Exercises 3
 Monday 6/15/17

9. Show that if k is odd $\mathcal{M}_{k}=0$. [Hint: Write the functional equation for the matrix $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right) \in$ $\mathrm{SL}_{2}(\mathbb{Z})$.]
10. A modular form $f \in \mathcal{M}_{2 k}$ of weight ${ }^{1} 2 k$ with q-expansion

$$
f(z)=a_{0}+a_{1} q+a_{2} q^{2}+\cdots
$$

is said to be a cusp form if $a_{0}=0$. Denote by $\mathcal{S}_{2 k} \subset \mathcal{M}_{2 k}$ the sub-vector space of cusp forms.
Show that

$$
\mathcal{M}_{2 k}=\mathbb{C} \cdot E_{2 k} \oplus \mathcal{S}_{2 k}
$$

11. (a) Let $2<2 k<12$. Show that $\mathcal{S}_{2 k}=0$. [Hint: $E_{2 k} \in \mathcal{M}_{2 k}$ and you already know a bound on the dimension of $\mathcal{M}_{2 k}$.]
(b) Show that $\mathcal{M}_{2}=0$. [Hint: Are there any everywhere holomorphic differentials on the sphere?]
(c) Show that $\mathcal{M}_{k}=0$ if $k \leq 0$. [Hint: Multiply by Δ.]
12. Consider the modular form $\Delta=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}$ of weight 12 .
(a) Show that Δ has no zeros in \mathcal{H}.
(b) Suppose f is a cusp form (see the previous exercise). Show that $\frac{f}{\Delta}$ is holomorphic in \mathcal{H} and at ∞.
(c) Deduce that $\mathcal{M}_{k} \xrightarrow{\Delta} \mathcal{S}_{k+12}$ is a bijection.
(d) Conclude that

$$
\operatorname{dim} \mathcal{M}_{2 k}=\left\{\begin{array}{lll}
\lfloor 2 k / 12\rfloor+1 & 2 k \not \equiv 2 & (\bmod 12) \\
\lfloor 2 k / 12\rfloor & 2 k \equiv 2 & (\bmod 12)
\end{array} .\right.
$$

[^0]
[^0]: ${ }^{1}$ The previous exercise shows that there are no odd weight modular forms

