Exercises 4 Monday 6/16/17

13. Recall that $\mathcal{M}_{2 k} \cdot \mathcal{M}_{2 l} \subset \mathcal{M}_{2 k+2 l}$ under usual multiplications of functions. This implies that the vector space $\mathcal{M}=\mathbb{C} \oplus \mathcal{M}_{2} \oplus \mathcal{M}_{4} \oplus \cdots$ has a natural ring structure. Show that

$$
\mathcal{M}=\mathbb{C}\left[E_{4}, E_{6}\right]
$$

14. (This exercise is not interesting to do by hand, try your hands at it with Sage when you're up for a little experimentation) Recall the modular forms

$$
\begin{aligned}
\Delta & =q-24 q^{2}+252 q^{3}+\cdots \\
E_{4} & =1+240 q+2160 q^{2}+6720 q^{3}+\cdots \\
E_{6} & =1-504 q-16632 q^{2}-122976 q^{3}+\cdots \\
E_{8} & =1+480 q+61920 q^{2}+1050240 q^{3}+\cdots \\
E_{10} & =1-264 q-135432 q^{2}-5196576 q^{3}+\cdots \\
\frac{691}{65520} E_{12} & =\frac{691}{65520}+q+2049 q^{2}+177148 q^{3}+\cdots \\
E_{4}^{3} & =1+720 q+179280 q^{2}+16954560 q^{3}+\cdots \\
E_{6}^{2} & =1-1008 q+220752 q^{2}+16519104 q^{3}+\cdots
\end{aligned}
$$

Show that

$$
\begin{aligned}
\Delta & =\frac{E_{4}^{3}-E_{6}^{2}}{1728} \\
E_{8} & =E_{4}^{2} \\
E_{10} & =E_{4} E_{6} \\
\frac{691}{65520} E_{12}-\Delta & =\frac{691}{156}\left(\frac{E_{4}^{3}}{720}-\frac{E_{6}^{2}}{1008}\right)
\end{aligned}
$$

[Hint: To find linear relations you only need the first several coefficients in the q-expansions.]
15. Recall that $\sigma_{k}(n)=\sum_{d \mid n} d^{k}$. Use the previous exercise to show that

$$
\begin{aligned}
\sigma_{7}(n) & =\sigma_{3}(n)+120 \sum_{k=1}^{n-1} \sigma_{3}(k) \sigma_{3}(n-k) \\
11 \sigma_{9}(n) & =21 \sigma_{5}(n)-10 \sigma_{3}(n)+5040 \sum_{k=1}^{n-1} \sigma_{3}(k) \sigma_{5}(n-k)
\end{aligned}
$$

16. Let $f(z)$ be a modular form of weight $k \geq 2$. Consider the set V_{k-2} the set of homogeneous polynomials $P(X, Y)$ of degree $k-2$ on which the group $\mathrm{SL}(2, \mathbb{Z})$ acts on the left via $g \bullet P(X, Y)=P(a X+$
$b Y, c X+d Y)$ and on the right via $P(X, Y) \star g=g^{-1} \bullet P(X, Y)$. Let $\omega(z)=f(z)(-X+z Y)^{k-2} d z$ be a 1-differential on the upper half plane with values in V_{k-2}.
Show that

$$
\omega(g \cdot z)=\omega(z) \star g
$$

This implies that ω yields a holomorphic differential on $X=\mathcal{H} / \operatorname{SL}(2, \mathbb{Z})$ with values in V_{k-2}. When $k=2$ this yields the differential $f(z) d z$ that I mentioned in lecture. (The correct way to interpret this result is that it interprets modular forms as Betti cohomology classes in H^{1} rather than coherent cohomology classes in H^{0}.)
17. Let $\Gamma \subset \mathrm{SL}(2, \mathbb{Z})$ be a finite index subgroup. One can show that the topological quotient \mathcal{H} / Γ is naturally a Riemann surface and that $X_{\Gamma}=\mathcal{H} \cup \mathbb{P}^{1} \mathbb{Q} / \Gamma$ is naturally a compact Riemann surface obtained by attaching to \mathcal{H} / Γ finitely many points at infinity called cusps. One can define $\mathcal{M}_{k}(\Gamma)$ analogously to \mathcal{M}_{k} with two differences: (a) the functional equation $f(g \cdot z)=(c z+d)^{k} f(z)$ is only required for $g \in \Gamma$ and (b) the function $f(z)$ has to be holomorphic at each of the points at infinity.
Show that

$$
\operatorname{dim}_{\mathbb{C}} \mathcal{M}_{k}(\Gamma) \leq \frac{k \operatorname{vol}\left(X_{\Gamma}, d x d y / y^{2}\right)}{4 \pi}+1=\frac{k[\mathrm{SL}(2, \mathbb{Z}): \Gamma]}{12}+1
$$

[Hint: The same proof works as in the case $\Gamma=\operatorname{SL}(2, \mathbb{Z})$.]
18. Let $r(n)$ be the number of ways to write n as

$$
n=x^{2}+y^{2}+z^{2}+t^{2}
$$

where $x, y, z, t \in \mathbb{Z}$. The purpose of this exercise is to show that

$$
r(n)=8 \sum_{d \mid n, 4 \nmid d} d
$$

First, some notation and black boxes. Let $\Gamma=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}(2, \mathbb{Z})|4| c\right\}$ and $G_{2}=\sum_{(m, n) \neq(0,0)} \frac{1}{(m z+n)^{2}}$.
While $G_{2 k}$ converges absolutely and is a holomorphic modular form if $k \geq 2, G_{2}$ converges (not absolutely) with

$$
\mathcal{E}_{2}=\frac{G_{2}}{-8 \pi^{2}}=-\frac{1}{24}+\sum_{n \geq 1} \sigma_{1}(n) q^{n}
$$

This holomorphic function is NOT modular ${ }^{1}$ because it does not satisfy the functional equations. You may take for granted the following:

- For each integer $t, \mathcal{E}_{2, t}(z)=\mathcal{E}_{2}(z)-t \mathcal{E}_{2}(t z)$ is a modular form in $\mathcal{M}_{2}(\Gamma)$.
- Consider the holomorphic function $\theta=\sum_{n \in \mathbb{Z}} e^{2 \pi i n^{2} z}=\sum_{n \in \mathbb{Z}} q^{n^{2}}$. Then $\theta^{4} \in \mathcal{M}_{2}(\Gamma)$.
- $\operatorname{dim} \mathcal{M}_{2}(\Gamma)=2$ is generated by $\mathcal{E}_{2,2}$ and $\mathcal{E}_{2,4}$.

Show that
(a) $\theta^{4}=8 \mathcal{E}_{2,4}$.
(b) $\theta^{4}=\sum_{n \geq 0} r(n) q^{n}$.
(c) Conclude the above formula for $r(n)$.

[^0]
[^0]: ${ }^{1}$ The nonholomorphic function $\mathcal{E}_{2}(z)+\frac{1}{8 \pi \operatorname{Im} z}$ is modular. It is an example of a nearly "holomorphic" modular form. Geometrically holomorphic modular forms correspond to holomorphic differentials and nearly holomorphic modular forms correspond, via Hodge theory, to more general Betti cohomology classes on modular curves.

