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Abstract

Let K be a quadratic imaginary field and π an irreducible regular algebraic cuspidal

automorphic representation of GL(2,AK). Under the assumption that the central

character χπ is isomorphic to its complex conjugate, Taylor et al. associated p-adic

Galois representations ρπ,p : GK → GL(2,Qp) which are unramified except at finitely

many places, and such that the truncated L-function of the Galois representation

equals the truncated L-function of π. We extend this result to include crystallinity

of the Galois representation at p, under some restrictions on π (we require distinct

Satake parameters).

We first follow Kisin and Lai in constructing geometric families of finite slope

overconvergent Siegel modular forms. This is achieved by defining overconvergent

Siegel modular forms geometrically, and then showing that an Atkin-Lehner operator

acts completely continuously on the space of such forms. Geometric families are then

defined using eigenvarieties. We exhibit, in a rigid neighborhood of a theta lift of

the representation π, a dense set of classical Siegel modular forms whose associated

Galois representations are crystalline at p. Using this dense set of classical points we

construct an analytic Galois representation in the chosen neighborhood of the theta

lift. Finally, we appeal to a theorem of Kisin to show that crystalline periods at the

dense set of classical points extend to the theta lift of π.
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Chapter 1

Introduction

Let K/Q be a quadratic imaginary field and let π be a regular algebraic irreducible

cuspidal automorphic representation of GL(2,AK). It is expected that associated to π

there is a compatible system of Galois representations ρπ,p : GK → GL(2,Qp) for each

prime p, such that at almost all places v, the representation ρπ,p|GKv
is unramified and

the roots of the characteristic polynomial of ρπ,p(Frobv) are the Satake parameters of

πv (cf. [Tay02, p. 445]). For a finite place v of K, one gets local Galois representations

ρπ,p|GKv
→ GL(2,Qp).

Such Galois representations have been constructed in the following cases.

1. π ⊗ δ ∼= π for a quadratic character δ of K; in that case π is the automorphic

induction of a character of the splitting field of δ, and the Galois representation

is the induction of the Galois representation associated, via class field theory,

to this character.

2. π ⊗ ν ∼= (π ⊗ ν)c for a finite order character ν of K; in that case π is a twist

of the base change of a cuspidal representation of GL(2,AQ), and the Galois

representation is a twist of the restriction of the Galois representation associated

to a classical modular form.
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3. π∨ ∼= πc for π a regular algebraic irreducible cuspidal representation of GL(n),

such that πv is square-integrable at some place v; in that case the Galois repre-

sentations exist by [HT01, Theorem C]. The assumption of π being conjugate

self-dual is essential for their method, and it is part of the “Book Project” to

construct Galois representations for such π such that π∞ is regular, but without

the assumption of square integrability at some finite place. Note that in the

case of GL(2), which is the setting of this thesis, this case can be recovered

from the previous one. Indeed, if π∨ ∼= πc then on the level of central characters

we have χ−1
π
∼= χπc . Therefore, χπ = νc/ν for some character ν, in which case

π ⊗ ν ∼= (π ⊗ ν)c, since π∨ ∼= π ⊗ χ−1
π .

4. χπ ∼= χcπ and π∞ has Langlands parameter z 7→

z1−k

z1−k

 where k ≥ 2;

in that case the Galois representations are constructed in a series of papers

([HST93], [Tay91], [Tay93], [BH07]).

Once Galois representations are constructed, one next step is to analyze the be-

havior of the local Galois representations at p. It is expected that ρπ,p|GKv
is de

Rham for all v | p and that it is crystalline whenever the local representation πv is an

unramified principal series.

In the first three situations, the Galois representations at p are checked to be de

Rham or crystalline: in case (1) it follows from [Ser89, p. III-7] (since the representa-

tion is the automorphic induction of a character which is locally algebraic as defined

in loc. cit.), in case (2) from [Del, §3] and [Fal89], and in case (3) from [HT01, Theo-

rem VII.1.9]. In case (4), under the added assumptions that p = v ·vc splits in K and

πv is ordinary, it follows from [Urb05, Corollary 2] that ρπ,p|GKv
is ordinary. When

k ≥ 2, this implies, using [PR94, Proposition 3.1], that the local representation is

semistable (this is done by studying extensions in the category of weakly admissible

filtered ϕ,N -modules); if moreover k ≥ 3 it follows that it is also crystalline.
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The focus of this thesis is to prove crystallinity more generally in case (4), under

some restrictions on the Galois representation. This is done in Chapter 5, the main

theorem of the chapter being the following:

Theorem. Let π be a cuspidal automorphic representation of GL(2,AK) with infinite

component π∞ having Langlands parameter z 7→

z1−k

z1−k

 where k ≥ 2, and

such that the central character χπ satisfies χπ ∼= χcπ. Let p be a prime number such

that K/Q is not ramified at p.

• If p = v is inert in K, assume πv is an unramified principal series with distinct

Satake parameters αv, βv;

• If p = v · vc splits, assume that πv and πvc are unramified principal series with

Satake parameters αv, βv and αvc , βvc respectively, such that {αv, βv, αvc , βvc}

are all distinct.

Then ρπ,p|GKv
(as well as ρπ,p|GKvc

in the split case) is a crystalline representation.

Our proof uses the construction of the Galois representation via congruences.

Proving crystalline results when the Galois representation is constructed by congru-

ences has been done in other contexts, for example in the case of Hilbert modular

forms in [Tay95] using p-divisible groups and in [Bre99] using the following theorem

of integral p-adic Hodge theory: a p-adic representation of GK , for K/Qp finite, which

is congruent modulo pn to a torsion crystalline representation of Hodge-Tate weights

bounded independently of n, must itself be torsion crystalline (cf. [Liu07, 1.0.1]).

However, the case of Hilbert modular forms is amenable to p-adic Hodge the-

ory methods because the Galois representations involved have bounded Hodge-Tate

weights, which is one of the hypotheses of the previously mentioned theorem. In the

context of modular forms over GL(2)/K the Galois representations are constructed us-

ing congruences with Siegel modular forms of increasing Hodge-Tate weight, therefore
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[Liu07, 1.0.1] is no longer applicable.

To deal with this problem, one can use global methods. We construct p-adic fami-

lies of finite slope overconvergent Siegel modular forms and then use a theorem of Kisin

to obtain results about crystallinity at p. In general, p-adic families of finite slope

overconvergent forms are represented by rigid analytic varieties, called eigenvarieties.

Eigenvarieties have been extensively studied since the seminal paper [CM98] where

the tame level 1 eigencurve for GL(2)/Q is constructed. Subsequent developments

include [Buz07] where an “eigenvariety machine” is formalized and the eigencurve

is extended to general tame level, [KL05] where a one dimensional eigenvariety for

Hilbert modular forms is constructed, [Eme06] which constructs a cohomogical eigen-

variety, [Urb] which constructs eigenvarieties associated to reductive groups whose

real points have discrete series representations, again using cohomological methods.

The construction in this thesis is tailored on that of [KL05]. It was stated in the

introduction to [KL05] that their methods may be applied in the context of Siegel

modular forms. In fact, the brief note [LZ05] offers a statement of intent in this

direction, but one of the authors (Lai) told us that the intent was never pursued.

Some of the arguments involving moduli spaces of abelian varieties of level N were

used in [Til06a] and [Til06b] to study families of ordinary Siegel modular forms.

Much as in the case of [KL05] one crucial defect of the p-adic family constructed

is that, unlike in the case of the [CM98] eigenvariety, it is not a priori clear that

classical points are dense; this result in the case of GL(2)/Q is given by Coleman’s

theorem that small slope forms are classical. Such a density is necessary to apply

Kisin’s theorem, and in Chapter 4 we follow [KL05, Theorem 4.5.6] to find a dense

set of such classical points in a neighborhood of the given Siegel modular eigenform.

Recently, Andreatta, Iovita, Pilloni and Stevens announced a work in progress to

construct geometric p-adic families of Siegel-Hilbert modular forms, although it is not

clear whether their method yields information about the density of classical points.
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Chapter 2

Notation

A sincere apology is in order for the sometimes unsightly and stuffy notation. It is a

feature of any geometric method applied to the study of overconvergent modular forms

that one deals with different level moduli spaces of abelian varieties (or elliptic curves),

moduli spaces which are manifest as schemes, formal schemes and rigid spaces, both

with and without cusps. Erring on the side of caution, we chose to label geometric

objects unambiguously, with a detrimental effect on aesthetics and, perhaps, legibility.

(2.1) The algebraic groups involved:

· Let GSp(2n) be the algebraic group of similitude invariants of a symplec-

tic vector space (V, 〈·, ·〉) of dimension 2n. We choose the representation of

GSp(2n) ⊂ GL(2n)×GL(1) of pairs (g, ν(g)) consisting of matrices g ∈ GL(2n)

such that 〈gx, gy〉 = ν(g)〈x, y〉 for all x, y ∈ V .

· To fix notation, we choose the standard symplectic vector space, with symplectic

form

〈x, y〉 = xT

 In

−In

 y
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· The Lie algebra gsp(2n) consists of matrices of the form

A B

C ν(g)− AT


where B and C are symmetric matrices.

· With respect to the diagonal Cartan subalgebra, the root system of gsp(2n) has

the roots ei− ej and ±(ei + ej − e0) for i, j ∈ {1, 2, . . . , n}. Among these roots,

±(ei− ej) are compact, while the rest are not compact. Here ei is the character

of the maximal torus which takes the element

x1

. . .

xn

x0x
−1
1

. . .

x0x
−1
n


to xi.

(2.2) Formal and rigid geometry (cf. [KL05, Section 2]):

· Xrig is the rigidification of a scheme X/Qp .

· Xrig is the rigidification of a formal scheme X/Zp .

· ]U/Fp [⊂ Xrig is the tube of U/Fp ⊂ X/Fp (for definition, see §3.3.2).

· U bV X means that U is relatively compact in X relative to V ([KL05, 2.1.1]).

· X† is the set of rigid objects X ⊂ Y ⊂ X such that X bX Y , where X is an

admissible open relatively quasi-compact space contained in a rigid space X.
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(2.3) Moduli spaces of abelian varieties:

· MN is the moduli space of abelian varieties with principal polarization and

level N structure.

· MN,T is the moduli space of isogenies of type T overMN , where T is a double

coset representing a Hecke operator (see §3.1.5).

· Mpn,N is the moduli space of abelian varieties with principal polarization, level

N structure and Γ00(p
n) level structure (for definition, see §3.1.1).

· MN is a choice of proper toroidal compactification (see §3.1.2).

· MN and MN are the formal completions of the generic fibers ofMN andMN ,

respectively.

· Mord
N and M

ord

N are the ordinary loci in MN and MN , respectively.

· Mrig
N , Mrig

N , Mord,rig
N and Mord,rig

N are rigidifications of the generic fibers of the

appropriate formal schemes.

· M
ord

pn,N is the formal Igusa tower.

· M†
N and M†

N , M†
pn,N and M†

pn,N are systems of rigid neighborhoods of the

ordinary loci.

· Kp,N(r) is the level 1 canonical subgroup over the rigid domainMrig

N (r).

(2.4) p-adic Hodge theory:

· BdR is the period ring for de Rham representations.

