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Abstract. We prove local global compatibility (up to a quadratic twist) of Galois repre-
sentations associated to holomorphic Hilbert-Siegel modular forms in many cases (induced
from Borel or Klingen parabolic). For Siegel modular forms, when the local representation is
an irreducible principal series we get local global compatibility without a twist. We achieve
this by proving a version of rigidity (strong multiplicity one) for GSp(4) using, on the one
hand the doubling method to compute the standard L-function, and on the other hand the
explicit classification of the irreducible local representations of GSp(4); then we refer to
[Sor10] for local global compatibility in the case of globally generic Hilbert-Siegel modular
forms.

1. Introduction

To a holomorphic modular form f of weight k ≥ 2 and level Γ1(N) Deligne associates
an ℓ-adic Galois representation ρf : GQ = Gal(Q/Q) → GL(2,Qℓ) which at primes p ∤ Nℓ
is unramified such that the characteristic polynomial of Frobp is the same as the Hecke
polynomial at p of the modular form f . By completely different methods, to the local
representation at p of the automorphic representation associated to f Jacquet and Langlands
associate a local Galois representation ρp : GQp

→ GL(2,C). One of the basic premises of
the Langlands program over number fields is that the local representation ρp should, in some
sense, be the restriction to GQp

of the global representation ρf . This phenomenon is known
as local-global compatibility and for modular forms it was proven for p 6= ℓ by Carayol and
for p = ℓ by Saito.
More generally, one desires to attach to each regular algebraic cuspidal representation of a

reductive group a global Galois representation compatible with local Galois representations
to be attached to the local components of the automorphic representation. Both these
statements are still conjectural in general, but such results have been obtained for Hilbert
modular forms (the case of GL(2) over totally real fields) and to GL(n) over totally real
or CM fields with a restriction on the allowed algebraic cuspidal representation (essentially
self-dual for totally real fields and essentially conjugate self-dual for CM fields).
The focus of this article is the study of the above described constructions in the context of

the reductive group GSp(4) over a totally real field F , in which case the classically defined
forms are known as Hilbert-Siegel modular forms. The expected result for regular algebraic
cuspidal representations is the following (for a description of Hilbert-Siegel modular forms
and the source of the following conjecture see the introduction to [Sor10])

Conjecture 1.1. Let F be a totally real field and let π be a cuspidal automorphic represen-
tation of GSp(4,AF ) and assume there is a cuspidal weak lift Π of π to GL(4,AF ). If λ is the
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multiplier character on GSp(4), assume there exists an integer w such that π◦ = π ⊗ |λ|w/2
is unitary.
For each archimedean place v assume that πv is an essentially discrete series representation

with Harish-Chandra parameter µ(v) = (µ1(v), µ2(v)) with µ1(v)+µ2(v) ≡ w (mod 2). Then
for each ι : Qℓ

∼= C there is a unique continuous irreducible representation ρπ,ι : GF →
GSp(4,Qℓ) such that

− (Local-global compatibility) For each nonarchimedean place:

ιWD(ρπ,ι|GFv
)Fr-ss ∼= recGT(πv ⊗ |λ|−3/2)

(here WD is the Weil-Deligne representation associated to the local Galois represen-
tation ρπ,ι|GFv

, Fr-ss refers to Frobenius semisimplification, and recGT is the local
Langlands reciprocity map constructed in [GT10a, Main Theorem, p. 1])

− (Ramanujan-Petersson conjecture) π◦ is tempered everywhere.
− ρ∨π,ι

∼= ρπ,ι ⊗ χ−1 where χ = ωπ◦χ−w−3
cycl is totally odd.

The first result towards the conjecture was made in the context of globally generic auto-
morphic representations and is contained in the main theorem of [Sor10, p. 627], updated
to include recent results ([Car10, Theorems 1.1 and 1.2]) for automorphic representations of
GL(n):

Theorem 1.2 (Sorensen). Let π be as in the conjecture such that π is globally generic,
i.e., it has a global Whittaker model. Then local-global compatibility holds for v ∤ ℓ. When
v | ℓ then ρπ,ι|GFv

is de Rham of Hodge-Tate weights (w − µ1(v
′) − µ2(v

′))/2 + {0, µ2(v
′) +

1, µ1(v
′) + 2, µ1(v

′) + µ2(v
′) + 3} where v′ is the infinite place such that ι(v′) = v; the Galois

representation is crystalline if πv is unramified.

It is now worth explaining what is left towards the conjecture given the methods of [Sor10]
and the impending publication of the work of Arthur on functorial transfer between semisim-
ple matrix groups. Indeed now that the fundamental lemma is a theorem Arthur’s expected
work gives a functorial transfer of, the the language of the conjecture, the representation π
on GSp(4) to the representation Π on GL(4). However, the compatibility of L-parameters is
checked at unramified places, while at ramified places what is being provided are character
identities; deducing the compatibility of L-parameters from this is a formidable task and
this work can be thought of as bypasses of this problem.
A brief remark about the condition of genericity in the above theorem: the local repre-

sentation πv is generic if it has a Whittaker model, while π is globally generic if it has a
global Whittaker model. If v is an archimedean place and πv is a discrete series, then πv is
not generic if it is holomorphic; if it is generic it appears in the H2,1 cohomology of a local
system on a Shimura variety associated to GSp(4). If the global representation π is generic
then each local representation πv is generic. The converse is not known to hold ([JS07, p.
383]).
We will study the above conjecture in the case when πv is holomorphic for each archimedean

place v, hence, π is not globally generic. We keep the assumption that there is a weak lift
to GL(4) as this, while expected, is known only in the case of F = Q by [Wei07, Theorem
1]. The strategy is to use the strong theta lift of Π from GL(4) to a globally generic πG

cuspidal automorphic representation on GSp(4) ([GT10a, Theorem 12.1]), whose local rep-
resentations at the archimedean places are in the same L-packets as the ones for π. Then
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π and πG will be weakly equivalent and we will prove a rigidity statement for GSp(4) and
then apply the Conjecture to the case of the globally generic πG: by the Chebotarëv density
theorem ρπ,ι ∼= ρπG,ι (this can be taken either as definition or as a theorem in the case when
F = Q and ρπ,ι is constructed by Taylor et al.).
Throughout this article we will assume that the local place v does not divide 2. The

reason is that when v | p > 2 all supercuspidal L-parameters are dihedral, and the list of
L-parameters in [Vig86] is complete.
The main results of this paper are sometimes too technical to summarize, but we include

the following example result:

Theorem 1.3. Let π be as in the conjecture such that πv is a holomorphic discrete series
for every infinite place v. Then for every finite place v ∤ 2 such that πv has Iwahori invariant
vectors and is generic local-global compatibility is satisfied up to a quadratic twist and the
Ramanujan-Petersson conjecture is satisfied. If πv is not assumed to be generic, then local-
global compatibility is satisfied up to semisimplification and a quadratic twist.

