Exercises 1
 Monday 6/12/17

I encourage you to look particularly at the problems marked with *.

1. For a matrix $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}(2, \mathbb{R})$ and $z \in \mathbb{C}$ define

$$
g \cdot z=\frac{a z+b}{c z+d}
$$

(a) Show that for any two matrices $g, h \in \mathrm{GL}(2, \mathbb{R}),(g h) \cdot z=g \cdot(h \cdot z)$.
(b) $*$ Show that $\operatorname{Im}(g \cdot z)=\frac{\operatorname{det}(g) \operatorname{Im}(z)}{|c z+d|^{2}}$.
(c) * Deduce that $g \cdot z$ defines an action of the group $\mathrm{GL}(2, \mathbb{R})^{+}$of positive determinant matrices on the upper half plane $\mathcal{H}=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$.
(d) * Using calculus we may define $g \cdot \infty=\frac{a}{c}$. Show that the orbit of ∞ under $\operatorname{SL}(2, \mathbb{Z})$ is all of $\mathbb{Q} \cup\{\infty\}=\mathbb{P}^{1} \mathbb{Q}$.
2. Show that the group $\operatorname{SL}(2, \mathbb{Z})=\left\{g \in M_{2 \times 2}(\mathbb{Z}) \mid \operatorname{det} g=1\right\}$ is generated by the matrices $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. [Hint: Suppose $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z})$. Compute $S^{2}, S g, T^{-q} g$ and argue by induction.]
3. Let $\mathcal{F} \subset \mathcal{H}$ be the region described by $-1 / 2<\operatorname{Re} z<1 / 2$ and $|z|>1$ together with its boundary in the first quadrant.
(a) Show that \mathcal{F} is a fundamental domain for the action of $\operatorname{SL}(2, \mathbb{Z})$ acting on \mathcal{H}. [Hint: If $z \in \mathcal{H}$ show that as $g \in \mathrm{SL}(2, \mathbb{Z})$, the set $\{\operatorname{Im}(g \cdot z)\}$ contains a maximum. A translate of this will work.]
(b) $*$ Compute the volume of \mathcal{F} under the hyperbolic measure, i.e., compute

$$
\operatorname{vol}(\mathcal{F})=\int_{\mathcal{F}} \frac{d x d y}{y^{2}}
$$

4. * Let $u \in \mathcal{H}$ and define $f(z)=\frac{z-u}{z-\bar{u}}$.
(a) Show that $|f(z)|<1$ if and only if $z \in \mathcal{H}$. [Hint: Use basic geometry.]
(b) Show that $f(z)$ is a biholomorphic function $f: H \rightarrow D$ where D is the open unit disc. Bihomolomorphic means bijective and holomorphic with holomorphic inverse.