· Bcris is Fontaine’s period ring for crystalline representations.

· DdR and Dcris are the associated Dieudonne modules.

· t ∈ B+
dR is the usual uniformizer.
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Chapter 3

Geometric Families of Siegel

Modular Forms

3.1 Classical Siegel Modular Forms

(3.1.1) We begin with a review of the main results of [FC90]. Let g ≥ 2 and N ≥ 3

be positive integers.

LetMN be the category fibered in groupoids whose objects over a Z
[

1
N

]
-scheme

S consist of triples (A, λ, φN)/S where A is an abelian scheme of relative dimension

g over S, λ : A → A∨ is a principal polarization, and φN : (Z/NZ)g × µgN → A[N ]

is a symplectic similitude level structure, where the symplectic pairing on A[N ] is

given by the Weil pairing coming from the principal polarization λ. Let Mpn,N be

the category fibered in groupoids whose objects over a Z
[

1
pN

]
-scheme S consist of

(A, λ, φN , φpn)/S where (A, λ, φN) are as before, and φpn is a Γ00(p
n)-structure, i.e., an

injection φpn : µgpn ↪→ A[pn]. (We remark that over Spec Fp the existence of a Γ00(p)

level structure would force the abelian variety to be ordinary.)

We note that the congruence subgroups of GSp(2g,Z) for these two moduli prob-
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lems are

{g ∈ GSp(2g,Z)|g ≡ I2g (mod N)}

and g ∈ GSp(2g,Z)|g ≡

 Ig ∗

Og Ig

 (mod pn)


In general MN is represented by an algebraic stack, but having assumed that

N ≥ 3, the stack MN is in fact a scheme over Z
[

1
N

]
. The scheme MN is smooth,

but not proper, and has an action of GSp2g(Z/NZ) ([FC90, IV.6.2 (c)]). Since MN

is a scheme, Mpn,N is represented by a smooth scheme over Qp, and it is finite over

(MN)/Qp
.

Let π : AN → MN be the universal abelian variety. We will denote ω =

π∗

(
Ω1

AN/MN

)
and let detω = π∗

(
Ωg

AN/MN

)
.

(3.1.2) Since the schemesMN are not proper, their rigid analytifications do not have

good properties. This paragraph reviews the toroidal compactifications of [FC90,

IV]. Fixing a smooth projective polyhedral admissible cone decomposition Σ, there

exists an associated projective schemeMN , which depends on Σ. Note that without

the projective assumption on the polyhedral decomposition, MN might only be an

algebraic space, and not a scheme (cf. [FC90, V.5]). The schemeMN containsMN ,

whose complement is a divisor DN with normal crossings. The universal abelian

scheme extends to a semiabelian scheme π : AN →MN .

This construction extends the sheaves of differentials to the boundary and we

obtain Ω
•

and ω. The Köcher principle says that

H0(MN , (detω)⊗k) = H0(MN , (detω)⊗k)

([FC90, Proposition 1.5 (ii), p. 140]). We will use the Köcher principle to show that

sections of a certain sheaf on a rigid space form a p-adic Banach space.
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The schemeM∗
N = Proj

(⊕
k≥1H

0(MN , (detω)⊗k)
)

is the minimal compactifica-

tion over Z
[

1
N

]
. There is a map MN →M∗

N and let detω∗ be the push-forward of

detω. When k is large (detω∗)⊗k is very ample by construction. (The reason this

compactification is needed is to lift the Hasse invariant to characteristic 0.)

(3.1.3) In this paragraph we define classical Siegel modular forms of level N and

classical weight κ. Let P2g be the Siegel parabolic in GSp(2g) and let M2g be its

standard Levi consisting of matrices of the form

A
z(AT )−1

.

Let (ρκ,Wκ) be the algebraic representation of highest weight κ of the Levi M2g,

where κ is a suitable dominant weight. Unlike in the case of Siegel modular forms of

parallel weight, which can be thought of as global sections of (detω)⊗k for the parallel

weight k, Siegel modular forms of weight κ will be global sections of a vector bundle.

Let ωκ be defined by

ωκ = IsomMN
(OgMN

, ω)×L ρκ

where ×L is the contracted product (f ◦ g, w) ∼ (f, g · w) as in [Til06a, p. 1139].

This extends to ωκ on MN (cf. [Hid02, Section 3.2]). Let ωκ(−DN) be the sheaf of

sections of ωκ which vanish along the complement divisor DN . We note that, with

this notation, (detω)⊗k = ωκ where κ = (k, . . . , k;−gk), where by (a1, . . . , ag; a0) we

mean the character

g∑
i=0

aiei.

Finally, we define the space of classical Siegel modular forms of level N and weight

κ as global sections

H0
(
MN , ω

κ
)

The subspace of cusp forms is H0
(
MN , ω

κ(−D)
)
.

(3.1.4) No theory of modular forms is complete without Hecke operators, and our

10



exposition of Hecke operators for Siegel modular forms is based on [FC90, VII].

For a prime q and an algebraic group G the local Hecke algebra is

Hq(G) = Homcont(G(Zq)\G(Qq)/G(Zq),Z)

which becomes an algebra under the convolution product. As before, let G =

GSp(2g), M = M2g the Levi of the Siegel parabolic, and T = T2g the diagonal max-

imal torus. The Satake isomorphisms (cf. [Gro98]) show that there exist injections

over Z[q±1/2]

Hq(G) ↪→ Hq(M) ↪→ Hq(T )

and that the algebra Hq(G) is generated by the characteristic functions of the double

cosets

Tq,1 = GSp(2g,Zq)

Ig
qIg

 GSp(2g,Zq) (3.1)

Tq,i = GSp(2g,Zq)

Pg,i
q2P−1

g,i

 GSp(2g,Zq) (3.2)

for i ∈ {2, . . . , g}, where Pg,i is the diagonal matrix with the first g − i + 1 elements

equal to 1 and the last i− 1 equal to q ([FC90, VII.1]).

Finally, we mention that the fraction field of the Hecke algebra Hq(M) is gen-

erated over the fraction field of the algebra Hq(G) by the Frobenius element, which

corresponds to the double coset M(Zp)

pIg
Ig

M(Zp) ([FC90, p. 247]). It is

this congruence relation that is manifest in the computation of the local L-factors

associated to the Galois representations of Siegel modular forms.

(3.1.5) We would like to give a geometric description of the Hecke operators, using

11



correspondences. For a prime q let IsogN(q) be the stack whose objects over a scheme

U are q-isogenies (A, λA, φN,A) → (B, λB, φN,B) of abelian varieties with principal

polarization and level structure ([FC90, VII.3]), i.e., isogenies f : A → B of degree

qgr for some positive integer r, such that f∗λB = qrλA, and such that f preserves the

level structure.

If MN is representable by a scheme, and it is, having assumed that N ≥ 3, then

IsogN(q) is representable by a scheme, which for consistency with the notation of

[KL05], we denoteMN,(q) and therefore comes with a universal isogeny Aq → Bq over

MN,(q). There are two projections π1, π2 :MN,(q) →MN given by π1(A → B) = A

and π2(A→ B) = B.

Assume that q is invertible over the base scheme S. Then the two projection maps

π1 and π2 are finite and étale. Moreover, the connected components ofMN,(q) are in

one-to-one correspondence with the set of double cosets in the Hecke algebra Hq(G),

the double coset representing the “type” of the universal isogeny over the connected

component.

If S = Spec(Fq), let Mord
N,(q) be the moduli space of isogenies of ordinary abelian

varieties (which is a well-defined notion, since isogenies preserve the property of being

ordinary). Here, an abelian variety A/S is ordinary if the p-divisible group A[p∞] is

an extension of an étale p-divisible group by a multiplicative one. By [FC90, VII.4]

the connected components of Mord
N,(q) are in one-to-one correspondence with double

cosets of Hq(M). By [FC90, p. 263] it follows that

Z
[
MN,(q)

] ∼= Z
[
Mord

N,(q)

]
in the sense that the connected components of MN,(q) and Mord

N,(q) are in one-to-one

correspondence.

Let T ∈ Hq(G) represent a double coset. Then, by the above, associated to T there
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is a connected componentMN,T ofMN,(q) over any base scheme S and let AT → BT

be the universal isogeny overMN,T . The two projection maps π1, π2 :MN,T →MN

are finite étale away from p and finite flat over the ordinary points in (MN)/Fp
.

Finally, note that over Qp we can extend the above to the case of the scheme

Mpn,N to get a schemeMpn,N,T parametrizing isogenies of type T between points of

Mpn,N .

(3.1.6) We now define the action of Hecke operators on the space of Siegel modular

forms. Consider the structure morphisms π : AN → MN and πT : (AT → BT ) →

MN,T where the latter is the universal isogeny. This induces

π∗
2ω = π∗

2π∗Ω
1
AN/MN

→ πT∗Ω
1
(AT→BT )/MN,T

∼= πT∗π
∗
1Ω

1
AN/MN

∼= π∗
1ω

For a weight κ this induces a natural map θ : π∗
2ω

κ → π∗
1ω

κ. This gives a morphism

π1∗π
∗
2ω

κ → π1∗π
∗
1ω

κ. Composing this map with the trace map π1∗π
∗
1ω

κ → ωκ gives

action of the Hecke operator T on the classical Siegel modular forms H0(MN , ω
κ).

Explicitly, for a Siegel modular form f (which is a function of (A, λA, φN,A, o)

where o is a basis of ωκ and a Hecke operator T

Tf(A, λA, φN,A, o) =
∑

f(B, λB, φN,B, π∗o)

where the sum runs over isogenies (A, λA, φN,A)
π→ (B, λB, φN,B) of type T .

(3.1.7) A better way to test for ordinarity of an abelian variety over Fp is to use the

Hasse invariant. Let R be an Fp-algebra and let X be an abelian scheme over Spec(R)
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with principal polarization λ and level structure. (In fact, [Kat70, 7] only requires X

to be smooth.) Then we get a commutative diagram

X
FX/R //

##HHHHHHHHH X(p)

��

FR // X

��
Spec(R)

FR // Spec(R)

where FR is the absolute Frobenius on R and FX/R is the relative Frobenius map.

By [Kat70, Theorem 7.2] there exists a map of OX(p)-modules

CX/R : (FX/R)∗(∧gΩ1
X/R)→ F ∗

R(∧gΩ1
X/R)

called the Cartier operator. Given a choice of basis o = {o1, . . . , og} of Ω1
X/R there

exists a constant h(X, {oi}) ∈ R, called the Hasse invariant, such that

CX/R(∧oi) = h(X, {oi})F ∗
R(∧oi)

For any invertible matrix T it is apparent that h(X,To) = (detT )1−ph(X, o)

so the Hasse invariant h defines a global section h ∈ H0((MN)/R, (detω)⊗(p−1)).

By the Köcher principle, h has unique extensions to H0((MN)/R, (detω)⊗(p−1)) and

H0((M∗
N)/R, (detω∗)⊗(p−1)).

Proposition 3.1.8. Let R be an Fp-algebra and X/R a semi-abelian scheme whose

abelian part is A. Then h(X, o) = 0 if and only if A is not ordinary.

Proof. See [Hid02, p. 22].