The main results of this paper are Corollary 6.3 on local-global compatibility of mon-
odromy, Corollary 6.4 on the Skinner-Urban conjecture for para-sphericals, Proposition 6.5
on rigidity for GSp(4) and Theorem 7.1 on local-global compatibility and temperedness of
generic local components of cuspidal automorphic representations.
This work was motivated by the author’s thesis, written under the supervision of Andrew

Wiles, and we are grateful to him and to Chris Skinner for suggesting the problem and for his
invaluable help. The intended application of this work is the study of Galois representations
associated to regular algebraic cuspidal automorphic representations of GL(2) over quadratic
imaginary fields.
We would like to thank Dinakar Ramakrishnan for his guidance in the final stages of this

project, and Claus Sørensen for many helpful discussions. Most of this article was written
while the author was a member of the Institute for Advanced Study, supported by NSF
grant DMS-0635607. We would like to thank the organizers of the special year on Galois
Representations for a wonderful research experience. We would like to acknowledge helpful
conversations with Wee Teck Gan, Erez Lapid and Shuichiro Takeda.

2. Rigidity and γ-factors

(2.1) The classical rigidity statement for GL(2) is the following: if two cuspidal automor-
phic representations with the same central character are weakly equivalent, then they are
isomorphic. This statement is usually combined with multiplicity one and known as strong
multiplicity one. We note that multiplicity one is known for globally generic representations
for GSp(4) by [JS07].
There are several proofs in the case of GL(2) and we recall [Cas73, Theorem 2]: if π1,v ∼=

π2,v for v 6∈ S then for all global characters η, π1,v ⊗ ηv ∼= π2,v ⊗ ηv. Considering the
Jacquet-Langlands γ-factors

γ(s, πv, ηv, ψv) = ε(s, πv ⊗ ηv, ψv)
L(1− s, π̃v ⊗ η−1

v )

L(s, πv ⊗ ηv)

(where ψ is an additive character) it follows by the global functional equation that
∏

v

γ(s, π1,v, ηv, ψv) = 1 =
∏

v

γ(s, π2,v, ηv, ψv)
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Let v ∈ S. For w 6∈ S, γ(s, π1,w, ηw, ψw) = γ(s, π2,w, ηw, ψw) by assumption. For w ∈ S−{v}
we may choose ηw very ramified in which case again

γ(s, π1,w, ηw, ψw) = ε(s, π1,w ⊗ ηw) = ε(s, π2,w ⊗ ηw) = γ(s, π2,w, ηw, ψw)

by [JL70, Proposition 3.8] (this is known as “stability” of γ-factors). Therefore we may
cancel out the equal terms and deduce that γ(s, π1,v, ηv, ψv) = γ(s, π2,v, ηv, ψv) for all ηv.
Since the central characters of π1 and π2 are the same (rigidity for global characters) it
follows by [JL70, Corollary 2.19] that π1,v ∼= π2,v.

(2.2) For more general groups, it is expected (by local-global compatibility and the Cheb-
otarëv density theorem) that if π1 and π2 are weakly equivalent then π1,v and π2,v are in a
same L-packet. In the cases when γ-factors can be defined with sufficiently good properties,
the above proof can be adapted. Indeed, in the case of GL(n) there is a theory of γ-factors
due to [GJ72] giving γ(s, π, σ, ψ) where π is an irreducible smooth representation of GL(n)
and σ is an irreducible smooth representation of GL(m). As above, using a global functional
equation and stability for γ-factors, one deduces that γ(s, π1,v, σv, ψv) = γ(s, π2,v, σv, ψv) for
all σv irreducible smooth representations of GL(m) for m = 1, . . . , n− 1. One then deduces
that π1,v ∼= π2,v. It is expected that one only needs m = 1, . . . , ⌊n/2⌋, but this is a theorem
only in the case of m = 1, . . . , n− 2 (cf. [Che06]).

(2.3) In the case of the group GSp(4) one expects that if π1 and π2 are two weakly equivalent
cuspidal automorphic representations then recGT(π1,v) ∼= recGT(π2,v) for all nonarchimedean
places v. However, the adaptation of the proof from the case of GL(n) is not apparent
because the definition of γ-factors for GSp(4) in [Sha90, Theorem 3.5] only applies to generic
representations. In the case of nongeneric representations Shahidi’s result gives information
about the Plancherel measure, which does not suffice for our purposes.

3. Standard γ-factors and the doubling method

(3.1) Let us recall the standard definition of γ-factors for (generic) local representations
of GL(n). For the representation π with (unique) Whittaker model W one defines two
zeta integrals, each of which gives a Whittaker functional. By uniqueness of the Whittaker
model, the two zeta integrals differ by a constant γ(s, π, ψ), which is a rational function
in q−s. For tempered representations π, the L-function L(s, π) is the inverse of the monic
polynomial in q−s which is the numerator of γ(s, π, ψ), while the ε-factor is defined such that

γ(s, πv, ηv, ψv) = ε(s, πv ⊗ ηv, ψv)
L(1− s, π̃v ⊗ η−1

v )

L(s, πv ⊗ ηv)

(3.2) There are two ways to define γ-factors for local nongeneric representations of GSp(4).
One, specific to GSp(4), uses Bessel models (generalized Whittaker models) and is achieved
in [PS97, §3]. However, the computation of the local L-function was done only in certain
cases. The other method, developed in a series of articles starting with [PSR86] and ending
with [LR], is known as the doubling method, which gives the standard γ-factors for Sp(4).
These have very good properties (known as the Ten Commandments) [LR, Theorem 4],
but are only defined for twists by characters. As previously mentioned, to show that the
local representations π1,v and π2,v on GL(4) are isomorphic, one needs to check equality of
γ-factors for twists by characters and representations of GL(2). We have to make do with
less.
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(3.3) Let us briefly review the doubling method for Sp(4). Let F be a local field and
V = (V, h) be a symplectic 4-dimensional vector space over F . Let V × V = (V × V, h�)
where h� = h⊕(−h). LetG = Isom(V) ∼= Sp(4) andG� = Isom(V×V) ∼= Sp(8). We identify
G×G with the subgroup of G� stabilizing V ×0 and 0×V . Let V ⋄ = {(v, v) : v ∈ V } ⊂ V ×V
and let S⋄ be the Siegel parabolic stabilizing V ⋄ and let G⋄ = G×G ∩ S⋄. For a character
ω of F×, let

IV(ω, s) = IndG
�

S⋄ (ω||s) ◦ det
be the normalized induction.
Let π be an irreducible smooth representation of Sp(4, F ), and let π̃ be the contragredient

representation. For elements f ∈ IV(ω, s) and α ⊗ α̃ ∈ π ⊗ π̃ there is a zeta integral
ZV(f, α ⊗ α̃) and an intertwining operator MV(ω, s) : IV(ω, s) → IV(ω−1,−s). Then, as in
the classical definition due to Tate, there is a Γ-factor such that

ZV(MV(ω, s)f, α⊗ α̃) = ΓV(s, π, ω)Z(f, α⊗ α̃)

(cf. [LR, p. 315])

(3.4) Finally, in [LR, §9], from ΓV(s, π, ω) one obtains γV(s, π, ω, ψ) where ψ is an additive
character of F . It has the property that if BC(π) is the expected functorial transfer of π
from Sp(4) to GL(5) then γV(s, π, ω, ψ) = γGJ(s,BC(π)⊗ω, ψ) where γGJ are the Godement-
Jacquet γ-factors.
The γV factors satisfy the following properties (we omit ψ from the formulae; here B is

the Borel, P is the Siegel parabolic and Q is the Klingen parabolic), which are part of [LR,
Theorem 4]:

Theorem 3.5. Let π be an irreducible smooth representation of GSp(4, K) where K is a
finite extension of Qp.

