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Introduction

The factorization of integer numbers is one of the more important simple mathematical
concepts with applications in the real world. It is commonly believed that factorization is
hard, but nonetheless, that it is possible to factorize an integer into its prime factors. If
we pass from the field of rational numbers Q to a finite extension K (called number field)
factorization need not be unique. For example, in the field Q(v/—5) the integer 6 can be
decomposed into prime numbers in two distinct ways:

6=2-3=(1++v=5)(1—-+V-5).

This fact led to one attempt at proving Fermat’s Last Theorem, where it was assumed
that

4yt =[] =),
i=1
is a unique factorization (where ( is a primitive n-th root of unity), when in fact this need
not be the case. The notion of ideal appeared precisely to explain this phenomenon. If Ok is
the ring of integers of the field K, then Ok is a Dedekind domain and every integer a € O
can be uniquely factorized into a product of prime ideals. To understand how far away a
number field K is from having unique factorization into elements of Ok (and not ideals of
Ok), one introduces the class group

CI(K) = {fractional ideals}/{aOk|a € K*}.

The class group is finite and its size, h(K) is an important arithmetic datum of K.
Seemingly unrelated to the class number is the (-function of a number field. Initially
studied in connection with the distribution of the prime numbers, the (-function of a number

field K is 1
Ck(s) = ; Nav’

where the sum runs through all integral ideals a of Ok and Na represents the norm of
the ideal a. The function (k(s) is absolutely convergent when Res > 1, has holomorphic
continuation to all the complex plane and is related to the class number by the following
remarkable formula:

Theorem 0.1 (Analytic Class Number Formula). Let K be a number field, let Ry be the
requlator of K, let hx be the class number and let wx be the number of roots of unity in K.
If the number field K has ri real embeddings K — R and ro compler embeddings K — C
then

1 <(T1+T2—1) (0) _ _hKRK

<T1+T2—1)! K WK

Proof. See [Neu99] VIL5.11. O



This formula is important because it relates an analytic object associated with the number
field K (the (x-function) to an arithmetic object (the class group). In particular, it allows
an efficient computation of hy if one has an efficient computation of (k. In 1960, Birch
and Swinnerton-Dyer generalized this formula to elliptic curves by noting that if Oy is the
group of units of O, then by the Dirichlet Unit Theorem ([Neu99] 1.12.12) the group O
is finitely generated, has rank r; + 79 — 1 and its torsion group is the group of roots of unity,
whose size is wg. In the case of an elliptic curve E defined over QQ, the Mordell-Weil group
E(Q) is finitely generated with rank r. To the elliptic curve F they associated an L-function
L(E,s) that is holomorphic when Res > 3/2 and which they conjectured to have analytic
continuation to the whole complex plane C.

Conjecture 0.2 (Birch and Swinnerton-Dyer). Let E be an elliptic curve of rank r defined
over Q. Then L(E, s) has analytic continuation to a neighborhood of 1, its order of vanishing

at 1 is equal to r and

1 E

—LU(E, 1) = VR |II( /;@)’7

7’! ’E(Q)tors‘
where I(E/K) is the Shafarevich-Tate group, V is the volume and Rg is the regulator of
E.

The similarity between Theorem 0.1 and Conjecture 0.2 is remarkable. Instead of the
size wg of the torsion of O we now have |E(Q)ors|? and instead of hx we have the size of
the Shafarevich-Tate group (which has a similar behavior to that of CI(K)). Subsequently,
Conjecture 0.2 has been refined and later generalized to abelian varieties over number fields
by Tate.

Let A be an abelian variety defined over a number field K. Then the Mordell-Weil group
A(K) is finitely generated and has rank r > 0. Then the conjecture, as generalized by Tate
is
Conjecture 0.3. Let A be an abelian variety of rank r defined over a number field K. Let
L(A,s) be the global L-function of A, let A(K )iors and AY (K )iors be the torsion subgroups
of A(K) and AY(K) respectively. Let Ra be the regulator of A, and let I(A/K) be the
Shafarevich-Tate group. Then L(A,s) has an analytic continuation to a neighborhood of 1,
has order of vanishing r at 1, MI(A/K) is a finite group and

LAY RUI(A/K)]
r! fA(AK) d'uAvwvA ’A<K)t0r8‘ |AV(K)t0rs‘ ’

where fA(AK) ditawn corresponds to the term V' in Conjecture 0.2.

The first statement of Conjecture 0.2 (that the order of vanishing of L(E, s) at 1 is equal
to the rank of E) has been proven in the case when the order of vanishing of L(F,s) at 1 is
0 or 1, but otherwise, little is known about it. However, there are proven theorems about
the consistency of the conjectures. Thus, if A is an abelian variety defined over a number
field L (a Galois extension of K') then the restriction of scalars Ry, x A is an abelian variety
defined over K. In 5.8 we show that the conjecture (Conjecture 3.15) holds for one if and
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only if it holds for the other. More importantly, if A — B is an isogeny (i.e., surjection with
finite kernel) of abelian varieties defined over a number field K, we show in Theorem 5.22
that (under certain hypotheses) the conjecture holds for A if and only if it holds for B.

We begin with an introduction to algebraic groups where we develop the topologies and
Haar measures of locally compact groups. Subsequently, we study the geometric structure of
abelian varieties, as well as their measure-theoretic properties. We prove that two forms of
the Birch and Swinnerton-Dyer conjecture that appear in the literature are indeed equivalent
and proceed to use this equivalence to show certain invariance properties (invariance under
restriction of scalars and under isogenies). The theory that goes into the statement of the
conjecture is very rich, encompassing analytic (measure-theoretic), geometric and algebraic
properties of abelian varieties. As a result, in order to prove the invariance properties, we
need to study the algebra of Tate’s global duality theory for number fields.

Notation

Let K be a number field, i.e., a finite extension of Q. Let Ok be the ring of integers of K.
Let My be the set of places of K, let MY be the set of finite archimedean places and let
M;? be the set of infinite places. The sets My and M}y correspond to the real and complex
embeddings on the one hand and prime ideals of Ok on the other hand.

For every finite place v, let K, be the completion of K with respect to the metric defined
by the valuation v. The ring Ok is a Dedekind domain and O, = {z € K,|v(z) > 0} is a
local ring with maximal ideal p, = {x € K,|v(z) > 0}. We will denote by k, = O,/p, the
residue field at v and by ¢, = |k,| (if X is a finite set, | X| represents the cardinality of X).

We will write K™ for the maximal unramified extension of K,. Then I, = Gal(K,/K"")
is the inertia group and Gal(K,/K,)/I, = Gal(k,/k,). Consider the automorphism ¢, : z
7% in Gal(k,/k,) = Gal(K™ /K). Choose a lift o, of ¢, to Gal(K,/K,), which we call the
arithmetic Frobenius element.

The completions K, are locally compact, Hausdorff and second countable. Thus, there
exists a unique (up to normalization) invariant Haar measure p, on K,. The measure p,
is uniquely defined by the condition va dp, = 1. This unique measure corresponds to

the normalized metric |z|, = ¢» v@ fy © Mg/, where m, is the multiplication by x

automorphism. Since O, /! is an n-dimensional vector space over k,, using the invariance
of the Haar measure we get that fpg du, = q;".
Let S be a finite set of places v of K such that Mp® C S. Define

Ags =[] K. x[] O
veS v¢S

If Oxs ={a € Kl|a€ O,,Vv ¢ S} then Ok g — Ak s is a discrete embedding of topological
spaces.

Definition 0.4. The ring of K-rational adeles is the ring
Ag =limAgg,
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where the direct limit is taken over all finite S as above.

Then Ak is a locally compact, Hausdorff, second countable topological ring and there
exists a discrete embedding K < Aj. The main reason for dealing with the ring of adeles
is that it encodes all the local arithmetic properties of elements of the field K.

Remark 0.5. The topology on A is not the one induced from Ag. In particular, Ay — Ag
is not an open embedding.

If S is a finite set of primes, let Kg be the maximal algebraic extension of K that is
unramified at each place v ¢ S and let Gg = Gal(Kg/K). If Ok is the ring of integers of
K, set Or.s = Ok,s Qo Ok.

We follow the generally accepted notation H"(K, M) = H"(Gal(K/K), M) and H"(L/K, M) =
H"(Gal(L/K), M) for Galois cohomology of M.



1 Algebraic Groups

1.1 Group Varieties

Let K be a field and let K be an algebraic closure of K. In classical algebraic geometry,
an affine variety V' is a topological subspace of K™ (for some nonnegative integer n) defined
as the zero locus of an ideal I(V) C Klzy,...,x,] of polynomials. In that case, R =
Klx1,...,2,)/1(V) is called the coordinate ring of V. If R is generated over K[z, ...,,]
by Klzy,...,z,)/(I(V) N K[z1,...,2,]), then V is said to be defined over the field K.
Similarly, a projective variety V is a topological subspace of PK", defined as the zero locus
of a homogeneous ideal of polynomials I(V) C K[xg,...,z,] (i.e., a set of homogeneous
polynomials of degree at least k in an ideal, for some k). For example, the ideal I =
(zy — 1) C Q[z, 9] defines an affine variety G,, over Q because zy — 1 generates I N Q[z,y].

Every classical variety V is identified with the set of points V(K) over K. If the variety
is defined over the field K then there is a subset V(K) C V(K) of K-rational points (V(K)
may or may not be empty). For every extension L/K, if the variety V is defined over K,
it will also be defined over L. Therefore we have an assignment L — V (L), where V(L)
represents the points on V' whose coordinates lie in L. Unfortunately, the context of classical
algebraic geometry does not allow a thorough understanding of the functorial properties of
this assignment, which are especially important if V' is a group variety.

Rather than working in an algebraic closure K of K and understanding varieties defined
over K in terms of polynomials over K, we will work in the category Schy of schemes defined
over Spec K. More generally, we will look at the category Schg of schemes together with
morphisms to a scheme S. The language employed will be that of schemes, but the results
are essentially about varieties.

Definition 1.1. Let A be a ring. An abstract variety V defined over A is a geometrically
integral scheme V' that is separated and of finite type over Spec A.

If A is an algebraically closed field, the category defined above is equal to the image in
Schy of the category of varieties defined over A ([Har77] 11.2.6); the only difference is that
if V' is, for example, an affine variety with coordinate ring R then V is the subset of closed
points of Spec R as an abstract variety.

Affine varieties defined over a field K can now be realized as affine schemes Spec R with
a morphism to Spec K, R being the coordinate ring of the affine variety defined over K.
For example, we have defined the affine variety G,, over K, given by the vanishing of the
polynomial xy—1 € K|z, y]. However, the polynomial xyy— 1 that generates the defining ideal
has coefficients in Z. Therefore we may define G,,, = Spec Z[x,y]/(xy — 1) and base-extend
to obtain

Spec K[z, y]/(xy — 1) = Z[z,y]/(xy — 1) Xspecz Spec K.

If the coordinate ring of a variety V' is generated by integer polynomials, it is best to interpret
V' as an abstract variety over Z, because in that case we can make sense of V(A) for every
ring A. As a matter of notation, whenever we have a scheme S and two schemes V, T € Schg,



we write Vpr =V xgT. In particular, if an abstract variety V is defined over a ring A and
B is an A-algebra we denote by Vp the base-extension Vg = V' Xgpec a4 Spec B.

In the context of classical varieties, the assignment L — V(L) takes a field L to the set of
points of V' whose coordinates lie in L. In the context of schemes V' € Schg, the assignment
Z +— V(Z) = Homsen,(Z,V) is a functor, called the functor of points. Therefore, for each
S-scheme Z we obtain a set of points V' (Z); in particular, if V' is an abstract variety defined
over a ring A then we obtain the set V(B) for each A-algebra B. Since Vp(B) = V(B), we
will write V(B) for the B-points of V.

A subcategory of Schg is that of group schemes. A scheme G € Schg (let 7 : G — S
be the morphism that defines G over S) is called an S-group scheme if there exist a point
e € G(S) and morphisms of S-schemes m : G x5 G — G and i : G — G such that:

1. The following diagram is commutative (i is inversion):

G— L axs G

GXSG L G

2. The following diagram is commutative (associativity):

id xm

GXSGXSG—>G><SG

mxidJ ‘m
m

G xs G G

In particular, an algebraic group is an abstract variety GG, defined over a ring A, such that
G is a group scheme in Sch 4.

Remark 1.2. Let G be a group scheme defined over a scheme S. Then the functor Z — G(Z2)
for Z € Schg defines a group structure on G(Z) as follows. For z : Z — G (so = € G(Z))
define inversion z! = joz and for z,y : Z — G € G(Z) define multiplication z-y = mo(x,y).

Ezxample 1.3. Since the category of affine schemes is opposite to the category of commutative
rings, we may define the morphisms e, m and ¢ on Spec R on the level of R.

1. The affine line can be realized as a group variety as the additive group G, = Spec Z[x].
Then e corresponds to the linear map that takes x to 1; ¢ corresponds to u — —u and m
corresponds to u®v — u+wv. If Aisaring then G,(A) = Hom(Spec A, Spec Z[z]) = A*.

2. Similarly, the multiplicative group is G,, = Spec Z[z,y|/(xy — 1). Then e corresponds
to the linear map that takes x to 1; ¢ corresponds to the linear map that inter-
changes z and y and m corresponds to u ® v — wv. If A is a ring then G,,(A4) =
Hom(Spec A, Spec Z[z, y]/(xy — 1)) = A*.



3. The general linear group variety is
GLn - SpeCZ[xlla L12y s Tymy y]/(det(x’bj)y - ]‘)

Then e corresponds to the linear map that takes the matrix M = (x11,...,Zpn,) to the
identity; ¢ corresponds to the map that inverts the matrix M and m corresponds to
M®N +— MN (matrix product). Note that i is a priori only defined over Q. However,
over Z the matrix M has determinant 41 so its inverse has integer entries as well. If
A is a ring then GL,,(A) is the usual group of invertible n x n matrices with entries in

A.

Definition 1.4. An abelian variety is a complete algebraic group, i.e., it is an algebraic
group A defined over a field K, such that A is proper over Spec K.

Lemma 1.5. Let G be an affine algebraic group defined over a field K. Then there exists a
nonnegative integer n and a closed immersion ¢ : G — GL,, of Spec K-schemes.

Proof. See [Wat79] Theorem 3.4. O
If K is a field, not necessarily algebraically closed, the variety
S' = Spec K[z, y]/(«* +y* — 1)

is an algebraic group whose multiplication and inversion are the morphisms (on the level of
the ring of regular functions)

m((x, y)a (Z, t)) = ($Z —yt, xt + yz)
i(r,y) = (x,—y).
If K contains a root of the polynomial X? + 1 then

(z,y) = (z+V—=1y,z — V~1y),

gives an isomorphism between S and (G,,)x = G,, X specz Opec K. However, S Vand G,,
need not be isomorphic over K. Indeed, over F,, for p =3 (mod 4) prime (for p = 2, S* is
not even a variety, being nonreduced) the group (G,,)r, (F,) = F* has p — 1 elements, while
the group Sg (IF,) has p + 1 elements, parametrized by (2u/(1 4 u?), (1 —u?)/(1 +u?)) (the
parametrization is well-defined, since p = 3 (mod 4) and thus 1 + «? has no roots mod p).

If G,, and S were isomorphic over F,, they would have the same number of elements over
F

b
Definition 1.6. An algebraic group G defined over a field K is called a torus if there exists

an isomorphism of algebraic groups defined over K between G and (S1)? = (G,,)?, where
d =dimG.

Similarly, a unipotent group is classically defined as a subgroup of a linear group G L, (K)
consisting of upper-triangular matrices. By Lemma 1.5 we obtain the following definition:

Definition 1.7. An algebraic group G defined over a field K is called unipotent if, over K,
there exists a composition series G = Gy D G1 D ... D Gy D {e} of algebraic groups such
that G;/G;41 is an algebraic subgroup of (G,)z%.



1.2 Restriction of Scalars

Let L/K be a finite field extension and let G' be an algebraic group defined over L. Consider
the functor of K-schemes Z — G(Zr). We would like to construct an algebraic group
Rp kG defined over K that represents this functor, i.e., for each K-scheme Z we have
(R/xG)(Z) = G(Zy).

Definition 1.8. Let G be an algebraic group defined over a finite field extension L/K. If the
functor of K-schemes Z +— G(Zp) is representable, we will denote the group that represents
it by Rp/xG. This group is called the restriction of scalars of G from L to K.

Let L/K be a Galois extension and let {oy,...,04} be the set of embeddings L — K.
For a group G defined over L we call a pair (H, 1)) of a K-algebraic group H and morphism
¥ H — G defined over L a restriction of scalars pair if there exists a K isomorphism

d
U= (01¢,...,0q¢) : H— HG‘”,
i=1

where the twist G? of G by o is the fiber product

i

Gfi T
Spec L — 2> Spec L

Lemma 1.9. Let L/K be a finite Galois extension. If G is the affine or projective space
over L then there exists a restriction of scalars pair for G.

Proof. See [Wei82] Proposition 1.3.1. O

Lemma 1.10. Let L/K be a finite Galois extension. Let G be an algebraic group defined
over L and let G’ be a subgroup of G. If there exists a restriction of scalars pair for G then
there exists one for G'.

Proof. Assume that there exists H an algebraic group defined over K and a morphism
Y : H = G defined over K such that over K there is an induced isomorphism ¥ : H —
[T, Go. Let H = w~([], G"). Since ¢ is defined over L for any o € Gal(K /L) we get
that o0 ~! = U~! and so H' is defined over L. Then (H’ 1) is a restriction of scalars pair
for G'. m

Proposition 1.11. Let L/K be a finite Galois extension and let G be an algebraic group
defined over L. If (H, 1) is a restriction of scalars pair for G then H represents the functor
of K-schemes Z — G(Zy), i.e., H = Ry kG.
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Proof. Let Z be a K-scheme and suppose that 7 : Z — H is a morphism defined over K,
i.e., 7 € H(Z). Consider the commutative diagram

SpecL%ZLLG

| AN

Spec K ~—7 "= H

where m : Z; — Z is the projection to the Z factor in the fiber product Z; and ¢ =
Vorom € G(ZL). Denote by F the natural map that takes 7 to ¢. To prove that H
represents Z — G(Z) is it enough to show that F': H(Z) — G(Z}) is bijective.

Suppose that ¢ € G(Z;) and let ( = V"o ¢ = (012,...,040) " o (010,...,040). A
priori this is a morphism defined over L, but for o € Gal(L/K) we have

o = (co1t,...,000)  o(0010,...,0040) =

since o permutes the o;. Therefore ( is defined over K. Consequently, ¢ factors through Z
so there exists a morphism 7 : Z — H defined over K such that ( = 7 o 7. In particular, F
is surjective since F(7) = ¢.

Suppose there exist 71,79 € H(Z) such that F(r) = F(r). For each z € Z consider an
open affine neighborhood U = Spec R, of z. Since the map R, — R, Qg L is injective (R,
is a K-vector space), there exists 2z’ € Spec R, @k L such that n(z’) = z. Therefore, 7 is
surjective. Then, for each z € Z there exists a 2/ € Z such that 7(2') = z which implies
that 7(z) = 7 (n(2)) = m(7(2')) = m(z). However, morphisms are not defined by their
values on points. Consider an open affine cover of H by {U;} and let V; = 7, *(U;) be the
open preimage of U; in Z, under the continuous map 7. Let {W;;} be an affine open cover
of V;. Since 7 and 7, take the same values on points, we have 7,(W;;) C U; for k = 1,2. Let
Wi; = Spec R;; and let U; = SpecT;. Since the category of affine schemes is opposite to the
category of commutative rings, the following diagrams are equivalent:

Wi; xg L Rij @k L
Wl ¢ ﬁT ¢
Wi Ui Ry T,
T2 7'11

But 7 is an injection so 74 = 7y so the morphisms 7; and 75 are equal, since they agree
locally. [

Note that by construction dim Ry, xG = [L : K]dim G. Moreover, if we base extend the
restriction of scalars to the algebraic closure, it splits into a product of "twists’ of the original

group.

Corollary 1.12. Let L/K be a Galois extension and let G be an algebraic group defined
over L. If G is a torus, unipotent group or abelian variety then Ry kG is a torus, unipotent
group or abelian variety, respectively.
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Proof. If G is a torus then Ry kG is isomorphic over K to a product of G,,, so Ry kG
is a torus. If G is an abelian variety, there exists a closed immersion H < P7' for some
m. Therefore there exists a K immersion Rp/xG = [], G° < [[P% — PX where N =
(m + 1)Kl — 1 is given by the Segre embedding. But any such immersion is defined over
a finite extension M/K (by Lemma 1.13 we could choose M = L). Let ¢ : Hy < P} be
the immersion and let £ = ¢*Opx (1) be a very ample invertible sheaf on Hj. In that case
Ry 7L 1s an ample invertible sheaf on A, which proves that H is projective, hence an
abelian variety.

If G is unipotent, there exists a composition series G = Gy D G; D --- D G, D {1}
defined over K such that G;/Gy11 = (G,)%. Then Gy = G’ x [I-; Go" isa K-composition
series for Ry /kG:

RL/KG = Go’o D) Gl,() DD Gd,j D Go,j+1 D) Gl,j DD Gm,d D) {1},
with Gi,j/Gi-‘rl,j = (Ga)F if i < d and Gd,j/GO,j—l—l = (Ga)? otherwise. ]

The following lemma shows that it is enough to base-extend to the field of definition of
the group to obtain a decomposition into groups isomorphic over L to G:

Lemma 1.13. Let L/ K be a finite separable extension of fields and let Gal(L/K) = {o1,...,04}.
For any affine or projective algebraic group G we have

d
RL/KG XSpec K SpecL = HGgi.

=1

Proof. Since we will not be using this result, we direct the reader to [PR94] 2.1.2 for further
details. ]

Ezxample 1.14. Let L/K be a finite extension of fields and let (G,,), be the one-dimensional
split torus over L. Then Ry kG, is a [L : K]-dimensional torus over K that comes with
a distinguished map ¢ : R xG,, = G,,. Define R} /KGm to be the algebraic group that
makes the following sequence (defined over K') exact:

1— RlL/KGm — R kG, — Gy, — 1.

If we base extend to K, Ry /xGp xx K = [[,(G%)% and so Rl kG Xk L= Hi# G
is clearly an algebraic torus.

Remark 1.15. Restriction of scalars from a field L to a subfield K is an effective process.
Given equations defining a group G over L one can find equations for Ry ,xG over K. For
example, the group (G,,)c is defined by the equation xy — 1 = 0. To obtain equations for
Re/r(Gp)c write © = o1 4 izy and y = y; + iy» where C = R[1,4]. Then zy —1 = 0 can
be rewritten as x1y1 — xay> — 1 + i(x1y2 + x2y1) = 0 so the group Re/r(Gy,)c is defined
over R by the equations x1y; — x9ys — 1 = 0 and 21y + x2y; = 0. Then the map ) takes
(z1, 22,91, 92) to (z] + 23,y7 + v3) = (Ne/rz, Nojry) and is generally called the norm map.
Finally, Rt 5(Gm)c = kert) is given by the equations x1 = y1, 73 = —ys and 27 + 25 = 1.
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1.3 Algebraic Groups over a Nonalgebraically Closed Field K

We have seen in Section 1.1 that the groups S' and G,,, not isomorphic over F3, become
isomorphic over Fs. Let K be a field and let G be an algebraic group defined over K. More
generally, we would like to understand the set of abstract varieties defined over K, which
are isomorphic to G over K.

Definition 1.16. Let L/K be a finite extension of fields and let G be an algebraic group
defined over K. An L/K-form of G is a pair (H, 1) of an abstract variety H defined over K

and an isomorphism H % G defined over L.

Two L/K-forms of G, (Hy,v1) and (Ha, 1), are said to be K-isomorphic if there exists
an isomorphism ¢ defined over K and a commutative diagram:

H, Y . H,
2

NP
G

Define F(L/K, Q) to be the set of L/K-forms of G, modulo K-isomorphisms.