Lemma 3.1.9. There exists a positive integer k0 and a lift

E = h̃k0 ∈ H0((MN)/Zp , (detω)⊗k0(p−1))

of hk0 ∈ H0((MN)/Fp , (detω)⊗k0(p−1)).
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Proof. For a sufficiently large integer k0 the sheaf (detω∗)⊗k0(p−1) is very ample, as

already observed. Then the lift E exists by [Tig06, Lemma 2.3.5.1].

Lemma 3.1.10. Let T be a Hecke operator and let π1, π2 :MN,T →MN be the two

projections. Then the map

θ : π∗
2(detω)⊗(p−1) → π∗

1(detω)⊗(p−1)

induced by the Hecke operator T as in §3.1.6 has the property that θ(π∗
2h) = π∗

1h.

Proof. Let f : (A, λA, φN,A)→ (B, λB, φN,B) be an isogeny over an Fp-algebra R and

choose oA a basis of Ω1
A/R and a basis oB of Ω1

B/R such that f∗oB = oA. If f (p) is the

pullback of f via FR then

h(B, oB)F ∗
R(det oA) = h(B, oB)F ∗

R(f (p)∗ det oB)

= h(B, oB)f (p)∗F ∗
R(det oB)

= f (p)∗ (h(B, oB)F ∗
R(det oB))

= f (p)∗CB/R(det oB)

= CA/R(f ∗ det oB)

= h(A, oA)F ∗
R(f ∗ det oB)

= h(A, oA)F ∗
R(det oA)

Therefore

θ(π∗
2h)(f, oA, oB) = h(B, oB) = h(A, oA) = π∗

1(h)(f, oA, oB)

Here we used that CB/R commutes with étale localisation on B and that A → B is

an étale map.
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3.2 Automorphic Representations of GSp(4)

In this section we reconcile the definition of genus 2 holomorphic Siegel modular forms

given in §3.1.3 with that of holomorphic vectors in irreducible admissible automorphic

representations of GSp(4,AQ).

(3.2.1) The roots of the Lie algebra g = gsp(4) with respect to the diagonal Cartan

subalgebra h are ±α,±β,±(α + β),±(2α + β) of which α and −α (shaded black in

the figure below) are compact. With respect to the standard Cartan involution, the

maximal compact Lie algebra is

k =


 A B

−B A




where B is symmetric and A is antisymmetric, while the complement in g is

p =


A B

B z − A




where A and B are symmetric. If for a root ψ, sψ represents reflection across the

vanishing hyperplane of ψ, then the Weyl groups are

Wg,h = {1, sα, sβ, sαsβ, sβsα, sαsβsα, sβsαsβ, sβsαsβsα}

Wk,h = {1, sα}

(3.2.2) By Harish-Chandra’s classification of discrete series representations for reduc-

tive groups, discrete series representations for GSp(4,R) are in one-to-one correspon-

dence with non-singular elements of the coweight lattice λ, up to the action of Wk,h

([Sch97, p. 95]). Therefore, for λ ∈ C3,0 ∪ C2,1 ∪ C1,2 ∪ C0,3 (where C3,0, C2,1, C1,2, C0,3

are the Weyl chambers from the figure) there exists a discrete series representation
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β

2α + β

α

−α

−(α + β)

−β

−(2α + β)

C0,3 C1,2

C2,1

C
3,0

λ
α + β

Figure 3.1: Roots of GSp(4)

πλ; among the K-types of πλ the smallest one is λ + ρn − ρc (where ρc = 1
2
α and

ρn = 1
2
((2α+ β) + (α+ β) + β) = 3

2
(α + β)) and occurs with multiplicity 1 among

the K-types (this is the Blattner conjecture, proven by Hecht and Schmid).

One may describe discrete series representations either by λ, known by the name

of Harish-Chandra parameter, or by the lowest K-type λ + ρn − ρc, known by the

name of Blattner parameter. Explicitly, if λ = (a, b; c) = ae1 + be2 + ce0 is the

Harish-Chandra parameter, then the Blattner parameter is

λ+

(
1, 2,−3

2

)
=

(
a+ 1, b+ 2; c− 3

2

)

This is a recurring point of confusion in the literature, both parametrizations often

being used interchangeably. We will use the Harish-Chandra parameters for describ-

ing automorphic representations of GSp(4), although classically, the weight of a Siegel
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modular form is the Blattner parameter of the infinite component of the automorphic

representation coming from the Siegel modular form.

If λ is a singular element of the coweight lattice, and C ∈ {C3,0, C2,1, C1,2, C0,3} is

a choice of Weyl chamber such that λ lies in the closure of C, then there exists a

limit of discrete series representation πλ, which is no longer square integrable. It is

not zero if and only if no positive simple compact root relative to C vanishes on λ

(cf. [Kna86, 12.26]). If πλ is not zero, it is a tempered representation, and its lowest

K-type is λ + ρn − ρc. In the special case of GSp(4), limits of discrete series exist

unless α(λ) = 0 and C ∈ {C3,0, C0,3}.

It is an important consequence of the computations in [Tay93, p. 293] that if

λ ∈ C3,0, the (limit of) discrete series πλ is holomorphic and if λ ∈ C0,3 it is antiholo-

morphic. This allows a choice of holomorphic Siegel modular form in the automorphic

representation of GSp(4) as long as the representation of GSp(4,R) is a holomorphic

(limit of) discrete series. An often quoted, but nontrivial, further result is that if

λ ∈ C1,2 ∪C2,1 then πλ has an associated Whittaker model (πλ is generic). We do not

give a detailed proof of this fact but remark the following: by a combination of [Vog78,

6.7] and [Kos78, 6.8.1] πλ has a Whittaker model if and only if the Gel’fand-Kirillov

dimension of πλ, which can be computed as the dimension of [k, p−] (where p− is the

complex conjugate of the sum of the eigenspaces of positive noncompact roots) is

equal to the dimension of u (where u is the nilpotent Lie subalgebra associated to the

Weyl chamber C); it is a simple exercise to check this is indeed the case in C1,2 ∪C2,1,

but not so in C3,0 ∪ C0,3. (A brief overview of the Gel’fand-Kirillov dimension: if

X = {X1, . . . , Xs} is a finite generating set of πλ, and U(g)n ⊂ U(g) is the subset of

degree at most n elements of the universal enveloping algebra of g, then U(g)nX is a

finite dimensional space of dimension P (n) ∈ Z. For n large, the function P (n) is in

fact a polynomial in n, and the Gel’fand-Kirillov dimension of πλ is the degree of the

polynomial P .)
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(3.2.3) It is described in [Tay88, §2.2] how to relate a holomorphic Siegel modular

form with an automorphic form on GSp(4). Briefly, let GSp(4,R)+ be the subgroup of

positive determinant matrices, and let Z2 be the set of symmetric complex 2×2 matri-

ces with positive definite imaginary part. Starting with the algebraic representation

κ of the Levi subgroup M4 on gets a automorphy factor Jκ : GSp(4,R)+×Z2 → Wκ.

Let U ⊂ GSp(4,Af
Q) be an open compact subgroup. Then from a Siegel modular

form f of level U we get an automorphic form φf defined by

φf (g) = Jκ(g,
√
−1Ig)

−1f(g
√
−1Ig)

where g = γug+ with γ ∈ GSp(Q), u ∈ U and g+ ∈ GSp(4,R)+, while from an

automorphic form φ we get a Siegel modular form

fφ(z) = Jκ(g,
√
−1Ig)φ(g)

where g
√
−1Ig = z.

An automorphic form φ for GSp(4) generates, under the left regular action of

GSp(4,AQ) an irreducible automorphic representation πφ of GSp(4,AQ). If the holo-

morphic Siegel modular form f giving rise to φf has level given by an open compact

U ⊂ GSp(4,Af
Q), then φf ∈ πUf .

(3.2.4) We end with a discussion of the level structures introduced in §3.1.1 from

the perspective of representation theory. Let f be a cuspidal holomorphic Siegel

modular form of level N . If UN ⊂ GSp(4,Af
Q) is the open compact group consisting

of matrices ≡ I4 (mod N), and if πf is the irreducible automorphic representation

generated by φf , then φf ∈ πUN
f . Similarly, if f is a Siegel modular form of level

pnN , and Upn,N ⊂ GSp(4,Af
Q) is the open compact group consisting of matrices ≡ I4
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(mod N) and ≡

I2 ∗

I2

 (mod pn), then φf ∈ π
Upn,N

f .

We would like to analyze how an eigenform of level N breaks up into eigenforms

which are old at level pN . Before delving into the case of GSp(4), it is instructive

to recall the case of classical modular forms for GL(2)/Q. Let g be an eigenform of

weight k and level Γ1(N) and let α and β be the eigenvalues of the Hecke operator

Tp, i.e., the roots of the polynomial x2 − apx + ε(p)pk−1, where ε is the nebentypus.

Then the space of oldforms of level Γ1(N) ∩ Γ0(p) is two dimensional, generated by

the forms g(z) and g(pz), and the Up Hecke operator acts via the matrix

ap −ε(p)pk−1

1


If α 6= β the action of Up is diagonalizable, obtaining two eigenforms for the Up

operator and all the other Hecke operators: gα(z) = g(z) − αg(pz) and gβ(z) =

g(z) − βg(pz). If α = β, the Up operator need not be diagonalizable, but what one

can still say is that the form gα = g(z)−αg(pz) is an eigenform for Up with eigenvalue

α.

Returning to the case of GSp(4), let p be a prime not dividing N . Let Kp =

GSp(4,Zp) be the standard maximal compact of GSp(4,Qp), and let f be a Siegel

modular form of level N giving rise to an irreducible automorphic representation πf

as before. Since πf,p, the local component of πf at p, is an unramified principal series,

it follows that π
Kp

f,p is one dimensional, generated by f . Let αp, βp, γp, δp be the Satake

parameters of πf,p. It follows from [Tay88, p. 40] using computations that, if KP
p

is the Iwahori subgroup with respect to the Siegel parabolic P , then π
KP

p

f,p is four

dimensional; if the eigenvalues αp, βp, γp, δp are all distinct, then the action of Up,1 is

diagonalizable, the eigenvectors being forms whose Up,1-eigenvalues are αp, βp, γp and

δp. If the eigenvalues are not distinct, the action of Up,1 need not be diagonalizable,
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but for each distinct eigenvalue λ ∈ {αp, βp, γp, δp} there exists an eigenform with

Up,1-eigenvalue λ. In fact Taylor’s computations give an explicit basis of π
KP

p

f,p in the

style of Bruhat (cf. [Cas, p. 62]) and the matrix of Up,1 with respect to this basis.