− If π is a subrepresentation of IndGB χ1 × χ2 then

γV(s, π, ω) = γ(s, χ1ω)γ(s, χ
−1
1 ω)γ(s, χ2ω)γ(s, χ

−1
2 ω)γ(s, 1)

− If π is a subrepresentation of IndGP σ then γV(s, π, ω) = γ(s, σ⊗ ω)γ(s, σ̃⊗ ω)γ(s, 1).
Here π is a representation of GL(2).

− If π is a subrepresentation of IndGQ χ⋊σ then γV(s, π, ω) = γ(s, χω)γ(s, χ−1ω)γ(s, σ⊗
ω,Ad⊗1). Here σ is a representation on Sp(2) ∼= SL(2).

− If F is a number field and π is a cuspidal automorphic representation of Sp(4,AF )
then there is a global functional equation

∏

v

γV(s, πv, ωv, ψv) = 1

We would like to mention the following stability property of the γ-factors obtained from
the doubling method, which is the content of [RS05, Theorem 1]

Theorem 3.6. If π1 and π2 are admissible representations of Sp(4, F ) where F is a nonar-
chimedean local field and ω is a sufficiently ramified character, then γV(s, π1, ω, ψ) = γV(s, π2, ω, ψ).

(3.7) To recover the L-functions in the case of tempered representations, we have already
mentioned that one uses the numerator of the γ-factor. In the case of nontempered repre-
sentations, one writes the representation uniquely as a Langlands quotient of the induction
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of a tempered representation on a Levi subgroup, and one defines the L-function to be the
L-function of this tempered representation.

4. Rigidity for GSp(4)

Conjecture 4.1 (Rigidity). Let π1 and π2 be two weakly equivalent cuspidal automorphic
representations of GSp(4,AF ). Then recGT(π1,v) ∼= recGT(π2,v) for all places v.

(4.2) Let π1 and π2 be two weakly equivalent cuspidal automorphic representations of
GSp(4,AF ). Let S be a finite set of places such that π1,v ∼= π2,v for v /∈ S. For i = 1, 2 let π′

i

be an irreducible component of the restriction of πi to Sp(4,AF ). Then π
′
i,v is an irreducible

component of the restriction of πi,v to Sp(4, Fv). By [GT10b, Main Theorem, (v)] it follows
that recGT(π

′
i,v) = std ◦ recGT(πi,v). By [GT10b, Main Theorem, (i)] and [GT10a, Theorem

8.3]we have

γV(s, π′

i,v, ωv, ψv) = γ(s, recGT(π
′

i,v)⊗ ωv, std⊗ std, ψ)

= γ(s, recGT(πi,v)⊗ ωv, std⊗ std, ψ)

= γ(s, πi,v ⊗ ωv, std⊗ std, ψ)

where the last equality makes sense for generic representations πi,v. For w /∈ S, (we may
increase S to contain all representations which are not unramified principal series) we have
γ(s, π1,w⊗ωw, std⊗ std, ψw) = γ(s, π2,w⊗ωw, std⊗ std, ψw), and therefore γV(s, π′

1,w, ωw, ψw) =

γV(s, π′
2,w, ωw, ψw).

(4.3) Fix v ∈ S and let w ∈ S − {v}. Making ωw sufficiently ramified, Theorem 3.6 implies
that

γV(s, π′

1,w, ωw, ψw) = γV(s, π′

2,w, ωw, ψw)

Finally, by the global functional equation in Theorem 3.5 and the above equalities of γ-
factors, we deduce that

γV(s, π′

1,v, ωv, ψv) = γV(s, π′

2,v, ωv, ψv)

for all characters ωv, or, equivalently,

γ(s, recGT(π1,v)⊗ ωv, std⊗ std, ψv) = γ(s, recGT(π2,v)⊗ ωv, std⊗ std, ψv)

(4.4) Since we only have equality of the γ-factors for twists by characters, we cannot ap-
peal to general converse theorems and we must compute the standard γ-factors for all the
irreducible smooth representations of GSp(4) over local fields and analyze when two such
factors can be equal.

5. Representations of GSp(4) over p-adic fields

(5.1) Let F be a finite extension of Qp, let ̟F be a uniformizer and OF be the ring of
integers. The irreducible smooth nonsupercuspidal representations of GSp(4, F ) have been
classified by [ST93] and the classification appears concisely in [RS07, Table A.1, p.270].
Moreover, in [RS07, Table A.7, p.281] one can find a list of L-parameters associated to
the nonsupercuspidal representations of GSp(4, F ). The computation of γ(s, recGT(π) ⊗
ωv, std⊗ std, ψv) for nonsupercuspidal π becomes an exercise in computing the standard
factors associated to these L-parameters. If π is a supercuspidal representation of GSp(4),
we appeal to [GT10b, Theorem 6.5] to aid in the computation of the standard γ-factor of π.
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(5.2) The Sally-Tadic classification of nonsupercuspidal representations has six classes of
representations I-VI which are constituents of inductions from the Borel, three classes VII-
IX which are inductions from the Klingen parabolic and two X-XI which are inductions from
the Siegel parabolic. By the multiplicativity principle of Theorem 3.5, it follows that the
γ-factors are the same for all the constituents of an induction; the numerator of this γ-factor
is also the L-function associated to the (unique) generic constituent in each induction. (This
is because for nonsupercuspidals, temperedness implies that there is a generic representation
in the local L-packet.)

(5.3) Therefore, we will assume that π is a nonsupercuspidal generic representation, so it
must be of the form I, IIa, IIIa, IVa, Va, VIa, VII, VIIIa, IXa, X or XIa. (For the actual
representations, in the Sally-Tadic notation, see [RS07, Table A.1].) For convenience we
consolidate our computations in a series of tables.