Theorem 1.17. Let L/K be a finite field extension and let G be an affine or projective
algebraic group defined over K. Then there exists a bijection

F(L/K,G) — H' (Gal(L/K), Aut.(Q)),

where Autr(G) represents the set of (not necessarily origin-preserving) isomorphisms of G
onto itself.

Proof. For any o € Gal(L/K) consider the diagram (over L)

o(ip)op~!

G——G

NS
H

where o(¢)) o ™! € Autr(G). Then o — o(¢)p~! is a cocycle since (o7)()p™1 =
a(tY)(T(¥)) ()L, (Of course, it is not a coboundary since 1 ¢ Autz(G).)

Let ® be the map that associates to each L/K-form (H, ) the cocycle (o + o(¢)p™1) €
HY(L/K,Aut;(G)). We need to show that ® is well-defined. Assume that (H,v) = (F, ¢)
in F(L/K,G). Therefore, there exists a K-isomorphism f : H — F that makes the diagram

f

N

G

H

F

commutative over L. Then
g oW = o(of)(of) T = a(@)a(f)f o7 = a(d)e,
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because f is defined over K.

To prove that ® is a bijection, we first need to show injectivity. If ®((H,v)) = 0 €
HY(L/K,Aut;(G)), then there exists f € Auty(G) such that o(¢)y=" = o(f)f~! for every
o € Gal(L/K). Then there exists a diagram defined over L

floy

N
G

But o(f~to) = fLo for every o € Gal(L/K) so f~! o1 is a K-isomorphism between
(H, ) and (G, f).

We will only show surjectivity in the case when G is an affine group. (When G is
projective, the proof is similar; see [Ser88], Corollary 21.2.) Let f € H'(L/K, Auty(G)) be
a cocycle. We would like to 'twist” G by f to obtain a new variety Gy, an L/K-form of G.
Since G is affine, let G = Spec R, where R = Og(G) is the ring of global sections of the
sheaf of regular functions on G.

There is a natural action of Gal(L/K) on R ® L, given by o(r ® l) = r ® o(l). To get
the twist, we need to create a new K-algebra R;. For every o € Gal(L/K) an automorphism
g of GG induces an automorphism ¢ : R ®yg L — R ®k L, defined over L. Construct a new
action of Gal(L/K) on R ® L defined by

—_—

ox(ral)= (oo flo))(rel)=o(ral)o f(o),

H

G

for every r € R,l € L (if we interpret r®[ as a regular function on G,). This is a well-defined
action, since for o, 7 € Gal(L/K) we have (f is a cocycle)

oTx(r®l) = or(rel)o flor)=o0r(r@l)oof(r)o f(o)
= o(r(r®@l)o f(r))o flo) =0 (T*(r®l))

Since R is the fixed part of R ®x L under the natural Gal(L/K)-action, we can analogously
define Ry to be the fixed part of R ®x L under the new action . Then Ry has the structure
of a K-algebra and Gy = Spec Ry is an affine variety over K. But, Ry ®x L = R ®g L,
which corresponds to an L-isomorphism between G and Gy. If ¢ : G — Gy is an L-

isomorphism, then 1) induces an isomorphism 9 : Ry ®x L = R®y L with the property that
op(r®l) =v(o* (r®l)) for o0 € Gal(L/K). But then

o(r@l)oo(y) =o(ral)o f(o)oy,

which implies that f(c) = o(1)) o™, so we get the cocycle we started with. Therefore, ¥
is surjective. ]

Passing to direct limit the bijection F(L/K,G) = H'(L/K, Aut;(G)), one similarly gets
that
F(K/K,G) =~ H' (K, Aut%(G)).
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Example 1.18 (One-dimensional tori over a finite field F,). Theorem 1.17 can be used to
characterize the forms of G = (G, )r,, the split one-dimensional torus over the finite field
F

”
Since the category of affine schemes is opposite to that of commutative rings, Enqu (GQ)
is given by Endg (Fy[z, y]/(zy — 1)) = Z since x can map to either a power of z or a power

of y. Therefore
F(Fy/Fy, Gy) = H' (Gal(F,y/F,), Aut(Z)) = Hom(z, {£1}),

since Gal(F,/F,) = Z. Let Frob be the topological generator of Gal(F,/F,) corresponding

~

to the unit in Z (recall that Z = leZ/nZ). Any continuous cocycle (which must be a
homomorphism, because the Galois action is trivial) is determined by the value it assigns to
Frob, so F(F,/F,,G) = {+1}.

Since for the extension F,/F, we still have H*(F2/F,, {£1}) = {£1}, there are two
one-dimensional tori over [Fy, and they both split over F .. To the cocycle that assigns 1 to
Frob corresponds (G, )r,. To determine the torus corresponding to the cocycle that assigns
—1 to Frob, recall that Rﬂlqu si,Gm is one-dimensional, since [Fg : F] = 2. As in Remark
1.15, the group R]%qQ/Fqu is defined by the equations z; = y;, 19 = —y, and 22 — ca3 = 1,
where c is a generator of F)< (i.e., F2 = F,(y/c)). Therefore, (G,,)r, and RIquz /v, Gm are not
isomorphic over F, and R} 2Ry G,, must be the one-dimensional torus corresponding to the
cocycle —1. ’

1.4 Structure of Algebraic Groups

When we will analyze the reduction of abelian varieties over finite places v of a number field
K, we will encounter smooth, connected algebraic groups defined over the residue field k,
at v, which are not necessarily abelian varieties. The following two theorems determine the
structure of such groups.

Theorem 1.19 (Chevalley). Let G be a smooth, connected group defined over a finite field
k. Then there exists an exact sequence (defined over k) of smooth connected algebraic groups

1-A—-G—B—1,

where A is an affine group and B is an abelian variety.

Proof. The proof can be found in [Con02]. The Theorem holds more generally for any perfect
field k. O

To complete the characterization of connected smooth groups over finite fields we need
to understand general smooth, connected affine groups.
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Theorem 1.20. Let A be an smooth, connected, affine algebraic group defined over a finite
field k. Then there exists a mazimal torus T of A and a smooth connected unipotent group
N, such that

1->T—-A—N=—1

s an exact sequence defined over k.

Proof. See [Wat79], Theorem 9.5. O

1.5 Topologizing G(R)
1.5.1 Discrete Valuation Rings

For convenience, all topological groups (or rings) in this section are assumed to be Hausdorff,
locally compact and second countable topological spaces. Let R be a topological ring and let
K be its fraction field. In the classical context, for every affine variety V' defined over K, the
set V(K) comes with a topology inherited from K" for some nonnegative integer n. In the
context of abstract varieties, this does not happen. Let Top be the category of topological
spaces with morphisms continuous functions. We would like a functor Sch’, — Top that
assigns a topology to X (R) for X € Sch'y, where Sch’; represents schemes locally of finite
type in Schg. This section is written under the influence of [Con)].

Proposition 1.21. Let X € Schpy be an affine, finite type R-scheme. There exists a topology
on X(R) that depends functorially on X and turns X (R) into a Hausdorff, locally compact
and second countable topological space. Moreover, the map X + topology on X(R) is a
functor that respects fiber products and takes closed immersions to closed embeddings. If R*
s open in R then every open immersion of affine, finite type R-schemes U — X yields an
open embedding U(R) — X (R).

Proof. Since X is affine of finite type, there exists a closed immersion ix : X < Spec R[xy, ..., z,)]
for some n; therefore there exists an ideal I of R[xy, ..., x,] such that X = Spec R[xy,...,z,]/I.
Then we can endow X (R) with the topology inherited from R™ by identifying X (R) with
the subset of points of R" in the zero-locus of I.

To prove functoriality in X, consider a morphism of affine, finite type R-schemes f :
X — Y, a closed immersion iy : Y < SpecR[y1,...,yn] and an identification YV =
Spec Rly1, ..., Ym]/J, where J is an ideal of R[y, ..., yy]. The morphism f induces a mor-
phism ¢ : Spec R[z1,...,x,] — Spec R[y1, . .., Ym] such that poiyx =iy o f. Therefore, there
exists a map ¢ : R" — R™ that makes the following diagram commutative:

R —Y— g
K
X(R)—~Y(R)

16



such that ¢ is given by polynomial maps. Then v is continuous, which shows that the
topology on X (R) agrees with the topology on Y (R). In particular, this shows that the
topology on X (R) is independent on the closed immersion iy.

The properties of X(R) of being Hausdorff and second countable are inherited from
the topology on R™. Moreover, if X < Y is a closed immersion, then by functoriality of
topologizing X (R) and Y (R) we may embed X and Y into R[zy,...,x,] for the same n.
Then the image of X(R) in Y(R) is given by the vanishing of a continuous map (as in
the proof of functoriality); since Y (R) is Hausdorff, we get that X (R) — Y (R) is a closed
embedding. Consequently, since X (R) is Hausdorff in R™, the topological space X (R) is also
locally compact.

Let X and Y be affine, finite type schemes over R, and consider closed immersions
X < SpecR[zy,...,2,],Y < SpecR[yi,...,yn]. Then there exists a closed immersion
X XrY < Spec R[x1, ..., Tn, Y1, -, Ym| and by functoriality the topology on (X xgY)(R)
is the same as the topology on X (R) x Y(R).

It is enough to show the fact that U(R) — X (R) is an open embedding when X = Spec A
(for A = R[zy,...,2,]|/I)and U = Spec Ay for some f € A (since Spec A form a basis for the
topology on X). A point in U(R) is a morphism 1 : Spec R — Spec Ay which corresponds
to a homomorphism Ay — R. But U(R) C (Spec A)(R) then corresponds to the set of
homomorphisms A — R that send f to an element in R*. Since R* C R is open, U(R) is
open, as it is the inverse image of an open set. ]

Corollary 1.22. If R* is open in R and X s a locally of finite type R-scheme, then we can
functorially assign a topology to X (R) that agrees with the topology assigned in Proposition
1.21 when X is affine, of finite type.

Proof. Let X be a locally of finite type R-scheme. FEvery point in X(R) is a morphism
Spec R — X which factors through an affine open Spec R — U — X. This means that
we can define a topology on X (R) having as a subbasis the topologies on U(R), for each
affine open immersion U — X. To see that this agrees with the topology constructed in
Proposition 1.21 for X affine, of finite type, let U < X be an open immersion. But then
U(R) — X(R) is an open embedding for the topology on X(R) previously constructed.
Therefore, the two topologies agree when X is affine, of finite type over R. O

Remark 1.23. Since O, is open in O, (where O, is the ring of integers of a finite place v of
a number field K) this allows us to topologize X (O, ) for every finite type scheme X defined
over Spec O,.

Remark 1.24. If R* is open in R and X < Y is an open immersion of locally of finite

type R-schemes, then X(R) — Y (R) is an open embedding by Proposition 1.21 and the
construction of the topology on X (R).

Let R be a discrete valuation ring with fraction field K. Then for every locally of finite
type R-scheme X we topologized X (R); since K is a topological R-algebra and K* is open
in K, we can topologize X (F) = (X xg F)(F). The following lemma mirrors the fact that
R is compact in K.
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Lemma 1.25. If R s a topological discrete valuation ring and K s its field of fractions,
then X (R) — X(F) is an open embedding. If, moreover, R is nonarchimedean and X is of
finite type, then X(R) is a compact topological space.

Proof. Since an open immersion X < Y induces an open embedding X (R) — Y (R) for X
and Y locally of finite type R-schemes (Remark 1.24), and since a basis for the topology
on X(R) is given by U(R) for affine open immersion U — X, it is enough to check that
X(R) — X (F) is an open embedding on the level of an open cover. So assume X is affine,
of finite type over R.

Consider an open immersion X < Spec R[zy, ..., z,| = A%. Then, X(R) — A%(R) and
X(K) — A% (K) are open embeddings, by Proposition 1.21. Therefore, it is enough to check
that A%L(R) — A%(K) is an open embedding. By Proposition 1.21, the functor that assigns
a topology commutes with products over R, so it is enough to check that AL(R) — AL(K)
is an open embedding. But this is equivalent to saying that R — K is an open embedding
which is true, since R is a topological discrete valuation ring and K is its field of fractions.

Assume that R is nonarchimedean. Then, for every affine open U, the set U(R) is
compact in U(K) since U(R) inherits its topology from R"™ and R" is compact in K". If X is
of finite type, then we can cover X with finitely many open affines {Uy, ..., Us}. Since U;(R)
are compact, it is sufficient to prove that X (R) is covered by U;(R). Let f : Spec R — X
be a morphism, i.e., f € X(R). The only way in which f can fail to be in | J;_, U;(R) is
if the image of f is not fully contained in any of the U;. But R is a topological discrete
valuation ring, which implies that Spec R = {u, v} where u is the closed point and the v is
the generic point of R (if m is the maximal ideal of R then u = Spec R/m and v = Spec K).
Assume there exist i # j such that f(u) € U; \ U; and f(v) € U; \ U, i.e., that the image of
f is not contained in one affine U;. But then f~'(U;) and f~!(U;) are open sets (since f is
continuous) and they separate u, v; this cannot be, since u lies in the closure of v. O

1.5.2 Adelic Points on Varieties

Recall that if K is a number field then Ak is the (topological) ring of adeles. Since Ak is a
K-algebra, we have X (Ax) = Homg (Spec Ag, X) = (X Xk Ax)(Ak) for every K-scheme X.
We would like to topologize this set in a way that is functorial in X, for X an abstract variety
defined over K. In the case when X is affine and of finite type, we may use Proposition 1.21
to achieve this goal. Moreover, the following proposition is a generalization of the fact that
K — Ak is a discrete embedding. In particular, it will show that if X is affine and of finite
type over K, then X (K) embeds discretely in X (Ag).

Proposition 1.26. Let Ry — Ry be a closed and discrete embedding of topological rings.
Let X1 be an affine finite type Ri-scheme and let Xo = (X1)g,. Then there exists a closed
and discrete embedding X1(Ry) — Xa(R2) = X1(R2) (which is well-defined since Ry has the

structure of an Ry-algebra).

Proof. The closed embedding R; < Ry induces a closed embedding X;(R1) — Xa(R2),
because the embedding R} — R} is closed for every n. Since R; embeds discretely in R
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we get that R} embeds discretely into R3 so the same happens on their subsets X;(R;) and
Xy (Rs) with their inherited topologies. O

However, as we have seen in Remark 0.5, Aj is not open in Ag, so we cannot use
Corollary 1.22 to topologize X (Ak), if X is an abelian variety, for example. Even in the
case when X is affine of finite type, we would like to topologize X (Ag) in a manner that
is compatible with the previously constructed topologies on X (K,) and X,(0,), if X, is a
model over O g for X.

The main problem with this is that the ring A consists of sequences (), such that
z, € K, and z, € O, for all but finitely many places v. However, X is defined over K
and O, is not a K-algebra, so there is no canonical notion of O,-valued points of X. If X
is defined over K, by an ideal of polynomials I, then for {P;} a set of generators of I, the
rational roots of all P; will lie in K’ for some n. In that case, we could define the O,-points
to be those roots which lie in O;'. However, this set depends on the choice of generators of
I. A more functorial way to express the choice of equations is the notion of a model.

Definition 1.27. Let K be a field and let R be a subring of K. Let X be a K-scheme. A
model X for X over R is an R-scheme such that X xp K = X.

The above definition simply says that if the model X has equations with coefficients in R,
then X is the variety given by the same equations, but whose coefficients are now interpreted
in K. As it stands, the definition of a model is too inclusive to be useful. We will restrict our
attention to models which are smooth, separated and of finite type over R. For example, let K
be a number field and let Ok be its ring of integers. If G = Spec K[z1,...,z,)/(f1,-- -, fa)
is an affine algebraic group and m € Z such that mfy,... ,mfqy € Oglz1,...,2,], then
Spec R[X1,..., X,]/(mfi,...,mfs) is an affine model for G, which is separated and of finite
type over Ok.

From now on we will restrict our attention to algebraic groups GG defined over a number
field K. Let S be a finite set of places of K, such that S contains the set of infinite
places, M. Recall that Ok g is the set of x € K, such that v(z) > 0 for all v ¢ S and
Ak s = {(xy), € Aglv(z,) > 0,Vv ¢ S}, an Ok g-algebra. Choose a model Gg for G over
Ok s such that G is smooth, separated and of finite type, as above. (In terms of equations
this corresponds to clearing denominators with positive v-valuation for v ¢ S.) Given that
liglAK,S = A, one can use the following theorem to redefine G(A).

Theorem 1.28. Let R; be a direct system of rings and R = thz If X; and Y; are finitely
presented R;-schemes then for j > i we have

ling Homp, ((Xi)g,, (Yi)r,) — Homp((X;)r, (Yi)r)-

Proof. See [BLR90], Lemma 1.2.5. O

The previous theorem is a global version of the denominator clearing procedure for the
construction of a model for affine varieties over O ¢. Having chosen a separated and finite-
type model Gg for G over Ok, let G = GsX o, Ok r for each finite set " > S. In Theorem
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1.28 let {T finite |T" O S} be the direct system and let Rg = Ok . Let Xg = SpecAk g
which implies that XT = XS XOK,S 0K7T = Spec A[QT. Finally, llg"lRS = K, (XS)K = AK
and (Gg)x = G, since Gg is a model for G. Therefore, by Theorem 1.28 we get a bijection

@ Homo, . (Spec Agr, Gr) = Homg (Spec Ak, G),
T

or, equivalently,

lim Gr(Agr) = G(Ak) (1.1)

Remark 1.29. The identification 1.1 can be made precise, as follows. Since Agr is a Ok g
algebra (S C T), we have an identification Gr(Axr) = Gs(Agr) and similarly G(Ag) =
Gs(Ak). Since Agr C Ak there is a natural map Gs(Agr) — Gs(Ag), which induces a
natural map

h%GT(AKj) = li%l’le(AKj) — Gs(AK) = G(AK)

By Theorem 1.28, this natural map is bijective. In particular, if we had topologies on
Gs(Ak ), they would induce a topology on G(Ag).

We would like to construct (functorially) a topology on Gg(Ak.g), for S, a finite set
of primes. Recall that Gg is defined over Spec Ok g, so we are allowed to define Gg, =
Gs Xogs Oy, for places v ¢ S. For the places in S, write G, = Gg X, ¢ K,. In order
to define a topology on Gg(Ag ), we need to relate the set of points Gg(Ag ) to the
sets Gg,(0,) and G,(K,), for which we have already constructed functorial topologies in
Corollary 1.22.

Proposition 1.30. There exists a bijection

Gs(hrs) = [[ Gu(K) x ] Gs.0(O0).

veS vgS
Proof. See [Conl, Theorem 2.10. O

Remark 1.31. This is not a very surprizing result, since the same result for G, is the defini-
tion of Ak g. The product topology on ], .q Go(kK,) X vaéS Gs,(0,) = Gs(Agk s) induces
a functorial topology on G(Ag) that is compatible with the topology constructed in Propo-
sition 1.21 in the case that G is affine.

Proposition 1.32. Let G be an algebraic group defined over a number field K and let
S D Mg be a finite set of primes. If G has a separated and finite-type model Gg over Ok g,
then G(Ak) is a (Hausdorff, second countable, locally compact) topological group.

Proof. By construction, the topological space Gs(Ak g) is second countable (since it has the
product topology of a countable number of second countable spaces). Since G is separated,
Gs(Ag ) is Hausdorff. By Lemma 1.25, the topological spaces Gg,(0,) are compact. Since
Gy (K,) are locally compact, Proposition 1.30 implies that the space Gg(Ak g) is locally
compact (using Tychonov’s theorem). The result then follows from Remark 1.29. (See
[Con], 2.12.) O
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Therefore, if G is an algebraic group with a separated and finite-type model Gg over
Ok.s, then G(Ag) is a locally compact topological group. If G is an abelian variety, it is
projective by Proposition 2.9 and it has a "Néron’ model, which is a smooth, separated and
finite-type model over Ok (by Theorem 2.41). In this case, more can be said about the
topology of G(Ak).

Proposition 1.33. If A is an abelian variety defined over a number field K, then A(Ak) is
a compact topological group.

Proof. The proof of this theorem depends on technical results from Section 2.3, but the
proposition belongs here from a logical perspective. Let A be the Néron’ model for A over
Ok, i.e., a smooth, separated and finite-type model for A over O. By Corollary 2.53 and
Lemma 2.48, there exists a finite set of places S containing the M7 of infinite places such
that Ag = (A)oy s is proper. (In the technical language of Section 2.3, A has good reduction
at all places v ¢ S; for each such place v of good reduction, the fiber of A over v is an abelian
variety, hence proper.)

Let v ¢ S and let A, = A xp, O,. By the valuative criterion of properness (or by the

Néron mapping property) we have a bijection .4,(O,) =, A(K,). By Lemma 1.25 it will be
an open embedding, which implies that the bijection is a homeomorphism. Consequently, if
T D S is a finite set of places, then there exists a homeomorphism

AS(AK,S) — AT(AK,T),

since

As(Ags) = Ap(Agr) = HA(KU)

by the above. Therefore, to prove that A(Ag) is compact, it is enough to show that each
Ar(Ag ) is compact. Since Ar(Agr) = [[ A(K,), by Tychonov’s theorem, it is enough to
show that each X (K,) is compact.

Let v be a finite place. Since A is projective, there exists a closed immersion Ag, — P
(where P™ = ProjO,[x1,...,Zy]), which induces a closed embedding A(K,) — P (K,),
since O is open in O, (Proposition 1.21). By the valuative criterion of properness, P (K,) =
P™(O,). Since P™(O,) can be covered by finitely many sets of the form U(O,), where U is
affine open, and each U(Q,) is compact by Lemma 1.25, it follows that P (k) is compact.
Therefore, A(K,) is compact as a closed subset of a compact set.

Similarly, if v is real of complex, we need to show that PR and P™C are compact. But
PR and P™C can be realized as finite CW-complexes, which implies that they are compact
([Hat02], 0.4, 0.6). O

1.6 Defining a Measure on G(R)

Let R be a topological discrete valuation ring and let K be its fraction field, of characteristic
0 (for example, R = O, and K = K,,). Let G be a finite type group scheme of dimension n
over K. In particular, G is smooth over F'.
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Lemma 1.34. The topological space G(K) has the structure of an n-dimensional topological
K -manifold, i.e., for every point g € G(K) there exists an open neighborhood W of g and a
homeomorphism ¢ : W — (W) onto an open set in K™ endowed with the product topology.

Proof. Every morphism Spec K — G factors through some open affine U — G. Since the
condition of being a manifold is local, it is enough to check that U(K) is a K-manifold.
Consider a closed immersion h : U < Spec K|[z1,...,x,] that induces an isomorphism
U = Spec K[z, ...,x,]/I for an ideal I generated by polynomials fi,..., fr. Then U is a
smooth affine subvariety of A7 so U(K) is a K-manifold by the implicit function theorem. [

We would like to define a differential structure on G(K) that is compatible with the
differential structure on G. Since G is a smooth group variety of dimension n over K, the
sheaf of differentials of top degree, QF, k! free Og-module generated by an invariant
differential w ([BLR90], Chapter 4.2, Corollary 3). We would like to use this differential
together with the canonical measure p, to define a Haar measure on the locally compact
topological groups G(K) and G(R). Since both w and a Haar measure on G(K) are left
invariant, it is enough to define the measure in a neighborhood of a point ¢ € G(K). As
before, let U < X be an affine open immersion such that g € U(R). Let W C U(R) be
an open neighborhood of g and let v : W — (W) be a homeomorphism onto an open
neighborhood of K™.