Alternatively, one could use [Cas, Theorem 3.3.3] to deduce that π
KP

p

f,p surjects

onto the Levi invariants of the Jacquet module of πf,p with respect to the unipotent

subgroup of the Siegel parabolic P . To make things explicit, let

P =
{( ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗
∗ ∗

)}

be the Siegel parabolic having the Levi decomposition P = MPNP where

MP =
{( ∗ ∗

∗ ∗
∗ ∗
∗ ∗

)}

and

NP =

{(
1 ∗ ∗

1 ∗ ∗
1

1

)}
and let

B =
{( ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗
∗

)}
be the Borel, with the Levi decomposition B = MBNB, where

MB = T4 =
{( ∗

∗
∗
∗

)}

is the diagonal maximal torus, and

NB =

{(
1 ∗ ∗
∗ 1 ∗ ∗

1 ∗
1

)}

In that case KP
p = {g ∈ Kp|g (mod p) ∈ P (Fp)}. Let χ be a character of T4 such
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that πf,p = IndGB χ. Then by Theorem 3.3.3 loc. cit. there exists a surjection

π
KP

p

f,p →→ π
KP

p ∩MP

f,p,NP

where πf,p,NP
is the Jacquet module with respect to NP . By [Cas, Proposition 6.4.1],

πf,p,NP
∼=

⊕
w

eρP
(
w−1 IndMP

B∩MP
χ
)

where w runs over the list of Weyl group elements list on [Tay88, p. 40], and ρP

is, as usual, half the sum of the positive roots of P . Since IndMP
B∩MP

χ is unramified

and KP
p ∩MP is maximal compact, it follows that π

KP
p ∩MP

f,p,NP
is four dimensional. As

in [Cas, Proposition 9.2.3], it follows that π
KP

p

f,p is four dimensional. Surjectivity of

the map shows that for each distinct eigenvalue λ there exists an eigenform whose

Up,1-eigenvalue is λ.

The combinatorics of level N eigenforms factoring into old level pN eigenforms

can be analyzed analogously for various notions of “level p”. If KB
p is the Iwahori

subgroup with respect to the Borel B, using the surjection

π
KB

p

f,p →→ π
KB

p ∩MB

f,p,NB

it follows that π
KB

p

f,p is eight dimensional, the set of Up,1 eigenvalues being the set

of Satake parameters, each with multiplicity 2. We stress that Up,1 need not be

diagonalizable, but there exists an explicit map π
Kp

f,p → π
KB

p

f,p (described in [Til06a, 3.1

(2)]), similar to the map g(z) 7→ g(z)− λg(pz) in the case of GL(2)/Q, constructing a

eigenform of old level KB
p whose Up,1-eigenvalue is λ. (In general, for genus g Siegel

modular forms, π
KP

p

f,p has dimension 2g, while π
KB

p

f,p has dimension 2gg!, a fact that

follows from the corresponding combinatorics of their associated Weyl groups.)

We use Siegel modular forms of level Γ00(p) which, at p, corresponds to the com-
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pact K1
p = {g (mod p) ∈ NP (Fp)} ⊂ KB

p . In this case, the surjection

π
K1

p

f,p →→ π
K1

p∩MB

f,p,NB

is no longer injective (a simple dimension count suffices for this). However, by sur-

jectivity, for each Satake parameter α, we deduce the existence of an oldform having

Up,1 eigenvalue α. We will use this in §4.2.

3.3 The Rigid Analytic Picture

(3.3.1) We start with an overview of the interplay between schemes, formal schemes

and rigid analytic spaces. By [Bos, 1.13.4] there exists a functor from that category of

schemes which are locally of finite type over a finite extension L/Qp to the category

of rigid analytic spaces over L, sending X to the associated rigid analytic space Xrig.

Rigid GAGA states that if X is proper over L and F is a coherent OX-module

then Hq(X,F) ∼= Hq(Xrig,F rig) for all q, and that the rigidification F 7→ F rig is an

equivalence of categories of coherent sheaves ([Bos, 1.16.12]).

If X is a scheme which is locally of finite type over OL, let X be the formal

completion of X at the special fiber. By [Bos, 2.4] there is a functor from the category

of formal schemes over OL to the category of rigid L-spaces associating to X the rigid

fiber Xrig. If, moreover, X is proper over OL then the natural inclusion Xrig ↪→

(X ×SpecOL
SpecL)rig is an isomorphism.

Finally, if X is a quasi-compact rigid space and F is a coherent sheaf on X, then

F(X) has a natural structure of p-adic Banach space. Recall that X is quasi-compact

if it has an admissible covering with affinoids. If SpR is an affinoid then F(SpR) is a

p-adic Banach space by [BGR84, 9.4.3/3] and [BGR84, 3.7.3/3]. If U is an admissible

covering of X with finitely many affinoids, then using the Čech complex (cf. bottom

of page 324 [BGR84]) we get a p-adic Banach module structure on F(X) sitting inside
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the first term in the complex.

(3.3.2) We recall Raynaud’s theory of formal models for rigid analytic spaces, to-

gether with the notation of [KL05, §2], which we use extensively. The main theorem

of Raynaud theory is that the rigidification functor X 7→ Xrig is an equivalence of

categories between the category of quasi-compact admissible formal schemes over Zp,

localized by admissible formal blow-ups, and the category of quasi-compact quasi-

separated rigid spaces over Qp (cf. [BL93, 4.1]). Implicit in this theorem is the fact

that morphisms of rigid spaces admit formal models.

The standard example for illustrating this equivalence is that of the formal comple-

tion X = Spf Zp{x, y} of Spec Zp[x, y] at the special fiber. The admissible blow-up of

X at an open coherent ideal generated by functions f1, . . . , fn can be covered by charts

of the form Xi = Spf Zp{x, y}[Tij]/(fiTij − fj) whose rigid fiber is Sp Qp〈x, y〉[fj/fi],

which are the standard rational domains in Xrig (cf. [BL93, 2.2]).

Given an admissible formal scheme X over Zp, there exists a specialization mor-

phism Xrig → X, given by rig-points of the formal model X, and by [BL93, 3.5] it

follows that the specialization morphism surjects onto the special fiber of X. This mo-

tivates the definition of the “tube” of a locally closed subspace U/Fp of X/Fp , denoted

by ]U/Fp [, as the set of points of Xrig which specialize to U/Fp .

Finally, we define certain relative notions in the category of rigid analytic spaces.

First, a morphism f : X → Y of rigid spaces over Qp is relatively quasi-compact

if there exists an admissible open cover of Y such that the preimage of each open

in the cover is quasi-compact. If f : X → Y is a quasi-compact morphism of rigid

spaces and U ⊂ X is an admissible open relatively quasi-compact subset there exists

a notion of relative compactness of U in X over Y , denoted by U bY X. We do not

repeat the definition here, but refer to [KL05, 2.1.1], and remark that if X = SpA and

Y = SpB are affinoids, the subspace U bY X if there exists an affinoid generating
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system f1, . . . , fn of A over B such that

U ⊂ {x ∈ X : |f1(x)| < 1, . . . , |fn(x)| < 1}

(cf. [BGR84, 9.6.2]).

(3.3.3) Let E be the lift of the Hasse invariant from Lemma 3.1.9 and let Mord

N =

MN

[
1
E

]
be the subspace where we invert E. The special fiber ofMord

N parametrizes

ordinary points on
(
MN

)
/Fp

. Similarly letM∗,ord
N =M∗

N

[
1
E

]
. Alternatively, we could

have defined these spaces by removing the supersingular points from their special

fibers.

We would like to define certain overconvergent rigid neighborhoods of these ordi-

nary spaces. Let M∗
N and MN be the formal completions of M∗

N and MN at their

fibers over p. Let M∗,ord
N and M

ord

N be the formal subschemes where we invert E.

In the above definitions, it was essential that the schemes MN are defined over

Fp, which assumes the fact that p - N . In order to extend these definitions to level

pnN , one can use an analogue of the Igusa tower in the rigid setting. For consistency

with the notation of [KL05, 3.2.2] define

M
ord

pn,N = Isom
M

ord
N

(
µgpn ,A

ord

N [pn]◦
)

where A
ord

N [p]◦ is the multiplicative part of the torsion subgroup, isomorphic to µgpn

over the ordinary locus. Here, AN is the formal completion of the universal semi-

abelian scheme AN at its special fiber and A
ord

N is the restriction to the ordinary part.

(Note that in [Hid02] this space is denoted T∞,n.)

Then M
ord

pn,N is a formal scheme which is a Galois cover of MN with Galois group

GLg(Z/pnZ). This space represents abelian varieties with principal polarization, sym-

plectic level N and Γ00-level pn (cf. [Hid02, 3.2]), where recall that a Γ00(p
n)-level
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structure for a (semi-)abelian scheme X is an injection µgpn ↪→ X[p]. Finally, let

Mord
pn,N be the preimage of Mord

N in M
ord

pn,N

(3.3.4) Since the schemeMN is proper over Zp, by 3.3.1 ifMrig

N is the rigid fiber of

MN , then Mrig

N will be isomorphic to the rigidification of the generic fiber of MN .

Similarly, letMord,rig

N be the rigid fiber of M
ord

N . By rigid GAGA, the lift E of the Hasse

invariant transfers to a global section on the rigid space H0(Mrig

N , (detω)⊗k0(p−1)),

having denoted by ω the rigidified sheaf as well.

The complement of M
ord

N in MN is a divisor defined by the vanishing of the Hasse

invariant. Using [KL05, 2.3] we define rigid domainsMrig

N (r) ⊂Mrig

N , as the locus of

points where the rigid E has p-adic norm at most r:

Mrig

N (r) = {x ∈Mrig

N : |E(x)| ≥ r}

By construction, with this notation, Mrig

N (1) =Mord,rig

N . Note that since it is not in

the scope of this work to analyze the level of overconvergence, and we only care about

what happens when r < 1 is close to 1, the choice of lift E (i.e., of exponent k0) is

irrelevant. The choice of lift E and, implicitly, the choice of degree of overconvergence

for the rigid domainMrig

N (r) becomes relevant only if effective bounds for r are sought

for the existence of canonical subgroups.

Alternatively, we could have used the inclusion Mord,rig

N ⊂ Mrig

N to define the

system of neighborhoods Mrig,†
N of admissible open relatively quasi-compact subsets

X ⊂ Mrig

N such that Mord,rig

N bMrig
N

X. In that case, Mrig

N (r) ∈ Mrig,†
N and for

r < s < 1 sufficiently close to 1 we have

Mrig

N (r) bMrig

N (s)

where X b Y for rigid spaces X and Y over K means X bSpK Y (this follows from
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[KL05, 2.3.1 (2)]).

Finally, letMord,rig

pn,N be the rigid fiber of M
ord

pn,N (although, from a purely notational

perspective, it would have been more consistent to denote it M
ord,rig

pn,N , since there is

no Zp scheme around). ThenMord,rig

pn,N →Mord,rig

N is a Galois cover with Galois group

GL(g,Z/pnZ).

(3.3.5) In order to define the overconvergent rigid domains of level pnN and later

to define the Up,1-operator, we need the theory of the canonical subgroup for the

p-torsion of an abelian variety.

Canonical subgroups have first been constructed for elliptic curves by Katz based

on the work of Lubin (cf. [Kat73, 3.7]). If E is an elliptic curve over Zp with

supersingular reduction at p (in the case of ordinary reduction at p, the canonical

subgroup is E[p]◦) and E is the associated formal group (i.e., the formal completion

of E along the identity section), then E is a one-parameter formal group whose special

fiber has height 2. Multiplication by p in the formal group is given by the equation

[p](x) = px+ axp +
∑
m≥2

cmx
m(p−1)+1

where a ≡ Ep−1(E, ω) (mod p), where ω is an invariant differential on E. Setting

g(t) = p + at +
∑

m≥2 cmt
m (so that [p](x) = xg(xp−1)), there exists a canonical

zero tcan of g(t) constructed using Newton’s method in [Kat73, p. 119], whenever

|Ep−1(E, ω)| is sufficiently close to 1. In that case, the canonical subgroup is defined

to be the finite flat rank p subscheme of ker[p] given by xp − tcanx.

