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Abstract. In this brief article we prove local-global compatibility for holomorphic Siegel
modular forms with Iwahori level. In previous work we proved a weaker version of this result
(up to a quadratic twist) and one of the goals of this article is to remove this quadratic twist
by different methods, using p-adic families. We further study the local Galois representation
at p for nonregular holomorphic Siegel modular forms. Then we apply the results to the
setting of modular forms on GL(2) over a quadratic imaginary field and prove results on the
local Galois representation `, as well as crystallinity results at p.

Introduction

Let π be an irreducible cuspidal automorphic representation of GSp(4,AQ) such that π∞
is a holomorphic discrete series representation, and such that the functorial lift of π to GL(4)
(whose existence is guaranteed by [22]) is a cuspidal representation. Then for every prime
number ` there exists a continuous Galois representation ρπ,` : GQ → GL(4,Q`) such that
LS(π, spin, s − 3

2
) = LS(ρπ,`, s) for a finite set S of “bad” primes (cf. [18], [13], [23], [22],

[16]; for more details see §1).
This article is concerned, among others, with the local Galois representations ρπ,`|GQp

(via

the associated Weil-Deligne representation) when p ∈ S, the cases p 6= ` and p = ` being
interrelated.

Theorem A. For π as above, if ` 6= p > 2 and πp is Iwahori-spherical, then

WD(ρπ,`|GQp
)ss ∼= ι rec(πp ⊗ ||−3/2)ss

where ι : C ∼= Q`, and rec is the local Langlands correspondence for GSp(4). If, moreover,
πp is assumed to be tempered or generic, then

WD(ρπ,`|GQp
)Fr-ss ∼= ι rec(πp ⊗ ||−3/2)

A previous result of the author’s (Theorem 1.2) obtained the local-global compatibility
result of Theorem A potentially up to a quadratic twist, via the doubling method and
local converse theorems. We prove Theorem A using a different approach: knowing that
local-global compatibility is satisfied up to a potentially quadratic twist allows one to move
between the p-adic and the `-adic Galois representations and the potential quadratic twist
is removed using Kisin’s work on crystalline periods on eigenvarieties.

We would like to remark that although Theorem A is obtained for Iwahori spherical rep-
resentations, there are methods to deduce local-global compatibility in general from this
setting, using strong base change, which is not yet available for non globally generic rep-
resentations on GSp(4). Such a method was successfully used, e.g., by [3], based on the
analogous result for Iwahori level representations in [2], the idea being that one can use
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solvable base change to reduce the ramification to the case of Iwahori level. One does have
base change results for GSp(4) using functorial lifts to GL(4), but they do not suffice since
such functorial lifts are not proven to be strong.

One may wonder what the relevance of these arguments is in the context of Arthur’s
book(s) on functorial transfer between matrix groups. Arthur’s functorial transfers do not
give a local identification of L-parameters, but character identities; to get from these char-
acter identities to L-parameters one needs to overcome nontrivial technical difficulties. The
proof of Theorem A can be thought of as bypassing these technical difficulties.

The second result of this article concerns regular algebraic cuspidal representations π of
GL(2,AK) where K is an imaginary quadratic field. Assuming that the central character
of π is base changed from Q, for a prime ` there exists a continuous Galois representation
ρπ,` : GK → GL(2,Q`) such that LS(π, s − 1

2
) = LS(ρπ,`, s) for a finite set of places S (cf.

[9], [19], [4]). The following theorem is the main result of the author’s doctoral thesis ([10]),
and answers a question posed by Andrew Wiles:

Theorem B. Let π be as above, and let v /∈ S be a place of K. If v = p is inert, assume that
the Satake parameters of πv are distinct; if p = v · vc is split, assume that the four Satake
parameters of πv and πvc are distinct. Then ρπ,p|GKv is a crystalline representation.

The condition on the Satake parameters being distinct is structural to the argument; in
fact, one doesn’t even obtain that the representation is Hodge-Tate without this assumption.
In the case when π is ordinary at p, this result followed from [20].

Our final result concerns the `-adic local representations associated to π:

Theorem C. Let π be as above, and let v be a place of K such that Kv/Qp is unrami-

fied and πv (and πvc, if v is split) are Iwahori-spherical. Then for ι : C ∼= Q` we have
WD(ρπ,`|GKv )ss ∼= ι rec(πv||−1/2)ss.