Table 1. Nonsupercuspidal generic representations of GSp(4, F )

Class Constituent of recGT(π)

I χ1 × χ2 ⋊ σ χ1χ2σ, χ1σ, χ2σ, σ 0

IIa ν1/2χ× ν−1/2χ⋊ σ χ2σ, ν1/2χσ, ν−1/2χσ, σ N1

IIIa χ× ν ⋊ ν−1/2σ ν1/2χσ, ν−1/2χσ, ν1/2σ, ν−1/2σ N4

IVa ν2 × ν ⋊ ν−3/2σ ν3/2σ, ν1/2σ, ν−1/2σ, ν−3/2σ N5

Va νξ × ξ ⋊ ν−1/2σ ν1/2σ, ν1/2ξσ, ν−1/2σ, ν−1/2ξσ N3

VIa ν × 1⋊ ν−1/2σ ν1/2σ, ν1/2σ, ν−1/2σ, ν−1/2σ N3

VII χ⋊ π χωπφ
′
π, φπ 0

VIIIa 1⋊ π ωπφ
′
π, φπ 0

IXa νξ ⋊ ν−1/2π ξν1/2ωπφ
′
π, ν

−1/2φπ N6

X π ⋊ σ σωπ, σφπ, σ 0

XIa ν1/2π ⋊ ν−1/2σ ν1/2σ, σφπ, ν
−1/2σ N2

Here

N1 =

(
0
0 1
0
0

)
N2 =

(
0 1
0
0
0

)
N3 =

(
0 1
0 1
0
0

)

N4 =

(
0 1
0
0 −1

0

)
N5 =

(
0 1
0 1
0 −1

0

)
N6 =

(
0 y z
0 t y
0
0

)

In class II we need that χ2 6= ν±1 and χ 6= ν±3/2; in class III we need χ /∈ {1, ν±2}; in class
V the character ξ is any nontrivial quadratic character; in class I are all the other principal
series induced from the Borel, not covered by cases II-VI; in class IX a the character ξ is a
nontrivial character such that ξπ = π (in particular, if π = IndFE ψ for a quadratic extension
E/F and ψ is a character of E×, then ξ = ξE/F is the character of the quadratic extension);
in class VII are all the principal series induced from the Klingen parabolic not covered by
cases VIII and IX; in class XI we need that the central character of π be trivial; in class X
are the other principal series induced from the Siegel parabolic. Whenever it occurs in the
above table, π is a supercuspidal representation of GL(2, F ).
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Table 2. Standard representations of nonsupercuspidal L-parameters

Class std ◦ recGT(π) ker of monodromy

I χ1, χ
−1

1
, 1, χ2, χ

−1

2
0 χ1, χ

−1

1
, 1, χ2, χ

−1

2

IIa ν1/2χ, ν−1/2χ, 1, ν1/2χ−1, ν−1/2χ−1 M1 ν1/2χ, 1, ν1/2χ−1

IIIa χ, ν, 1, ν−1, χ−1 M4 χ, ν, χ−1

IVa ν2, ν, 1, ν−1, ν−2 M5 ν2

Va νξ, ξ, 1, ξ, ν−1ξ M3 νξ, ξ, 1
VIa ν, 1, 1, 1, ν−1 M3 ν, 1, 1
VII χ,Ad ◦φπ, χ−1 0 χ,Ad ◦φπ, χ−1

VIIIa 1,Ad ◦φπ, 1 0 1,Ad ◦φπ, 1
IXa νξ,Ad ◦φπ, ν−1ξ M6 νξ,Ad ◦φπ/ξ
X λφπλ

−1, 1, ω−1
π λ′φπ(λ

′)−1 0 λφπλ
−1, 1, ω−1

π λ′φπ(λ
′)−1

XIa ν1/2λφπλ
−1, 1, ν−1/2λ′φπ(λ

′)−1 M2 ν1/2λφπλ
−1, 1

M1 =

(
0 2
0
0
0 −2

0

)
M2 =

(
0 −1
0 1
0

0
0

)
M3 =

(
0 2 −1
0 1
0

0 −2
0

)

M4 =

(
0
0 −1

0 1
0
0

)
M5 =

(
0 2
0 −1

0 1
0 −2

0

)
M6 =

(
0 2t 2y −z

0 z
0 −2y

0 −2t
0

)

(5.4) As already mentioned, the numerator of the γ-factors equals the L-function of the
generic constituent in each induction. Therefore we compute, and tabulate, the L-functions
obtained from the γ-factors by computing the L-functions of the Weil-Deligne representations
recGT(π) for generic π. In the following table, for a character χ, n(χ) is the integer f such

that the conductor of χ is 1 +̟f
FOF . In this table, for a supercuspidal representation π of

GL(2) we write IndFE ψπ for the L-parameter associated to π and ξE/F for the character of

a quadratic extension E/F . We note that Ad ◦ IndFE ψπ = ξE/F ⊕ IndFE(ψπ/ψ
c
π) where c is

complex conjugation on E/F . Also note that the only time L(ψπ/ψ
c
π) appears in the above

table is when the extension E/F is ramified, and therefore totally ramified, in which case
the L-function is still a polynomial in q−s since the residue fields of E and F are the same.
One final piece of notation about the quadratic extension E/F . There are three such

extensions up to isomorphism: E0 = F (
√
u) is the unique unramified quadratic extension,

E1 = F (
√
̟F ) and E2 = F (

√
u̟F ) are the two ramified extensions, where u ∈ O×

F such
that

√
u /∈ F .

(5.5) We now compute the standard L-functions of the supercuspidal representations of
GSp(4, F ). These representations are tempered, so the L-functions will be equal to the
reciprocals of the numerators of the associated γ-factors. Since we assume that the residual
characteristic is not 2, every supercuspidal L-parameter is of the form IndFE σ where σ is
an irreducible 2-dimensional representation of WE. By [GT10b, Theorem 6.5] we get the
following cases (cases a1 and b2 would occur only if the residual characteristic were 2)
Here the standard L-function depends on whether the extension E/F is ramified or not.
The reason is that if recGT(π) = IndFE σ then std ◦ recGT(π) is
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Table 3. Standard L-functions for non-supercuspidal

Class Ramification Cases L(recGT(π)⊗ 1, std⊗ std) Degree

I

all L(χ1)L(χ
−1

1
)L(χ2)L(χ

−1

2
)L(1)

(i) n(χ1) = n(χ2) = 0 L(χ1)L(χ
−1

1
)L(χ2)L(χ

−1

2
)L(1) 5

(ii) n(χ1) = 0, n(χ2) > 0 L(χ1)L(χ
−1

1
)L(1) 3

(iii) n(χ1), n(χ2) > 0 L(1) 1

IIa
all L(ν1/2χ)L(1)L(ν1/2χ−1)
(i) n(χ) = 0 L(ν1/2χ)L(1)L(ν1/2χ−1) 3
(ii) n(χ) > 0 L(1) 1

IIIa
all L(χ)L(ν)L(χ−1)
(i) n(χ) = 0 L(χ)L(ν)L(χ−1) 3
(ii) n(χ) > 0 L(ν) 1

IVa L(ν2) 1

Va
all L(νξ)L(ξ)L(1)
(i) n(ξ) = 0 L(νξ)L(ξ)L(1) 3
(ii) n(ξ) > 0 L(1) 1

VIa L(ν)L(1)2 3

VII

all L(χ)L(χ−1)L(ξE/F )L(ψπ/ψ
c
π)