Going back to the case of abelian varieties, we will use the following theorem, due

to Abbes and Mokrane:

Theorem 3.3.6. For r close enough to 1 there is a canonical subgroup Kp,N(r) of

Arig

N [p] overMrig

N (r), which is locally free of rank pg. Over the ordinary locusMrig

N (1),

we have Kp,N(1) ∼= Arig

N [p]◦.
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Proof. This is the content of Proposition 8.2.3 from [AM04] with Q = M
ord

N and

P = MN .

Remark 3.3.7. We remark that [AM04] construct only level one canonical subgroups

Kp,N(r). This is a technical point; in fact higher level canonical subgroups of abelian

varieties have been constructed in [Con], but since the extension to the cusps is not

yet in the literature

we will assume from now on that n = 1.

but we keep the notation pn because our proofs carry over to the construction of

geometric families of level pnN finite slope overconvergent Siegel modular forms, as

long as one assumes the existence of higher level canonical subgroups.

We would like to define overconvergent domains Mrig

pn,N(r) without recourse to

an analysis of “unramified cusps” of (Mpn,N)/Qp
(as it is done in [KL05, 3.2.1]).

For this, observe that M
ord

pn,N is the Galois cover of M
ord

N which trivializes the étale

sheaf AN [p]/AN [p]◦ ∼= A
ét

N . DefineMrig

pn,N(r) to be the Galois cover ofMrig

N (r) which

trivializes the finite flat sheaf Arig

N [p]/KN(r). The fact that this sheaf is finite flat

follows, for example, from Lemma 3.4.2. Restricting to the ordinary partMord,rig

N , this

space is the rigidification of M
ord

pn,N coming from the Igusa tower, since Arig

N [p]/KN(r)

extends Aord,rig

N [p]/Aord,rig

N [p]◦.

Whereas to define the family of neighborhoods Mrig,†
N we looked at the inclusion

Mord,rig

N ⊂ Mrig

N , in order to define the family of subsets Mord,rig,†
pn,N we look at the

inclusionMord,rig

pn,N ⊂Mrig

pn,N(r). Thus, there exists a finite étale mapMrig,†
pn,N →M

rig,†
N

(in the language of [KL05, Proposition 2.2.1]). Moreover, by [KL05, 2.1.8] it follows

that for r < s < 1 sufficiently close to 1, we have

Mrig

pn,N(r) bMrig

pn,N(s)
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Let

Mur,ord,rig
pn,N =Mord,rig

pn,N ∩ (Mpn,N)rig
/Qp

where (Mpn,N)rig
/Qp

is the rigidification of the generic fiber ofMpn,N . Similarly define

Mur,rig
pn,N (r) =Mrig

pn,N(r) ∩ (Mpn,N)rig
/Qp

Example 3.3.8. It is instructive to see an example that highlights the difference

between Mur,ord,rig
pn,N and Mord,rig

pn,N . Let X = Gm ↪→ X = A1 be schemes over Zp. The

formal completion of X at the special fiber is X = Spf Zp{x, x−1} while the formal

completion of X at its own special fiber is X = Spf Zp{x}. Then the intersection

Xur = X ∩X is Spf Zp{x}[x−1].

Let T be a double coset. Rigidifying the projection maps π1, π2 : Mpn,N,T →

Mpn,N we get two projection maps π1, π2 :Mrig
pn,N,T →M

rig
pn,N . Define

Mur,ord,rig
pn,N,T = π−1

1

(
Mur,ord,rig

pn,N

)

and

Mur,rig
pn,N,T (r) = π−1

1

(
Mur,rig

pn,N (r)
)

(3.3.9) In this paragraph we study a rigid Köcher principle, which allows us to endow

the space of analytic functions on Mur,rig
pn,N,T (r) with the structure of a p-adic Banach

module. To begin with, let

Zrig
=

](
M

ord

pn,N

)
/Fp

\
(
Mord

pn,N

)
/Fp

[
⊂

(
M

ord

pn,N

)rig

=Mord,rig

pn,N

and

Zur,rig = Zrig ∩Mur,ord,rig
pn,N
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Lemma 3.3.10. For r sufficiently close to 1

H0(Mrig

pn,N(r), ωκ) ∼= H0(Mur,rig
pn,N (r), ωκ) ∼= H0(Mur,rig

pn,N (r) \ Zur,rig, ωκ)

Proof. The proof of [KL05, Lemma 4.1.4] reduces this problem to extending sections

H0(Mur,ord
pn,N , ωκ) to H0(M

ord

pn,N , ω
κ), where Mur,ord

pn,N is the preimage of

Mur,ord
N = M

ord

N ∩Mord
N

under the covering map. Using the Galois cover Mord

pn,N → Mord
N it suffices to show

this for level N , in which case it follows as in [Rap78, 4.9]

Lemma 3.3.11. For f ∈ O
(
Mur,rig

pn,N,T (r)
)

define

|f |r = sup
x∈Mur,rig

pn,N,T (r)

|f(x)|

For r sufficiently close to 1, |f |r is a norm which turns O
(
Mur,rig

pn,N,T (r)
)

into a p-adic

Banach space.

Proof. Let

|f |◦r = sup
x∈Mur,rig

pn,N,T (r)\π−1
1 (Zur,rig)

|f(x)|

The proof of [KL05, Lemma 4.1.6] carries over without change by showing that |f |r =

|f |◦r. The main ingredients are Lemma 3.3.10 and finite étalenesses of the composite

map

Mur,ord,rig
pn,N,T

π1 //Mur,ord,rig
pn,N

//Mord
N

which follows from [FC90, VII.4 p. 259] and the definition ofMur,ord,rig
pn,N .

The main reason Lemma 3.3.10 is necessary is that sections of coherent sheaves

on a rigid space form a p-adic Banach space if the rigid space is quasi-compact. This
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can be checked forMur,rig
pn,N,T (r) \ π−1

1 (Zur,rig), being finite overMrig

pn,N(r) \ Zrig
.

3.4 Overconvergence

(3.4.1) Fundamental to showing the fact that the Up,1 operator acts completely con-

tinuously on a suitable space of overconvergent Siegel modular forms is the existence

of an overconvergent lift of the Frobenius operator (cf. [AM04, 1.1]). Again, due to

restrictions in available literature, we must assume n = 1 (cf. 3.3.7), which suffices

for our purposes.

The setup is the following: if X is an S-point of Mord
N , then the multiplicative

part X[p]◦ is isomorphic to µgp and X/X[p]◦ has a natural structure of an S-point of

Mord
N (see the first paragraph on [AM04, p. 148]) and we denote by ψN the morphism

X 7→ X/X[p]◦. This morphism extends to a morphism ψN : M
ord

N → M
ord

N , given

by AN 7→ AN/AN [p]◦. Note that over the special fiber AN/AN [p]◦ is isomorphic

to Aord,Frob
N where Frob : Aord,Frob

N → Aord
N is the absolute Frobenius morphism over

Spec Fp.

Lemma 3.4.2. The map ψ
ord

N :Mord,rig

N →Mord,rig

N given by the rigidification of the

map ψN extends to a map ψ
†
N : Mrig,†

N → Mrig,†
N of degree pg. For r close to 1 this

induces a finite flat morphism ψN(r) :Mrig

N (r)→Mrig

N (rp) of degree pg.

Proof. The existence of the map ψ
†
N :Mrig,†

N →Mrig,†
N of degree pg is the content of

[AM04, Theorem 8.1.1]. The statement about the map ψN(r) is proven as in [KL05,

Lemma 3.1.7], see for example [Til06a, Proposition 4.5].

Proposition 3.4.3. There exists a map ψ
†
pn,N :Mrig,†

pn,N →M
rig,†
pn,N lifting ψ

†
N . For r

close to 1 this induces a finite flat map ψ
†
pn,N(r) :Mrig

pn,N(r) →Mrig

pn,N(rp) of degree

pg.

Proof. The projection map M
ord

pn,N → M
ord

N is finite étale so by [sga71, I 5.5] the

morphism ψN : M
ord

N →M
ord

N lifts to a morphism ψpn,N : M
ord

pn,N →M
ord

pn,N as long as
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it does so at a closed point; this point can be taken to be an abelian variety and then

the existence of the lifting follows from [KL05, 3.2.5]. By [KL05, Corollary 2.2.2] this

shows the existence of the morphism ψ
†
pn,N such that the diagram commutes

Mrig,†
pn,N

��

ψ
†
pn,N //Mrig,†

pn,N

��

Mrig,†
N

ψ
†
N //Mrig,†

N

As in [KL05, Proposition 3.2.6] we conclude the for r close enough to 1 we get

ψ
†
pn,N(r) :Mrig

pn,N(r)→Mrig

pn,N(rp)

which is finite flat of degree pg.

(3.4.4) [CM98] define overconvergent modular forms of p-adic weight using the Eisen-

stein series Ep−1. Such a simple choice is not available to us, but since we only care

about overconvergence in a neighborhood of the ordinary locus, we make do with

some lift of a power of the Hasse invariant E. In order to compensate for the explicit

computations in [CM98] involving Ep−1, we follow [KL05] in analyzing the interplay

between the lift E and Hecke operators.

We have seen that for some large enough integer k0 the section hk0 lifts to a global

section E = h̃k0 ∈ H0((MN)Zp , (detω)⊗k0(p−1)) and we will choose k0 such that p - k0

(this condition is necessary in order to define an analytic action of Hecke operators

on the space of overconvergent Siegel modular forms)

Lemma 3.4.5. Let T be a double coset. There exists a fk0 ∈ O(Mur,rig
pn,N,T (r)) such

that

θ (π∗
2E) = fk0π

∗
1E

where fk0 − 1 is topologically nilpotent. Moreover, for any ε > 0 there exists r suf-
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ficiently close to 1 such that |fk0 − 1|r < |p|ε, where | · |r is the norm on the p-adic

Banach space O(Mur,rig
pn,N,T (r)) defined in Lemma 3.3.11.

Proof. The proof [KL05, 4.1.7] carries over, the main ingredients being Lemmas 3.1.10

and 3.3.11.

(3.4.6) We now define the space of overconvergent Siegel modular forms of weight κ

and level pnN . Whereas classical such forms were defined as global sections overMN ,

overconvergent forms are global sections over the overconvergent neighborhoods. For

a field L/Qp

M †
pn,N,κ(L) = lim

r→1−
H0

(
Mur,rig

pn,N (r)L, ω
κ
)

For the individual spaces

Mpn,N,κ(L, r) = H0
(
Mur,rig

pn,N (r)L, ω
κ
)

Lemma 3.3.10 shows that they are p-adic Banach spaces (since they are also the space

of global sections of a coherent sheaf on a quasi-compact rigid space, cf. [KL05, 2.4]).

Finally, by [KL05, Proposition 2.4.1] it follows that the transition maps in the limit

are completely continuous. Thus M †
pn,N,κ(L) is a p-adic Fréchet space; this detail will

be important to ascertaining the independence of the characteristic series of the Up,1

operator from the particular rigid domain chosen.

