Exercises 2
 Monday 6/13/17

5. Define the Bernoulli number $B_{2 n}$ using the Taylor expansion ${ }^{1}$

$$
z \operatorname{cotan}(z)=1+\sum_{n=1}^{\infty}(-4)^{n} B_{2 n} \frac{z^{2 n}}{(2 n)!}
$$

From calculus we also know that

$$
z \operatorname{cotan}(z)=1+2 \sum_{n=1}^{\infty} \frac{z^{2}}{z^{2}-n^{2} \pi^{2}}
$$

Expand each geometric series $\frac{z^{2}}{z^{2}-n^{2} \pi^{2}}$ to show that

$$
\zeta(2 n)=\frac{(-1)^{n+1} B_{2 n}(2 \pi)^{2 n}}{2(2 n)!}
$$

6. Let $q=e^{2 \pi i z}$. The second formula from the previous exercise can be rewritten as

$$
\pi \operatorname{cotan}(\pi z)=\frac{1}{z}+\sum_{n \geq 1}\left(\frac{1}{z+n}+\frac{1}{z-n}\right)=\sum_{n \in \mathbb{Z}} \frac{1}{z+n}
$$

(a) Show directly from the definition of cotan that

$$
\pi \operatorname{cotan}(\pi z)=\pi i \frac{q-1}{q+1}=\pi i-2 \pi i \sum_{n=0}^{\infty} q^{n}
$$

(b) Differentiate $k-1$ times to show that

$$
\sum_{n \in \mathbb{Z}} \frac{1}{(z+n)^{k}}=\frac{(-2 \pi i)^{k}}{(k-1)!} \sum_{n=1}^{\infty} n^{k-1} q^{n}
$$

7. Let k be an integer. Show that if $f(z+1)=f(z)$ and $f(-1 / z)=z^{k} f(z)$ then $f(g \cdot z)=(c z+d)^{k} f(z)$ for all $g \in \mathrm{SL}(2, \mathbb{Z})$. Here $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. [Hint: The group $\mathrm{SL}(2, \mathbb{Z})$ is generated by $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $\left.T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right).\right]$
8. Let S be the set of pairs of integers (m, n) not both zero. Suppose $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z})$. Show that

$$
\{(m a+n c, m b+n d) \mid(m, n) \in S\}=S
$$

[^0]
[^0]: ${ }^{1}$ The more standard definition is that $\frac{x}{e^{x}-1}=\sum B_{n} \frac{x^{n}}{n!}$. Plug in $x=2 i z$ to deduce the cotan Taylor series.