(i) n(χ) = 0, n(ξE/F ) = 0, n(ψE/F /ψ
c
E/F ) > 0 L(χ)L(χ−1)L(ξE/F ) 3

(ii) n(χ) = 0, n(ξE/F ) > 0, n(ψE/F /ψ
c
E/F ) = 0 L(χ)L(χ−1)L(ψπ/ψ

c
π) 3

(iii) n(χ) = 0, n(ξE/F ) > 0, n(ψE/F /ψ
c
E/F ) > 0 L(χ)L(χ−1) 2

(iv) n(χ) > 0, n(ξE/F ) = 0, n(ψE/F /ψ
c
E/F ) > 0 L(ξE/F ) 1

(v) n(χ) > 0, n(ξE/F ) > 0, n(ψE/F /ψ
c
E/F ) = 0 L(ψπ/ψ

c
π) 1

(vi) n(χ) > 0, n(ξE/F ) > 0, n(ψE/F /ψ
c
E/F ) > 0 1 0

VIIIab

all L(1)2L(ξE/F )L(ψπ/ψ
c
π)

(i) n(ξE/F ) = 0 L(1)2L(ξE/F ) 3
(ii) n(ξE/F ) > 0, n(ψE/F /ψ

c
E/F ) = 0 L(1)2L(ψπ/ψ

c
π) 3

(iii) n(ξE/F ) > 0, n(ψE/F /ψ
c
E/F ) > 0 L(1)2 2

IXa

all L(νξ)L(ψπ/ψ
c
π)

(i) n(ξE/F ) = 0, n(ψE/F /ψ
c
E/F ) > 0 L(νξ) 1

(ii) n(ξE/F ) > 0, n(ψE/F /ψ
c
E/F ) = 0 L(ψπ/ψ

c
π) 1

(iii) n(ξE/F ) > 0, n(ψE/F /ψ
c
E/F ) > 0 1 0

X L(1) 1
XIa L(1) 1

Table 4. Standard L-functions for supercuspidal

Class Conditions Standard L-function

a2 σc 6∼= σ ⊗ χ, σ ∼= IndEK ψ,Gal(K/F ) ∼= Z/4Z

L(ξE/F ) or 1
a3 σc 6∼= σ ⊗ χ, σ ∼= IndEK ψ,Gal(K/F ) ∼= (Z/2Z)2

a4 σc 6∼= σ ⊗ χ, σ ∼= IndEK ψ, |Gal(K/F )| = 8
b1 σc ∼= σ ⊗ χ, χc 6∼= χ

(a2) ξE/F⊕ an irreducible 4-dimensional representations,
(a3) ξE/F⊕ a direct sum of two irreducible 2-dimensional representations,
(a4) ξE/F⊕ a 4-dimensional representation whose restriction to a quadratic extension of

E is a direct sum of two irreducible 2-dimensional representations,
(b1) ξE/F⊕ a direct sum of two irreducible 2-dimensional representations.
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Table 5. Standard L-functions by degree

d(L) # L Repr. Poles Conditions

0 1 1
VII vi

—IX a iii
SC, E/F r.

1

1 L(1)

I iii

1
II a ii
V a ii
X
XI a

2 L(ν) III a ii q
3 L(ν2) IV a q2

4 L(νξ) IX a i −q
5 L(ξE/F )

SC, E/F ur. −1
VII iv

6 L(ψπ/ψ
c
π)

IX a ii
b b 6= 1, |b| = 1

VII v

2 1
L(χ)L(χ−1) VII iii a, a−1 a 6= 1,±q±1

L(1)2 VIII ab iii 1, 1

3

1 L(χ1)L(χ
−1

1
)L(1) I ii a, a−1, 1 a 6= q±1

2 L(ν1/2χ)L(1)L(ν1/2χ−1) II a i a
√
q, a−1

√
q, 1 a2 6= q±1, a 6= q±3/2

3 L(χ)L(ν)L(χ−1) III a i a, a−1, q a 6= 1, q±2

4 L(νξ)L(ξ)L(1) V a i −q,−1, 1
5 L(ν)L(1)2 VI ab q, 1, 1
6 L(χ)L(χ−1)L(ξE/F ) VII i a, a−1,−1
7 L(1)2L(ξE/F ) VIII ab i 1, 1,−1
8 L(χ)L(χ−1)L(ψπ/ψ

c
π) VII ii a, a−1, b a 6= 1,±q±1, b 6= 1, |b| = 1

9 L(1)2L(ψπ/ψ
c
π) VIII ab ii 1, 1, b b 6= 1, |b| = 1

5 1 L(χ1)L(χ
−1

1
)L(χ2)L(χ

−1

2
)L(1) I i a, a−1, b, b−1, 1 a±1, b±1, a±1b±1 6= q

(5.6) We compile the list of standard L-functions in a table according to the degree of the
L-function as a rational function of q−s.
Note that for quadratic ξE/F the L-function is (1 + q−s)−1 when E/F is unramified

(IndFE 1 = 1 ⊕ ξE/F and since E/F is unramified, L(IndFE 1) = (1 − q−2s)−1). Also, if

b = (ψπ/ψ
c
π)(̟F ) then b 6= 1 (or else IndFE ψπ would split). To show that |b| = 1 note that if

f = n(ψπ) then ψπ is a finite order character on O×

F , since it factors through O×

F /1+̟f
FOF

which is a finite group. Therefore ψπ(̟F ) and ψ
c
π(̟F ) differ by the value of ψπ at an element

in O×

F , which has absolute value 1.

6. A local converse theorem for GSp(4)

We start with a useful lemma:

Lemma 6.1. Let π and π′ be two supercuspidal representations of GL(2, F ), where F is a
finite extension of Qp for p odd, such that γ(s,Ad ◦π, η) = γ(s,Ad ◦π′, η) for every character
η. Then π ∼= π′ ⊗ τ where τ is a character.

Proof. Since Ad ◦π and Ad ◦π′ are representations of GL(3, F ) we may apply the local con-
verse theorem for GL(3) ([JPSS79, Lemma 7.5.3]) to deduce that Ad ◦π ∼= Ad ◦π′. Let E/F
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and E ′/F be quadratic characters such that π = IndFE ψ and π′ = IndFE′ ψ′. Then we get
that ξE/F ⊕ IndFE ψ/ψ

c = ξE′/F ⊕ IndFE′ ψ′/(ψ′)c.
If E = E ′ we deduce that ψ/ψc = (ψ′/(ψ′)c)±1, say ψ/ψc = ψ′/(ψ′)c (the other case being

analogous). Then τ = ψ′/ψ has the property that τ = τ c so there exists a character τ on
WF such that ψ′ = ψτ |WE

. It follows that π′ = τ ⊗ π.
If E 6= E ′ then we deduce that IndFE ψ/ψ

c = ξE′/F ⊕ξcEE′/F and IndFE′ ψ′/(ψ′)c = ξE/F⊕ξcE′

E/F

are reducible where cE and cE′ are the conjugations in E and E ′. Simplifying we deduce
that ξ

cE′

E/F
∼= ξcEE′/F .