(3.4.7) One of the reasons p-adic families of modular forms are so useful is that

they interpolate modular forms of different, even p-adic, weight. We would like to

define overconvergent forms of general weight in an admissible affinoid subspace of

the weight space. For an affinoid algebra R over L, with submultiplicative semi-norm

| · | and Y ∈ R with

|Y | < |p|
2−p
p−1
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(see [Urb, Lemma 3.3.5] for the origin of the bound on |Y |), we define the space of

overconvergent Siegel modular form over R of level pnN and weight κ+ Y as

M †
pn,N,κ+Y (L) = lim

r→1−
H0

(
Mur,rig

pn,N (r)L, ω
κ
)
⊗̂QpR

The space M †
pn,N,κ+Y (L) of overconvergent forms is endowed with a Hecke action,

concocted in a way that makes it compatible with the previously defined Hecke algebra

action at different classical weights.

Let T be a double coset. Recall from Lemma 3.4.5 that for a sufficiently large

integer k0, not divisibile by p, for which we have a lift E of hk0 , we got a function

fk0 ∈ O
(
Mur,rig

pn,N,T (r)
)

such that fk0 − 1 is topologically nilpotent. Therefore, the

function

hY = exp

(
log(fk0)

k0(p− 1)
⊗ Y

)
is well defined as a rigid analytic function onMur,rig

pn,N,T (r)⊗R. To see this, note that

log(fk0) is well-defined since fk0−1 is topologically nilpotent. Analyticity now follows

by [Urb, Lemma 3.3.5] and the fact that |Y | < |p|
2−p
p−1 . (Note that we may apply this

lemma because p - k0.)

Finally, the action of the Hecke operator is given by the map of sheaves

π1∗π
∗
2ω

κ // π1∗π
∗
1ω

κ π1∗(·hY ) // π1∗π
∗
1ω

κ Tr // ωκ

as in the classical setting.

(3.4.8) We motivated the construction of the above Hecke action by positing compati-

bility with the Hecke actions at different weights. Concretely, consider a specialization

map et : R → L′, where L′/L is a finite extension, such that et(Y ) = (p − 1)k0t for
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some t ∈ Z. Then id⊗et induces a map

M †
pn,N,κ+Y (R)→M †

pn,N,κ(L
′)

where the second space is relative to the affinoid L′ with the choice of Y = 0. Multi-

plication by Et ⊗ 1 gives a map

M †
pn,N,κ(L

′)→M †
pn,N,κ+(p−1)k0t

(L′)

and the composition of the two maps gives Siegel modular forms of various classical

weights.

We remark that this way of defining p-adic families of modular forms is due to

Coleman, and is labeled “awkward” by [CM98, p.7 (a)], where a more direct definition

of overconvergent forms is asked for. (In fact, such a more direct definition has been

announced by Andreatta et al., by constructing a suitable generalization of ωκ for

p-adic weights κ.)

The main result of this paragraph is that the Hecke action defined above is compat-

ible with specialization. In the context of modular forms over GL(2)/Q, the equivalent

of this statement is [Col97, Lemma B 5.4].

Proposition 3.4.9. For a Hecke operator T there is a commutative diagram

M †
pn,N,κ+Y (R)

T
��

id⊗et // M †
pn,N,κ(L

′)
·Et⊗1 // M †

pn,N,κ+(p−1)k0t
(L′)

T
��

M †
pn,N,κ+Y (R)

id⊗et // M †
pn,N,κ(L

′)
·Et⊗1 // M †

pn,N,κ+(p−1)k0t
(L′)

(3.3)

where the left vertical map is with respect to R and Y , while the right vertical map is

with respect to L′ and 0.
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Proof. For an element g ⊗ r ∈M †
pn,N,κ+Y (R) we have

T (g ⊗ r)(A) =
∑

g(B)⊗ hY r

where the sum runs over isogenies A → B of type T (for simplicity of notation we

only include the abelian variety). We need to show that

∑
g(B)f tk0 ` Et ⊗ et(r) = T

(∑
g(B) ` Et ⊗ et(r)

)

which follows from Lemma 3.4.5. Here ` is the cup product on cohomology.

(3.4.10) The main ingredient in our geometric construction of p-adic families of Siegel

modular forms is the complete continuity of the action of Up,1 on spaces of overconver-

gent forms. In order to show this, we need to show complete continuity of restriction

of sections to overconvergent subdomains.

Lemma 3.4.11. If r < s < 1 are sufficiently close to 1, then the restriction map

Resr,s : Mpn,N,κ(L, r)→Mpn,N,κ(L, s)

is completely continuous.

Proof. By Lemma 3.3.10 it is enough to show that the restriction map

H0(Mrig

pn,N(r), ωκ)→ H0(Mrig

pn,N(s), ωκ)

is completely continuous, which follows from [KL05, 2.4.1], since ωκ is coherent.

(3.4.12) We now show that the action of the Up,1 operator is completely continuous.
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By Proposition 3.4.3 for r sufficiently close to 1 we get a map

ψpn,N(r) :Mord,rig

pn,N (r)→Mord,rig

pn,N (rp)

which is finite flat of degree pg. Therefore ψpn,N(r) gives a trace map

Trψpn,N (r)∗ : Mpn,N,κ+Y (L, r)→Mpn,N,κ+Y (L, rp)

Since r > rp for r < 1 by Lemma 3.4.11 the restriction map

Resrp,r : Mpn,N,κ+Y (L, r)→Mpn,N,κ+Y (L, rp)

is completely continuous and we can define

Up,1 = p−3 Resrp,r ◦Trψpn,N (r)∗

Since Up,1 is the composition of a completely continuous map with a continuous one,

it is completely continuous acting on Mpn,N,κ+Y (L, r) for r sufficiently close to 1.

By extending scalars, it follows that for r close to 1 the action of Up,1 onM †
pn,N,κ+Y (R, r)

is completely continuous for an affinoid R.

(3.4.13) Via the rigidification functor, classical Siegel modular forms are also over-

convergent: the natural inclusion Mpn,N,κ(L) ⊂ M †
pn,N,κ(L) is given by restriction of

global sections since by definition Mur,rig
pn,N (r) is contained in the rigidification of the

generic fiber of Mpn,N . By construction this inclusion is equivariant with respect to

the action of the Hecke operators. The fact that the action of Up,1 agrees with the

geometric action can be seen as follows: it is enough to check on the ordinary locus

over which the map ψN is defined as X 7→ X/X[p]◦. The claim follows from the

observation that the fiber of ψ consists precisely of the isogenies of type Up,1, which
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results from the definition of Up,1 (cf. [KL05, 4.3.3]).

(3.4.14) Let T†
pn,N,κ+Y be the Banach closure of the ring of endomorphisms ofM †

pn,N,κ+Y

generated by the operators Tp,1 and Tp,2 away from Np. The main theorem of this

section is that the Hecke algebra T†
pn,N,κ+Y is commutative, which will allow us to

define an eigenvariety using the rigid spectrum of a constant slope part of this ring

(see 3.5.6). In the case of [CM98] the proof made use of a classical result of Hida on

the Hecke algebra acting on Katz modular forms. Since in our case we fix the level

pnN not only the tame level N , we can get by with less.

Proposition 3.4.15. The Hecke algebra T†
pn,N,κ+Y is commutative.

Proof. The main ideas from [KL05, 4.4.2] are applicable in our context and the proof

of [Tig06, 3.0.6.2] works. The only ingredient is that the Hecke algebra acting on

classical Siegel modular forms is commutative and the fact that by the top row of

(3.3) we get infinitely many specializations to classical Siegel modular forms.

3.5 p-adic Families

(3.5.1) We now specialize to the case of Siegel modular forms of genus 2, which

correspond to automorphic representations of GSp(4,AQ). There are several strategies

to construct p-adic families of modular forms. The first, pioneered by Hida involves

p-adic interpolation of coefficients of Eisenstein series ([Wil88] for ordinary Hilbert

modular forms and [Tay88] for ordinary Siegel modular forms). The second, based

on [CM98] involves constructing rigid objects parametrizing not necessarily ordinary,

but finite slope, overconvergent modular forms.

Here too, there are variations. In the original paper constructing the eigencurve

for GL(2)/Q the eigencurve is constructed as the rigidification of the generic fiber of

a universal pseudodeformation ring with maps to spectral varieties; in [Buz07] eigen-

varieties are constructed as admissible covers of spectral varieties. Another area of
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variation is the construction of spectral varieties. The “geometric” method, defines

spectral varieties as Fredholm hypersurfaces associated to completely continuous op-

erators acting on spaces of overconvergent modular forms defined as sections over

overconvergent rigid neighborhoods. The “cohomological” method uses completely

continuous operators acting on cohomologies of arithmetic groups, in the style of the

Eichler-Shimura map. We will take the geometric approach, which is of independent

interest.

The outline of this section is the following: we define a rigid weight space which

contains the weights of classical Siegel modular forms. Over a subspace of the weight

space we construct a rigid variety parametrizing systems of Hecke eigenvalues of con-

stant finite slope overconvergent Siegel modular forms. This variety comes equipped

with finite projections to spectral varieties.

(3.5.2) Let W be the rigid weight space, whose points over a field L/Qp are the

continuous characters Homcont(T4(Zp), L
×) where T4 is the torus in GSp4. Such con-

tinuous homomorphisms are in fact locally analytic (cf. [Urb, Lemma 3.1.4]). The

weight space is a finite union of rigid balls of dimension 3. However, since our defi-

nition of overconvergent forms of arbitrary weight involves multiplication by a power

of an Eisenstein series, given a fixed weight we can only reach, via this definition, a

subset of the whole weight space.

To account for this problem, for a classical weight κ ∈ W let Wκ ⊂ W be the

subspace of W whose points over a p-adic field L are of the form κ+ (t, t;−2t) where

t is sufficiently close to 0. That this choice is made allows one to construct families

of level pnN , not only of tame level N (cf. [KL05, 4.5]).

The parameter t can be recovered rigid analytically as follows: let χ : T4(Zp) →
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O(Wκ)
× be the universal character of the form specified above. Then

Y =
log(χκ−1(x))

log((1, 1;−2)(x))

is rigid analytic, and independent of the choice of x ∈ T4(Zp) close to 1. Here,

(1, 1;−2) represents the character

( x
y
zx−1

zy−1

)
7→ xyz−2

(3.5.3) In order to construct p-adic families of finite slope overconvergent Siegel mod-

ular forms we will use the action of the Up,1 operator on certain spaces of overcon-

vergent forms to cut out a subspace of the rigidification of the Hecke algebra. This

paragraph is modeled on [CM98, Chapter 6].

By Proposition 3.4.15, there exists a map from the polynomial algebra

H◦ = Zp[Tq,1, Tq,2]q-pN

to the Hecke algebra

ι : H◦ → T†
pn,N,κ+Y

For r sufficiently close to 1 the action of Up,1 on Mpn,N,κ+Y (R, r) is completely con-

tinuous. For α ∈ H such that ι(α) is topologically unipotent (for example, anything

of the form 1+pτ , where τ ∈ H), the operator ι(α)Up,1 is still completely continuous.