We would like to remark that, since strong cyclic base change is available for GL(2), one
could extend this result in general, assuming that Theorem A is extended to totally real
fields. This would require two ingredients: one is a weak functorial lift from GSp(4) to
GL(4) over totally real fields, which should follow from the work of Arthur, and two an
extension of Kisin’s results on crystalline periods to extensions of Qp.

The article is organized as follows: in §1 we list previous results for GSp(4) over Q and
GL(2) over K; in §2 we describe p-adic families of holomorphic Siegel modular forms, and
generic classical points in such families. In §3 we deduce information about the local Galois
representations for both regular and nonregular holomorphic Siegel modular forms. Finally,
in §4 we study the local Galois representations attached to regular algebraic cuspidal repre-
sentations on GL(2,AK).

After the completion of the research presented in this article the author was made aware
of two recent preprints of C.P. Mok, one generalizing the author’s results on families of Siegel
modular forms to Siegel-Hilbert modular forms, and another, studying Galois representations
attached to Siegel-Hilbert modular forms, whose results at ` = p are extensions of the
author’s thesis.

1. Notations and Known Results

We begin by recalling some notation. If K is a number field, AK is the ring of adèles.
The group GSp(4) consists of 4 × 4 matrices such that gtJg = λ(g)J where λ(g) is the
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multiplier character and J =

(
I2

−I2

)
, while Sp(4) = kerλ. The spin representation spin :

GSp(4)→ GL(4) gives the spin L-function LS(π, spin, s), while the standard representation
std : GSp(4)→ GL(5) gives the standard L-function LS(π, std, s), the latter being defined at
all places, using the doubling method. A Frobenius semisimple Weil-Deligne representation
is a pair (r,N) of a semisimple continuous Galois representation r : GK → GL(V ) and a
nilpotent matrix N ∈ End(V ) such that r(g) ◦N = | rec−1(g)|KN ◦ r(g); given a continuous
`-adic Galois representation of GKv where v | p one obtains an associated Weil-Deligne
representation via Grothendieck’s `-adic monodromy theorem, while given a continuous p-
adic Galois representation one obtains a Weil-Deligne representation using p-adic Hodge
theory.

Let us now recall the result on the existence of Galois representations attached to Siegel
modular forms.

Theorem 1.1. Let π be a cuspidal automorphic representation of GSp(4,AQ) such that π∞
is a holomorphic discrete series representation, and such that the functorial lift of π to GL(4)
is cuspidal. Then for every prime number ` there exists a continuous Galois representation
ρπ,` : GQ → GL(4,Q`) and a finite set S of places such that LS(π, spin, s) = LS(ρπ,`, s). In
particular, if p /∈ S then ρπ,` is unramified at p. Moreover, ρπ,p is crystalline at p, and the
characteristic polynomial of Φcris equals the characteristic polynomial of Frobp acting on ρπ,`
for ` 6= p.

The compatible system of `-adic representations was first constructed by Taylor in [18],
where he was able to deduce the theorem for S of density 0. As stated, the theorem was
finalized by Laumon in [13] and Weissauer in [23]. When π∞ is a discrete series representa-
tion which is not holomorphic, but such that π is globally generic, the construction of the
Galois representation is due to [16]. Weissauer’s results on global L-packets [22] provides an
alternative construction of the Galois representations in the theorem. Finally, the result on
Φcris was first proven by Urban in [20] studying Hecke operators in the boundary of Shimura
varieties for GSp(4), but can also be deduced from Sorensen’s construction.

In [11] we proved that if for ` 6= p > 2 the local representation πp is a constituent of an
induced representation from the Borel subgroup then local-global compatibility is satisfied
up to semisimplification and a quadratic twist.