If E is unramified then E ′ is ramified so IE = IF 6= IE′ . Since inertia subgroups are normal
in Galois groups it follows that cE′IF cE′ = IF and cEIF cE = IF . Therefore ξ

cE′

E/F is trivial on

IF and so ξcEE′/F iss trivial on IF which would imply that ξE′/F is trivial on IF , which cannot

be since E ′/F is ramified.
If E and E ′ are the two ramified quadratic extensions of F , as before we get that both

ξE/F and ξE′/F are trivial on IE and IE′ . But this would imply that they are trivial on IF
which cannot be since E and E ′ are ramified over F . �

Proposition 6.2. For an irreducible smooth representation of GSp(4, F ) where F is a p-
adic field we write ST(π) for the Sally-Tadic class of π, where if π is supercuspidal then
ST(π) = SC.
Let π1 and π2 be two tempered or generic irreducible smooth representations of GSp(4, F ).

Suppose γ(s, π1, η, std) = γ(s, π2, η, std) for all characters η. If {ST(π1), ST(π2)} 6= {X,XIa}
then ST(π1) = ST(π2).

Proof. – Degrees ≥ 2: The preceding table shows that if π1 belongs to a Sally-Tadic class
such that the degree of the standard L-function is ≥ 2, or if it belongs to one of the following
classes: III a ii, IV a, IX a i, then π2 must also belong to the same Sally-Tadic class, or else
the two standard L-functions would differ.
– Degree 1, cases 5 and 6:

(1) (IX a ii and VII v) To tell apart the classes VII v and IX a ii let π1 of type VII v be
χ⋊ IndFE ψ and let π2 of type IX a ii be νξE′/F ⋊ ν−1/2 IndFE′ ψ′, where E and E ′ are
ramified over F . We will do this first case in extra detail, as the following cases are
done similarly. For a character η the equality of L-functions twisted by η is

L(χη)L(χ−1η)L(ξE/Fη)L(ψ/ψ
cη|WE

) = L(νξE′/Fη)L(ψ
′/(ψ′)cη|WE′

)

Twisting by ξE′/F we get

L(χξE′/F )L(χ
−1ξE′/F )L(1)L(ψ/ψ

cξE′/F |WE
) = L(ν)L(ψ′/(ψ′)c)

Since a pole of L(ψ/ψcξE′/F |WE
) has absolute value 1 it follows that the factor L(ν)

has to be equal to either L(χξE′/F ) or L(χ
−1ξE′/F ). Therefore χ

±1 = νξE′/F which is
a contradiction.

(2) (IX a ii and VII iv) Let π1 = χ ⋊ IndFE ψ be of class VII iv and π2 = νξE′/F ⋊

ν−1/2 IndFE′ ψ′ be of class IX a ii with E/F unramified and E ′/F ramified. Twisting
by ξE′/F we get

L(χξE′/F )L(χ
−1ξE′/F )L(ξE/F ξE′/F ′)L(ψ/ψcξE′/F |WE

) = L(ν)L(ψ′/(ψ′)c)
11



Because L(ν) is a polynomial in q−s it cannot equal L(ψ/ψc⊗ξE′/F |WE
), a polynomial

in q−2s. Therefore, without loss of generality we may assume that χ = νξE′/F .
Twisting by ξE/F now shows that ψ′/(ψ′)c = ξE′/F |WE

. But then twisting by ξE′/F

again gives a contradiction.
(3) (VII iv and supercuspidal with E/F unramified) let π1 = χ⋊ π and π2 be supercus-

pidal with E/F unramified. Twist by η = χ−1 in which case the γ-factor for π1 will
have a factor of γ(1), while the γ-factor for the supercuspidal will still be equal to 1.

(4) (IX a ii or VII v and supercuspidal with E/F unramified) Twisting by ξE/F or χ
gives a contradiction as before.

(5) (VII v and VII iv) Let π1 = χ⋊ IndFE ψ and π2 = χ′ ⋊ IndE′/F ψ
′ where χ and χ′ are

ramified, E/F is unramified and ψ/ψc is ramified, and E ′/F is ramified and ψ′/(ψ′)c

is unramified. Twisting by χ we obtain

L(χ2)L(1)L(χξE/F )L(ψ/ψ
cχ|WE

) = L(χ′χ)L((χ′)−1χ)L(ξE′/Fχ)L(ψ
′/(ψ′)cχ|WE′

)

The first possibility is that χ′ = χ±1. Without loss of generality we may assume that
χ′ = χ in which case the equality of γ-factors becomes

γ(s,Ad ◦π, η) = γ(s,Ad ◦π′, η)

for all characters η. By Lemma 6.1 we deduce that there exists a character τ such
that π′ ∼= π ⊗ τ which contradicts the fact that E is unramified while E ′ is ramified.
The second possibility is that χ = ξE′/F . Twisting by ξE′/F gives (as we have

already treated the case χ = χ′) that ψ′ = (ψ′)c which cannot be since π′ is super-
cuspidal.
The final possibility is that ψ′/(ψ′)c = χ−1|WE′

. Since ψ′ is unramified it follows

that χ = ξE′/Fχ1 where χ1 is unramified. Then twisting by ξ−1
1 we get

L(ξE′/F )L(ξE′/Fχ
2
1)L(χ1ξE/F )L(ψ/ψ

cξ1|WE
) = L(χ′χ−1

1 )L((χ′χ)−1)L(ξE′/Fχ1)L(1|WE′
)

Since ξE′/F and χ′ are ramified and χ1 and ξE/F are unramified it follows that the
above equation can be rewritten as L(χ1ξE/F )L(ψ/ψ

cξ1|WE
) = L(1|WE′

) which gives
χ1 = ξE/F . Twisting by ξE′/F we get

L(ξE/F )
2L(ψ/ψcξE′/F |WE

) = L(χ′ξE′/F )L((χ
′)−1ξE′/F )L(1)L(ξE|WE′

)

which implies that ψ/ψc = ξE′/F |WE
and then that χ′ = ξE/F ξE′/F = χ which was

already treated before.

– Degree 1, case 1: We want to tell apart classes I iii, II a ii, V a ii, X and XI a.

(1) (I iii and II a ii) Twisting by χi gives that χi = ν−1/2χ±1 while twisting by χ−1
i gives

χi = ν1/2χ±1. These contradict the irreducibility conditions for II.
(2) (I iii and V a ii) Twisting by χi it follows that either χi = νξ or χ = ξ. In either case

twisting by ξ gives a contradiction.
(3) (I iii and X or XI a) Twisting by χi gives a contradiction.
(4) (II a ii and V a ii) Twisting by ξ we get a contradiction.
(5) (II a ii and X or XI a) Twisting by χ gives a contradiction.
(6) (V a ii and X or XI a) Twisting by ξ gives a contradition.

– Degree 0:
12



(1) (VII vi and supercuspidal with E/F ramified) Let π1 = χ ⋊ π and π2 = IndFE′ σ.
Twisting by χ−1 we get that χ must be ξE′/F and the L-function for the supercuspidal
is of degree 1 while the one for VII vi is of degree at least 2.