Consider the characteristic series

Pα(κ, T ) = detR (1− ι(α)Up,1T |Mpn,N,κ(L, r))

We would like to deduce that Pα(κ, T ) varies analytically with κ, as in [CM98, 4.3].

To achieve this, we will use [CM98, Proposition 4.3.3], which we recall below.
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Proposition 3.5.4 (Coleman-Mazur). Suppose given the following data

• a sequence {Am}m≥1 of Banach algebras with contractive ring homomorphisms

Am+1 → Am,

• for each m consider a sequence of Banach Am-modules {Mm,i}i≥sm (for some

integer sm), such that |Mm,i−{0}| = |Am−{0}| and for q ≥ m and i sufficiently

large Mq,i = Mm,i⊗̂Aq

• Am-module homomorphisms fm,i : Mm,i →Mm,i+1 and an orthogonal basis Bm,i

of Mm,i such that f(Bm,i) is an orthogonal basis,

• completely continuous operators Vm,i on Mm,i compatible with the data of {Am}

and {Mm,i}, and such that for i sufficiently large Vq,i = Vm,i ⊗ 1.

Then there exists a power series in lim←−Am[[T ]] whose projection in Am[[T ]] equals the

characteristic series

det(1− TVm,i|Mm,i)

(3.5.5) Let SpR be a small affinoid around κ inside Wκ. Take Am = R and

Mm,i = Mpn,N,κ+Y (R, v)

where v =
1

i
. Let fn,i be the natural inclusion. Then the first two condition of

the proposition are automatically satisfied. The third property follows from [KL05,

2.4.5] as in [KL05, 4.3.9]. Finally, let Vm,i = ι(α)Up,1 acting completely continuously

on the space of overconvergent modular forms Mpn,N,κ+Y (R, v). We conclude from

Proposition 3.5.4 that there is an analytic characteristic series

Pα(T ) ∈ R[[T ]]
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such that eκ′Pα(T ) = Pα(κ
′, T ) where eκ′ : R → L is the morphism giving the point

κ′ ∈ Wκ(L). In particular, the series Pα(T ) is independent of r.

(3.5.6) By [CM98, 4.1] (in particular Theorem 4.1.1 on the unique factorization of

Fredholm characteristic series of compact operators into linear terms over Cp) the

space M †
pn,N,κ has a slope filtration: for σ ∈ Q+ get a finitely generated subspaces

M †
pn,N,κ,σ ⊂ M †

pn,N,κ consisting of generalized eigenforms for the operator Up,1 with

eigenvalue of slope σ. Note that since ι(α) is invertible, the slope decompositions

with respect to Up,1 and ι(α)Up,1 are the same [CM98, 4.1.2]. Since the arguments

of [KL05, 4.5.6] are simpler on a constant slope rigid family, we will use the slope

filtration to adapt the result to our setting.

By analyticity of the characteristic series Pα(T ), it follows that, by shrinking

R, the subspace M †
pn,N,κ+Y,σ(R) ⊂ Mpn,N,κ+Y (R) of overconvergent slope σ Siegel

modular forms is finitely generated overR. Since ι(H◦) commutes with Up,1, it follows

that ι(H◦) acts on M †
pn,N,κ+Y,σ(R) and therefore ι gives a mapH◦ → T†

pn,N,κ+Y,σ where

T†
pn,N,κ+Y,σ is the image of the Hecke algebra in the ring of endomorphisms over R of

M †
pn,N,κ+Y,σ(R).

Let T†,red
pn,N,κ+Y,σ be the nilreduction of T†

pn,N,κ+Y,σ. This ring is commutative, re-

duced and it is a subalgebra of a finite Banach algebra over R. Therefore it is an

affinoid space and we may define

Xσ = Sp T†,red
pn,N,κ+Y,σ

(3.5.7) The main feature of eigenvarieties as defined below is that they are endowed

with finite maps to spectral varieties associated to ι(α)Up,1. The slope of an over-

convergent form is independent of the chosen α = 1 + pτ , but the rigid varieties cut

out by them are not. The spectral variety associated to ι(α)Up,1 over the affinoid
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neighborhood SpR of κ is the Fredholm hypersurface

Zα ⊂ SpR× A1,rig

which is the zero locus of the characteristic series Pα(T ). It comes with a structure

morphism f : Zα → R. It is explained in [Buz07, p. 26] that the spectral variety

also comes with an admissible covering C consisting of affinoid subdomains Y ⊂ Zα

such that Y ⊂ f−1(X) where X is an affinoid in Wκ such that f : Y → X is finite

surjective.

Now we have two options in defining an eigenvariety: the construction of [Buz07,

5.7] or that of [CM98, 6.1]. We choose the latter to define the eigenvariety

Eσ ⊂ Xσ ×Grig
m

First, letH = H◦[Up,1] and consider the natural extension ι : H → O(Xσ×Grig
m ) which

sends Up,1 to the parameter xp of Grig
m . (This can be done since Up,1 commutes with

the Hecke operators away from p.) Let Eσ be nilreduction of the subspace defined by

the ideal

I =

(
Pα

(
1

xpι(α)

))
α=1+pτ

Since xp and ι(α) are invertible in O(Xσ×Grig
m ), I is indeed an ideal of O(Xσ×Grig

m ).

Alternatively, following the notation of [CM98, 6.1], we could have defined rα :

Xσ ×Grig
m → SpR× A1,rig given by

rα(x, t) =

(
π(x),

t

φx(ι(α))

)

where π : Xσ → SpR is the structure map, and φx : T†,red
pn,N,κ+Y,σ → L is the morphism
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giving the point x ∈ Xσ(L). Then Eσ is the nilreduction of

∩
α

r−1
α (Zα)

Therefore, the eigenvariety comes with maps rα : Eσ → Zα.

Remark 3.5.8. Since our ultimate goal is the study of Galois representations (which,

by Chebotarëv’s density theorem, are uniquely determined by the behaviour away from

a finite set of primes) and not the parametrization of all overconvergent finite slope

Siegel modular forms, we disregard the Hecke operators at primes dividing the level

N .

(3.5.9) We would now like to show that the natural projections rα : Eσ → Zα are

finite maps. This is a rather involved process, but analogous to [CM98, 7]. To

summarize, one uses [Buz07, 5.7] to construct a reduced rigid variety D equipped

with finite projection maps to the spectral varieties, and then one shows that D ∼= Eσ.

Moreover, by [CM98, 7.2.2] it follows that, after taking the nilreduction of SpR the

projection Eσ → SpR become finite flat.

3.6 Points on the Eigenvariety

(3.6.1) We would like to have an interpretation of the eigenvariety in the style of

[CM98, Theorem 6.2.1], whose statement we recall: there is a one-to-one correspon-

dence between the set of finite slope normalized overconvergent modular eigenforms

of tame level N and Cp points on the eigencurve. This formulation of [CM98, The-

orem 6.2.1] belies the fact that eigenvarieties, in general, parametrize not modular

forms but systems of Hecke eigenvalues associated to modular forms. If one is in a

setting where multiplicity one results are known, such as GL(2)/Q, then systems of

Hecke eigenvalues in fact determine the modular form. This is not so in the case of

44



GSp(4), and the issue already appears in [KL05, 4.5.5 (1)].

Consider f a finite slope σ overconvergent Siegel modular eigenform of level pnN

and weight κ. To f we can associate a morphism

λf : T†
pn,N,κ+Y,σ → Cp

given by mapping a Hecke operator to its eigenvalue acting on f , as well as an

eigenvalue of the Up,1 operator. We will consider such systems of Hecke eigenvalues

with respect to the Hecke ring ι(H◦) and Up,1. The datum of such a system of

eigenvalues is the same as the datum of a morphism λ : T†
pn,N,κ+Y,σ → Cp together

with a Up,1-eigenvalue. Systems of Hecke eigenvalues come from (not necessarily

unique) finite slope overconvergent Siegel modular eigenforms.

The first direction, that of interpreting systems of Hecke eigenvalues as points

on the eigenvariety, is not difficult. Consider a system of Hecke eigenvalues given

by a morphism λ and a Up,1-eigenvalue u. In that case λ is nothing more than a

point in Xσ(Cp), thus

(
λ,

1

u

)
∈ Xσ(Cp) × Gm(Cp). Since ι(H) is commutative, if

f is a finite slope σ overconvergent Siegel eigenform giving rise to λ = λf , then

f is also an eigenform for ι(α)Up,1, for all α ∈ H◦. Therefore we get a point on

Zα(Cp). The second description of the eigenvariety shows that the point

(
λ,

1

u

)
∈

Xσ(Cp)×Gm(Cp), lying in each Zα(Cp), also lies in Eσ(Cp) ⊂ Xσ(Cp)×Gm(Cp). We

denote by z the point on Eσ(L) corresponding to the system of Hecke eigenvalues

arising from the eigenform f .

We do not need the second direction, that of interpreting points on Eσ(Cp) as

systems of Hecke eigenvalues coming from finite slope σ overconvergent Siegel modular

forms. However, we need to tackle this issue in order to produce a dense set of classical

points on the eigenvariety. In particular, we need the conclusion of the first paragraph

of the proof of [KL05, Theorem 4.5.6]: that if f is a finite slope classical eigenform
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giving rise to a point z of Eσ then there exists an invertible α ∈ H◦ such that

r−1
α (rα(z)) = z

What this condition says is that if one can find points xt in Zα(Cp) converging to

rα(z), then the preimages in Eσ(Cp) of xt will converge to z. We prove this fact in

§3.6.2.

(3.6.2) Let z ∈ Eσ(Cp), in which case σ is the p-adic valuation of the projection

from Eσ to Gm. By an argument similar to [CM98, 6.2.2, 6.2.3] there exists a τ ∈

H◦ such that there is a unique system of Hecke eigenvalues, arising from a slope σ

overconvergent Siegel modular form (which may not be unique) which is an eigenform

for the Hecke operator ι(1 + pτ)Up,1 as well as for the Hecke algebra ι(H◦), having

the same ι(1 + pτ)Up,1 eigenvalue as z. It is instructive to see this argument adapted

to the case of Siegel modular forms:

Let z be defined over the finite extension L/Qp. First, we enumerate the Hecke

operators Tq,1 and Tq,2 in some order as T1, T2, . . .. Next, suppose we have constructed

a Hecke operator Ũk acting on the finite dimensional vector spaceMpn,N,κ,σ(L) of slope

σ overconvergent Siegel modular forms, such that:

1. there exists a positive integer ak such that any two distinct eigenvalues of Ũk

acting on Mpn,N,κ,σ(L) are in p-adic distance more than p−ak apart (this can be

done since Mpn,N,κ,σ(L) is a finite dimensional vector space).