Consider a closed immersion h : U < Spec K[z, ..., x,] = AZ. Note that G is smooth
at g which implies that exist local generating sections vy, ...,y, of Og(U) at g such that
dyi, ..., dy, generate (€, /K)97 where Qf, e the sheaf of differentials of degree 1 on G.
Then by the Jacobi criterion ([BLR90], Chapter 2.2, Proposition 7) we may assume that

dyi,...,dy,,dx, 1, ..., dx, generate (Q}W)g as a (Opm)g-module. Therefore, via the im-
mersion f, we can identify f(y1),..., f(yn) with coordinate functions on A% C A%. This
process can be reversed. Let zq,..., 2, be the standard coordinates on A% . By the above,

the pullbacks y; = h*(21),...,yn = h*(2,) form local generating sections of Og(U). Define
dy;, = Y*dz, i.e., dy;, are the pullbacks of the standard differentials on K", viewed as a
K-manifold. The differentials dz; are the normalized Haar measures on the K-lines defined
by the directions z;; their pullbacks, the differentials dy; , transport the differential structure
from K" to G(K).

Since dy, . .., dy, generate (QE/K)Q, in a small enough open neighborhood V' C U of ¢
we can write w = fdy; Adys A ... A dy, where f € (Og), is a rational function in Og(V)
and is well-defined at g. This implies that one can express f as a power series in the local
coordinates ¥, ..., Yn:

F=Y" i = y1(9)" - (W — tn(9))™,

11,.0n

that converges in a small enough open neighborhood V.
In a neighborhood of g, define |w|, to be |f|,dyiv A ... A dyy,», where |f|, is the usual
norm associated to the rational function f. The following lemma makes implicit use of the
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identification of a measure p with the integral [ dp it defines (by the Riesz representation
theorem).

Lemma 1.35. There exists a global invariant Haar measure [ |w|, on G(K), that is com-
patible with the local invariant differentials |w)s,.

Proof. Tt is enough to show that, locally, the differential form |w|, is functorial in the choice
of local coordinates zq,...,z2,. By Fubini’s theorem we can do integration on fibers so it
is enough to prove functoriality if we only change z; to another local coordinate ¢;. If
s1 = h*(t1), note that ds;/dy; € (Og), s0 we can write

w = fdyy Ndys A ... Ndy, = (fdsy1/dyr)dsy Adya A ... A dy,.
Therefore, we need to show that

|flodsio A dyay Ao ANdyny = | fdsi/dyi|vdyie A ... A dYp o,

or equivalently, that ds; , = |ds1/dy1|,dy1 . This result is well-known if v is an infinite place.
Assume that v is a finite place.

Since z; and t; are both local coordinates for K™ at 1(g) = 0, there exists a converging
power series (after scaling) t; = 21 + as2? + azz? + ---. Therefore, dt,/dz; = 1 + 2a32; +
3azzi +---. If z; is close to 0 (around %(g)), the valuation v(2as2; + 3azz? + - -+ ) will be
large, since v is nonarchimedean. Then,

v(1 + 2ap21 + 3azzi + -+ ) = min(0, v(2as2; + 3azzi +---)) =0,

which implies that |ds;/dyi|, = [©*(dt1/dz1)|, = 1 (the last equality follows from the fact
that v is an isomorphism). Then

dsip/dyr,y = ™ (dty)/Y"(dz)
= *(dzy + agdz? + -+ ) /" (dz)
= 1+2a2d2’1+:1
= |dsi/dy1|.

A~~~ /N A/~
—_ = = =

U Lo O
~— ~— ~— ~—

around g. (The last equality is a reinterpretation of the fact that smooth is equivalent to
locally constant in the case of nonarchimedean fields.)
O

By Lemma 1.25 we can restrict |w|, to a Haar measure on the locally compact topological
group G(R).
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1.7 Tamagawa Measures on G(Ag)

Let G be an algebraic group of dimension n defined over a field K. Let S be a finite set of
primes such that S D Mp°. Let G's be a separated, finite-type model for G over Ok g and
assume that Gg is a group scheme. We would like to explicitly define a Haar measure on the
locally compact topological group G(Ak), that is compatible with the Haar measures [ |w],
on Gy(K,) and Gg,(O,).

For every place v ¢ S, if m, : Gg Xoxs Ov = Gg is projection to the first coordinate,
then w, = mw is a left-invariant differential on Gg, ([Har77], Chapter 2, Proposition 8.10).
Similarly we get invariant differentials w, on G, for v € S. To each w,, Lemma 1.35
associates a differential form |w|, on the topological space Gg,(Ok.s) (if v ¢ S) and G, (K,)
(if v € 5).

Example 1.36. 1. Let G = G, be the additive group defined over a field K. Then G, =
Spec K[x] and an invariant differential on G, is dz which becomes dz, over all K.
Then, the normalized measure p, is f dx,.

2. Let G = G,, be the multiplicative group defined over a number field K. Then
G,, = Spec K([z,y|/(zy —1) = Spec K[z, !]. One choice of (multiplicative) in-
variant differential form is z~'dz which gives dz,/|z|, over the completion K.

We would like to create a normalized Haar measure on each of G,(K,), Gg,(O,) and
G(Ak). However, the group G(Ag) is an infinite product of groups G,(K,) and Gg,(Oy).
Therefore, if the Haar measures [ |w|, are not normalized, simply taking the product of the
measures on Gg,(0,) to yield a Haar measure on G(Af) might not be well defined.

Definition 1.37. A set {(\,),} of positive real numbers is called a set of convergence factors

for G if
([ ).
GS,U(O’U)

vgS
converges absolutely.

Remark 1.38. The fact that an infinite product [];°, x, converges absolutely means that
an = [, |zo| is a convergent sequence whose limit is not 0.

In order for this definition to make sense, we need to make sure that the notion of set
of convergence factors is independent of the choices of the set S, model Gg and invariant
differential w. Invariance with respect to the choice of S follows from the fact that S is
a finite set, and so the choice of S does not affect convergence. Moreover, every invariant
differential w on Gy is defined up to a scalar « € K*. But this changes the product by
(ITyes ey Dlelas = TT,eq el since o € K. Therefore, the choice of w is irrelevant.

Let G’ be another separated and finite-type model for G over Ok g. Then, there exists
a K-isomorphism (Gg)xk = G = (G%)k. On the level of equations for Gg and G, the
isomorphism is given by polynomials F' = (fi,..., f.) with coefficients in K. Since the
models Gg and G are assumed to be of finite type, there exist finitely many equations that
define them. The fact that F' is an isomorphism on the generic fiber G implies that F'is an

24



isomorphism from one set of equations to the other, when the coefficients are interpreted in
K, rather than in Ok g. But, if M is the least common multiple of all the denominators of
all the coefficients of the polynomials f;, then the f; have coefficients in O, as long as the
finite place v does not divide M. Hence, for all but finitely many v, F' is an isomorphism on
the special fibers I : (Gg), = (GY)y, which implies that the infinite products

([ ),
GS’,v(Ov)

vgS

11 ( / IwIUA;1> ,
G ,(0)

vgS
differ at finitely many places. Therefore, the choice of model Gy is irrelevant.
The local measures [ |w|,\,! induce a global measure

diungn = [T [ ul.3,?

and

on AK

Remark 1.39. The definition of a set of convergence factors leaves open the question whether
there exists a canonical choice of such a set. We will see that for abelian varieties there exists
a canonical choice.

Example 1.40. 1. Let G = G, be the additive group. Then a set of convergence factors is
Ay = 1 for all v, by definition of the normalized measure p,. Moreover, G,(K) embeds
discretely in G,(Af) and G,(Ak)/G,(K) is compact with finite volume

uK—/ dfiG, dzx,0) = V' |dk],
Ga(AK)/Ga(K)

where df is the discriminant of the number field K ([Wei82], 2.1.3.a). In particular,
the global measure dfig, 4x,(1) induces a global metric on A, which is compatible with
the local ones |ala, =11, ]av]U for every a = (a,) € Aj.

2. Let G = G,,. By Example 1.36 we may choose w, = dz,/|z|,; then

/wv /dX /dX X, /1—1/quX—1—q
ox ox ©o

Therefore we may choose A\, =1 — ¢, 1.

Remark 1.41. Let G (Ax) = {a € Ag||a] = 1} be the maximal subgroup of G,,(Ax) such
that G} (Ax)/G,,(K) is compact. Let w = dz/x and \, = (1 — ¢;*)~*. Then

~ 2m (QW)TzRKhK
AfiG,, w,(\) =
GL (Ak)/Gm (K) |dk |wi

if K is a number field ([Tat67]).
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One of the downsides of the measure dji is that it does not have functorial properties. In
order to make the global measure compatible with restriction of scalars, we need to make
the following adjustment:

Definition 1.42. Let G be an algebraic group and let w be an invariant differential on

the model G'g. The Tamagawa measure on GG associated with w and the set of convergence
factors A = {\,} is
g ) = 1" O dficua-

1.7.1 Compatibility with Restriction of Scalars

Let L/K be a Galois extension of number fields and let (6;) be an integral basis of L over K.
Letd = [L: K|, Gal(L/K) = {01,...,04} and let A = det(6;’). Consider an algebraic group
G of dimension n over L and let H = Rk G be the restriction of scalars group defined over
K. Recall that H comes with an L-morphism v : H — G that induces a K isomorphism

U= (010, ....oq0) : H— [] G

Consider an invariant differential wg of degree n on GG and define

The main problem with the definition of wpy is that the factor A™" is needed, or else a
reordering of {oy,...,04} would change the differential wy.

Lemma 1.43. The invariant differential wy s defined over K.

Proof. By construction, it is defined over L. For every o € Gal(L/K) we have

wfy = det(67'") ™" A7) (g,

(2

Since each differential (¢)7:7)*(w??) has degree n, the reordering {o0y, ..., 004} of Gal(L/K)
changes the sign of A, (¢77)*(w??) by the sign of the permutation to the power n, i.e., exactly
the change in sign from A™" to (A?)~". Therefore, wy = w¥ for all 0 € Gal(L/K) so wy
is defined over K. O

Let S be a finite set of places of K and let T" be the set of places of L lying above the
places in S. Consider a separated and finite-type model G for G over O 1 and let Hg be
a separated and finite-type model for H over Ok g. The main difference between the setting
of this section and that of the previous one is that, instead of starting with an invariant
differential on Gg, we start with an invariant differential on G. By [Har77], Proposition
8.10, if p : Gg X0y s K — G is the projection, then Qf, , = p*(QgT/OL’T). Since g1 is a
rank 1 Og-module, we can scale the differential wg by a factor of a € L*| such that there
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exists an invariant differential wr on G with cwg = wr Xo,p K. Remark that the proof of
the fact that the notion of set of convergence factors makes sense (Section 1.7) is still valid,
since the invariant differential wr is defined (from w¢) up to a scalar in K*. Similarly, there
exists § € K™ such that fwy comes from an invariant differential on Hg. Then, there exists
v € Q such that v/a € Opr and v/ € Ok g. In this case both ywg and ywy come from
invariant differentials wr and wg on their respective models.

Lemma 1.44. With the notation above, for each v ¢ S we have

11 / fwrl, = / sl
Gr1.7(On) Hg (Oy)

nlv

Proof. Note that K, ®x L = &y, Ly, which implies that G(K, ®x L) = [[,, Gsy(Ly), which
is equal to H(K,) by the restriction of scalars property. Therefore, to prove the lemma, it
is enough to show that

A lwrly = lwsl,

nlv

as Haar measures (or invariant differentials) on G(K, ®x L) = H(K,). It is enough to check
this locally at a point g € H(K,), since Haar measures are invariant.

Recall that Gr,(L,) and Hg,(K,) are topological manifolds whose differential structure
is transported from Lj and K™ (n is the dimension of G and nd is the dimension of H)
via the local homeomorphisms that define the two groups as topological manifolds (Lemma
1.34).

Moreover, since both Haar measures are on the same topological group, they differ by
a constant; therefore, it is enough to evaluate each invariant differential at a basis of the
exterior product of top degree of the tangent space (i.e., of the Lie algebra). The Lie algebra
is the same for both differentials, but the difference is that for |wg|, we consider the Lie
algebra as a K,-vector space, while for |wr|, we consider the Lie algebra as an L,-vector
space.

Let ¢, be a homeomorphism from a neighborhood of h to a neighborhood of the origin
in Ly. If xq,...,2, are local coordinates on L", then a basis for the exterior power of top
degree of the tangent space of G(L,) is given by ¢;(9/0z1) A ... A ¢;(0/0x,). Therefore,
by construction of [wrl,, its value at the basis ¢;(0/0x1) A ... A ¢;(0/0xy,) is |7 f(g)ly,
where wp = fh*(dxy A ... Adx,) locally at g and h is a closed immersion of a small affine
neighborhood of ¢ into an affine space, and ~ is the scaling factor.

Let ¢ be a homeomorphism from a neighborhood of g to a neighborhood of the origin
in K. The relationship between ¢ and ¢ = @,¢, is given by the following commutative
diagram:

G(K, @k L) —2" @, Lt = Lo K

H(K,) : K1
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where i is the isomorphism K &~ K" @g L = @&, L,. Therefore,

lwrly = [Vlalfln /\(w")*qb*(dxl A Ndzy),

[

However, a basis for the exterior product of top degree of the cotangent space at g is given
(by the commutativity of the above diagram) by dz;’, while a basis for the exterior product
of top degree for the Lie algebra as a K,-vector space is not A\ 9/0x]". If x; = > 6;y,; then
such a K,-basis is /\; ;0/0y;;. Thus, the value of |wgl, at A, ;0/0y;; is

d
I1r)" (/\ZQTjdyz-z> (/\ %j) = AL T £(9)1uID,

i 1=1
where D is the determinant

el AL

07 07 ... 67
07 03 ... 63
D=1|* 7 2 =A
07 go2 .. O

The reason why D comes out of the product as |D|, is equation 1.5, since D is pulled out
of the original invariant differential. Since [[,, [f(9)ly = [Ne/xf(9)le = [TL, f(9)?]o and
IL, 7|y = [NL/xAlo = [7%], the invariant differentials A,|wr|, and |wsl, are the same. [

Proposition 1.45. Let G be an algebraic group defined over a Galois extension of number
fields L/K and let ¢ : H = Ry jxG — G be the L-morphism defining the restriction of
scalars group H. Let wg be an invariant differential on G and let wg = V*wg be its pullback
under ¥ : H — [[G? (note that wy differs from the one previously defined). Let v € Q be
as before.

Let Ap = {\,} be a set of convergence factors for wp with A, =1 forn € T, and let
Ag = {A\,} such that X, =[], Av. Then As is a set of convergence factors for ws and

duG7’wa7AT - d/'l/nyszAS
as Haar measures on the topological groups G(Ar) = H(Ak).

Proof. Let A be as in Lemma 1.44. Since [], |A], = 1 by the product formula, the fact that
Ag is a set of convergence factors follows from Lemma 1.44 because

) o=, wil,
nlv Grn(OL,T) Hs o (Ok,s)

To check that the two measures are equal, it is enough to evaluate globally. By Lemma
1.44, the nonnormalized Tamagawa measures differ globally by A™ (we have changed the
formula for wy by A™). Therefore, the normalized Tamagawa measures differ by

(NL/(NKA))n .
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But, using multiplicativity of discriminants, u? = Dy = DgDrx = u2- A% (where Dk =
A? is the discriminant) and the result follows. O

29



2 Abelian Varieties

2.1 Complete Algebraic Groups

Recall (Definition 1.4) that an abelian variety is a complete algebraic group. The main
differences between affine algebraic groups and abelian varieties rise from the fact that the
latter are projective and abelian.

Lemma 2.1 (Rigidity). Let X,Y, Z be varieties defined over a field K such that X is com-
plete and X X Y 1is geometrically irreducible. Let f : X Xg Y — Z be a reqular map
and let v € X(K),y € Y(K),z € Z(K) such that f(X x {y}) = f{z} xY) = 2. Then
f(XxY) ==z

Proof. The main idea is that the image via a regular map of a complete and connected
variety in an affine variety is a point. For a complete proof see [Mum?70] I1.4. O

We can use this to prove that every abelian variety is abelian as an algebraic group.

Corollary 2.2. Let A be an abelian variety. Then m(z,y) = m(y,x) for every z,y € A.

Proof. Consider the commutator map [z, y] = m(m(z,y), m(i(x),i(y))) : Axxg A — A. Then
on A x e and e x A we have [z,y] = e. By Lemma 2.1 we get [z,y] = e for all z,y € A.
Therefore m(x,y) = m(y,z) and A is abelian as a group. O

Remark 2.3. For every K-scheme S, Corollary 2.2 shows that A(S) is an abelian group.
From now on we will write m(z,y) = x + y for every z,y € A(S) and 0 for the identity
section S — A. For each integer n write [n] : A — A to be [n](z) = x4+ 2+ - -+ where the
sum has n terms, if n > 0 and [n|(z) = —[—n](z) if n < 0. The morphism [n] is an isogeny
if n is not divisible by the characteristic of K (see [Mum?70] I1.6).
Example 2.4. Let E be an abelian curve, i.e., a one-dimensional abelian variety, defined
over a field K of characteristic 0. Let Div(E) be the group of Weil divisors on FE, i.e., the
free abelian group generated by the symbols (P) for P points of E. For a rational function
fE— Kletdivf =5 peplordp f)(P), where ordp f represents the order of vanishing
of f at P (positive if P is a zero of f and negative if P is a pole of f). For a divisor
D = >_np(P) € Div(E) let degD = > np and let £(D) be the dimension as a K-vector
space of {f|ordp f > —np,VP € E}U{0}. (Note that deg D is well-defined since Y  npP is
a finite sum.)

Since there exists a non-vanishing invariant differential w on E (unique up to scalars in
K™*), the canonical divisor divw is trivial. Therefore, the Riemann-Roch theorem ([Sil92],
Theorem 11.5.4) states that

UD)—{¢(—D)=degD —g+1,

where g is the genus of the curve F. But then for D = 0 we get g = 1. Therefore F is a
smooth algebraic curve of genus 1. Such a curve is called an elliptic curve. Elliptic curves
have a simple description, as follows from the following proposition.
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Proposition 2.5. Every elliptic curve E defined over a field K has an embedding 1 : E —
P2 of the form ¥ = (z,y,1) (such that ¥ (O) = (0,1,0) ), where x and y are rational functions
on E such that there exist ayi,as, asz, aq,as € K with

Y+ ayzy + asy = 23 + asx? + agr + ag.

Proof. Since the genus of E is 1, the Riemann-Roch theorem states that for the divisor
D,, = n(O) we have ¢(D,,) — {(—D,) = n. But ¢(—D,) = 0 by [Sil92] Proposition 11.5.2.a
so (D,) = n. Therefore there exists a basis 1,2 for £(D,) which can be extended to a
basis 1, z,y of L(Ds) ([Sil92], Proposition I1.5.8). Then the dimension of £(Dsg) is 6, but it
contains the functions 1,z, 22, 23, y, vy and y2. The proposition follows from the fact that
these must be linearly dependent. O]

2.2 Abelian Varieties over Number Fields

2.2.1 Invertible Sheaves on Abelian Varieties

For a K-scheme S and for a scheme X € Schg let Picg(X) be the group of isomorphism
classes of invertible sheaves on X. Let m : X x¢ X — X be multiplication and let =; :
X xg X — X is projection to the i-th factor. Define Pic%(X) C Picg(X) to be the set of
isomorphism classes of invertible sheaves £ such that m*£ @ 7f £~ @ m3L~! is trivial.

Theorem 2.6 (Theorem of the Cube). Let A, B and C' be complete varieties defined over
a field K and let a € A(K),b € B(K),c € C(K) be points. Let L € Picx(A xx B xx C).
Then L is trivial if and only if LlaxBx it Llaxivyxcc and Ll{a}xBxcc are trivial.

Proof. See [Mum70] Theorem III.1. O

We can specialize Theorem 2.6 to the case when A = B = (' is an abelian variety defined
over a number field K.

Corollary 2.7. Let A be an abelian variety and let m; : A X g A X A — A be the projection
to the i-th factor. Write m;; = m; + m; and a3 = m + 7o + 3. Then

Tl @M L' @i LT @l LT @ L @ ML @ L
s trivial.

Proof. Note that m{ysLllaxcax{oy = TlaLllaxxaxiioy Tisllaxcaxcioy = T1L| Ax e Ax {0}
and 733L) Ax e ax {0} = To L] Ax o ax {0y While T5L] a5 ax {0y 1 trivial. Therefore

1ol & szﬁfl ® 7T§3£71 ® 7rf3£*1 QT L @ 5L @ TL| Ax e Ax x {0}

is trivial and similarly for A xx {0} xx A and {0} xx A xx A. The result follows from
Theorem 2.6. []
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Let A be an abelian variety defined over a field K and let S be a scheme over K. For
every x € A(S) = Homgen (5, A) we get a map t, = m(ida xz) : A Xg S — A Xk S.

Corollary 2.8. Let a,b € A(K) which induce t,,t, morphisms on A xxg K = A. If L €
Picg(A) then t}; L QL =1L t;L.

Proof. Consider the map f: A — Ax Ax A given by f(x) = (z,a,b) where a and b represent
their respective constant images of Spec K (affine) into A (complete). By Corollary 2.7 we
have f*(myL @ L' @ M3 L @i LT @ ML R ML @ miL) = 5 LRLLT R Oy ®
GLTRQLROA®ON = LRALTQGLT ® L is trivial. O

In Proposition 2.5 we saw that elliptic curves are projective. The same is true for abelian
varieties as will follow from the existence of an ample invertible sheaf on A (which implies
the existence of a very ample invertible sheaf).

Proposition 2.9. Let A be an abelian variety defined over a field K. Then there exists an
ample invertible sheaf L € Pickx(A). (Therefore, A is projective.)

Proof. See [Mil86a], Theorem 7.1. O

Ezample 2.10. Let E be an elliptic curve defined over K. By [HS00] Corollary A.4.2.4
the sheaf £(D) for D = (O) € Div(FE) (where O is the identity on E) is ample since
degD =1 > 0.

Let K be a field of characteristic 0, let S be a K-scheme and let A be an abelian
variety defined over K. The existence of an ample invertible sheaf L5 on A x i S allows the
construction of an isogeny between A x x S and Pic%(A xx S).

Proposition 2.11. The map ¢r, : A(S) — Pics(A xx S) given by pe(x) = ;L7 @ Lds a
homomorphism whose image lies in Pic%(A xg S). If S = Spec K and L = Lg then op is
surjective and has finite kernel.

Proof. By Corollary 2.8 for every x,y € A(S) we have ¢, (2)prs(y) = t:Ls @ Lg" ®t; L X
L2t Ls®Lg" = pry(x+y) so gr, is a homomorphism. When S = Spec K note that
L is ample, so the fact that ¢, is surjective and with finite kernel follows from [Mum70]
Theorem I1.8.1. O

Remark 2.12. Tt is essential that £ be ample. A simple counterexample is provided by
Corollary 2.8. Let £’ be any invertible sheaf and let 0 # z € A(S). Let £ = t:£ @ L.
Then for every y € A(S) we have ;L ® L7 = t3t: L' @ t; L' @ t7.L'~' @ L which is trivial
by Corollary 2.8. Therefore the image of ¢, is constant, hence not surjective. In fact,
L € Pic%(A) if and only if o, is trivial ([Mum?70], IL.8).

Ezample 2.13. Let E be an elliptic curve. In Example 2.10 we saw that £ = £((0)) is an
ample invertible sheaf on E. Therefore ¢, : E(K) — Pic) (E) given by o,(z) = t:£((0)) ®
LA(O) =2 L((2)RL((0)) = L((x)—(0)) is a surjection with finite kernel. If x € ker
then (z) — (O) = 0 in Pic’(E), where Pic’(E) is now identified with classes of Div’(E)
modulo elements of the form divf for rational functions f on E. Therefore divf = (z) — (O)
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for some rational function f. Since ¢((O)) = 1 by the Riemann-Roch theorem and since
L((0)) contains constant functions (since they are holomorphic at infinity), it must be that
f € L((0)) is a constant function or ¢((0)) > 1. Therefore (z) — (O) = divf = 0 so
(z) = (O) and ¢, is bijective. Therefore, we get an isomorphism E = Pic’(E).