(2) (IX a iii and supercuspidal with E/F ramified) Let π1 = νξ ⋊ ν−1/2π and π2 =
IndFE′ σ. Twisting by η = ξE/F where E/F is the ramified field for IX a iii we get a
contradiction.

(3) (VII vi and IX a iii) Let π1 = χ ⋊ IndFE ψ and let π2 = νξE′/F ⋊ ν−1/2 IndFE′ ψ′.
Twisting by η = ξE′/F give

L(χξE′/F )L(χ
−1ξE′/F )L(ξE/F ξE′/F )L(ψ/ψ

cξE′/F |WE
) = L(ν)L(ψ′/(ψ′)c)

Assume first that χ = ν±1ξE′/F . Then E and E ′ are the two ramified extensions
of F , or else we get a contradiction. Thus L(ν−1) = L(ψ′/(ψ′)c) which cannot be
since we’ve already seen that the pole of the RHS has absolute value 1. The only
possibility left is that L(ψ/ψcξE′/F |WE

) = L(ν) which again cannot occur since the
pole of the LHS has absolute value 1.

�

Remark 1. The classes X and XIa cannot be differentiated on the basis of standard γ-factors
with twists by characters. For example: let π be a supercuspidal representation of GL(2)
with trivial central character. Let π1 = (ν3/2π) ⋊ ν−1σ and π2 be the generic constituent
of ν1/2π ⋊ ν−1/2σ. Then π1 is in class X and π2 is in class XIa, their L-functions are equal
because character twists of irreducible representations are still irreducible representations.
Finally, for the ε-factors note that (let ρ = rec(π), then rec(πχ) = ρχ; we use that det ρ = 1)

ε(π1, η, std) = ε(ην3/2ρ)ε(η)ε(ην−3/2(det ρ)−1ρ)

= ε(ηρ)ε(η)ε(ηρ)

= ε(ην1/2ρ)ε(η)ε(ην−1/2ρ)

= ε(π2, η, std)

The second and third equalities follow from the explicit formula for ε-factors using Gauss
sums. Moreover, the central characters of π1 and π2 are both equal to ν−1/2σ2.

Corollary 6.3. Let π be a cuspidal automorphic representation of GSp(4,AF ) as in Con-
jecture 1.1. If v is a nonarchimedean place such that ST(πv) is not X or XIa and such that
πv is either tempered or generic, then the monodromy operator of WD(ρπ,ι|WFv

) is the same

as the monodromy operator of recGT(πv ⊗ |ν|−3/2)

Proof. By Proposition 6.2 the representations πv and π
G
v (the latter being generic) are in the

same Sally-Tadic class, then use Conjecture 1.1 for πG. �

Corollary 6.4 (Skinner-Urban Conjecture). If π is the cuspidal automorphic representation
associated to a holomorphic Siegel modular form and v is a finite place such that πv is a
generic para-spherical representation then the rank of the monodromy operator is 1. This is
[SU06, Conjecture 3.1.7].

Proof. Generic para-spherical representations are of class II a so the result follows from
Corollary 6.3. �
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Proposition 6.5. Let π1 and π2 be irreducibile admissible representations of GSp(4, F ). If
π1 and π2 are generic and ST(π1) = ST(π2) /∈ {X,XIa, SC} and if for all characters ω we
have γ(s, π1, ω, std) = γ(s, π2, ω, std), then there exists a quadratic character η such that
π1 ∼= π2 ⊗ η with one exception: let E/F be a ramified quadratic character and let ξ be the
character of this extension, let χ2 = ξ, ω a quadratic character 6= 1, ξ, ψ/ψc = ωχ and
ψ′/(ψ′)c = χ; then χ ⋊ IndFE ψ and ωχ ⋊ IndFE ψ

′ have the same γ-factors for all character
twists.

Proof. – Classes IV a, VI a, V a i, III a i: Using the fact that the central characters are the
same, it follows that there exists a quadratic character η such that recGT(π1) ∼= recGT(π2)⊗η.
– Class I i: Suppose π1 = χ1×χ2⋊σ and π2 = χ′

1×χ′
2⋊σ

′. It follows that {χ1, χ
−1
1 , χ2, χ

−1
2 } =

{χ′
1, (χ

′
1)

−1, χ′
2, (χ

′
2)

−1}. In all possible cases we deduce the existence of a quadratic character
η such that recGT(π1) ∼= recGT(π2) ⊗ η, from the fact that the central characters of π1 and
π2 are equal.
– Class I ii: Suppose π1 = χ1 × χ2 ⋊ σ and π2 = χ′

1 × χ′
2 ⋊ σ′. It follows that

{χ1, χ
−1
1 } = {χ′

1, (χ
′
1)

−1}. Moreover, ε(s, χ2ω, ψ)ε(s, χ
−1
2 ω, ψ) = ε(s, χ′

2ω, ψ)ε(s, (χ
′
2)

−1ω, ψ)
for all characters ω. This can be rewritten as ε(s, σ ⊗ ω, ψ) = ε(s, σ′ ⊗ ω, ψ) where
σ = Indχ2 ⊗ χ−1

2 and σ′ = Indχ′
2 ⊗ (χ′

2)
−1. By [JL70, Corollary 2.19] it follows that

σ ∼= σ′ which implies that {χ2, χ
−1
2 } = {χ′

2, (χ
′
2)

−1}. As before, we deduce the existence of a
quadratic character η such that recGT(π1) ∼= recGT(π2)⊗ η.
– Class I iii: If π1 = χ1 × χ2 ⋊ σ and π2 = χ′

1 × χ′
2 ⋊ σ′ with χ1, χ

′
1, χ2, χ

′
2 ramified

characters then by twisting by χ1 we deduce from the equality of L-functions that χ1 ∈
{χ′

1, (χ
′
1)

−1, χ′
2, (χ

′
2)

−1}. Without loss of generality we may assume that χ1 ∈ {χ′
1, (χ

′
1)

−1};
twisting by χ2 shows that χ2 ∈ {χ′

2, (χ
′
2)

−1} and again we deduce compatibility up to a
quadratic twist.
– Class II a i: If π1 = ν1/2χ × ν−1/2χ ⋊ σ and π2 = ν1/2χ′ × ν−1/2χ′ ⋊ σ then {χ, χ−1} =
{χ′, (χ′)−1}. Again we deduce recGT(π1) ∼= recGT(π2)⊗ η.
– Class II a ii: If π1 = ν1/2χ× ν−1/2χ⋊ σ and π2 = ν1/2χ′ × ν−1/2χ′ ⋊ σ then twisting by
χ′ shows that χ′ ∈ {χ, χ−1} and the conclusion follows.
– Class III a ii: As in case Iii we deduce recGT(π1) ∼= recGT(π2) ⊗ η for some quadratic
character η by going to GL(2).
– Class V a ii: Twisting by ξ does the job.
– Classes VII i, ii, iii, VIII ab i, ii, iii: For classes VII i,ii and iii let π1 = χ ⋊ π and
π2 = χ′ ⋊ π′ where π = IndFE ψ and π′ = IndFE′ ψ′, where E and E ′ are quadratic extensions
of F . From the equality of L-functions we get that χ′ = χ±1. For classes VIII ab i,
ii, iii let π1 = 1 ⋊ π and π2 = 1 ⋊ π′. In both cases we get that for all characters η,
γ(s,Ad ◦π, η) = γ(s,Ad ◦π′, η). By Lemma 6.1 we deduce that there exists a character τ
such that π′ ∼= π⊗ τ . Using the isomorphism χ⋊π ∼= χ−1⋊χπ ([ST93, Proposition 4.8 (ii)])
we have that π2 = χ⋊ τπ = π1 ⊗ τ . Comparing central characters we again obtain that τ is
quadratic.
– Classes VII iv, v, vi: Let π1 = χ⋊ π and π2 = χ′ ⋊ π′ and π = IndFE ψ and π′ = IndFE′ ψ′.
Twisting the L-function equation by χ we obtain two cases

