be thought of as a one dimensional representation W̃q → Γ̃q,1 ∼=
F×q → C×. To the irreducible principal series I(χ1, χ2) attach the L-parameter φI(χ1,χ2) = (χ1⊕χ2)⊗1;
to the characters χ ◦ det attach the L-parameter φχ◦det = (χ⊕ χ)⊗ 1; to the Steinberg representation
Stχ attach the L-parameter φStχ = χ⊗ std where std is the standard representation of SL(2,C) on C2

given by usual matrix multiplication. Show that this gives a bijection between the noncuspidal and
non-Steinberg representations of GL(2,Fq) and the reducible L-parameters of dimension 2. [Hint: The
complex continuous representations of SL(2,C) are semisimple and the irreducible ones are all of the
form Symn std, of dimension n+ 1, where Sym0 std = 1 and Sym1 std = std.]

7. Show that every irreducible two-dimensional L-parameter is either χ⊗ std, in bijection with the Stein-
berg representations, or of the form ρ⊗ 1 where ρ is an irreducible two-dimensional representation of
Γ̃q,2 = F×q2 o Gal(Fq2/Fq) ∼= Fq2 o Z/2Z.

8. Irreducible two-dimensional L-parameters.

(a) Show that if x ∈ F×q2 is such that NFq2/Fq (x) = 1 then x = yq−1 for some y ∈ Fq2 .

(b) Show that χ : F×q2 → C× satisfies χ = χq (where χq(x) = χ(xq)) if and only if χ = ν ◦NFq2/Fq for

some character ν : F×q → C×. In that case χ is said to be the base change from Fq of ν.

(c) Conclude that there are q(q − 1)/2 equivalence classes of characters χ : F×q2 → C× which are not
base changes from Fq where χ ∼ χq are the equivalences.
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(d) Suppose χ is as above, not a base change from Fq. Show that ρχ := Ind
Γ̃q,2

F×
q2

χ is an irreducible

two dimensional representation. Show that ρχ ∼= ρχ′ if and only if χ′ ∼ χ.

(e) Suppose ρ is an irreducible two-dimensional representation of Γ̃q,2 = F×q2 o Z/2Z. Show that

ρ|F×
q2

∼= χ⊕ χq for some χ a character of F×q2 which is not a base change from Fq.

(f) Deduce that there is a bijection between the cuspidal representations of G and the irreducible two-
dimensional L-parameters which, in turn, are in bijection with equivalence classes of characters
of F×q2 which are not base changes from Fq. The next subpart will make this bijection explicit.

(g) In the notation of Exercise 1.4.7 show that ρχψ(a(u)) = id for u ∈ L1 and conclude that ρχψ factors

through G/{a(u)|u ∈ L1} ∼= GL(2,Fq).

Exercise 1.4.7 (Constructing the cuspidal representations using the Weil representation) Let K = Fq and
L = Fq2 , L1 = {x ∈ L|NL/Kx = 1} and G = ker

(
det ·NL/K : GL(2,K)× L× → C×

)
. For simplicity of

notation for z ∈ L write z = zq for the nontrivial automorphism of Gal(L/K).

1. Show that NL/K is surjective.

2. Let n(t) =

((
1 t

1

)
, 1

)
, a(u) =

((
NL/Ku

1

)
, u−1

)
, z(v) =

((
v

v

)
, v−1

)
and w =

((
1

−1

)
, 1

)
.

Write N = {n(t)|t ∈ K}, A = {a(u)|u ∈ L×} and Z = {z(v)|v ∈ K×}. Show that

ZAN\G/N = {1, w}

3. Deduce that a presentation of G is given by n(t) ∈ N , a(u) ∈ A, z(v) ∈ Z and w subject to the relations

n(t)z(v) = z(v)n(t)

a(u)z(v) = z(v)a(u)

a(u)n(t)a(u)−1 = n(tNL/K(u))

w2 = z(−1)a(−1)

wz(v) = z(v)w

wa(u) = z(NL/K(u))a(u−1)w

wn(t)w − z(−t)a(−t−1)n(−t)wn(−t−1)