For every abelian variety A defined over a field K of characteristic 0 we have constructed
a surjection with finite kernel between A(S) and Pick(A xf S). This map transports the
structure of abelian variety to Picl (A).

Theorem 2.14. The functor S — Picg(A x g S) for each S € Schy is representable by an
abelian variety AV defined over K.

Proof. See [Mum70] II.8. This proof uses the fact that K has characteristic 0. O

Since Pic) (A xx K) = AY(K) we can rephrase Proposition 2.11 to state that for every
ample invertible sheaf £ there is an isogeny ¢, from A to AY. Such an isogeny is called
a polarization. The variety AY is called the dual abelian variety. There exists a (unique)
invertible sheaf P (the Poincaré sheaf) on A x AY such that P|axya) is the image of a under
the isomorphism Picj (A xj K) = AY(K) and such that Py v is trivial ([Mum70], 11.8).

2.2.2 Heights on Projective Spaces

Let K/Q be a number field. Recall that My and M® represent the set of places and the set
of infinite places of K, respectively. As before, let K,,, O,, ., k, and ¢, be the completion of
K at the finite place v, the ring of integers of K, the maximal ideal of O, the residue field at
v and the size of the residue field, respectively. Let |z|, = ¢» "(®) he the normalized absolute
value. For an abelian variety A defined over K the set A(K) is a group. To understand
its group structure it is useful to have an ordering of the points in A(K) using a notion of
"height’. To achieve this we will use the fact that A is projective to use the notion of height
on projective spaces.

Lemma 2.15. Define Hg,, : P"K — [0,00) defined by

1/[K:Q]
Hyn([zo : ...t 2n)) = ( 11 mzax(|a7i|v)>

vEME

Then there exists H, : PPK — [0,00) such that for each number field K we have H,|x =
Hy .

Proof. Since [zg : ... : x,] € P*"(K) is defined up to multiplication by A € K, the function
Hp p, is well-defined up to multiplication by [], [A|, = 1, so the height is well-defined. If L/K
is a finite extension, then for each place v € My and z € K we have [Ny kx|, = [[,, [Z]w-
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Therefore if [zg : ... : z,] € P"(K) C P*(L) then

1/[L:Q] 1/[L:Q]
Hpn([zo: ... 2]) = ( 11 m?x(]a:i\w)> > 11 max I =il
weMp, vEME wlv
1/[L:Q] 1/[L:Q]
= ( II maX(|NL/K1“i|v)> = ( II maX(|$i|LL:K])>
’UEMK ’ ’UEMK !
= Hgn([xo: .. 2))
Therefore H,, = hﬂ - H ,, satisfies the desired properties. O
For each x = [xo : ... : x,] € K/Q let h,(x) = log H,(z), which makes sense because
H,(z) > 0 since not all entries of z =[xy : ... : z,] are 0.

Ezample 2.16. Consider z = [1/3,2 4 /3] € P'Q. Since 24 /3 is integral and (24 v/3)(2 —
V/3) = 1, it must be a unit. At each place v { 3 the valuation v(1/3) = 0, while if v | 3 is a
place of Q(v/3) then v(1/3) = —1. But Q(v/3) is totally ramified over Q at 3 so |1/3], = 9.
Therefore H,(z) = 92 = 3.

Remark 2.17. If o € Gal(Q/Q) then h, (o (x)) = h,(z).
Lemma 2.18. If u,v > 0 then the set {x € P"Q|h,(z) < u,[Q(z) : Q] < v} is finite.

Proof. See [HS00] Theorem B.2.3. O

Lemma 2.19 (Kronecker). Let K/Q be a number field. Then hy(x) =0 for x = [xg:...:
x| € K if and only if x;/x; is a root of unity when x; # 0.

Proof. Note that h,([z{" : ... : 2']) = mhy([xo : ... x,]) = 0. Since zf*, ..., 2" lie in the
finite extension K (xy,...,x,), the previous lemma implies that the set {[z{' : ... : 2]"]|m >
1} is finite. Let r # s be two exponents such that [zf : ... 2] = [z ... 28] Ifx; #0
then (z;/x;)"~® = 1 so they are roots of unity. The converse is obvious. O

In order to transport the notion of height from the projective space to an abelian variety
we need to prove certain functorial properties of H,. In particular, it is functorial with
taking products and morphisms (up to bounded functions).

Lemma 2.20. Let 0y, : P X P™ — P44 he the Segre embedding (taking ([x:], [y;]) to
[ziy;]). Then hinimin(Tmn(T,Y)) = him(x) + ha(y).

Proof. See [HS00] Theorem B.2.4. O

Proposition 2.21. Let ¢ : P* — P™ be a reqular map of degree d. Then h,,(¥(z)) =
dh, () + O(1), where O(1) represents a bounded function.

Proof. See [HS00] Theorem B.2.5. O
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2.2.3 Heights on Abelian Varieties

Let A be an abelian (projective) variety defined over a number field K.

Definition 2.22. For each embedding ¢ : A — P™ define hy, : A(K) — [0,00) by hy(P) =
h(¥(P)).

Proposition 2.23. Let ¢ : A — P™ and ¢ : A — P™ such that ¢*Opm (1) and ¥*Opn (1)
(where Opn (1) is the canonical sheaf of P" ) are equal in Pic(A). Then hy(P) = hy(P)+0(1)
for all P € A(K).

Proof. See [HS00], Theorem B.3.1. O

This proposition suggests that the height function on A is well defined up to a bounded

error term. Consider H4 = Hom(A(K),R)/Hompounded (A(K), R) to eliminate this ambigu-
ity.
Theorem 2.24 (Height machine). There exists a unique homomorphism ha : Pic(A) — Ha
such that for every very ample £ on A we have ha(L) = ho ¢ in Ha, where ¢ : A — P™
is an embedding such that L = ¢*Opm(1). Moreover, ha is functorial in A in the sense that
if v : A — B is a morphism of abelian varieties over K and L € Pic(B) then ha(v*L) =
hB(ﬁ) e} w m HA.

Proof. Every L € Pic(A) can be written as £ = £, ® £, for very ample invertible sheaves
L1, Ly on A ([HS00], Theorem A.3.2.3). Define ha(L) = ha(L1) — ha(Lsy) for a choice of £,
and L,. For any other choice £ = £/® L5 we have £1®Ly = L1®Ly on A. Let ¢; : A — P™
and ¢} : A — P™ be projective embeddings such that £; = ¢fOpm; (1) and L, = ¢} Opni (1)
for ¢ = 1,2 Then ﬁl & E/Q = (¢1 X ¢l2)*0]pm1 x P2 and ﬁll (%9 EQ = (¢/1 X ¢2)*O]pn1 xPm2 . Let
N > max(myna+mi+na, nymo+ni+ms) and let o : P™ xP"2 — PV and o’ : Pt xP™2 — PN
be the Segre embeddings followed by inclusions. By Lemmas 2.20 and 2.21 we get that
hoooog X¢h = hoop+hodh =hod,+hopy, = hoood]x ¢y in Hy and so
ha(L1) — ha(Lg) = ha(L)) — ha(L}) which means that h4 is a well-defined homomorphism.

For the functoriality property see [HS00], Theorem B.3.2. ]

The height machine of an abelian variety is well defined in H 4, i.e., up to a bounded
function. A clever trick to remove this dependence on bounded errors is due to Tate. To do
this we will have to analyze the properties of the sheaves £. A sheaf L is called symmetric
if [-1]*£ = £ and antisymmetric if [-1]*£ = L. Let £ be an ample invertible sheaf on A.

Let f: Axg Axg A— Adefined by f = ([n], [1],[—1]) for an integer n. By Corollary
2.7 we have that f*(mip; L @ TR LT @i Lt @i LT @ mLmL @ miLl) = [n+ 1" L ®
n—1]"L & [n|*L®? ® L7 @ [-1]*L~" is trivial. Therefore, by induction we get that [n]*L =
L2 if £ is symmetric and [n]*£ = L& if £ is antisymmetric. By Theorem 2.24 we
get that ha(L) o [n] = ha([n]*L) = ha(LE™) = nPhu(L) in Hy if £ is symmetric and
ha(L) o [n] = nha(L) if £ is antisymmetric. Every invertible sheaf £ can be written as
LROL=(LR[-1]"L)® (L [-1]*L7") where £ ® [-1]*L is symmetric and £ ® [—1]* L~
is antisymmetric as follows. Therefore, the previous analysis of ha(L) o [n] can be extended
to all invertible sheaves L.
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Definition 2.25. The Néron-Tate height is

ha(£)(P) = tim MALENEID),
if £ is symmetric and
fALA(,C)(P) = nlggo w’

if £ is antisymmetric.

Theorem 2.26. The map ha(L) : A(K) — R has the property that ha(L)(P) = ha(L)(P)
as functions in Ha. If L is symmetric then BA(E) s a quadratic function with associated
bilinear form (P, Q) = (ha(L)(P+Q)—ha(L)(P)—ha(L)(Q))/2 and if L is antisymmetric
then ha(L) is linear.

Proof. See [HS00], Theorem B.4.1. O

Proposition 2.27. Let £ be an ample symmetric invertible sheaf on A. Then ha(L)(P) > 0
with equality if and only if P is torsion.

Proof. The proof of this proposition is similar to the proof of Lemma 2.19. See [HS00],
Proposition B.5.3. []

In particular, the Poincaré sheaf P on A xx AY is symmetric since [—1]*P satisfies the
same properties as P and so must equal P by uniqueness. Therefore we may define a pairing
(,): A(K)x AY(K) — R by (a,b) = (a, B)p where B is the image of b under the isomorphism
AV(K) = Pic%(A). By Proposition 2.27 the kernel of the pairing is the torsion subgroup on
each side so we get a nondegenerate pairing

() A(?>/A<7)tors X AV(K>/AV<7)t0rs — R.

For every isogeny ¢ : A — B, there exists a unique dual isogeny ¥V : BY — AV, such
that ¥ 09" and ¥" o ¢ are multiplication by an integer morphisms (see [Sil92] I11.6).

Lemma 2.28. Let ¢ : A — B be an isogeny of abelian varieties defined over a number field
K, and let )V : BY — AY be the dual isogeny. If ()4 and {,)p are the Néron-Tate pairings
for A and B then, for each a € A(K) and b € BY(K), we have

<CL, wv(b»A = <¢(a)v b>B'

Proof. See [Mil86b] 1.7.3. O

36



2.2.4 Rational Points on Abelian Varieties

For an abelian variety A defined over a number field K the group structure of A(K) is
determined by the Mordell-Weil theorem.

Theorem 2.29 (Mordell-Weil). If A is an abelian variety defined over a number field K
then the group A(K) of rational points on A is finitely generated.

Proof. See [HS00], Theorem C.0.1. We will not prove the theorem here, but mention that
it uses the Dirichlet Unit Theorem, which means that it will apply in general only to global
fields (i.e., number fields and function fields). O

A corollary of this theorem is that A(K) = A(K )iors D Zay & - - - ® Za, as abelian groups
where 7 is the rank of A and ay,...,a, € A(K). Anisogeny A — A" induces a map A(K) —
AY(K), which is an isomorphism on A(K)®Q — AY(K)®Q since the kernel of the isogeny is
a subgroup of A(K)ios. Therefore the rank of AY is r and AY(K) = AV (K )ors®Zb1®- - -BZb,
for by,...,b. € AY(K).

Definition 2.30. The regulator R4 of the abelian variety A is
Ra = |det((ai, bj))ij=1,..r| -

This definition makes sense since the a; and b; are defined up to torsion and the pairing
(,) vanishes on torsion. Moreover, any permutation of the generators a; and b; changes the
value of the determinant by +1 which does not influence the value of R 4.

Definition 2.31. Let £ be a prime number. The Tate module of A at £ is T;A = Jim Alem] =
Hom(@g/Zg, A) Write WA = EA & @

Remark 2.32. The Tate module T;A and V;A have natural structures of Gal(K /K )-modules
given by the Galois action on A[¢™] for each m. To the abelian variety A we can associate the
Gal(K/K)-module A(K), but this is a group whose structure is unknown. The advantage

of constructing the Tate module V;A is that it is a QQ;-vector space of dimension 2d, where
d=dim A ([Mum?70] I1.6) and so it is a representatation of Gal(K /K).

The Tate module has certain functorial properties, illustrated by the following lemma.

Lemma 2.33. If the sequence of algebraic groups over K
1= M-—-N—P—1,

is exact and multiplication by ¢ is an bijection in M, then there exists an exact sequence of
Gal(K /K)-modules
1—-T,M —T,N = T,P —> 1.

Moreover, if M is a unipotent group then T;N = T,P.
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Proof. There is an exact sequence 1 — M (K) - N(K) - P(K) — 1 and T,X =
@Hom(Z/ﬁ"Z,X (K)) for a scheme X € Schg. Therefore we get an exact sequence of

Gal(K /K )-modules
1 = T;M — TuN — T,P — lim Exty(Z/("Z, M(K)).

But Extz(Z/("Z, M(K)) = M/{"M so if multiplication by ¢ is a bijection in M then

Exty(Z/("7Z, M(K)) = 0 and we get the exact sequence 1 — T,M — TyN — T,P — 1.
(For a discussion of Ext, see Section 4.1.)

If M is a unipotent group then there exists a K composition series M = My D M; D

- D M, D 0 such that M;/M;;; = G,. Therefore, multiplication by ¢ is injective, so the

torsion M[¢"] is trivial so TyM = 0 and T;N = T,P. O

Remark 2.34. Let L/ K be an extension of number fields and let A be an abelian variety over

L. Then T;R;/xkA = In dgai f/f Vi A as Gal(K/K)-modules since the Tate module takes

into account K points and Ry, xA(K) = [ A% (K).

It is essential for the proof of the fact that Conjecture 3.15 is invariant under isogenies,
to be able to relate the Tate modules of A and AY. The solution is the Weil pairing.

Proposition 2.35. There exists a functorial, nondegenerate, Gal(K | K )-equivariant bilinear
pairing called the Weil pairing

er: ViAX VAY — Q1) = Hm ggm,
with respect to which there exists an identification
AV[6¥) = (A[g])" = Hom(A[g], pc),
for every isogeny ¢ : A — B.
Proof. See [Mil86a] Lemma 16.2. O

2.2.5 The Shafarevich-Tate and Selmer Groups

Computation of the Mordell-Weil group A(K) for a global field K is difficult because the
proof of the weak Mordell-Weil theorem is not constructive. One method of analyzing
rational points is via the local-to-global principle, i.e., analyzing the points of A(K,) for
each completion K, of K to obtain information about A( ).

For every isogeny ¢ : A — A the Gal(K /K )-cohomology long exact sequence associated

with 0 — A[p] — A L A0 (where A[¢] = ker ¢) gives
0 — A(K)[¢] = A(K) 5 A(K) — H\(K, Al¢]) — HY(K, A) % H'(K, A),
which gives

0 = A(K)/SA(K) — HY(Gal(K/K), A[¢]) — H(Gal(K/K), A)[¢] — 0. (2.1)
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Similar exact sequences for each localization K, of K gives a commutative diagram

H'(K, Al¢]) H(K, A)[¢]

S
l - \ i resg

Hv HI(KU,A[gb]) *)Hfu Hl(KvaA)[¢]

where res = @res, is restriction from Gal(K/K) to [[, Gal(K,/K,).
Define the Selmer group of ¢ to be Sely(A/K) = kers,. Define the Shafarevich-Tate

group to be II(A/K) = ker <H1(K, A) 2 T HY(K,, A)). Then II(A/K)[6] = kerres,

and the snake lemma gives an exact sequence
0 — A(K)/pA(K) — Sely(A/K) — HI(A/K)[¢] — 0.

This exact sequence is useful is computing the Mordell-Weil group A(K) when K is a
number field. Namely, if one knows ITI(A/K)[¢] and one can compute elements of Sel,(A/K)
then this exact sequence yields generators for A(K)/¢A(K). However, little is known about
the Shafarevich-Tate group II(A/K).

Lemma 2.36. The image of the restriction map

HY(K,A) = [[H'(K,, A)

is contained in @, H'(K,, A).

Proof. Let f be a cocycle in H'(K, A). By construction of Gal(K /K )-cohomology (i.e., since
Gal(L/L)

f is locally constant), there exists a finite extension L/K such that ResGal(F /K

) f is trivial
in H'(L, A). Since the following diagram commutes

HI(L’ A) - Hw|v Hl(LUH A)

Res%(T THU res

Hl(K7 A) HHU Hl(Kv7A)
for each w|v the image f,, of f in H'(L,,, A) is trivial. However, for all but finitely many v the
variety A has good reduction at v (see Definition 2.47) and v is unramified in L. Therefore
by [LT58] Corollary 1 to Theorem 1, the order of f, in the torsion group H'(K,, A) divides

er,/k, = 1 (since w | v is unramified) which means that f, is trivial. Therefore, f, is trivial
for almost all places v which implies that the image is in the direct sum. O

Remark 2.37. Since Ag ® K has a natural Gal(K/K) action, we can define the Galois
cohomology of A(Ax ® K). Then II(A/K) = ker(H' (K, A(K)) - HY K, A(Ax @k K)).
(See [PR94] Proposition 6.6.)
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The Shafarevich-Tate group II(A/K) is functorial in A. Let K be a number field and

let A% B bean isogeny of abelian varieties defined over K. Then there is a commutative
diagram

I(A/K) —" ~TII(B/K)

l l

HY(K, A) HY(K, B)

res A l J/resB

@ H Ky, A) —2= @, H'(K,, B)

in which the map 1, is well defined since the kernel of res is mapped to the kernel of resg.

Remark 2.38. The Shafarevich-Tate group is defined in terms of cohomology, seamingly with
no relation to geometry. However, we have already seen a connection between geometry and

cohomology in Section 1.3. For each a € A(K) we have defined a translation automorphism
t, of A, so A(K) C Autz(A) which means that H'(K, A(K)) is a subset of H' (K, Autz(A)),

a group that parametrizes the isomorphism classes of K twisits of A. Our description of A(K)
shows that elements of H'(K, A) correspond to K twisits of A with a simply transitive A-
action. Such a twist is called a principal homogeneous space for A. A principal homogeneous
space corresponds to a trivial cohomology class in H'(K, Auts(A)) if it has a K-rational
point. As such, elements of III(A/K) correspond to locally trivial principal homogeneous

spaces (i.e., a principal homogeneous space with a rational point over each completion K,).

2.2.6 The Cassels-Tate Pairing for 111

In order to relate the Shafarevich-Tate groups of A and AV it is useful to construct a bilinear
pairing II(A/K) x IIT(AY/K) — Q/Z. The most intuitive way to construct the pairing
is to notice that, if X is a principal homogeneous space for A, then AY(K) = Pic%(A X K
K) = Pic%-(X xx K) and use Remark 2.38 where we constructed a locally trivial principal
homogeneous space X for each cocycle f € III(A/K). This will allow us to relate points in
AY(K) to rational functions on X via the exact sequence

0= K(Xp)*/K" = Div’(X; x K) = Pic’(X; x K) = 0 (2.2)
where K (X;) is the field of rational functions on X;. (For three other descriptions of the
pairing see [PS99].)

Since K(X;) is a Gal(K/K)-module with the action “h(x) = oh(c~z) on h € K(X}),
we can write the Gal(K /K) and Gal(K,/K,)-cohomology long exact sequences of the exact
sequence (K = F(Xf)X/FX)

05K = KXp)*—=K—=0.
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Since H3(K,K") = 0 and H3(K,,K,) = 0 for all places v (by Hilbert’s Theorem 90 and
[AWG67] Theorem 5) we have

HY(K,K) —— HX(K, K(X;)*) — H2(K,K) —>0

\L res \L res \L res

[1, H2(K,, K. =TI, H*(K,, K (X;)*) =], H*(K.,, K) =0

In order to remove the relevance of choices in the construction of the pairing we need
to show that ¢ is injective. Since X is locally trivial, for each place v there exists a point
in X¢(K,), i.e., a section Spec K;, — Xy. By [Mil86a] Remark 6.11 this implies that ¢ is
injective on each component H2(K,, K, ) — H*(K,, K,(X;)*) and so i is injective.

Since X is a principal homogeneous space, there exists a noncanonical isomorphism
X; x K ~ A x K which induces a K-isomorphism Pic’(X; x K) ~ AY(K). For general
twists the isomorphism X; X g K ~ A x K is defined up to an automorphism of A, but
for principal homogeneous spaces it is defined up to an automorphism t, for a € A(K). But
t, acts trivially on AY(K) since t:¢, = ¢, for a choice of ample invertible sheaf £, by the
Corollary 2.8. Therefore, the isomorphism Pic’(X; x K) ~ AY(K) is independent of choices.
Moreover, this is an isomorphism of Gal(K /K)-modules since for o € Gal(K/K) we have
Yo = Ppro. _

Following Cassels’s original idea, we will use the canonical isomorphism of Gal(K/K)-
modules Pic’(X; x K) = AY(K) and the exact sequence 2.2 to define the pairing. The
Gal(K / K)-cohomology long exact sequence associated with sequence 2.2 gives a boundary
map 0

HY(K, AY(K)) = H(K,Pic®(X; x K)) % H*(K,K)
The rest of the construction of the pairing amounts to abstract nonsense. Let g € II(AY/K) C
HY(K,AV(K)) and let ¢’ = dg. The map j is surjective so there exists h’ € H*(K, K(X;)*)
such that j(h') = ¢. Let [[,h, be the image of I’ in [[, H*(K,, K,(X;)*) under the
restriction maps.
J /

h g 0

04>th”41>1_[th

For each o, 7 € Gal(K,/K,), we have h (o, 7) € K(X;)*. In order to define the cohomology
classes h, we choose points p, € X;(K,) that are not zeros or poles of k! (o, ) for any o, 7 €

Gal(K,/K,) and then evaluate R/, at p,. Define amap h,, : Gal(K,/K,)xGal(K,/K,) — K,
by taking (o, 7) to hl (o, 7)(p,) € K. Since hl, is a cocycle and h, is obtained by evaluation,

h, is also a cocycle in H Z(KU,F: ). By the injectivity of ¢ the choice of the points p, is
irrelevant. Define the pairing

<f7 g> = Zinvv(hv) € Q/Za

v
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where inv, are the invariant maps of local class field theory. This is a finite sum by [Mil86b],
Lemma 4.8.

Proposition 2.39 (Cassels-Tate). The pairing (,) : II(A/K) x HI(AY/K) — Q/Z is
functorial in A and the kernel on each side is the mazimal divisible subgroup of II(A/K) or
I(AY/K).

Proof. See [Mil86b] Theorem 6.13. O

2.3 Reduction of Abelian Varieties
2.3.1 Motivation

Let A be an abelian variety over a global field K. We would like to study the arithmetic
properties of A by analyzing the behavior of A at each finite place v of K. If the abelian
variety has a set of defining equations defined over K, one can think of the reduction A, as
the variety defined by the same equations but whose coefficients are taken in k,, provided
that this makes sense (i.e., the v valuations of all coefficients of the equations have to be
nonnegative, or we would get division by 0 in k).

Ezample 2.40. Consider F/Q to be the elliptic curve with Weierstrass equation
v +ay+y=a>—a2*—8x+11.

Then the discriminant of E is —23%5 so E, is an elliptic curve for p ¢ {2,3,5}. If p =3
then E, is a cuspidal curve while if p € {2,5} then E), is nodal.

The equations defining the E, over F,, together with the curve £ over QQ define a scheme
E’ over Spec Z, the closure of Proj Z[x, y, 2]/ (y*2 + xyz +yz? — a3 + 222+ 8222 — 1123). By the
valuative criterion of properness ([Har77], Theorem 4.7) we have E'(Z) = E(Q). However,
E’ is not a group scheme since it is not smooth over Z (at the primes 2,3,5). Let £° be the
largest smooth subscheme of £’ defined over Spec Z. Then E, = £° Xgpecz Spec F,. However,
&Y no longer has the property that £%(Z) = F(Q).