Theorem 1.2. Let π be a cuspidal automorphic representation of GSp(4,AQ) such that π has
a cuspidal lift to GL(4,AQ) and such that π∞ is a holomorphic discrete series representation.
Let p be a finite place such that πp is a subrepresentation of an representation induced from a

Borel subgroup. If πp is assumed to be either tempered or generic, then for every ι : C ∼= Q`

we have

WD(ρπ,`|GQp
)Fr-ss ∼= ι rec(πp ⊗ |λ|−3/2η)

where rec is the local Langlands correspondence for GSp(4) defined by Gan and Takeda in
[7], λ is the multiplier character, and η is either trivial, or a quadratic character. If πp is
not assumed to be tempered or generic, the above equality of Weil-Deligne representations
holds up to semisimplification.

This was proven in [11] using local converse theorems for the standard γ-factors for Sp(4)
arising from the doubling method in conjunction with Casselman’s proof of multiplicity one
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for GL(2) using the global functional equation, as well as Sorensen’s result on local-global
compatibility for globally generic Siegel modular forms ([16]). The reason the possibily
quadratic character η appears is the following: the standard representation loses information
about the multiplier character, but we may recover the square of the multiplier character
using the determinant. We do not go into the details of the proof of this result, as the proof
of Theorem A is via a different method.

If in the cuspidal representation π the infinite component π∞ is a holomorphic limit of
discrete series, one can still associate continuous `-adic Galois representations ρπ,` to π; they
were constructed using p-adic congruences (families) by Taylor ([17]), obtaining local-global
compatibility at unramified primes for ` 6= p (at almost all places; the compatibility at all
but finitely many places was later completed by Laumon [13] and Weissauer [23]).

Finally, let us recall the existence of Galois representations attached to regular algebraic
cuspidal automorphic representations of GL(2,AK) where K is a quadratic imaginary field.

Theorem 1.3. Let π be a regular algebraic cuspidal automorphic representations of GL(2,AK)
where K is a quadratic imaginary field, such that the central character χπ has the property
that χπ = χcπ, where c is complex conjugation. Then for each prime ` there exists a con-
tinuous Galois representation ρπ,` : GK → GL(2,Q`) and a finite set S of places of K such
that if v /∈ S then ρπ,` is unramified at v and LS(π, s) = LS(ρπ,`, s − 1/2). The finite set S
consists of the infinite places and finite places v such that either Kv/Qp is ramified, or one
of πv and πvc is ramified.

It is useful to summarize the construction of these Galois representations. There are
three possibilities. Either π ⊗ δ ∼= π for some quadratic character δ, in which case π is the
automorphic induction of a character of the splitting field of δ, and the Galois representation
and its properties follow from global class field theory; or π⊗ν ∼= (π⊗ν)c for some character
ν, in which case π ⊗ ν is a base change from Q, and the Galois representation and its
properties follow from the theory over Q; or in the remaining cases, we may use that there
is an accidental isomorphism (GL(2,AK) × A×Q)/{(xI2, NK/Q(x))|x ∈ A×K} ∼= GSO(VK ,AQ)
where VK is a four dimensional quadratic vector space over Q such that the signature of
VK ⊗ R is (3, 1). Then for sufficiently many finite order characters µ and suitable choices

of lifts π̂ ⊗ µ of π ⊗ µ from GSO(VK ,AQ) to GO(VK ,AQ), the theta transfer Θ(π̂ ⊗ µ) from
GO(VK ,AQ) to GSp(4,AQ) is an irreducible cuspidal automorphic representation Πµ such
that Πµ

∞ is a holomorphic limit of discrete series with Harish-Chandra weight (k − 1, 0),

where k ≥ 2 is the integer such that the Langlands parameter of π∞ is z 7→
(
z1−k

z1−k

)
.

Then one can recover the Galois representation ρπ,` such that for every chosen µ one has

ρΠµ,` = IndQ
K(ρπ,`⊗µ). Presupposing the existence of Galois representations for holomorphic

Siegel modular forms, this was achieved by Harris-Soudry-Taylor ([9]), Taylor ([19]) and
Berger-Harcos ([4]).