(1) χ′ = χ±1. In this case the argument from VII i, ii, iii applies.
(2) χ = ξE′/F which would imply that ψ′/(ψ′)c = 1 which cannot be since π′ is a super-

cuspidal representation.
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(3) L(ψ′/(ψ′)cχ|WE′
) = L(1). Analogously, twisting by χ−1 we get ψ′/(ψ′)c = χ|WE′

so
χ2|WE′

= 1. We may conclude that

IndFE ψ/ψ
c = χ′ ⊕ χ′ξE/F

IndFE′ ψ′/(ψ′)c = χ⊕ χξE′/F

The equality of L-functions can then be rewritten as

L(χη)L(χ−1η)L(ηξE/F )L(ηχ
′)L(ηχ′ξE/F ) = L(χ′η)L((χ′)−1η)L(ηξE′/F )L(ηχ)L(ηχξE′/F )

L(χ−1η)L(ηξE/F )L(ηχ
′ξE/F ) = L((χ′)−1η)L(ηξE′/F )L(ηχξE′/F )

Let χ−1 = χτ and (χ′)−1 = χ′τ ′. From χ2|WE′
= 1 and (χ′)2|WE

= 1 it follows
that τ ∈ {1, ξE′/F} and τ ′ ∈ {1, ξE/F}. Suppose τ = τ ′ = 1. Twisting by χ−1ξE′/F

and using that χ 6= χ′ it would follow that χ = ξE/F ξE′/F . Analogously we’d also get
χ′ = ξE/F ξE′/F contradicting χ 6= χ′. If τ = 1 and τ ′ = ξE/F but then twisting by
ξE′/F gives a contradiction. Assume now that τ = ξE′/F and τ ′ = ξE/F in which case
we get

L(χξE′/Fη)L(ξE/Fη)L(χ
′ξE/Fη) = L(χ′ξE/Fη)L(ξE′/Fη)L(χξE′/Fη)

which gives that E = E ′ ramified over F and χ2 = (χ′)2 = ξE/F .

– Class IX a i, ii, iii: Letting π = νξE/F ⋊ ν−1/2 IndFE ψ and π = νξE′/F ⋊ ν−1/2 IndFE′ ψ′

and twisting by ξE′/F we get that E = E ′. Then the result follows as in class VII i. �

7. Local-global compatibility for holomorphic Siegel modular forms

Theorem 7.1. Let π be as in Conjecture 1.1 and let v be a nonarchimedean place such that
πv is in the Sally-Tadic classes I, II, III, IV, V, VI, VII, VIII and IX (in particular any of
Iwahori level). Then, unless πv is the exception described in Proposition 6.5, there exists a
quadratic character η such that

− We get local-global compatibility up to semisimplification

ιWD(ρπ,ι|WFv
)ss ∼= recGT(πv ⊗ |ν|−3/2)ss ⊗ η

− If, moreover, we assume that πv is generic or tempered then

ιWD(ρπ,ι|WFv
)Fr-ss ∼= recGT(πv ⊗ |ν|−3/2)⊗ η

− If π is unitary and πv is generic of the above type then πv is tempered.

Proof. − Applying Proposition 6.5 to πv and πGv to get the desired local-global com-
patibility for πv generic (πGv is automatically generic); if we no longer assume that
πv is generic, but we assume it is a constituent of an induction containing a generic
representation as above, then we get local-global compatibility up to semisimplifica-
tion; of course, it is expected this situation does not occur, as all πv are expected
to be tempered, and all nonsupercuspidal tempered πv lie in the same L-packet as a
generic tempered representation.

− For the temperedness result: if the local representation πv is generic and as in the
statement, it is a quadratic twist of πGv which is tempered.

�
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Remark 2. Tempered implies generic in the cases above except when πv is of type VIb or
VIIIb, in which case it lies in the same L-packet as something tempered generic.

We would like to give a more precise result when the local representation is an irreducible
principal series.

Proposition 7.2. Let π be as in the previous Theorem where the number field F = Q. If
πv = χ1 × χ2 ⋊ σ is an irreducible principal series induced from the Borel subgroup then

ιWD(ρπ,ι|WFv
)Fr-ss ∼= recGT(πv ⊗ |ν|−3/2)

Proof. By Proposition 6.5 there exists a quadratic character µ such that πGv = χ1 × χ2 ⋊ σµ
and the statement of the proposition is equivalent to the triviality of µ. To tackle this we
need to use the spin L-function instead of the standard one. Recall that one reason we did
not use the spin L-function from the beginning was that in order to define it for nongeneric
representations one had to forego reducing the statement of rigidity to that of a local converse
theorem. To make up for this shortcoming we use a transcendence argument.
For a representation π of GSp(4, K) where K is a p-adic field, a character η of K× and

a character of K let γB(π, η, ψ, s) be the γ-factor defined using Bessel models in [PS97]. If
the residue field of F has q elements then γB(π, η, ψ, s) is a rational function in q−s, and
we write it as A · Pπ,η,ψ(q−s) where Pπ,η,ψ is a monic rational function. For an automorphic
representation π of GSp(4,AF ) the local γ-factors satisfy a global functional equation ([PS97,
Theorem 5.3]) ∏

v

γB(πv, ηv, ψv, s) = 1

Knowing that πv ∼= πGv unless v is contained in S, a finite set of places, we deduce, as
before, that ∏

v∈S

γB(πv, ηv, ψv, s) =
∏

v∈S

γB(π
G
v , ηv, ψv, s)

and by a transcendence argument we deduce that for each prime number v = q we have

Pπv ,ηv ,ψv
(q−s) = PπG

v ,ηv ,ψv
(q−s))

But we know that πv = χ1×χ2⋊σ and πGv = χ1×χ2⋊σµ so combining [PSS81, Theorem
3.1] with [GI, Theorem A.10 (vi)] we deduce that

L(ση)L(σχ1η)L(σχ2η)L(σχ1χ2η) = L(σµη)L(σµχ1η)L(σµχ2η)L(σµχ1χ2η)

Twisting by σ−1 we get either that µ = 1 or, without loss of generality, that χ1 = µ. In the
latter case the associated L-parameters are the same and the result follows. �
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