2.3.2 Néron Models

To resolve this issue (that £°(Z) # E(Q)) we want for each abelian variety A defined over
a number field (more generally for the fration field of a Dedekind domain) to construct a
smooth (group) scheme A defined over Ok such that A(Ok) = A(K).

Theorem 2.41. Let A be an abelian variety defined over a number field K. Then there
exists a smooth model A of A which is separated and of finite type over Spec Ok (called the
Néron model) such that for every smooth scheme T over Spec Ok the natural map

Hom(7, A) — Hom(T xp, K, A),

18 an isomorphism.
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This is the surprising property of Néron models (called the Néron mapping property),
since surjectivity implies that any morphism defined on the generic fiber A of A can be
uniquely extended to a morphism on A. However, one downside of the Néron model is that
it is almost never proper (unlike £’ which was proper but not smooth over Z). The following
proposition shows that the Néron model is unique.

Proposition 2.42. Let A be an abelian variety defined over a number field K. Then the
Néron model of A over Spec Ok is unique up to isomorphism.

Proof. Let A; and A, be two Néron models of A over Spec Of. The for {i,j} = {1,2} we
have
Hom(A;, A;) = Hom(A; xg K, A) = Hom(A, A).

Let v;; be the morphism from A; — A; that corresponds via the above isomorphism to
the identity on A. Then ¢; = 1;; 01);; is a morphism from A; — A; that corresponds on the
generic fiber to the identity on A. However, the identity on A; also has this property. Since

Hom(A;, A;) = Hom(A, A),

the morphism on A; corresponding to the identity on A is unique so ¥; = 1 and similarly
¢; = 1 which proves that A4; =p, As. [

Remark 2.43. The Néron model of A is a group scheme. This is a simple consequence of
the Néron mapping property since multiplication m and inversion ¢ are morphisms on the
generic fiber A of A. Therefore they induce multiplication and inversion morphisms on all
of A, with respect to the identity section of A.

Remark 2.44. If £ is the Néron model of the elliptic curve F in Example 2.40 then £° is the
connected component of the identity section of £. Analogously, if A is an abelian variety
defined over a number field K and A is its Néron model defined over O, let A° be the
subscheme of A that is the connected component of the identity section.

2.3.3 The reduction of an Abelian Variety at a Finite Place

Let A be an abelian variety over a number field K and let A° be the connected component
of the identity of the Néron model A of A over Ok. For each finite place v € My define
the special fiber of the reduction of A at v to be A, = A X oy kv, where k, is the residue
field at v. (Recall from Section 1.7 that A, is defined to be A, = A Xp, O,.) The special
fiber A, is a smooth group scheme, but it need not be connected. Let flg be the connected
component of the identity in the fiber A, (in which case A% = A° xo,. k).

Proposition 2.45. For a finite place v let ®, be the component group of the special fiber,
i.e., the algebraic group defined by the exact sequence

1A - A, -, > 1.

Then the group ®, is a finite group scheme.
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Proof. The groups A, are varieties over the finite fields k,, so they have finitely many
components. OJ

Definition 2.46. Let v be a finite place. The positive integer ¢, = |®,(k,)| is called the
Tamagawa number at v.

There is no known general method of computing the Tamagawa number. In the case
of elliptic curves, there exists a complete algorithm due to Tate (see [Tat75, Cre97]). For
algorithms that compute the Tamagawa numbers of certain special abelian varieties (other
than elliptic curves), see [CS01, KS00].

By Theorem 1.19 there exist (over k,) an abelian variety B and an affine algebraic group
G such that

1-G—-A - B—1

is exact. By Theorem 1.20 there exist a unipotent group N and a torus 7' such that
1> N—->G—->T—1

is exact.

Definition 2.47. If G = 1 then A is said to have good reduction at v. Otherwise, A is said
to have bad reduction at v. Moreover, if N = 1 then A is said to have semistable reduction
at v; in this case, if T is a split torus then A has split semistable reduction at v.

Lemma 2.48. If v is a place of good reduction for A then c, = 1.

Proof. We will show that if A has good reduction at v then A% = A, (then ®, =1 and so
¢y, = 1). The scheme A; = Axp, O, is a subscheme of A so restriction from A to A; extends
any morphism on A to a morphism on A;. Therefore, for every smooth O,-scheme T we
have Homgen (7, A;) = Homgen (T X0, Ky, A) which implies that A; is the Néron model of A
over Spec O, ([BLR90], Proposition 1.2.4). Let A, be the subscheme of A which consists of
the generic fiber A and the abelian variety flg Then A, is a smooth and proper scheme over
O, (since the fibers A and A? are proper;[Har77] 4.8.f) so by [BLR90] Proposition 1.2.8 the
scheme A, is the Néron model of its generic fiber A. Therefore Proposition 2.42 guarantees
that A; = A, which implies that A, = flg O

Example 2.49. Let E be an elliptic curve. Then dimg 2 = 1 which implies that either
dimg B =1 (in which case G = 1 and F has good reduction at v) or dimg B = 0 (in which
case dimyx G = 1 and E has bad reduction at v). Assume that £ has bad reduction at v.

1. If dimg N =1 and T"= 1 then N = G, and F is said to have additive reduction at v.

2. Otherwise, dimg T =1 and N = 1 in which case T' = G,,, over k, and F is said to have
multiplicative reduction. In Example 1.18 we saw that T is either G,, or R]% 2[Ry G,,.

a5 v
If T = G,, then F is said to have split multiplicative reduction. If T = R; 2 /R, Gm

qv v

then F is said to have nonsplit multiplicative reduction.

44



2.4 The Néron-Ogg-Shafarevich Criterion

Let A be an abelian variety of dimension d defined over a number field K. Recall that there
is an action of the decomposition group Gal(K,/K,) C Gal(K/K) and inertia group I, on
the Tate module T;A. We have chosen a lift o, of the Frobenius element of Gal(k,/k,) =
Gal(K, /K. ) to Gal(K,/K,). Therefore, the action of o, on T;A depends on the choice
of o,. However, the action of o, on TyA™ is independent of choices since o, is well-defined
up to conjugation by an element of I,. The following lemma shows that we can interpret
the inertia-invariant subrepresentation of T;A as the Tate module of the special fiber of the
Néron model, which is more manageable. Let A be the Néron model of A over Ok.

Lemma 2.50. If { is coprime to char k, and to the index of /ng in A,, then there exists an
isomorphism of Gal(K,/K,)-modules

Tgfig = Tg./IU = (TgA)I”

Proof. Let K™ be the maximal unramified extension of K, i.e., K™ = KIv. Since A(K)!* =
A(K™) we get that A["]l» = A(K™)[("]. For each finite unramified extension L/K the
scheme Spec Oy, is smooth over Spec O so the Néron mapping property implies that A, (Op) =
A(L). By passing to the limit we get

A(O;7) = A(K"),

where O} is the ring of integers of K"
Since A, is a smooth scheme over Spec O, and O!' is henselian, the reduction map

A, (0 5 A, (ky),

is surjective (because the residue field of O™ is k,). Moreover, the Extz(Z/¢"Z)-long exact
sequence of

0 — kerr — A,(O™) = A,(k,) = 0,
gives

0 — (ker r)[0"] — Ao (O™)[€"] — A, (%,)[("] — Ext(Z/("Z, kerr).

Since kerr is divisible ([Mum70] I1.6.2) the group Ext(Z/¢"Z,kerr) is trivial so the map
A (O[] 5 A, (E,)[€7] is surjective. Moreover, Remark 2.60 implies that, since £* and
char k, are coprime, the surjection A,(O™)[("] — A, (k,)[¢"] is also injective. By passing to
the limit as n — oo we get TyAl» = T,A,.

By Lemma 2.33 there is an exact sequence 1 — TgAO — Ty A, — T,®,. Since { is coprime
to the index of .AO in A,, the module T;®, is trivial, which implies that TgAO T,A,. O

Theorem 2.51 (Néron-Ogg-Shafarevich). For A to have good reduction at a place v it is
sufficient that I, C Gal(K,/K,) act trivially on T, A, for some { coprime to char k, and the
indez of A% in A,.
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Proof. In Section 2.3.3 we have seen that there exist algebraic groups G, N,T" and B defined
over k,, such that T is a torus, N is unipotent, B is an abelian variety and there exist exact
sequences

1-T—G—N—-1 (2.3)
1-G—>A"—>B—~1

An immediate consequence is that d = dim A% = dim A = dim N +dim T +dim B. Moreover,
since the unipotent group U is divisible, Lemma 2.33 applied to the exact sequences 2.3 gives
(since T, T = T,G)

1—T,T - T,A° - T,B— 1.

But Lemma 2.50 allows us to replace Tg./ig with Ty A% . Therefore
1 — T, 7 — (T,A)"" - T,B -1,

which implies that dim T,A° = dim T, T + dimT,B. The rest of the proof ammounts to
dimension count. By Remark 2.32, we have dim7;B = 2dim B since B is an abelian
variety. Moreover, since T is a torus, there exists a k,-isomorphism 7" 22 GdmT . Therefore,
T,T = T,GIT = (T,G,,) ™7 which implies that dim 7,7 = dim 7.

Since I, acts trivially on T)A we get that dim T;A° = dimT;A = 2dim A = 2dim N +
2dim T + 2dim B; but this is also equal to 2dim B 4 dim 7" which implies that 2dim N +
dim 7T = 0. Since N and T are connected, they must be trivial, so A has good reduction at
. O

One implication of Theorem 2.51 is that if T, A is unramified at v for some ¢, coprime to

char k, and the index of flg in flv, then it is unramified for all ¢ coprime to char k, and the
index of A% in A,.
Remark 2.52. The conclusion of Theorem 2.51 still holds if we only assume ¢ to be coprime
to char k,, since in the proof of the theorem it is enough that ¢” becomes larger than the
index of A% in A, as n — oo (which follows from Proposition 2.45). Moreover, if A has
good reduction at v, then for infinitely many /¢, the Tate module V; A is unramified at v. The
details of the proof of this more general version can be found in [ST68]|, Theorem 1.

Corollary 2.53. 1. If A is an abelian variety defined over a global field K then for all
but finitely many places v the variety A has good reduction at v.

2. Let v : A — B be an isogeny of abelian varieties. If A has good reduction at v then so
does B.

Proof. 1. Choose a prime . Since TyA is a finitely generated Gal(K /K )-module, the
inertia [, acts trivially on T, A for all but finitely many places v. Therefore, Remark
2.52 proves that there is good reduction outside a finite set of places (where T;A has
bad reduction or where ¢ | char k,).
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2. Via v the Z,-module Ty A has image a submodule of T, B of finite index. Therefore, if
I, acts trivially on T, B, it will act trivially on T,A.
n

2.5 Abelian Varieties over Finite Fields

Let A be an abelian variety of dimension d defined over a finite field F,. Let 7, be the
Frobenius isogeny of the abelian variety (acting as the identity on the topological space
underlying the variety as a scheme and acting on functions by f +— f9). If End(A) represents
the ring of endomorphisms of A (i.e., isogenies preserving the identity of A), write End(A)° =
End(4) ® Q.

Lemma 2.54. There ezists a monic polynomial P, € Z[x] of degree 2d such that for all
m,n € Z we have n**P,(m/n) = deg(|m] + [n] o 7,) = |ker([m] + [n] o m,)|. Moreover, P,
is the characteristic polynomial of Frob, acting on V;A and the minimal polynomial of 7, in

Q(m,)/Q (where Q(r,) C End’(A).
Proof. See [Mil86a], Proposition 12.4. and Proposition 12.9. O

Write P,(z) = Hfdl(a: — o), with a; € C. To understand the behavior of the roots «; of

P, we need to understand the relationship between A and AY. Fix £ an ample invertible sheaf
on A and let ¢ = ¢, be the polarization associated with £ (i.e., an isogeny ¢y : A — AY).

We define the Rosati involution t on End’(A) = End(A4) ® Q by @Z)T ¢ LoV o acting on
A.

Lemma 2.55. The following relation holds in End’(A)

mhom, = [q].

Proof. This is equivalent to ¢! o Ty opomy = [q] or ) opomy = [q] o (since [g] commutes
with ¢ by construction). But for each x € A(K) we have (mq opomy)(x) = my(ty WLRL™ 1=
ty(mr L) ® my L. Since 7 acts by raising to the power ¢ we get
(g 0pomy)(x) = ;L1 L7 = [q)o (LR L) = [g] 0 6.
[

Proposition 2.56. Let 7 € End’(A) such that ©f o m = [m], where m is a positive integer.
Let R be the set of roots of the minimal polynomial of ™ over Q. Then for every root o € R,
we have |a| = \/m and x — m/x is a permutation of R.

Proof. See [Mum?70] IV.21.11. O

Corollary 2.57 (Riemann Hypothesis). The roots oy, . .., aaq of the minimal polynomial of
7, have absolute value /q and can be reordered such that asg_jo; = q for all i.

Proof. Follows from Lemma 2.55 and Proposition 2.56. [
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2.6 The Tamagawa Measure of Abelian Varieties

Let A be an abelian variety of dimension d over a number field K and let A be its Néron
model over Spec Og. We have seen in Section 1.7 how to use a nowhere vanishing invariant
differential form w on A and a set of convergence factors {),} to define a measure dpi . {r,}-
However, this measure depends on the (noncanonical) choice of factors A,. We will use the
results of Section 3.1.1 to prove that there is a canonical choice of convergence factors given
by A, = 1, if v is an infinite place, and A\, = L,(A, 1), if v is a finite place. This result holds
for tori as well, but we will prove a stronger statement in the case of abelian varieties over
number fields.

2.6.1 The Formal Group of an Abelian Variety

In order to analyze the Haar measures, it is enough to look locally. This is best understood
in the context of formal groups. Abelian varieties are commutative groups so their global
analytic behavior is determined in a local neighborhood of the identity element e, by trans-
lations. A powerful tool of analyzing such a local neighborhood of e is the notion of formal
neighborhood of e, which is a formal group for algebraic groups. However, instead of looking
at the formal group of A, we will look at the formal group of A, since A has much better
arithmetic properties than A.

We will identify the point e € A(K,) with the (closed) point which is the image of the
map e : Spec K, — A (since A is complete every morphism from an affine scheme into A
is constant). The group A, is defined over Spec O,. Let O4, . be the local regular ring of
A, at e and let my, . be the maximal ideal of O4, .. Let @Ame = I&n@Av,e/mzme be the
completion of Oy, .. Since A, is smooth of relative dimension d, the ring O4, . is regular so
there exist indeterminates xq, ..., x4 such that @Av,e ~ O,fz1,...,x4]. Similarly, we have
@AMAM@XQ =~ Oulvi,---,Ya, 21, - - -, 24], where x; o m = y;, x; 0 Ty = z;, and 7, is projection
to the k-th factor.

The multiplication morphism m : A, xA, — A, induces a morphism m* : O, [x1, ..., x4] —
Oulyrs - -+ Ya, 21, - - -, 24]. Write F; = m*(x;) which will be power series in y; and z;.

Proposition 2.58. If F = (Fy, ..., Fy) then for y = (y1,...,ya), 2 = (21, . .., 2za) we have
1. F(y,z) =y +z (mod my,.).

2. F(z,F(y, 2)) = F(F(z,y), 2).

Fy,z) = F(z,y).

4. F(0,2) =2, F(y,0) = y.

Proof. All the above follow from the formal properties of m except for the first property.
The first property follows from the fact that A has a differential operator which takes m to
the map my : Ku[y1, .-, Ya, 21, - -5 2a] = Kof[z1, ..., zq] given by m.(y,z) =y + 2. ]
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Let ﬁv be the formal group of A,. Similarly to the case of the group A, itself, the
space Q@ = > O,[x1,...,z4]dz; is generated by d independent invariant differentials 7; =
> ¢ij(x)dzr;. The fact that n; are invariant and they generate 2 implies that they are a
unique scalar multiple of

OF,

0O ...010 ...0 (a—%>_1dx.

We have constructed a formal group O A,e as the formal completion of 4, along the
identity section. The de Rham cohomology of K,[zi,...,x,] is trivial, so there exist
power series log, such that dlog, = 7, for every 7. The log, form the logarithm map
log = (logy,...,log,) : A, — G2, which is an isomorphism of formal groups (see [Fre93],
Theorem 1). On a small enough neighborhood of the identity where the series converge, log
is a homeomorphism. The formal Lie algebra of A, is the Lie algebra structure 2, of G,
given by [z,y] = Fy(x,y) — Fa(y, x), where F» represents the homogeneous part of degree 2
of F.

2.6.2 Behavior at Finite Places

Let Q4 be the projective Ox-module of global invariant differentials on the Néron model A
with Og-basis 01, . ..,14. Then A9Q 4 is a rank one Og-module (with Og-basis n1 A. .. Ang),
which is a rank one submodule of H°(A,Q4 /x)» the module of invariant differentials on
the abelian variety A (Section 1.7.1). Therefore, for every global invariant differential w €
HO(A, Q4/K), there exists a fractional ideal a,, of Ok, such that wa, = m A ... AngOx =
A 4. Let vy, = |ay|, for every finite place v.

Lemma 2.59. If v is a finite place, then

Proof. Let A,(O,); be the kernel of the reduction map A,(O,) — A,(O,/p,). For every
polynomial which defines a smooth variety, Hensel’s lemma implies that one can lift roots of
the polynomials in O, /g, to roots in O,. Therefore, since A, is smooth, the map A,(O,) —
A, (O, /9,) = flv(k‘v) is surjective by Hensel’s lemma. Therefore A,(O,)/A,(O,)1 = jlv(kv).

Consider invariant differentials wy, ..., w, such that w = w; A... Aw,. The differentials
w; and n; induce invariant differentials w; and 7; on the formal group A, of A, at the identity
section. Let 2, be the formal Lie algebra of A,. Let log; = [7; be the logarithm maps
associated with the differentials 7); such that log;(0) = 0. Then log = (log,,...,log,) defines
a homeomorphism between the neighborhood EY x ... x @ of (0,...,0) € K for large
enough N and a neighborhood Uy of e in A,(O,) (note that U; = A,(O,):1, see [HS00],
Theorem 2.6). In fact, the logarithm map log induces a formal group isomorphism between
A, and G” via (a,b) — log *(loga + logb); the map log™" is well-defined since 71, . . ., 7y is
an Og-basis for the module of invariant differentials (see [Fre93], Theorem 1).
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Since the differential w is translation invariant we have

/ wlydpa, = [AO,) : AO)] / wlyd = 1A, (k)| @l,.
A(Oy) A(Ou)1 Ay (o)

The log function allows us to compute

[ [ sl
Au (00" o Ao
and so we get that

/ i, = [A(OL) : AN - (o)) / [log, @l,.
A(Oy)

PN Ay

But log, @ is an invariant differential on p¥2A, so it must be a scalar multiple of dz; A. .. A
dz,. To evaluate this scalar factor, we need to evaluate log, w at the basis 0/0x1A...ANO/Dxg.
Then

llog, (@ A ... A@g)l, (iA...Ai>

|wy A A@]lo*i/\ /\i
1 d|, 108 axl 8;L’d

. . . 0 . 0
= |Wy A... AWy, | log] =— A ... Alog) —
8951

|wW Ao AWyl 0 A A 0
! Mo\ log! 0t log!, Ot4

by definition of the v,,. Therefore

/ lw|, = [A(O,) : A(Ov)l]qZ(N_l)vw/ dry A AN dey, = ¢ | Ay (k).
A(Ov)

P Ay

]

Remark 2.60. Since A,(O,); is isomorphic via the logarithm map to U; = [] ¢, the m-
torsion A, (O, )1[m] is trivial is m is coprime to char k,.

Corollary 2.61. If A has good reduction at v then

(/ |w|v> L,(A,1) = v,
.A’L}(O’U)

Proof. By Proposition 3.10 we have that L,(A,1)"" = q/)A%k,)| and since A has good
reduction at v we know that AY = A,. But from Proposition 2.59

/ [wlydpt, = q;de’jlv(kv”-
Ay (Oy)

By combining these two results we get the statement of the lemma. O]
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Remark 2.62. By the Néron mapping property, there exists a homeomorphism of topological
spaces A,(0,) = A(K,). If w is an invariant differential on A, then w induces a Haar measure
|lw|, on A,(O,). However, the same is obtained if we consider the invariant differential
wg = w X, K on A, which induces a Haar measure |wk|, on A(K,). The main reasons
for the introduction of the fractional ideals a,,, is precisely to allow the computation of the
(same) integral over A(K,) = A4,(O,) by using a differential on A or a differential on A.

Example 2.63. Consider the elliptic curve E defined by the Weierstrass equation
Yty =2 -,

and let p # 37. If £ is the Néron model of E over Z, then &, consists of two fibers,
each of which is an abelian variety, and is defined over Z, by the (projectivized) equation
Y2Z+YZ? = X?— XZ? An invariant differential on &, is given by w = dz/(2y+ 1). Since
the Weierstrass model we chose for the elliptic curve E is minimal, in the sense that the
differential w comes from an invariant differential on £, we may compute its power series
expansion in the formal group &,. A detailed description of how to find the formal group law

on &, and how to compute a power series expansion for w is given in [Sil92] IV.1.1. Using
the computer program MAGMA, we obtained the following power series expansion

W(t)/dt = 1+ 26> —2t* +6t° — 12¢7 + 6t° + 207 — 60¢'° + 60t + 50¢12 — 280t +
+420¢M — 28¢1° — 1190t + 2520¢17 — 1596¢'° — 4284t + 13608t + - - -

Integrating, we obtain

1 2 6 3 2 60 20
1 _ S S 2T 248 249 1 9410 11 12 13 _ 9ppl4
og(t) t+2t 5t + 725 2t +3t + 2t 11t + ot + 1325 0t
15 716 17 18 19 1071 o 21
+28t° — Zt —70t"" + 140t™° — 84t — Tt + 648t + - - -

Since the coefficients of w are integers, the power series log converges whenever v,(t) > 0.
For the derivation 0/0x on the formal Lie algebra (z = logt) we have

w0 () -o(ow (2)) -+ (k) () -

Therefore, the invariant differential log, w is the standard derivation on the formal Lie alge-
bra, so (v,), = 1.

2.6.3 Behavior at Infinite Places

The problem of computing the integrals



when v is a real or complex place, can be done using the analytic theory of tori. For every
complex embedding o, : K < C let A% be the abelian variety defined by the fiber product

Av A
Spec C —2~ Spec K

Over C, the abelian variety A% is abelian so A% (C) is a complex analytic abelian Lie group.
Therefore, it is topologically a complex torus and the homology group H;(A%(C),Z) is a
free Z-module of rank 2d generated by 71, ..., 724, where d is the dimension of the abelian
variety A ([Mum?70], I.1). Similarly, if v is a real place, then H,(A%(R),Z) is the subset of
H, (A% (C),Z) fixed by complex conjugation (the nontrivial element of Gal(C/R)) (assume
that Hy(A%(R),Z) is generated by 71, ...,74). If we write w = w; A ... A w,, then we may
compute

foun o f,m
/ ‘w‘ B f’Y? wy ... f’YQ w1
v T .
A7v(C) :
f’YQd wr ... f’)’2d El e
for a complex place v and
f’Yl wp ... f’Yl Wq
wl, = :
/Affv (R) °
va wy ... va Wy

for a real place v. Since these formulae have no immediate arithmetic significance, we will
not prove them here (see, for example, [Gro82|, pp.223).

Let A be an abelian variety defined over a number field K. The period of the abelian
variety A associated to the invariant differential w is

Ppw = H/ lwl, H Vap.-
UEM?(O AUU(K’U) ”L)EM?{

If we change the invariant differential w by a scalar o € K*, then va, = |a|,v, for each
finite place v. Moreover, for each infinite place v we have

[ geul=lal [l
Aov (K,) Aov (K,)
Therefore,
PA,aw = H |04’vPA,w-
v

But, since o € K*, we have [], |a|, = 1, so P4, is independent of w. Therefore, the real
number Py, is called the period of A and is denoted by Pjy.
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2.6.4 The Tamagawa Measure of A(Ag)

Let A be an abelian variety of dimension d defined over a number field K and let w be an
invariant differential on w. Let A = {\,} to be a set of convergence factors, such that A\, = 1
if v is an infinite place and A\, = L,(A4, 1) (see Corollary 2.61) if v is a finite place. Let S
be a finite set of places that includes all the infinite places, all the places where A has bad
reduction and all the places v such that v, # 1. Recall that ¢, is the Tamagawa number at
the finite place v (Definition 2.46) and that P, is the period of A.