2. p-adic Families of Holomorphic Siegel Modular Forms

The proof of Theorem A will require switching from ` in Theorem 1.2 to p and using
p-adic families of holomorphic Siegel modular forms. Rigid analytic families of finite slope
overconvergent Siegel modular forms have now been constructed by several methods. The
first one, due to Urban ([21] using overconvergent cohomology), works for regular forms, the
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second, due to the author ([10, Chapter 3]) generalizes the work of Kisin and Lai in the
context of Hilbert modular forms, while a third one is due to Andreatta, Iovita and Pilloni
([1]). In particular, we have ([10, Proposition 4.2.6]):

Theorem 2.1. Let π be a cuspidal representation of GSp(4,AQ) such that π∞ is a holo-
morphic (limit of) discrete series of Harish-Chandra parameter κ. Assume also that π has

nontrivial invariant under the group U00(Np), where U00(Np) contains matrices ≡
(
I2 02

02 I2

)
(mod Np). Then there exists a one-dimensional rigid analytic neighborhood W of κ and a
rigid family E over W, parametrizing systems of Hecke eigenvalues attached to finite-slope
overconvergent holomorphic Siegel modular forms of level Γ00(Np). Moreover, there exists
an analytic Galois representation ρ : GQ → GL(4,OE) and a dense set of classical points
ft on E with weight κ + pt(p − 1, p − 1) such that the specialization of ρ at ft is the Galois
representation attached to ft.

Remark. We would like to remark that the rigid variety in Theorem 2.1 was obtained using
Zp-exponents of a specific Eisenstein series, in the style of Coleman-Mazur and Kisin-Lai,
and thus it is necessarily one-dimensional. Moreover, p-power exponents of the Hasse invari-
ant times the original Siegel modular form provide the dense set of classical points which,
crucially, also are of the same level, since the Hasse invariant has level 1.

According to the previous remark we observe that if the local representation πp is an
unramified principal series (in other words, if the Siegel modular eigenform in π is old at p)
then the dense set of classical points ft on the eigenvariety contains Siegel modular forms
which are old at p. In effect, this says that the generic classical points converging to π are
unramified at p. We would like a similar statement for any πp of Iwahori level. Indeed,
if πp is Iwahori then by [6, Proposition 6.4.7] then the generic very classical points on the
eigenvariety will be old at p.

3. Galois Representations for Siegel Modular Forms

Our first application of the existence of the one dimensional eigenvariety described in
Theorem 2.1 is to the study of crystallinity of the p-adic Galois representations attached
to nonregular holomorphic Siegel modular forms which are unramified at p. The following
theorem is based on [10, Chapter 4].

Theorem 3.1. Let π be a cuspidal automorphic representation of GSp(4,AQ) such that
π∞ is the limit of discrete series representation of Harish-Chandra parameter (k, 0) and such
that the smooth representation πp of GSp(4,Qp) is an unramified principal series with Satake
parameters α, β, γ, δ. Then dimQp Dcris(ρπ,p|GQp

) ≥ #{α, β, γ, δ}. In particular, if the Satake

parameters are distinct, the p-adic Galois representation ρπ,p|GQp
is crystalline.

Proof. Let α be one of the Satake parameters and let fα be one of the p-stabilizations of
the eigenform f in π. The form fα has level Γ00(Np) and is old at p, and is an eigenform
of the Up,1 operator with eigenvalue α. (To see why such p-stabilizations exist for Siegel
modular forms see [10, pp. 21-22].) Also let fn be the holomorphic Siegel modular forms of
level (k, 0) + pn(p− 1, p− 1) for n >> 0 appearing in fEpn , where E is the Hasse invariant;
let fα,n be a p-stabilization of fn such that fα,n corresponds to the classical points on the
eigencurve converging to fα in Theorem 2.1.
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Then fα,n will have the same level as fn which is unramified at p. Therefore, fα,n generates
an automorphic representation πα,n which is unramified at p. But then ρπα,n,p|GQp

will be
crystalline, and by Theorem 1.1, one may find an eigenvalue αn of Φcris such that αn ≡ α
(mod pn). In fact, αn is the Up,1-eigenvalue of fα,n.

We now make recourse to Kisin’s result on analytically varying crystalline periods on
eigenvarieties [12, Corollary 5.15]. The result in question states that, since the infinitely
many points fα,n lie on a one-dimensional rigid variety and are thus dense, the fact that
dimDcris(ρπn,p|GQp

)Φcris=αn ≥ 1 implies that dimDcris(ρπ,p|GQp
)Φcris=α ≥ 1. Repeating this

argument for each of the four Satake parameters will lead to the theorem. �

Our second application is to the study of ramified Galois representations attached to
Iwahori level regular holomorphic Siegel modular forms.

