Exercises 1 Monday 6/12/17

I encourage you to look particularly at the problems marked with *.

1. For a matrix $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}(2, \mathbb{R})$ and $z \in \mathbb{C}$ define

$$g \cdot z = \frac{az+b}{cz+a}$$

- (a) Show that for any two matrices $g, h \in GL(2, \mathbb{R}), (gh) \cdot z = g \cdot (h \cdot z).$
- (b) * Show that $\operatorname{Im}(g \cdot z) = \frac{\det(g) \operatorname{Im}(z)}{|cz + d|^2}$.
- (c) * Deduce that $g \cdot z$ defines an action of the group $\operatorname{GL}(2, \mathbb{R})^+$ of positive determinant matrices on the upper half plane $\mathcal{H} = \{z \in \mathbb{C} \mid \operatorname{Im} z > 0\}.$
- (d) * Using calculus we may define $g \cdot \infty = \frac{a}{c}$. Show that the orbit of ∞ under $SL(2,\mathbb{Z})$ is all of $\mathbb{Q} \cup \{\infty\} = \mathbb{P}^1 \mathbb{Q}$.

2. Show that the group $\operatorname{SL}(2,\mathbb{Z}) = \{g \in M_{2\times 2}(\mathbb{Z}) \mid \det g = 1\}$ is generated by the matrices $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. [Hint: Suppose $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}(2,\mathbb{Z})$. Compute S^2 , Sg, $T^{-q}g$ and argue by induction.]

- 3. Let $\mathcal{F} \subset \mathcal{H}$ be the region described by $-1/2 < \operatorname{Re} z < 1/2$ and |z| > 1 together with its boundary in the first quadrant.
 - (a) Show that \mathcal{F} is a fundamental domain for the action of $SL(2,\mathbb{Z})$ acting on \mathcal{H} . [Hint: If $z \in \mathcal{H}$ show that as $g \in SL(2,\mathbb{Z})$, the set $\{Im(g \cdot z)\}$ contains a maximum. A translate of this will work.]
 - (b) * Compute the volume of \mathcal{F} under the hyperbolic measure, i.e., compute

$$\operatorname{vol}(\mathcal{F}) = \int_{\mathcal{F}} \frac{dxdy}{y^2}$$

- 4. * Let $u \in \mathcal{H}$ and define $f(z) = \frac{z u}{z \overline{u}}$.
 - (a) Show that |f(z)| < 1 if and only if $z \in \mathcal{H}$. [Hint: Use basic geometry.]
 - (b) Show that f(z) is a biholomorphic function $f: H \to D$ where D is the open unit disc. Bihomolomorphic means bijective and holomorphic with holomorphic inverse.