Proposition 2.64. If Dy is the discriminant of the number field K then

PA HUGMO Cy
A(AK)

V |DK|d

Proof. By Proposition 1.33, the integral makes sense, since A(Af) is a compact topological
group. Moreover, the proof of Proposition 1.33 showed that if S is a finite set of places that
includes the infinite places and all the places v where A has bad reduction, then the natural
inclusion

A(Ast) — A(AK),

is a homeomorphism. Therefore, we may integrate on A(Ak s) = [[,cs A(Ku) X[, g5 Au(Ov)
instead of A(Ag) (by Proposition 1.30) and use the measure dpa ., A on A(Aks):

/ dpaws = / dpiawn

- hADKDd/; IT fele | | TT telioa 1

ves A(Kv)xnvgsA“(O“) vEME ’UEM?(

:mﬁmfiII/ wl, 11/ ]y Ly(A, 1)

veMge eMO

But, by Proposition 2.59 we have
[ ol = ol A k)] = g e AR
v(Ov)

which by Proposition 3.10 is equal to v,c, L, (A, 1). Therefore, we get that

PA HUEM}){ Cy
H / |w, vwcv =0

/ dpawa = (VD)™
A(AK) vEMEP v V| Dk
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3 The Birch and Swinnerton-Dyer Conjecture

3.1 L[L-functions Attached to Abelian Varieties

Let A be an abelian variety of dimension d defined over a number field K. We would
like to construct certain L-functions associated with the Gal(K /K)-representation V;A. On
the one hand, these L-functions will give a canonical set of convergence factors for the
Tamagawa measure on A(Ag); on the other hand, we will construct a global L-function
whose asymptotic behavior is part of the Birch and Swinnerton-Dyer conjecture.

3.1.1 The Local L-function

Let A be the Néron model of A over Ok. Let v be a finite place of K and let ¢ be a prime
number coprime to char k, and the index of ftg in /L,. Recall that V/A = T)A ®z, Q, =
Hom(Qy/Zy, A) which is a Q, vector space of dimension 2d. Let o, be a lift to Gal(K,/K,)
of the geometric Frobenius element in Gal(K""/K,), and let I, C Gal(K,/K,) be the inertia
at v. The group Gal(K,/K,) acts on Hom(V;A, Q,) by (f7)(v) = f(o~tv).

However, the action of o, on Hom(V,A, Q) depends on the choice of lift o,. We can
eliminate the dependence on choices if we restrict to the subrepresentation Hom(V, A, Q)™
Then, for every other choice of lift o/, there exists 7 € I, such that o/ = 70,77, and the
actions of o, and o/, on Hom(V,A, Q)% are identical. The action of o, can be represented
as a (2d) x (2d) matrix whose characteristic polynomial is

Xo(X) = det(1 — 0, X| Hom(V, A4, Q,)™).

Remark 3.1. A priori, the coefficients of the characteristic polynomial y,(X) lie in Z,, but
they lie in Z and they do not depend on ¢. This is essential in defining a complex val-
ued, holomorphic function L,(A,s). This surprizing fact follows from the Weil conjectures
([Mil86a], Theorem 19.1)

We define the local L-function at v to be

Lo(A,) = xulg7) ™"

To understand the local factors L,(A, s) we look at the reduction of the abelian variety
at each finite place v. Let A be the Néron model of A over Spec O, let A, be the special
fiber of A over Speck, and let A° is the connected component of the identity in A,. By
Theorems 1.19 and 1.20 there exist smooth connected algebraic groups GG, N, T" and B such
that G is affine, N is unipotent, T is a torus and B is an abelian variety, such that there
exist exact sequences

1—G—A"—B—1 (3.1)

1—T—G—U—1
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By Lemma 2.33, the fact that G is affine and N is unipotent implies that, on the level of
Tate modules we have an exact sequence

1= VT -V, A - V,B— 1. (3.2)

For any Gal(K,/K,)-module M, let M(n) be the Gal(K,/K,)-module whose underlying
set is M, but whose action is 76%(m) = 7(¢*"m), where 7 € I, and o, € Gal(K™/K,) is the
Frobenius. Then M (n) is called the n-twist of M. For example, if Qy is the trivial module,

then Q(1) = lim pen.

Lemma 3.2. There exists an isomorphism of Gal(K /K )-module Hom(V, A, Q) = V,AV(—1) =
V,A(-1).

Proof. Recall that the Weil pairing

e ViIAx VAV — Hm i @ Qp = Qe(1),

is a perfect Gal(K / K)-invariant pairing which induces an isomorphism of Gal(K /K )-modules
Hom(V,A, Q,(1)) & V,AY = Hom(V, 4, Q,) = V,AY(-1).

But A and A are isogenous so V;A = V; AV, which implies that Hom(V;A, Q) = V,A(—1),
as Gal(K /K)-modules. O

Using the exact sequence 3.2, the previous lemma allows us to compute the local L, (A, s)
in terms of the analogously defined L-factors for the torus 7" and abelian variety B.

Proposition 3.3. If A, T and B are defined as above, then
Xo(A, X) =det(l — 0, X|V;B(—1))det(1 — 0,X|V,T(-1)).
Proof. Twisting the exact sequence 3.2 by (—1) we get
1= ViT(=1) = Vi AY(=1) = ViB(-1) — 1.

But, by Lemma 2.50, there exists an isomorphism of Gal(K/K)-modules VA" = V,.A°;
since I, acts trivially on the twist (—1), we obtain VA% (—1) = V;.A%(—1). Therefore,

1 — V,T(=1) = VA" (=1) = V;B(—1) — 1,
which implies that
det(1 — 0, X|V, A" (=1)) = det(1 — 0, X|V,B(—1))det(1 — 0,X|V,T(-1)),

and the proposition follows. [
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Lemma 3.4. Let 1 - M — N — P — 1 be an exact sequence of algebraic groups defined
over k,, such that M 1is affine. Then

| M (k)| P(ko)| = [N (qv)]-

Proof. There exists an exact sequence 1 — M (k,) — N (k,) — P(k,) — 1. The Gal(k,/k,)-
cohomology long exact sequence is

1 — M(k,) = N(k,) = P(k,) — H"(k,, M).

Since M is affine, by Theorem 1.20, to show that H'(k,, M) = 0 it is enough to show that
H'(k,,G,) and H'(k,,G,,) are both trivial. But this is the statement of Hilbert’s theorem
90. Therefore, 1 — M(k,) — N(k,) — P(k,) — 1 and the conclusion follows. O
Lemma 3.5. For the abelian variety B we have x,(B,q; ') = |B(k,)|q~® and

Xo(B,g; ) = |1 — g2

Proof. Let b = dimy, B. By Lemma 2.54, x,(B,X) = det(1 — ¢, X|Hom(V;B,Qy)) is a
degree 2b-poynomial x,(B, X) = Hfil(l —a; X)(1 —@;X) with |o;| = \/q,. Therefore,

2b
‘Xv(Baqv_s” > H ’1 - qzl)/2_8| = ’1 - q11)/2_s’2b'

=1

But «;/q, = 1/@; which implies that

Xo(B,g, ) = [J(1 = /@)1 = 1/aw) = [ [(1 = ) (1 — @)/ | | v

Since x,(B,1) = [[(1 — a;)(1 — @;) counts the number of fixed points of the Frobenius 75 =
7, (acting on B, as in Section 2.5), we have y,(B,1) = |B(k,)|. Therefore x,(B,q,"') =
|B(kv)|q— dlIIlB.

U

We would like to do the same computation for the torus 7. Let T = Hom(7,G,,) b
the character group of the torus 7. The action of Gal(k,/k,) on T is given by (7 f)(g) =
of(c(g)), for f: T -G, and geT.

Lemma 3.6. We have xo(T, X) = det (1 — 0, X|V,T(=1)) = det(1 — F,X|T @ Q;), where
F, =0,

@

Proof. The evaluation pairing V;T x (f ® Q) — Q(1) is perfect and Gal(k,/k,)-invariant.
Therefore, there exists an isomorphism of Gal(k,/k,)-modules V,T(—1) = Hom(V,T', Q,(1)) =

T ® Q. The result follows from the fact that the Galois action on Hom is given by
fo(x) = flo~ ). O
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Lemma 3.7. We have x,(T,q; ') = |T(k,)|/q™T.

Proof. Let t = dimT. The lemma is equivalent to the fact that det(q, — F,|T®@Qy) = |T(k,)|.

o~

Since T is a torus, there exists a k,-isomorphism ¢ : T 5 G!,. From the fact that T' = T we
deduce (by taking Galois invariants) that the map T'(k,) — Homg,z, /) (T, Gn) given by

x> (0 € E(x)) is an isomorphism (T 2 T'). Therefore,
reT(k,) =1, € HornGal@v/kv)(f, Gm)

which, via ¢ : G, — T, is equivalent to 1, 0 ¢ € Home,, /i, )(G Gn).

The idea is to use linear algebra to compute the Ch@\l"&CtGI‘lSth polynomial of F, and for
this we need to pass from the Z-module Homg,z, /5,1 (Gl Gim) to a vector space. One way
to achieve this is to tensor with Q. The condition that = € T'(k,) is equivalent to

ww (] g/b\® ]_ € HomGal(Ev/kv)«(/;’fn ® QZ, Gm ® Qg)

Since Gal(k,/k,) is topologically generated by F, it is enough to check that 1, o o1 is
fixed by F,.

In Theorem 1.17 we defined a cocycle h, : 0 = (1) ~" € H'(k,, Autg, (Gl,)). Let & be
the standard basis of @fn, ie., &(xy,...,xq) = x; for all i. Since hp, is an automorphism of
G! , the map hp, defines an automorphism of G!, so hp, ® 1 € Aut(G!, ® Q). Then

det(q, — Fvlf ® Q) = det(g, — /HFU ®1).

In terms of the standard basis on G, we can write hp, (&) = > hij&; with hi; € Z. The

condition that F, fixes v, o gg ® 1 is equivalent to EFU ® 1 fixing 9, o Zs ® 1, i.e., for every
¢ € Gt, we have

F($e00®1)(E®1)) = (s 06 1) (hp,€ @ 1).

This can be checked at each basis element &; in which case we need

Fy((e00)(&) @1) = Zm @1—H<wz AEN ®1

Write ¢(x) = (21,...,24) € GL,. The advantages of the formula above is that it takes the
problem of finding points in T'(k,) to finding points on G,. Note that (¢, o 5) (&) = =
(because &;(¢(x)) = ;) which implies that [[,(z; ® hii = (2; @ 1)®

Therefore, to count T'(k,) we only need to count (z1,...,2,) € Gj, such that [],(z; ®
1)t = (z; @ 1) for all i. Observe that G!, ® Qy is a Q-vector space; by diagonalizing the
matrix ¢,I; — (hj), the number of such solutions is equal to the determinant of the matrix
¢wls — (hij) ([Ono61], 1.2.6). O

Lemma 3.8. If N is a nilpotent group defined over k, then |U(k,)| = ¢dmV.
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Proof. By [Gro64], Exp. 17, Lemma 2.3, the group N has a composition series with successive
quotients isomorphic to G,. But |G,(k,)| = ¢, so by Lemma 3.4 we get that |N(k,)| =
HdlmN ’G ( ), — qdlmN ]

Ezxample 3.9. Let E be an elliptic curve and let v be a finite place. If v is a place of good
reduction and if B is the reduced elliptic and det(1 — mpq,*) = 1 — a,q, * + ¢: =%, giving the
usual L,-factor at primes of good reduction for elliptic curves. If E has additive reduction
at v, then Proposition 3.3 shows that L,(E,s) = 1.

Assume that E has multiplicative reduction at v. Then the toric part of the reduction
is 1-dimensional so by Example 1.18, T is either G,, or Rzlv /kam, where [, /k, is a degree
2 extension. If E has split reduction then T = G,, and the L,-factor is given by det(1 —

F,q;%|Gm) ™t = (1 — ¢;*)~ . If E has nonsplit reduction then T = R} 1., Gy and so L, is
given by det(1 — F,q, |Rl1/kG yl=(1+¢;%)!
Proposition 3.10. For all finite places v of K we have L,(A,1) = f,hmA /| A%(K,)I.

Proof. By Lemma 3.4 and the two exact sequences 3.1 we have | A%(k,)| = |N (k.)||T(k,)||B(k.)|.
Combining the results from Lemmas 3.5, 3.7 and 3.8 we get

[AS (k)| [Bko)[IT (ko) [|U (k)|
dim Ag - qglm B+dim T+dim U
= Xo(B, ¢, )xo(Tr gy ") = xo(A, ¢, )
= L,(A 1)

3.1.2 Global L-function

The local L,(A,s) factors encode information at each finite place v. In order to get global
information about the abelian variety A, we define the global L-function to be

- HLU(A7S)7

where the product is taken over all finite places v. One could define local L-factors at the
infinite places, using variants of the Euler I'-function. However, such factors are useful for
possible functional equations satisfied by the global L-function, and do not encode relevant
arithmetic data (for a discussion of the local L-factors at infinite places, see [Tay02]).

Lemma 3.11. The function L(A,s) converges absolutely to a holomorphic function for
Res > 3/2.

Proof. For all but finitely many places v, the abelian variety A has good reduction, so the
analytic behavior of L is determined by the product of the local L,(A,s), such that A has
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good reduction at v. By Lemma 3.5 we have |x,(A4,q,°)] > |1 — qi/%s\% for all v of good

reduction for A. Therefore, the analytic behavior of L(A, s) is the same as that of
TTi = a1 = Gels =172

Therefore, L(A,s) is holomorphic when Res > 3/2. O

The basic conjecture regarding the L-function is

Conjecture 3.12. If K is a number field and A is an abelian variety over K then there
exists an analytic continuation of L(A,s) to the whole plane C.

Remark 3.13. In the case when K is a function field then it is known that L(A, s) is mero-
morphic on C. In the case of number fields K, the conjecture is proven for elliptic curves
defined over K = Q, a fact that follows from the Modularity Theorem ([BCDT00]).

3.2 The Conjecture

The Birch and Swinnerton-Dyer conjecture relates the behavior of the global L-function and
the arithmetic properties of the abelian variety.

Conjecture 3.14 (Birch and Swinnerton-Dyer, weak form). Let A be an abelian variety
defined over a number field K and let L(A, s) be the global L-function of A. Then the order
of vanishing of L at 1 is equal to r, the rank of A.

Birch and Swinnerton-Dyer went further and conjectured what the coefficient of the first
term in the Taylor expansion of L(A,s) around 1 should be:

Conjecture 3.15 (Birch and Swinnerton-Dyer, strong form). Let A be an abelian variety of
rank r defined over a number field K. Let L(A,s) be the global L-function of A, let A(K )tors
and AY(K)iors be the torsion subgroups of A(K) and AY(K) respectively. Let Ra be the
regulator of A, and let III(A/K) be the Shafarevich-Tate group. Then II(A/K) is a finite
group and
LW(A L) Ra|I(A/K)|
sy it TAC )il A7 (K )

This statement of the conjecture is not effective from a computational perspective. By
Proposition 2.64 we may rewrite the formula as
1

PiRA|OI(A/K 0 Cyp
—LO(A4,1) = — AL AN ey 0
" V |DK| |A(K)t0r5||AV(K)t0rS|

This statement of the conjecture is extremely useful because it gives a computationally
effective method of computing the size of III(E/K) in the case of elliptic curves E defined
over Q, which in turn gives an upper bound on the running time of an algorithm that
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computes generators for the Mordell-Weil group E(Q) (algorithms for computing each of the
other quantities in the formula are discussed in [Cre97]).

Conjecture 3.14 was proven in the case of elliptic curves of analytic rank 0 or 1 (i.e., order
of vanishing of the L-function 0 or 1) by combining the Modularity theorem ([BCDTO00]),
the work of Gross and Zagier ([GZ86]) and that of Kolyvagin on Euler systems ([Gro91]). In
most other cases, little is known. However, there are theorems about the consistency of the
conjecture. If A — B is an isogeny, then Conjecture 3.15 is true for A if and only if it is true
for B. To prove such a theorem one cannot use the above form of the conjecture, since the
Néron model of an abelian variety (and implicitly the Tamagawa numbers at finite places)
does not behave well under isogenies.

What does behave well under isogeny is the set of places where an abelian variety has
good reduction (Corollary 2.53). So choose S a finite set of places that includes the set of
infinite places, the places of bad reduction and the places where v,, # 1. We will define a
new set of convergence factors for the Tamagawa measure on A(Ag) by Ag = {\,} such that
A =1ifveSand A\, = L,(A, 1) if v ¢ S. Thus we obtain a measure djia ., 2, such that

dpiawa = L,(A,1 / ApAwAg-
/ » I 4 S

veESNM Y Alhx)

Let Ls(A, s) = [,¢s Lv(A, s), which has the same analytic behavior as L(A, s) since we
simply took out a finite product of nonvanishing, holomorphic functions.
Proposition 3.16. Conjecture 3.15 is equivalent to
LA  RaUIA/K)
r! fA(AK,S) d,UJA,w,As |A<K)tors‘|Av<K)tors‘

Proof. Since A(Ag ) = A(Ag), it is enough to show that L (A, 1) = (H%SQM% L,(A, 1)) Lg)(A, 1).
We have
(r)
L(T) (A, 1) — H Lv(Au S) LS(A7 S) |S:1
veSNMY,
) ()

= 3| II LoAs)] (Ls(As)" |y

=0 \veSnMY

But Conjecture 3.14 implies that the order of vanishing of Lg(A, s) at 1isrso (Lg)"™9(A,1) =
0 if r # 0 and the proposition follows immediately. m

Conjectures 3.15 and 3.16 do not generally appear together in the literature. With the
machinery already developed, the proof was straightforward. However, it required the prior
careful analysis of the structure of the local L-factors and of the local integrals.
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4 Global Number Theory

The fact that Conjecture 3.15 encodes so much arithmetic data implies that any proof
involving the conjecture would require a large number of global number theoretic results. In
order to prove that the conjecture is invariant under isogenies, one needs to use global Tate-
Poitou duality and the global Euler-Poincare characteristic. First, we develop the necessary
machinery to be able to manipulate long exact sequences of Ext. Then we derive the global
results we will use to prove the invariance under isogeny.

4.1 Derived Functors

The absolute Galois group of a number field K, Gal(K/K), is rather mysterious. It is a
topological profinite group, i.e., it is Hausdorff, compact and totally disconnected. However,
its structure is not fully understood. In fact, most information about Gal(K/K) can be
obtained not by studying its structure, but by studying representations of it, i.e., continuous
maps

Gal(K/K) — Aut(V)

for some (finite dimensional) vector space V. More generally, if G is a group, Z[G], the free
group whose generators are elements of G, is a noncommutative ring that can act on a set
M. If the action of G on M is continuous, we say that M is a continuous Z[G]-module, or
simply, a continuous G-module. Let Mod¢ be the category of continuous G-modules.

The most efficient strategy in studying the representations of a group G is to associate
to each representation an invariant. For example, a covariant functor F' from Modg to the
category of abelian groups is an example of such an invariant. More often than not, the
functor F' is not exact in the sense that given an exact sequence 1 - M — N — P — 1
of continuous G-modules, the corresponding sequence 1 — F(M) — F(N) — F(P) is not
right exact.

Ezample 4.1. Let G = {—1,1} acting by multiplication on the sets M = N = Z and P =
Z/27. Consider the functor F' from Modg to the category of abelian groups, FI(X) = X¢,
taking a module X to the G-invariant submodule. Then F(Z) = {0}, since G acts by
inverting the sign. However, F(Z/2Z) = Z/27Z since —1 = 1 in Z/27. Therefore the exact

sequence 1 — Z 2 Z — 7,/27Z — 1 becomes 1 — 1 — 1 — Z/27, which is not exact.

Definition 4.2. The k-th right derived functor of F'is a functor R"F' from Modg to the
category of abelian groups such that for every exact sequence 1 - M — N — P — 1 of
continuous G-modules, we get a long exact sequence

1— F(M)— F(N)— F(P) = R'"F(M) = R'"F(N) - R'"F(P) — R*F(M) — - -~

Example 4.3. If G is a group and F is the functor that takes X € Modg to X, then
R"F(X) is none other than the usual group cohomology H" (G, X).
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If the functor F' is contravariant, meaning that a map M — N induces a map F(N) —
F(M) (in the other direction), then one can define the notion of left derived functor in the
same way.

Let G be a group. Then, the functor F/(X) = X% can be rewritten as the functor F(X) =
Homg(Z, X), i.e., G-invariant homomorphisms from the trivial G-module Z to the G-module
X. More generally, for a continuous G-module M, the functor F;(X) = Homg (M, X) taking
X to G-invariant homomorphisms from M to X is covariant.

Definition 4.4. Let Exty (M, —) be the k-th derived functor of Fjy.

Remark 4.5. If M = 7Z has trivial G-action, then Extg, (M, X) = H"(G, X), since Homg(Z, X)
and X% are the same functor. The quickest way to compute Extf, (M, N) is to use injective
resolutions. Let

N*:1—- N’ N'—5 N*— ...

be an injective resolution of N. Since Homg (M, —) is covariant, we obtain a resolution
1 — Homg (M, N°) 2% Home(M, N') 22 Home (M, N?) = - --

Then Exty (M, —) is simply the cohomology of the complex Homg (M, N*), ie., Ext" =
ker i, /Imi,_y. A quick corollary of this fact is that if M, N and P are continuous G-modules,
then

Exte(M,N @& P) = Ext;,(M, N) & Extg (M, P)

Ezxample 4.6. As an application of the previous remark, we will show that if M and N are
abelian groups then for every r > 2 we have Ext};, (M, N) = 0. Indeed, let N ! be an injective
module such that 0 — N — N!. If N2 is the cokernel of the inclusion, then it is also injective
(see [Wei94] Lemma 3.3.1) so we get an injective resolution 0 — N — N!' — N? — 0.
Therefore, Exty;,(M, N) is the cohomology of the complex

0 — Hom (M, N*) — Hom(M, N?) — 0.

Since there are only two nonzero groups in the complex, all cohomology groups in dimension
r > 2 vanish.

Remark 4.7. If M = Z, the previous remark shows that we may compute the cohomology
groups H"(G,—) by using injective resolutions. Such a computation could also be taken
as a definition. However, in that case, the fact that H"(G,—) is the r-th derived functor
of F(X) = X% would no longer be clear. To show that the cohomology of the complex
Homg(Z, N*) does indeed give the derived functors of Homg(Z, N), we need the following
general fact about cohomology (see [Wei94] 1.3). Consider a commutative diagram with
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exact columns, such that the rows are complexes, i.e., dod =0
0 0 0

d d d d

d d d d

We may construct the cohomologies of each complex H" = ker d/Imd. Then H" is a derived
functor in the sense that there exists a long exact sequence

1— H°(A) = H(B) - H°(C) — H*(A) — - -

A similar functor to Homeg (M, —) is the functor — @z NV for a continuous G-module N.
However, this functor is contravariant. Define Tor$(—, N) to be the k-th left derived functor
of the functor — ®zjq N. Again, Tor can be computed in a similar fashion to Ext, but now
by choosing a projective resolution --- — N? — N; — Ny = N — 0 and taking TorTG(M, N)
to be the homology of the complex M ®zg) N.

If H is a normal and closed subgroup of G then G/H is a topological profinite group
and we may naturally endow Ext} (M, N) with the structure of G/H module by letting
o€ G/H acton f € Homy(M,N) by of : m — of(c~'m). If M is finite, then Ext}, (M, N)
is a continuous module. Otherwise, define E}R;(M, N) = Ugcuce Extly (M, N)Y to be the
continuous submodule of Ext’, (M, N).