Theorem A. For π a cuspidal representation of GSp(4,AQ), not CAP, and such that π∞
is a holomorphic discrete series, if ` 6= p > 2 and πp is Iwahori-spherical, then

WD(ρπ,`|GQp
)ss ∼= ι rec(πp ⊗ ||−3/2)ss

where ι : C ∼= Q`. If, moreover, πp is assumed to be tempered or generic, then

WD(ρπ,`|GQp
)Fr-ss ∼= ι rec(πp ⊗ ||−3/2)

Proof. Let πp be the smooth Iwahori-spherical representation of GSp(4,Qp) in the auto-
morphic representation π. The representation πp, according to the Sally-Tadić classification
([15]), falls into one of six classes of representations, and is a quotient of an unramified induc-
tion from the Borel subgroup. Let X be the set of Up,1-eigenvalues of the p-stabilizations of
π. Then in the eigenvariety the Siegel modular forms fn will generically be unramified at p,
and thus by the same argument as in the proof of Theorem 3.1 it follows that the crystalline
Frobenius acting on Dcris(ρπ,p|GQp

) will have elements of X as eigenvalues.
Let πg be the globally generic cuspidal automorphic form weakly equivalent to π whose

existence is guaranteed by [22] (and used in the proof of Theorem 1.2). Then πp ∼= πgp ⊗ η.

By [3, Theorem A] it follows, since WD(ρπ,p|GQp
)Fr-ss ∼= ι rec(πp ⊗ |λ|−3/2η) has crystalline

periods, that the quadratic character η is unramified. (Note that we are allowed to use the
aforementioned result since functorial lifts of regular cuspidal automorphic representations
to GL(4) are readily Shin-regular.) If nontrivial, it must be that η(p) = −1, and thus it
follows that if α is a crystalline period, then αη(p) = −α is also a crystalline period.

To show this cannot happen we must use the explicit description of the reciprocity map
for Iwahori-spherical representations, that can be found in [14, §A.5], as well as [3, Theorem
A] (although, since we already know we are using Iwahori-level forms, it would be enough to
use [2, Theorem A]). Writing Eij for the 4×4 matrix with 1 at position (i, j) and 0 elsewhere,
let N1 = E23, N2 = E14, N3 = N1 +N2, N4 = E12 −E34 and N5 = N1 +N4. The following is
a summary of the classes of Iwahori-spherical representations, the semisimple L-parameter,
and the possible monodromy matrices, contained in [14, Table A.7]:
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Class recss N
I χ1χ2σ, χ1σ, χ2σ, σ 0
II χ2σ, ν1/2χσ, ν−1/2χσ, σ 0, N1

III ν1/2χσ, ν−1/2χσ, ν1/2σ, ν−1/2σ 0, N4

IV ν3/2σ, ν1/2σ, ν−1/2σ, ν−3/2σ 0, N1, N4, N5

V ν1/2σ, ν1/2ξσ, ν−1/2ξσ, ν−1/2σ 0, N1, N2, N3

VI ν1/2σ, ν1/2σ, ν−1/2σ, ν−1/2σ 0, N1, N3

The case of class I is treated already in Theorem 1.1. Writing s = σ(p), c = χ(p) and noting
that ξ(p) = −1 the possible crysalline eigenvalues on rec are the following

Class Eigenvalues
II c2s, p−1/2cs, s or c2s, p1/2cs, p−1/2cs, s
III p−1/2cs, p−1/2s or p1/2cs, p−1/2cs, p1/2s, p−1/2s
IV p−3/2s or p1/2s, p−3/2s or p3/2s, p−1/2s, p−3/2s or p3/2s, p1/2s, p−1/2s, p−3/2s
V −p−1/2s, p−1/2s or p1/2s,−p−1/2s, p−1/2s or −p1/2s,−p−1/2s, p−1/2s

or p1/2s,−p1/2s,−p−1/2s, p−1/2s
VI p−1/2s, p−1/2s or p1/2s, p−1/2s, p−1/2s or p1/2s, p1/2s, p−1/2s, p−1/2s

The only class where there exists the possibility that the set of crystalline eigenvalues is
closed under negation is Vd, in which case the Galois representation is isomorphic to its
quadratic twist and so there is nothing to prove. �

4. Galois Representations for GL(2) over Quadratic Imaginary Fields

We will study on the one hand the p-adic Galois representation ρπ,p at places v /∈ S, and
on the other hand the `-adic Galois representation ρπ,` at certain places v ∈ S. Theorem B
is the main result of the author’s doctoral thesis, and is [10, Theorem 5.3.1].