4. Fix a nontrivial character ψ : K → C×. Show that there exists a representation ρψ of G, called the

Weil representation, on the set of maps C(L) = {f : L→ C} ∼= Cq2 such that if f : L→ C then

(ρψ(n(t))f)(x) = ψ(tNL/K(x))f(x)

(ρψ(a(u))f)(x) = f(ux)

(ρψ(z(v))f)(x) = f(x)

(ρψ(w)f)(x) = f̂(x)

where f̂ is the Fourier transform

f̂(y) =
1

q

∑
x∈L

f(x)ψ(TrL/K(xy))

[Hint: You need to check that these formulae give a homomorphism ρψ : G → Aut(L2(L,C)). E.g.,

you’ll need to check that
̂̂
f(x)(x) = f(−x).]
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5. Suppose χ : L× → C× is a character which is not a base change from K. Let C(L, χ) ⊂ C(L) be the
set of functions f : L→ C such that f(xy) = χ(x)f(y) for x ∈ L1 and y ∈ L. Show that if f ∈ C(L, χ)
then f(0) = 0 and then show that C(L, χ) is an irreducible G-subrepresentation ρχψ of C(L) of dimension
q − 1.

6. Show that 1→ L1 → G → GL(2,K)→ 1 given by u 7→ a(u) and (g, x) 7→ g is an exact sequence.

7. Let χ as above and write πψ,χ(g, x) = ρχψ(g, x)⊗ χ−1(x). Show that πψ,χ is trivial on the image of L1

in G and deduce that it gives a representation of GL(2,Fq) of dimension q − 1.

8. Show that
∑
t∈K πψ,χ(n(t))f = 0 for all f ∈ C(L, χ) and deduce that πψ,χ is cuspidal.

9. Suppose χ and χ′ are two characters of L× which are not base changes from K and suppose that
πψ,χ ∼= πψ,χ′ . Show that χ ∼ χ′.

10. Conclude that χ 7→ πψ,χ gives a bijection between the two dimensional L-parameters with irreducible

representation of Ŵq and the set of cuspidal representations of G.

Exercise 1.4.8 (Hecke theory) Let K = Fq and ψ : K → C× a nontrivial character. For a function

φ :Mn(K)→ C define the Fourier transform φ̂ :Mn(K)→ C by

φ̂(X) = q−n
2/2

∑
Y ∈Mn(K)

φ(Y )ψ(Tr(XY ))

Here Mn(K) are n× n matrices and Tr is usual matrix trace.

1. Show that
̂̂
φ(X) = φ(−X).

2. (Zeta functions) Let (V, π) be a finite dimensional representation of GL(n,K) and φ : Mn(K) → C.
Define the following two endomorphisms in End(V ):

Z(Φ, π) =
∑

g∈GL(n,K)

φ(g)π(g)

Wπ(ψ,X) = q−n
2/2

∑
g∈GL(n,K)

ψ(Tr(gX))π(g)

for X ∈Mn(K). Show that

Z(φ, π) =
∑

X∈Mn(K)

φ̂(−X)Wπ(ψ,X)

3. For X ∈Mn(K) and g, h ∈ GL(n,K) show that Wπ(ψ, gXh) = π(h)−1Wπ(ψ,X)π(g)−1.

4. For an irreducible representation π of GL(n,K) show that Wπ(ψ, In) ∈ End(π) commutes with π(g) for
all g and conclude that it is a scalar. Let ε(π, ψ) be the scalar Wπ∨(ψ, In) attached to the irreducible
dual representation π∨.

5. Let S be the set of functions f :Mn(K)→ C such that f(X) = 0 for all matrices X with det(X) = 0.

Show that if φ ∈ S then φ̂ ∈ S.

6. (The functional equation) Show that for π irreducible and φ ∈ S:

Z(φ̂, π∨)t = ε(π, ψ)Z(φ, π)

where superscript t means dual endomorphism (i.e., matrix transposition).
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7. Show that if π = IndGB χ1 ⊗ χ2 is an irreducible principal series representation of GL(2,Fq) then

ε(π, ψ) = q−2
∑

a,b∈F×q

ψ(a+ b)χ−1
1 (a)χ−1

2 (b)
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