For every continuous H-module N, we define the induction Indj N = {f : G —
N|f(hg) = h(f(g)),Yh € H} to be a set with a G-action given by 9f(x) = f(xg). The in-
duction is a continuous G-module and for every G-module M we have Homg (M, Ind% N) =
Hompy (M, N) (Frobenius reciprocity). Since the two functors are equal, their right derived
functors must be equal as well, hence there exists an isomorphism Extf,(M,Ind$ N) =
Ext, (M, N).

As usual for derived functors, there exists a Grothendieck spectral sequence for the
Extg, (M, N). Spectral sequences are an extremely useful tool for determining right derived
functors, such as Ext® and H*. A spectral sequence is consists of a set of abelian groups
EP4 for r > 2 and (p,q) € Zso X Z>¢ and derivations d : EP4 — EPT"FL (derivation
simply means that d o d = 0) such that E’; can be obtained as the cohomology group

of the complex ErEra=hr=1 - For each p and g, there exists ry such that if » > rgy then
EP? = EP? . This occurs when the derivations that go in and out of EP? are the 0 maps
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(so 1o = p + q works). Denote this constant sequence of groups by EP9. To say that there
exists a spectral sequence E5?Y = EPT? simply means that for each n > 0, there exists a
composition series of E™ with successive quotients equal to EP"~P. While a full description
of spectral sequences and their techniques of computation would diverge too much from the
purpose of this section, it is worthwhile to mention the similarity between the Grothendieck
spectral sequence R'F o RIG = R F oG and the classical Leibniz rule for differentiation
d*(fg) = > 1o d'(f)d""(g). It is much easier to deal with spectral sequences visually

0,3 1,3 2,3 3,3
Ez EQ E2 E2

0,1 1,1 2,1
E, E, Ey E,

\70“'

0,0 1,0 2,0
E2 E2 E2 E2

Thus, the fact that EY? = EP'9 can be interpreted as: for r sufficiently large, E™ has a
composition series whose successive quotients are elements £P9 on the diagonal p + ¢ = n.
For certain groups EY? it is particularly easy to compute EP19, since it may happen that all
EY? =0 for ¢ > 0 (as it does in Lemma 4.11).

Proposition 4.8. Let H be a normal closed subgroup of G, let N, P be G-modules and let
M be a G/H-module such that Tory,(M, N) = 0. Then there exists a spectral sequence

Ext 7 (M, Exty (N, P)) = Exti*(M ®z N, P).

Proof. See [Mil86a], Theorem 0.3. O

4.2 Duality

All G-modules are assumed to be continuous. Let ps, represent the group of roots of unity.
For a Gal(L/K)-module M we will write M* = Hom(M, p) and MY = Hom(M, Q/Z) and

M = Hom(M, G,,) for the Pontryjagin dual of M. If M is a G-module, each of M* M"Y
and M can be turned into a G-module, by letting 7f(x) = o f(c'z), where the action of G
on the image space is determined on a case-by-case basis. (For example, if G = Gal(K/K)
then the G-action on G,, is simply the action of Gal(K/K) on K )

Let K be a number field. Duality in the context of arithmetic has been inspired by
duality theorems (such as Poincare duality) in the care of smooth compact manifolds.
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4.2.1 Local Duality

Let v be a finite place of K and let M be a Gal(K,/K,)-module. Then H"(K,, M) = 0 for
r > 3 and there exists a pairing

H'(K,, M) x H*"(K,, M*) = H*(K,, M ® M*) - Q/Z
given by (f, g), = inv,(f U g), where inv, are the invariant maps of local class field theory.

For proofs of the following two theorems, see [NSW00] Theorem 7.2.6.
Theorem 4.9 (Local Tate Duality). The pairing

()ot H' (Ko, M) x H*7(K,, M") — Q/Z

18 perfect.

If v is complex, the groups H"(K,, —) are trivial. If v is real, H"(K,, —) are finite for

finite Gal(K,/K,)-modules. There is a pairing
(Vg : H (K,, M) x H*"(K,,M*) = Q/Z,

given by the U product (since H?*(Gal(C/R),C*) = Z/2Z C Q/Z). The pairing defined
for these cohomology groups is degenerate when r = 0,2. For every infinite place v, write
H"(Ky, M) = MO/ Re) N o Mif = 0 and H'(K,,, M) = H"(K,, M) if r > 0. To
case notation we will write HO(K,, M) = H°(K,, M) whenever v is a finite place.

Theorem 4.10. The pairing
(Vo : H'(K,, M) x H*"(K,, M*) = Q/Z

18 mondegenerate.

If we continue the analogy with the case of topological duality, Theorem 4.9 implies that
local fields behave like complex curves. This is not the case for number fields, as we shall
see in the next section.

4.2.2 Global Duality

Let K be a number field and let S be a finite set of places that includes all infinite places.
Let Kg be the maximal algebraic extension of K that is unramified at all places v ¢ S and
let Gg = Gal(Kg/K). We will denote the finite sum @,csK* @ K by IS and we will write
Cs=1°/ (9% ¢ Then, there exists an exact sequence

OAO%S%IS—M?S—W.

The construction of the 9-term global duality long exact sequence in Theorem 4.15 requires
global class field theory and an analysis of the Ext long exact sequences that arise from the
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short exact sequence 0 = O ¢ — [ § — Cg — 0. The particular case of interest for global
duality is the case of Gal(Ks/K)-modules M such that no place of S divides |M|. Before we
write down the Extg, (M, —)-long exact sequence for the short sequence above, we would like
to compute the Ext-groups separately. Since the proofs of these computations are somewhat
lengthy, technical and unrevealing, we will only prove the first lemma, as an example of the
general method of proof using spectral sequences.

Lemma 4.11. Let M be a finite Gal(Kg/K)-module and let M = Hom(M, O% ), where
the Gal(Kg/K)-action on O%S is given by the action of Gg on O%s‘ If S contains all the
infinite places and all the places dividing |M| then

Exty, (M, 0% ) = H'(Gs, M)
forr >0.

Proof. The proof is nothing more than an exercise in interpreting the spectral sequence in
Proposition 4.8. If we apply Proposition 4.8 to the closed subgroup 1 of Gg and the trivial
Gg-module Z (in which case the hypothesis of Proposition 4.8 is satisfied) we get

By = Extyy (Z,Bxty (M, 0% ) = Ext*(M, 0% ).

Since M is finite we can replace Ext by Ext. Then H"(Gg, Ext] (M, O%S)) = Extg, (Z, Exti(M, O%S)).
Since Z[1] = Z, the groups Extj(M, O%S) are trivial for » > 2, by Example 4.6. More-

over, we have assumed that no place of S divides |M|. Thus, |M| € O% ¢ and for every

¢ | |[M| the roots of unity p, are included in Kg. Consequently, raising to power ¢ is a sur-

jection on (’)%S. Therefore, Ext'(Z/(Z, (’)%S) = Ors/(0xg)" = 0 ([Wei94] 3.3.2). Since

M is a finite abelian group, this implies that Ext'(M, (9% S) = 0 (by the structure theorem
for finitely generated abelian groups). Finally, Ext"(M, O S) =M by definition. Thus, the

spectral sequence FEy® = E"* is

Extl (Z, M)  Exth (Z, M) — Ext (Z,M)  Ext} (Z,M)
and so - .
H"(Gs, M) = Extg (Z, M) = Extg (M, O%S),
since on each diagonal in the spectral sequence, only one term is nonzero. O
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Lemma 4.12. Let M be a finite Gg-module and let M = Hom(M, K ) with the usual Galois
action. Then -
EXtZ‘g(M? [S) = @vES’HT(Kva M)

Proof. See [Mil86b], Lemma 4.13. (Note that in our case, S is a finite set, so the computation
is significantly simpler than in [Mil86b]).
[

Lemma 4.13. Assume that M is a finite Gg-module such that S contains all the places
dividing |M|. Then, for r € {1,2}, we have

Eths (M, CS) = H27T(G5, M)v
Proof. See [Mil86b] Theorem 4.6.a. This lemma is where global class field theory is used. [J

Consider the exact sequence of Gg-modules 0 — (’)%S — I — Cs — 0. The Extg, (M, —)-
long exact sequence associated to it is

0 — Bxte, (M, O o) — Ext{, (M, I%) — Ext¢, (M, Cs)

T

Ext, (M, 0% ) —— Extl, (M, %) —= Ext}; (M, Cs)

A=

Extéy, (M, 0% ) —— Ext?, (M, I%) — Ext%, (M, Cs)
By Lemmas 4.11, 4.12 and 4.13, this exact sequence becomes

04>HO(GS,M)Ji@vesHo(Kv,M)HEXt%S(M,CS) (4.1)
HY(Gs, M) —= @ues H' (K, M) 2 HY (G, M*)Y

HA (G, M) = @yes HA (K, M) 2> HO(Gs, M*)"
Remark 4.14. By Theorems 4.9 and 4.10, there exists an isomorphism
Oves H' (Ko, M) = @ues H (Ko, M7)Y.
Similarly, there exists an isomorphism

Boes HY (Ko, M) ~ ®es H* (K, M*)".
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Theorem 4.15 (Tate-Poitou). The maps iy : HO(Gg, M) — ®pesH(K,, M) and jy- :
Dpes H* (K, M*) — H(Gg, M)V are dual to each other. The maps fy : H'(Gg, M) —
GoesHY (K, M) and gy - HY (Gg, M)Y — ®,esH (K, M*) are dual to each other. More-
over, they induce an exact sequence

OHHO(GSWM) H@vGSﬁO(Kv>M) HHZ(GS’M*)V
HY(Gs, M) — ®,es H (K, M) — H (Gg, M*)"

H2(GSaM) _>@v€SH2<Kv>M) HHO(G&M*)V —0

Proof. By algebraic dual we mean Hom(—, Q/Z). First, by the previous remark, it makes
sense to require that iy, and 75+ be dual, and that fj; and gy« be dual, since their domains
and ranges are dual. These two facts follow from [Mil86b|, Theorem 4.10.

Since jp+ is the algebraic dual of 7),, which is injective, the homomorphism j is
surjective. Therefore, the long exact sequence 4.1 implies that we have an exact sequence

@vesHl(Kv,M) %Hl(GS, M*)Y

H2(Gg, M) == @pes H2(K,, M) 2m HO(Gg, M*)Y ——0

Consider the algebraic dual of the previous exact sequence, with M changed to M*. By
Remark 4.14, we get

Y

OHHO(GSUM) ﬂ;@ueSﬁO(KvaM) *)H2<GS7M*>V

Hl(GSaM> T)@DESHl(KmM)

M*

But fi = gy« so if we put the two sequences next to each other, the new sequence will
be exact at DyesH'(K,, M), since

H' (G, M) —= @yes H' (K, M) = H' (G, M*)

is exact in the middle by the exact sequence 4.1. This new 9-term long exact sequence is the
one we needed to construct. O

4.2.3 Global Euler-Poincare Characteristic

For a finite Gal(Kg/K) module M write
_ |H%(Gs, M)||H?(Gs, M)
|H'(Gs, M) '

xs(M)
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Theorem 4.16 (Tate). We have

~

A, A pp L0

wOn =11 =5 (K, )]

veEME veEMg?

Proof. The proof of this theorem is extremely technical and would take us too far afield. For
a proof, see [Mil86a] or [NSW00]. O

In particular, if we replace M by M*, since |M| = |M*| we get
o [0 (K., M)
w0 = 1 G

veEME
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5 Invariance Properties of the Birch and Swinnerton-
Dyer Conjecture

5.1 Invariance Under Restriction of Scalars

Let L/K be a Galois extension of number fields and let A be an abelian variety defined over
L. Then, by Corollary 1.12, B = Ry kA is also an abelian variety, isomorphic over K to
[] A% as o; ranges over embeddings o; : L — K. We would like to show that Conjecture
3.15 holds for A if and only if it holds for B. For this, we need to analyze separately each
of the quantities in the statement of the conjecture. In fact, it is more convenient to work
with Conjecture 3.16 (which is equivalent to Conjecture 3.15).

To begin with, let S be a finite set of places of K that includes all infinite places, all places
of bad reduction of B, all places lying under places of bad reduction for A and all places that
ramify in L. Let T" be the set of places of L that lie above places in S. There exist canonical
choices of models for A and B over O r and Ok g respectively, i.e., the Néron models A
and B. Let wy be an invariant differential on A and let wg its corresponding invariant
differential on B, as in Proposition 1.45. Moreover, fix the canonical sets of convergent
factors Ar = {\,}, such that A, = lisw € T and A\, = L,(A,1) if w ¢ T, and Ag = {\,}
such that X =1ifv e Sand X, = L,(B,1)ifv ¢ S.

By Theorem 2.51, for each v ¢ S a place of K and w a place of L lying above v,
there exists ¢ (sufficiently large) such that the Tate modules VA and V,B are unramified

at w and v respectively. By Remark 2.34, we have V;B = In dgai f// LK VyA.  Therefore

= {f : Gal(K/K) — ViA|f(hg) = hf(g9),Vh € Gal(L/L)} with Gal(K/K) action

given by “f(g) = f(go). In order to get the local L-factors we need (V;A)™* = V,A and

(WB) v = VyB, where I, and I, are the inertia groups. Since v is unramified in L, we have
= Gal(K,/LK™) =1, C Gal(L/L).

Lemma 5.1. With the above notation we have

— Gal(K, /K, _ .
det(1 — 0, X| Indg" IEL jL ))VA) det(1 — o ' X EwEol|Y, 4),

(where o, is a lift of the Frobenius ¢, to Gal(Ly/Ly)).
Proof. Since w | v is unramified by construction of S, the extension L, /K, is cyclic of order
Nw = [Ly : K,] generated by o, '. Then

In dgai(fwff“) V,A = Q[Gal(K,/K,)] OQ[Gal(Tw/Le) VeA = QGal(Ly/K,)] ® VA

in the following sense: if vq,. .., vyy form a Q;-basis for V;A (d = dim A), then a Q;-basis for
TGl o/ k)
Gal(Lw/Lw)

the other powers of o, ! to 0. In that case f"” = fi—1,; for @ > 0; f"" takes o,

V,A is given by the Gal(L,/L )—equivariant maps f;; taking o, " to v; and all

(nw 1) tO

—1
o,,'v; and everything else to 0, so fo, % is a linear combination of f,,—1;-s that corresponds
on the o' action on V,A.
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Let H = (h;;) be the matrix of the action of o' on the basis {v1,...,vsq}. Then, the

matrix of o, on Ind G2l (ke/k) ) ViA is

Gal(Ly /Ly
Og  O2g ... 0Oy H
Iy 09 ... 0g 0oy

O¢  Iog ... 0O9g Oy

O2¢ O2q... 0O2¢ Izqg Ogq

Interpretted as a matrix with entries 0,1 and the variable H, the characteristic polynomial
is simply I,y — X™ H. Therefore, the characteristic polynomial of the 2dn,, x 2dn,, matrix
is the determinant of Iy — X™ H, i.e., the determinant det(1 — o' X" |V, A). O

Lemma 5.2. Let V be a Gal(L/L) module (e.g., V =V,A). If v is a finite place of K such
that L and V' are unramified at v, then

Cal(B/K) 17 ~ Gal(Ku/Ky)
IndGal(Z/L) V= Dypp Indg 7 /L) £

as Gal(K,/K,)-modules.

Proof. Since L/K is Galois, if wy,...,w, are the places of L lying above v, then Gal(L/K)
acts tranzitively on {wq, ..., w.}, so there exist o; € Gal(L/K) such that o;w; = w;. More-
over, v is unramified in L, so all the decomposition groups D; = Gal(L,,,/K,) are isomorphic,
which means that {oy,...,0.} form a set of representatives for Gal(L,,/K,) \ Gal(L/K).
We need to show that

Q[Gal(F/K)] ®@[Ga1(Z/L)] V= @wlv@[Gal(Kv/Kv)] ®Q[Gal(fw/Lw)] 4

or Q[Cal(L/K)] ® V = @,,Q[Gal(L,/K,)] ® V. This is equivalent to Ind{*"/ ")y —
D, IndP' V.

Note that ¢ € D; if and only if o;00; " € D;, so Ind[* V' = (IndP* V)% (if p gives the
Galois action on W, then p'(z) = p(cxo~!) is the Galois action on W7). Therefore, we
need to show that IndS™ /M)y = @y, (Ind{’* V)7, Consider the map © Ind$*EE)
Do, (IndP V)7 that takes the function f : Gal(L/K) — V (ie., f € Ind?al(L/K) V) to
®,, fi, where f;(xz) = f(zo;) goes from D; — V. Since {0y, ...,0.} form representatives for
Dy \ Gal(L/K), the map © is injective. Moreover, for ®f; € @y, (Ind”* V)7, the function
f:Gal(L/K) — V given by f(x) = fi(zo; "), for & € Dyo;, maps to @ f;, via ©. Therefore,
the two sides are isomorphic.

[

Lemma 5.3. For each v ¢ S a place of K and w | v a place of L we have

Ly(B,s) =[] Lu(A.s).

wlv
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Proof. Having assumed that the Tate modules V;A and V,B are unramified at w and v
respectively, for ¢ large enough, we have

L,(B,s)™' = det(1 - o,q,*| Hom(V;B,Qy))
= det(1 —0,'q,*|V,B)
= det(1 -0, 'q,”| @wvlndGal(K”/K“ V,A)

Gal(Tw/Luw)
= [T det(1 o7 gy mdge/ ) v, a)
wlv
= Hdet (1 — o, q, ™|V, A)
wlv
= Hdet( — 0wq,’| Hom(V;A, Q) HL A, s)
wlv wlv

The second equality comes from the fact that the action of ¢ on f : V,B — Q, is given by
fo(x) = f(o~'x). The third equality comes from Lemma 5.2 while the fifth equality comes
from Lemma 5.1. O

In particular, for the canonical choices of sets of convergent factors Ay and Ag, by the
previous lemma we have that Hw‘v Aw = Ao In particular, the conditions of Proposition 1.45
are satisfied and A(Ap 1) = B(Ak.s) (by the restriction of scalars property) so

/ dptawa Ay = / dpBws As-
A(AL,T) B(Ak,s)

We now turn to the question of rank and torsion subgroups for A and B. The following
lemma shows that Ry kA" = BY.

Lemma 5.4. By definition of restriction of scalars there exists an L-morphism ¢ : B — A.
If i o 11,03 A° — A% s projection to the i-th factor, then the map Pic’(A) — Pic’(B)
given by Ry : £+ @i (L) € Pic’(B) is an isomorphism.

Proof. See [Mil72]. O

Corollary 5.5. There exist equalities of groups A(L) = B(K) and AY(L) = BY(K). More-
over, the ranks of A and B are equal, |A(L)tors|] = | B(K )tors| and |AY(L)iors] = |BY (K )tors|-

Proof. The fact that A(L) = B(K) and AY(L) = BY(K) follow from the definition of

restriction of scalars. The last statements are simple corollaries of these two equalities. [J

The Néron-Tate height pairing on A is a map (,)4 : A(L) x Pic’(A) — R. Therefore, to
analyze how the regulator behaves under restriction of scalars we need to look at the func-
torial properties of the Néron-Tate height pairing. By construction of heights on projective
spaces, we see that (,)px,.r = [L: K|(,)B.

Lemma 5.6. The requlators R and Rg of A and B are equal.
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Proof. Let (,)4 and (,)p be the Néron-Tate height pairing on A and B respectively. Let
ai,...,a, € A(L) be a Z-basis for A(L) and let by,...,b,. be a Z-basis for AY(L). Then let
aj =y~ ([]a]") € B(K) and let b; = Rp/xb; € BY(K).
The isomorphism B = [] A% is defined over L and by the properties of the Néron-Tate
pairing we have
(af, Royicby)p = [L: K]7Nai, Ruyucb)pger = (L2 KJ71 Y (af, ' m(B5%)) ao

k=1
n n

= [L: K7 (mo(af), b7 ) o = [L: K7 {ai,by)a

k=1 k=1
= (n/[L: K]){ai,bj)a = (ai; bj)
by functoriality of the height pairing and the fact that L/K is Galois.
Therefore Rp = |det(a;, b;) p| = | det(a;, bj)a| = Ra. O

Lemma 5.7. The Shafarevich-Tate groups III(A/L) of A over L and II(B/K) of B over
K have the same cardinality. In fact, there exists a canonical isomorphism between them.

Proof. We have

H'(K, B(K)) = B\(K, [[ A7()) = B"(K.Ind (7 /7 A(L)),

which by Shapiro’s lemma equals H*(L, A(L)). Therefore, the kernels, III(B/K) and II1(A/L),

of the two restriction maps

HY(K,B(K))— @,H'(K,, B(K,))

| |

HY (L, A(L)) — @®yH(Ly, A(Ly))

IR

must be isomorphic, by the snake lemma. O

We have shown that each quantity that appears in Conjecture 3.16 is invariant under
restriction of scalars.

Corollary 5.8. Conjecture 3.15 is true for A if and only if it is true for B = Ry A.

5.2 Invariance Under Isogeny

Let K be a number field and let A % B be an isogeny of abelian varieties defined over
K. Then there exists a finite group scheme A[)] = ker that fits into an exact sequence

0 — Ajy] — A % B — 0. In particular this implies that 0 — A(K) — A(K) —
B(K) — 0 and by taking cohomology we get that 0 — A[y)(K) — A(K) — B(K) —
HY(Gal(K/K), A[y]). But A[y] is a finite Gal(K /K )-module so A(K) and B(K) differ by
at most torsion, so the algebraic ranks of A and B are equal. Thus, the following proposition
will prove that Conjecture 3.14 is invariant under isogeny.
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Proposition 5.9. For every finite set of places S we have Lg(A,s) = Ls(B,s).

Proof. By Lemma 2.33, for ¢ large enough to be coprime to the size of A[)], we have V,A =
ViB. Therefore, each of the local L,-factors in the definition of Lg(A,s) and Lg(B,s) are
the same, and the conclusion follows. O

Corollary 5.10. There exists an analytic continuation of Ls(A, s) to a neighborhood of 1 if
and only if there exists one for Lg(B,s).

It is also the case that if Conjecture 3.15 holds for one of A and B then it will hold for
the other. To make sense of the conjecture, one needs choices of invariant differentials. Let
A and B be the Néron models of A and B over Ok. Choose w an invariant differential on B,
which induces an invariant differential w on B. Then ¥ *w is an invariant differential on A
and induces an invariant differential on A (if necessary, replace w by yw for v € Q to achieve
this goal). The proof of the invariance of the Birch and Swinnerton-Dyer conjecture under
restriction of scalars was essentially easy since the Shafarevich-Tate group does not change
under restriction of scalars and the L-functions behave in a straightforward manner. On the
other hand, in the case of the isogeny invariance, the situation is reversed. Since the places
of bad reduction are very hard to control via isogeny, instead of working with Conjecture
3.15 we will deal with Conjecture 3.16. Choose S finite containing Mp°, all places of bad
reduction for A and B, all places where vy, or vy, is not 1 and all places that divide |A[z]].
Moreover, choose Ag = {\,} such that A, =1 for v € S and \, = L,(A4,1) = L,(B,1) for
v ¢ S. We will denote by K the maximal algebraic extension of K that is unramified at
places v ¢ S, and by Gg = Gal(Ks/K).

The key to the proof of the fact that Conjecture 3.16 is invariant under isogeny is express-
ing all the quantities in the conjecture in terms of the isogeny . But, before we can proceed,
we need to assume the finiteness of the groups III(A/K) and III(B/K) in Conjecture 3.16.
One can prove that if A and B are isogenous, then one of the two groups is finite if and only
if the other one is finite ([Mil86a] Lemma 7.1.b). However, the proof would divert us from
the techniques required to prove the invariance of Conjecture 3.16 under isogeny. Therefore,
we will assume that both groups III(A/K) and II(B/K) are finite.