Theorem B. Let π be a regular algebraic cuspidal representation of GL(2,AK) such that
the central character of π is base changed from Q, and let v /∈ S be a place of K. If v = p
is inert, assume that the Satake parameters of πv are distinct; if p = v · vc is split, assume
that the four Satake parameters of πv and πvc are distinct. Then ρπ,p|GKv is a crystalline
representation.

Proof. Let’s start with p = v inert. Choose µ such that µv is trivial and such that ρπ,p⊗µ 6∼=
(ρπ,p⊗µ)c. Then IndQ

K(ρπ,p⊗µ)|GQp
= Ind

Qp
Kv

(ρπ,p|GKv ). But D∗cris(ρΠµ,p|GKp ) ∼= D∗cris(ρπ,p|GKv )

is a four dimensional Qp-vector space if and only if D∗cris(ρπ,p|GKv ) is a two dimensional Kv-
vector space (note that Kv/Qp is unramified since v /∈ S). Thus it is enough to show that
ρΠµ,p|GKv is crystalline.

Similarly, in the case p = v · vc split, choose µ such that µv and µvc are trivial. Then
IndQ

K(ρπ,p⊗µ)|GQp
= ρπ,p|GKv⊕ρπ,p|GKvc . ThenD∗cris(ρΠµ,p|GKv ) ∼= Dcris(ρπ,p|GKv )⊕Dcris(ρπ,p|GKvc )

is crystalline if and only if both ρπ,p|GKv and ρπ,p|GKvc are crystalline. Again, it is enough to

show that ρΠµ,p|GKv is crystalline.
Let αv and βv be the Satake parameters of πv. If p = v is inert then the Satake parameters

of Πµ
p are ±√αv,±

√
βv, which are all distinct; if p = v · vc then the Satake parameters of Πµ

p

are αv, βv, αvc , βvc which are assumed to be distinct. Therefore, by Theorem 3.1 it follows
that ρΠµ,p|GKv is crystalline. �
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Finally, we apply the local-global compatibility result in Theorem A to the study of the
`-adic Galois representations in ρπ,` at certain bad places v.

Theorem C. Let π be as above, and let v be a place of K such that Kv/Qp is unrami-

fied and πv (and πvc, if v is split) are Iwahori-spherical. Then for ι : C ∼= Q` we have
WD(ρπ,`|GKv )ss ∼= ι rec(πv||−1/2)ss.

Proof. Choose µ as in the proof of Theorem B. Then Πµ
p is Iwahori-spherical (this follows

in the case of p = v · vc split from [8, Theorem A.10 (i,iv,v,vi)], and in the case that
p = v is inert from [8, Theorem A.11 (iii,iv)]). Finally, finding congruences between Πµ and
regular holomorphic Siegel modular forms of (necessarily) Iwahori level, Theorem A gives
WD(ρΠµ,`|GQp

)ss ∼= ι rec(Πp||−3/2)ss, since a limit of unramified characters stay an unramified

character. Finally, an argument as in [4, §6] gives the required local-global compatibility. �

5. Concluding Remarks

The proof of Theorems 1.2 and A carry over to totally real fields as long as the following
are assumed: first, a convenient reference for functorial transfer from GSp(4) to GL(4) is
made available; this transfer should follow from the work of Arthur, or alternatively from
the work of Wesselman; second, a generalization of Kisin’s results on crystalline periods to
finite extensions of Qp.

In Theorems 1.2 and A one downside is that for representations which are not tempered
or generic one gets local-global compatibility up to semisimplification. A comparison of
monodromy operators will likely follow from the program initiated by Caraiani in [5] to
prove the Ramanujan-Petersson conjecture for GL(n).

As already mentioned, extending Theorem C can be approached using (strong) base change
for GL(2) as well as patching arguments as in [3].
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