We can now proceed to analyze the changes under isogeny of each of the quantities in the
conjecture. The functorial properties of the Néron-Tate pairing suggest that the regulator
of A should be equal to the regulator of B.

Lemma 5.11. The requlators R4 of A and Rp of B are equal.

Proof. Let r denote the ranks of A and B. Consider ay,...,a, a Z-basis of A(K) and
bi,...,b. a Z-basis of BY(K). Let a, = ¢(a;) and b, = ¢¥(b;) for i = 1,...,7. Then

| det((a;, b}))| = | det({az, " (b)))] = | det(((as), b;))| = | det((a;, b))l
by functoriality of the Néron-Tate height pairing (Proposition 2.35). O

However, it is no longer the case that the torsion subgroups are equal. Determining the
relationship between the torsion subgroups is a simple application of the snake lemma.
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Lemma 5.12. We have

| A(K ) tors| [AY (K )tors| _ | ker | | coker V|
| B(K)tors||BY (K )tors| | coker | [kersp¥| -

Proof. On the level of torsion, we have a commutative diagram induces by the isogeny

0—=> Za;,— A(K) — A(K)tors —= 0

(N

OHZZblﬁB(K)HB(K)tOI‘SHO

In this case the snake lemma gives an exact sequence 1 — ker 1) — ker ¢yo,s — 1 — cokeryp —
coker s — 1. Therefore |A(K )iors|/|B(K )tors| = | ker|/| coker|. The analogous proce-
dure in the case of the dual isogeny ¢" : BY — AY gives that |AY(K)iors|/|BY (K)tors|] =
| ker ¢)V|/| coker ¢V| and the lemma follows. O

The only two terms in Conjecture 3.16 that we have not yet discussed are the global
integral and the Shafarevich-Tate group. For each v ¢ S, both A and B have good reduction
at v. Therefore, Corollary 2.61 implies that for our choice of (canonical) convergence factors

we have
duAMA == / |w|v / \w\ L A 1 /
/A(AK’s) ° (’ng A(Ky) H 11615

and similarly for B. Therefore, to analyze the behavior of the global integrals, it is sufficient
to prove the following lemma.

Lemma 5.13. Ifv € S, then

Wiy = U7
A(Ky) | coker ¢v| B(Ky)

where 1, : A(K,) = B(K,).

Proof. The Haar measure [¢*w|, on A(K,) is induced from the Haar measure |w|, on
Uy, (A(Ky)) = A(K,)/ ker 1, Therefore, in the exact sequence of topological groups

1 — A(K)[Y] = A(K,) — ¥, (A(K,)) = 1

(note that the fact that ¢ is surjective does not imply that 1, is surjective), the Haar
measure |¢*w|, on A(K,) induces the discrete measure p on the finite set A(K,)[¢)] and the
Haar measure |w|, on the topological groups ¢,(A(K,)) C B(K,). Therefore (by Fubini’s

theorem)
Jowel= [ (el )de=trernd [
A(KU) A(KU) w}v] A(Kv) A(KU)
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Similarly, the exact sequence 1 — ¢,(A(K,)) — B(K,) — cokert, — 1 shows that the
Haar measure |w|, on B(K,) induces the discrete measure p on the finite set coker ¢, and
the Haar measure |w|, on ¢,(A(K,)). Therefore,

/ lw|, = / </ |w|U> dp = |coker¢v|/ |w],.
B(Ky) coker 1), Yo (A(Ky)) oy (A(Ky))

By dividing the two formulas, we get the formula in the lemma. m

We have expressed all changes in the quantities that appear in Conjecture 3.16 in terms
of the isogenies v and Y. This suggests that we should look for a similar formula in
the case of the Shafarevich-Tate groups. In Section 2.2.5 we have seen how the isogeny
¥ : A — B induces a map v, : HI(A/K) — II(B/K). We need to look at the dual map
Y II(BY/K) — HI(AY/K). Thus, Proposition 2.39 becomes essential in our analysis,
since it related III(A/K) to II(AY/K).

Lemma 5.14. If¢ : A — B is an isogeny, then
[II(A/K)| _ |ker ), |
[II(B/K)|  [kery)|

Proof. Since we have assumed that the groups III(A/K) and III(B/K) are finite, Proposition
2.39 implies the existence of nondegenerate pairings in the following commutative diagram
(because all divisible subgroups are infinite):

ker ¢, coker Y

MI(A/K)  x  II(AY/K)——~Q/Z
Y o
MI(B/K)  x  II(BY/K)——~Q/Z

coker 1), ker Y

Let g € ker)Y. The ¥’ (g) = 0 and, for every f € HI(A/K), we have (f, 1’ (g)) = 0. But the
diagram is commutative, so (¢, (f),g) = 0 for every f. Therefore, for every f' € Im, we
have (f’,g) = 0 so g € (Im1),,)*, where for X C III(B/K) we denote by X* the annihilator
of X in the pairing:
X+ ={gcUI(BY/K)|(z,g9) =0,Vr € X}
Conversely, if g € (Ime,)" then for every f € HI(A/K) we have (¢,(f),g9) = 0 so
(f,0Y(g)) = 0. But the pairing is nondegenerate, so g € kert”. Therefore, keryY =
(Im2,,)*. But the pairing (,) is nondegenerate, so (Im,, )+t ~ II(B/K)/Imi, = coker t,.
Therefore,
| coker v, | = | ker Y.
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Consequently, the exact sequence 1 — kerv,, — II(A/K) — II(B/K) — coker,, — 1

shows that
[II(A/K)|  |kertp,|  |kerd,|

[UI(B/K)|  |cokert| — |kerdy|

]

Before we can go on to prove the fact that Conjecture 3.16 is invariant under isogeny, we
need to construct a commutative diagram involving the maps 1 and 1", as well as the long
exact sequence in Theorem 4.15.

Lemma 5.15. Let A be an abelian variety defined over a number field K. For each place
v of K there exists an isomorphism AY(K,) = H'(K,, A)Y (where XV = Hom(X,Q/Z),
except for AV, which is the dual variety).

Proof. See [Mil86b] Corollary 3.4. O

We constructed S such that S contains all places of bad reduction for A and B and
all the places that divide the order of A[i]. Therefore, [Mil86a], Lemma 6.1 implies that

there exists an exact sequence 1 — A(Kg)[¢)] — A(Ky) LN B(Kgs) — 1 (we will not prove
this statement here, since it would be a too large departure from the subsequent line of the
argument). By taking Gg-cohomology, we get an exact sequence

1= A(K)[¥] = A(K) % B(K) — H'(Gs, A[V]) » H'(Gs, A) % H'(Gs, B).
Just as in the case of the exact sequence 2.1, we get the short exact sequence
1 — cokery — HY(Gg, Alp]) — HY(Gg, A)[Y] — 1.

Writing the same exact sequence for the dual isogeny ¢ : BY — AY we get a short exact
sequence

1 — cokery” — H'(Gg, BY[¢"]) = H'(Gs, B)[¢)"] — 1.

Similarly, for each v € S the short exact sequence 1 — A[¢)] - A — B — 1 yields a short
exact sequence
1 — cokerv, = H'(K,, AY]) — H'(K,, A)[Y] — 1.

Putting these exact sequences together, we get that there exists a natural commutative
diagram whose vertical morphisms are restriction maps

0 —— coker 1 Hl(GsaAW]) HY(Gs, AW

@Dresy l f=®res, J/ @ resy l

00— @’UES coker wv - @UESHI(va A[¢]) - @UESHl(Kin A) WJ] —0

0 (5.1)

Moreover, the 9-term long exact sequence in Theorem 4.15 implies the existence of an exact
sequence

HY(Gs, A[f]) —%> @ues HY(K,, A[)]) —2> HY(Gg, Al])".
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Lemma 5.16. The diagrams

Bues coker DoesH' (Ky, A[1)]) GvesH' (Ky, BY)[)"] =—— @pes H' (K, A[Y]")
lg EBresvT Tf
HY(Gs, BY)"]Y —— H'(Gs, A[Y]")" HY(Gs, BY)[v"] HY(Gs, A[Y])

are dual to each other with respect to Q/Z.

Proof. Recall that there exists an exact sequence

A(K,) = B(K,) — coker v, — 1.

If we dualize with respect to Q/Z we get that 1 — (coker ¢, )Y — B(K,)Y — A(K,)Y; by
Lemma 5.15, this is the same as

1 — (coker, )Y — H*(K,, BY)Y — H*(K,, AV)".

Therefore, we get a map (coker ¢,)Y — H'(K,, BV)[¢Y]¥. Moreover, by Theorem 4.10 there
exists an isomorphism @®,cs H' (K, A[t)]) = ®,es H' (K, A[1)]*)V. Therefore, the groups in
the two diagrams are pairwise dual with respect to Q/Z.

We still need to show that the maps are also dual. The lower horizontal maps are dual to
each other by definition. By Theorem 4.15 the maps f and g are also dual to each other. The
upper horizontal maps are dual to each other by Proposition 2.35, since A[|* =2 AV[y)V]. O

Lemma 5.17. There exists a commutative diagram

0 coker ¢ HY(Gs, AlY)) HY(Gs, A)Y] 0
a=® resvl lf lﬁ:@ resy
0 @UES coker wv @UESHI(KvaA[w]) - ®UESH1(KU7A) W] —0

lu ] |

0—H'(Gs, BY)[W"]Y —— H'(Gs, A[¢]")" (coker ¢)¥)Y ———0

Proof. The top part of the diagram is the commutative diagram 5.1. By Lemma 5.16, we
can define the vertical map u : @,cgcokertp, — HY(Gg, BY)["]Y to be the Q/Z-dual of
the map ®res, : HY(Ggs, BY)[W] — @pes(cokert,)Y. Similarly, we may define a map
v @pes HY (K, A)[1)] — (cokerw“)Y that makes the diagram commute. Note that each
column is a complex, and the central column is exact. O

Lemma 5.18. There exists a cohomology exact sequence

0 — ker v — ker f — ker § — keru/Ima — 0.

78



Proof. In Remark 4.7 we described the long exact sequence of cohomology of cochain com-
plexes. In Lemma 5.17, each column is a complex. Let ci,c9,c3 be the complexes rep-
resenting the three columns. Then H%(c;) = kera, H%cy) = ker f, H%c3) = kerf3,
H'(c;) = keru/Ima and H'(cy) = kerg/Imf = 0 since ¢y is exact. Then, the exact se-
quence of the lemma is just the beginning of the cohomology long exact sequence in Remark
4.7. O

Lemma 5.19. We have an equality

[kergp|  |H*(Gs, A[Y]")| 11 |HO (Ko, A[Y])]

— =1
HUES | kerz/;v| ‘kerf| veEME |HO(KU7A[1/}]>|

Proof. The first six terms of the long exact sequence of Theorem 4.15 are

0——= H(Gs, A[Y]) — @es H(K,, A[]) —= H*(Gs, Aly])

HY(Gs, AlY]) — @ves H' (Ko, AlY]) —= H'(Gs, A[]")"
These induce an exact sequence
0—= H(Gs, A[Y)]) —= Bpes HO(K,, A[Y]) —= H*(Gs, A[]*)Y —=ker f —=0

Since, H°(K, A[¢]) = A(K)[¢)] = kery and H°(K,, A[¢]) = A(K,)[¢] = kert, and the
sequence is exact, the relation follows. O

The only objects that we still haven’t described are v, and .

Lemma 5.20. There is an isomorphism
ke, = ker (H'(Gs, A)v] =5 SoesH' (K., A)lY])
Proof. See [Mil86b], Lemma 7.1.b. O

Remark 5.21. From now on we will be implicitly using that if A, L> Ao £> e A Apiq

is a complex, then
k+1 k+1

H(—l)i_1|Az’| = H(_1)1_1| ker fi/Im fi1|.
i=1 i=1
Having determined the relationship between the various maps 1, %", ¢, and ¢, we can
now state and prove the fact that Conjecture 3.15 is invariant under isogeny. The rest of the
proof is abstract nonesense, using the commutative diagram in Lemma 5.17.

Theorem 5.22. Let i) : A — B be an isogeny of abelian varieties defined over a number
field K. Suppose that L(A, s) has analytic continuation to a neighborhood of 1 and suppose
that I(A/K) and II(B/K) are finite. If Conjecture 3.15 holds for A, then it holds for B
as well.
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Proof. We have already chosen a finite set of places S, invariant differentials w and *w on
B and A, and a set of convergence factors Ag. By Lemma 5.9, the function L(B,s) also
has analytic continuation to a neighborhood of 1, since its analytic behavior is the same as
that of Lg(B,s) = Lg(A,s). Rather than working with Conjecture 3.15 we will work with

conjecture 3.16. If r is the rank of A and B, by Lemma 5.13 we get that

L(ST)(Aa 1)/]A(AK75) dpayrwas B | coker 1|
LES'T)<B71)/IB(AK’S) ApB,w,As veS | ker ), |

Moreover, by Lemmas 5.11, 5.12 and 5.14

R |II(A/K)|/(JAU ) tors || A (K )sons|) [ ker ¢, | [ coker @] | ker "]
Rp|UL(B/K)|/(|B(K)wos||BY (K )tors]) — [kerdp| |kerdp| |coker V|

To show that the conjecture is invariant under isogeny it is enough to show that

| ker v, | | coker )| |ker Y| H | coker @/J,,
| ker Y| |kerep| |coker )V |ker |

By Lemma 5.20 we have ker ¢, = ker  and, similarly, ker Y = coker w.
Therefore, it is enough to show that

|ker 8| |coker)|  [Teqlkerv| |kerd|

= 1.
| coker u| [[,cq | cokerep,|  |kerap|  |cokerV|
Moreover, the column ¢, gives
| coker 1| 1 Ny | ker o

H (Gs, B = ———| cokerul.

Hves|coker@/}v|| (Gs, BT |keru/Ima||CO eru
Therefore, it is enough to show that
| ker S| | ker || coker [l cq | kerepy,| |kervY|

| coker u| | ker u/Imal||H (Gg, BY)[¥V]Y|  |kery)| |cokerdV|

By Lemma 5.19 it is enough to show that

| ker 3| | ker a| | coker u| |H?(Gs, A[]*)| | ker Y| |H (K, A[y)])]

| coker u| | ker u/ITma||H (Gg, BY)[¥V]Y| | ker f| | coker 1)V | ey \ﬁO(KU,AWM

But the exact sequence in Lemma 5.18 gives that

|kera| | ker 3|
| ker f| | ker u/Ima|

=1
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Therefore, it is enough to show that

[H2(Gs, AW [Ker | pp [HY(U, AR
i

H1(Gs, B ] Teoker v L 1o, amwp) ~ &

veMge
By Proposition 2.35, we have
| ker v¥| = |AY[vY]] = |A[Y]"| = [H"(Gs, Al])].

Moreover, we can compute |coker Y| from the lowest row in the commutative diagram in
Lemma 5.17. We get
HYGg, AP]*
|Cokeer’: |1 ( S7V[¢]v)‘\/ .
|HY(Gs, BY)[¢V]Y|

Therefore it is enough to show that

H2(Gs, AP (G5 AW [H(K,, Aly))|
[HY(Gs, A[U])| [HO(K,, A[])[

veEME

which follows from Theorem 4.16 applied to M = A[]*. O

81



References

[AW67]

[BCDTO0]

[Blo80]

[Blo00]

[BLRIO]

[Cas62]

[CFS6]

[Con]

[Con02]

[Cre97]

[CS86]

[CS01]

[Del79]

M. F. Atiyah and C. T. C. Wall, Cohomology of groups, Algebraic Number Theory
(Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., 1967,
pp- 94-115.

C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of elliptic
curves over Q: Wild 3-adic exercises,
http://www.math.harvard.edu/HTML/Individuals/Richard Taylor.html.

S. Bloch, A note on height pairings, Tamagawa numbers, and the Birch and
Swinnerton-Dyer conjecture, Invent. Math. 58 (1980), no. 1, 65-76.

Spencer J. Bloch, Higher regulators, algebraic K-theory, and zeta functions of
elliptic curves, CRM Monograph Series, vol. 11, American Mathematical Society,
Providence, RI, 2000.

S. Bosch, W. Liitkebohmert, and M. Raynaud, Néron models, Springer-Verlag,
Berlin, 1990.

J.W.S. Cassels, Arithmetic on curves of genus 1. IV. Proof of the Hauptvermu-
tung, J. Reine Angew. Math. 211 (1962), 95-112.

J. W. S. Cassels and A. Frohlich (eds.), Algebraic number theory, London, Aca-
demic Press Inc. [Harcourt Brace Jovanovich Publishers]|, 1986.

Brian Conrad, Finiteness of class numbers for algebraic groups,
http://www.math.lsa.umich.edu/ bdconrad/papers/cosetfinite.pdf.

, A modern proof of Chevalley’s theorem on algebraic groups, J. Ramanu-
jan Math. Soc. 17 (2002), no. 1, 1-18.

J.E. Cremona, Algorithms for modular elliptic curves, second ed., Cambridge
University Press, Cambridge, 1997.

G. Cornell and J. H. Silverman (eds.), Arithmetic geometry, Springer-Verlag, New
York, 1986, Papers from the conference held at the University of Connecticut,
Storrs, Conn., July 30-August 10, 1984.

Brian Conrad and William A. Stein, Component groups of purely toric quotients,
Math. Res. Lett. 8 (2001), no. 5-6, 745-766.

P. Deligne, Valeurs de fonctions L et périodes d’intégrales, Automorphic forms,
representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ.,
Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math.
Soc., Providence, R.I., 1979, pp. 313-346.

82



[Fre93|

[Gro64]

[Gro82]

[Gro91]

(GZ86]

[Har77]

[Hat02]
[HS00]

[KS00]

[Lan83]

[Lan91]

[Lan94]
[LT58]

[Man71]

Maz73]

[Mil72]

Margaret N. Freije, The formal group of the Jacobian of an algebraic curve, Pacific
J. Math. 157 (1993), no. 2, 241-255.

A. Grothendieck, Schémas en groupes. II: Groupes de type multiplicatif, et struc-
ture des schémas en groupes généraux, Springer-Verlag, Berlin, 1962/1964.

Benedict H. Gross, On the conjecture of Birch and Swinnerton-Dyer for elliptic
curves with complex multiplication, Number theory related to Fermat’s last theo-
rem (Cambridge, Mass., 1981), Progr. Math., vol. 26, Birkh&user Boston, Mass.,
1982, pp. 219-236.

B. H. Gross, Kolyvagin’s work on modular elliptic curves, L-functions and arith-
metic (Durham, 1989), Cambridge Univ. Press, Cambridge, 1991, pp. 235-256.

B. Gross and D. Zagier, Heegner points and derivatives of L-series, Invent. Math.
84 (1986), no. 2, 225-320. MR 87j:11057

R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977, Graduate
Texts in Mathematics, No. 52.

Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.

Marc Hindry and Joseph H. Silverman, Diophantine geometry, Springer-Verlag,
New York, 2000, An introduction.

D.R. Kohel and W.A. Stein, Component Groups of Quotients of Jo(N), Pro-
ceedings of the 4th International Symposium (ANTS-IV), Leiden, Netherlands,
July 2-7, 2000 (Berlin), Springer, 2000.

Serge Lang, Abelian varieties, Springer-Verlag, New York, 1983, Reprint of the
1959 original.

S. Lang, Number theory. I1I, Springer-Verlag, Berlin, 1991, Diophantine geome-
try.

, Algebraic number theory, second ed., Springer-Verlag, New York, 1994.

S. Lang and J. Tate, Principal homogeneous spaces over abelian varieties, Amer.
J. Math. 80 (1958), 659-684.

J.I. Manin, Cyclotomic fields and modular curves, Russian Math. Surveys 26
(1971), no. 6, 7-78.

Barry Mazur, Notes on étale cohomology of number fields, Ann. Sci. Ecole Norm.
Sup. (4) 6 (1973), 521-552 (1974).

J.S. Milne, On the arithmetic of abelian varieties, Invent. Math. 17 (1972), 177—
190.

83



[Mil80]
[Mil86a)

[Mil86b)

[Mum?70]

[Neu99)

INSWOO]

[Ono61]
[Ono63]

[Ono68]

[PRO4]

[PS99]

[Ros86]

[Ser88]

[Ser92]

[Sil92]

[Si194]

, Etale cohomology, Princeton University Press, Princeton, N.J., 1980.

, Abelian varieties, Arithmetic geometry (Storrs, Conn., 1984), Springer,
New York, 1986, pp. 103-150.

, Arithmetic duality theorems, Academic Press Inc., Boston, Mass., 1986.

D. Mumford, Abelian varieties, Published for the Tata Institute of Fundamental
Research, Bombay, 1970, Tata Institute of Fundamental Research Studies in
Mathematics, No. 5.

Jirgen Neukirch, Algebraic number theory, vol. 322, Springer-Verlag, Berlin,
1999, Translated from the 1992 German original and with a note by Norbert
Schappacher, With a foreword by G. Harder.

Jiirgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number
fields, vol. 323, Springer-Verlag, Berlin, 2000.

Takashi Ono, Arithmetic of algebraic tori, Ann. of Math. (2) 74 (1961), 101-139.

, On the Tamagawa number of algebraic tori, Ann. of Math. (2) 78 (1963),

47-73.

, On Tamagawa numbers, Proc. Internat. Congr. Math. (Moscow, 1966),
[zdat. “Mir”, Moscow, 1968, pp. 509-512.

Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory,
Pure and Applied Mathematics, vol. 139, Academic Press Inc., Boston, MA,
1994.

B. Poonen and M. Stoll, The Cassels-Tate pairing on polarized abelian varieties,
Ann. of Math. (2) 150 (1999), no. 3, 1109-1149.

M. Rosen, Abelian varieties over C, Arithmetic geometry (Storrs, Conn., 1984),
Springer, New York, 1986, pp. 79-101.

J-P. Serre, Algebraic groups and class fields, Springer-Verlag, New York, 1988,
Translated from the French.

Jean-Pierre Serre, Lie algebras and Lie groups, second ed., Lecture Notes in
Mathematics, vol. 1500, Springer-Verlag, Berlin, 1992, 1964 lectures given at
Harvard University.

J.H. Silverman, The arithmetic of elliptic curves, Springer-Verlag, New York,
1992, Corrected reprint of the 1986 original.

, Advanced topics in the arithmetic of elliptic curves, Springer-Verlag,
New York, 1994.

84



[Spr79]

ST68]

[Tat63]

[Tat67]

[Tat75]

[Tat95]

[Tay02]

[Wat79]

[Weis2]

[Wei94]

T. A. Springer, Reductive groups, Automorphic forms, representations and L-
functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977),
Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.1.,
1979, pp. 3-27.

J-P. Serre and J. T. Tate, Good reduction of abelian varieties, Ann. of Math. (2)
88 (1968), 492-517.

J. Tate, Duality theorems in Galois cohomology over number fields, Proc. Internat.
Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963,
pp- 288-295.

J. T. Tate, Fourier analysis in number fields, and Hecke’s zeta-functions, Alge-
braic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson,
Washington, D.C., 1967, pp. 305-347.

J. Tate, Algorithm for determining the type of a singular fiber in an elliptic
pencil, Modular functions of one variable, IV (Proc. Internat. Summer School,
Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1975, pp. 33-52. Lecture Notes
in Math., Vol. 476.

, On the conjectures of Birch and Swinnerton-Dyer and a geometric ana-
log, Séminaire Bourbaki, Vol. 9, Soc. Math. France, Paris, 1995, pp. Exp. No.
306, 415-440.

R. Taylor, Galois representations, Proceedings of the International Congress of
Mathematicians, Vol. I (Beijing, 2002) (Beijing), Higher Ed. Press, 2002, pp. 449—
474.

William C. Waterhouse, Introduction to affine group schemes, Graduate Texts in
Mathematics, vol. 66, Springer-Verlag, New York, 1979.

André Weil, Adeles and algebraic groups, Progress in Mathematics, vol. 23,
Birkhauser Boston, Mass., 1982.

Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in
Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994.

85