2. if fk is an eigenform with Ũk eigenvalue equal to that of z, then the set of

eigenvalues of the operators Up,1, T1, . . . , Tk acting on fk is the same as the set

of eigenvalues of the same Hecke operators acting on z.
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For k = 0 we may take Ũ0 = Up,1. Now for the inductive step: define

Ũk+1 = (1 + pakTk+1)Ũk

Let fk+1 be an eigenform with Ũk+1 eigenvalue uk+1,f , Ũk eigenvalue uk,f and Tk+1

eigenvalue tk+1,f . Let uk+1,z, uk,z and tk+1,z be the analogous eigenvalues for the

eigenform z. Assuming that

uk+1,f = uk+1,z

and using that

uk+1,f = (1 + paktk+1,f )uk,f

uk+1,z = (1 + paktk+1,z)uk,z

we get that

uk,f − uk,z = pak (tk+1,zuk,z − tk+1,fuk,f )

so |uk,f−uk,z|p < p−ak . By construction of ak, it follows that uk,f = uk,z, and plugging

into the formula, we get that tk+1,f = tk+1,z. By the inductive hypothesis, it follows

also that the eigenvalues of Up,1, T1, . . . , Tk of fk+1 and z agree.

In the notation of [CM98, p. 86], let F
eUk

be the set of systems of Hecke eigenvalues

whose Ũk-eigenvalue is equal to that of z. The above argument shows that

∩
k≥0

F
eUk

= {z}

and so for some k it must be that F
eUk

= {z}.

This proves that for

α = 1 + pτ =
k−1∏
i=1

(1 + paiTi)
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we have

r−1
α (rα(z)) = z

(3.6.3) Rigid analytic interpolation of classical modular forms would be an incom-

plete theory in the absence of some result on the distribution of classical points on

the rigid family. In the case of modular forms over GL(2)/Q, classical points are

dense on the eigencurve; this result follows from Coleman’s theorem, which states

that overconvergent modular forms whose slope is less than the weight minus one are

necesarily classical. (In fact Coleman’s result also treats the case of equality, as long

as the overconvergent form is not in the image of a certain operator.)

We do not obtain such a result for overconvergent Siegel modular forms; however,

following [KL05, 4.5.6] (which is based on a suggestion of Matthew Emerton) we

show that in a neighborhood of a classical point there are infinitely many classical

points converging to it. This, in turn, is necessary to analytically interpolate Galois

representations over the eigenvariety.

Proposition 3.6.4. Let f ∈ M †
pn,N,κ(L) be a classical finite slope σ Siegel modular

eigenform. It gives rise to a point z ∈ Eσ(L). Then for infinitely many integers t

there exist classical Siegel modular forms ft giving rise to points zt ∈ Eσ such that

lim zt → z.

Proof. Consider the maps

Eσ
rα−→ Zα →Wκ

By §3.6.2 there exists an α = 1 + pτ such that r−1
α (rα(z)) = z. Let Pα(T ) be

the analytic characteristic series defining the spectral variety Zα. Specializing in

weight κ gives the characteristic series Pα(κ, T ), which, by [CM98, 1.3.7], has finitely

many roots of slope σ. Let z0, z1, . . . , zr be the other points of Zα corresponding to

these finitely many roots, where z0 = rα(z). Let λ0, λ1, . . . , λr be the Uα = ι(α)Up,1

eigenvalues of z0, z1, . . . , zr.
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As already observed in §3.5.9, by shrinking SpR we may assume that the pro-

jection Eσ → SpR is finite and flat. Therefore, we may assume that there exist

Zα,i ⊂ Zα, disjoint, such that zi is the only point of the set {z0, z1, . . . , zr} lying in

Zα,i.

Consider the polynomial

R(T ) =
T (T − λ1) · · · (T − λr)
λ0(λ0 − λ1) · · · (λ0 − λr)

Since R(λi) = 0 for i ∈ {1, 2, . . . , r} and R(λ0) = 1 it follows that by shrinking SpR

we may assume that for x ∈ ∪Zα,i the function R(T ), where T is the projection

to Gm, is topologically unipotent for x ∈ Zα,0 and topologically nilpotent for x ∈

Zα,1 ∪ . . . ∪ Zα,r. Therefore, the expression

e = lim
n→∞

R(Uα)
n!

is well-defined. It has the property that if h is an eigenform giving rise to a point

y ∈ Eσ then

− if rα(y) ∈ Zα,0 then e(y) = y, since R(T ) is topologically unipotent over Zα,0,

− if rα(y) ∈ Zα,1 ∪ . . .Zα,r then e(y) = 0, since R(T ) is topologically nilpotent

over these components.

The rest of the argument is an adaptation of [Tay91, Proposition 3]. Define

gt = e(Etf)

Then g0 = e(f) = f as R(λ0) = 1 and therefore, as t approaches zero p-adically,

gt → g0 = f , since the action of the Hecke operators is continuous. More explicitly,

if F ∈ M †
pn,N,κ+Y,σ such that the specialization at Y = 0 of F gives f , then by 3.4.9
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it follows that the specialization at Y = k0(p − 1)t is gt, and therefore, for t going

p-adically to 0, the sequence gt converges to f .

Finally, decomposing Etf as a sum of classical Hecke eigenforms
∑
fs, where the

eigenform fs gives rise to the point ys. Since for t close enough to 0, the form gt is

nonzero (since g0 = f is nonzero), it follows that
∑
e(fs) 6= 0. By the above, this

(nonempty) sum contains the terms fs such that rα(ys) ∈ Zα,0. For each t close to

0, choose one such ys and denote it by zt. By construction, rα(zt)→ rα(z), but since

r−1
α (rα(z)) = z, it follows that zt → z.
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Chapter 4

Crystalline Representations

We exhibited a dense set of points in a neighborhood of a given classical point. Using

the Galois representations constructed at the dense set of points we produce an an-

alytic pseudorepresentation which specializes at traces of classically constructed Ga-

lois representations. Assuming the given classical point has an absolutely irreducible

Galois representation, in a small neighborhood around it we lift the pseudorepresen-

tation to a Galois representation. Finally, applying a theorem of Kisin, we deduce

crystallinity of the Galois representation in certain circumstances.

4.1 Overview of p-adic Hodge Theory

(4.1.1) Given that the purpose of this thesis is to analyze certain p-adic Galois rep-

resentations at the decomposition group GQp , it is useful to briefly describe the

main objects of p-adic Hodge theory. Before proceeding, it is instructive to con-

trast this setting with that of `-adic representations. Given a Galois representation

ρ : GQp → GL(n,Q`) where p 6= `, the wild inertia subgroup Iwild
Qp
⊂ GQp , being a

pro-p subgroup, acts through a finite quotient. In contrast, the cyclotomic character

χp : GQp → Q×
p takes wild inertia to 1 + pZp, and, in some sense, the scope of p-adic

Hodge theory is to control the action of inertia under p-adic Galois representations.
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(4.1.2) To achieve this, p-adic Hodge theory concocts certain Qp-algebra domains

B, satisfying BGQp = Qp and a technical property and, in some cases, endowed with

additional structure. For each such ring B there is a notion of admissibility of a p-adic

Galois representation with respect to B.

For a p-adic Galois representation ρ : GQp → GL(V ) the associated Diedonné

module relative to a domain B is DB(V ) = (B ⊗Qp V )GQp . This is a Qp-vector space

of dimension at most dimV and the representation ρ is said to be B-admissible if, in

fact, dimQp DB(V ) = dimQp V .

For the constructed rings B, the associated category of B-admissible p-adic Galois

representations is supposed to be the target category of representations arising from

certain geometric settings.

(4.1.3) The two basic rings of p-adic Hodge theory that we use are BdR and Bcris.

We will not define these rings, but refer to [BCb]. We will be content with remarking

that de Rham representations, those which are admissible with respect to BdR, typ-

ically arise in the cohomology of smooth proper varieties over Qp, while crystalline

representations, those which are admissible with respect to Bcris, typically arise in the

cohomology of smooth proper varieties over Zp.

The ring BdR is filtered and has the property that grBdR
∼= Cp[t, t

−1] where

t ∈ BdR is an element that will be used later in Theorem 4.3.2. The ring Bcris

is a subring of BdR (thus inheriting a filtration), and is endowed with an injective

semilinear map ϕ : Bcris → Bcris called Frobenius. One final piece of notation: we

write B+
dR = Fil0BdR and B+

cris = Fil0Bcris.

For simplicity, we have been deliberately deceiving. In general, for a finite exten-

sion K/Qp, we have BGK
dR = K, whereas BGK

cris = K0, where K0 ⊂ K is the maximal

unramified subfield. In that case, Bcris⊗K0K ⊂ BdR are filtered K-vector spaces. We

note, however, that we only treat crystallinity in settings whereK/Qp is an unramified

extension, therefore K0 = K.
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4.2 An Analytic Galois Representation

(4.2.1) In some sense, this section adapts the proof of [Tay91, Theorem 3] to the

context of eigenvarieties. In the aforementioned article, Taylor cites a theorem on

Galois representations associated to regular Siegel modular forms due to Shimura,

Deligne, Chai and Faltings. We find it more convenient to cite an amalgamation of

more recent results. For consistency of notation (as promised in §3.2.2), we will denote

by κ the Harish-Chandra parameter of the infinite component π∞ of an irreducible

automorphic representation π of GSp(4,AQ), assuming π∞ is a (limit of) discrete

series, and by κB = κ + (1, 2) the Blattner parameter of π∞. If f is a holomorphic

Siegel modular form giving rise to the representation π, then f has weight κB.

Theorem 4.2.2. Let π be an irreducible admissible automorphic representation of

GSp(4,AQ) with π∞ having Harish-Chandra parameter κ = (k1, k2) with k1 ≥ k2+1 ≥

2 (or equivalently, having Blattner parameter κB = (k1+1, k2+2) with k1+1 ≥ k2+2 ≥

3) and level N . Then there exists a number field E such that for all primes p and

places v | p of E there exist Galois representations ρπ,p : GQ → GL(4, Ev) with the

following properties:

1. ρπ,p|GQ`
is unramified at primes ` - Np,

2. at primes ` - Np,

L`

(
π, s− w

2
, spin

)
= det

(
1− ρπ,p(Frob`)`

−s)−1

where w = k1 + k2 and Frob` is the geometric Frobenius.

3. If p - N then ρπ,p|GQp
is crystalline and the crystalline Frobenius ϕ has charac-

teristic polynomial

(x− αp)(x− βp)(x− γp)(x− δp)
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where αp, βp, γp, δp are the Satake parameters associated to the unramified prin-

cipal series πp, where πp is the component at p of π.

Proof. The existence and equality of local L-functions are guaranteed by [Wei05,

Theorem I]. The last part follows from [Fal89] and [Urb05, Theorem 1].

Remark 4.2.3. The first two parts of the theorem are based on the work of Taylor

in [Tay93], who obtains the compatibility between the automorphic and Galois L-

functions away from p at a set of primes of Dirichlet density 1. The last part of the

theorem is subtle, and is achieved by extending Hecke correspondences to a chosen

arithmetic toroidal compactification, where the methods of Katz and Messing (which

require projectivity of the underlying variety) are applicable.

(4.2.4) We now specialize to the case of interest to us. Let f be a holomorphic Siegel

modular eigenform of level N and weight κB = (k + 1, 2), with k ≥ 1, giving rise to

an irreducible admissible cuspidal automorphic representation π of GSp4(AQ) whose

component at infinity π∞ is a holomorphic limit of discrete series with Harish-Chandra

parameter κ = (k, 0). Let p be a prime such that πp is an unramified principal series

with Satake parameters αp, βp, γp, δp. Let α be one of these Satake parameters and

let fα be a level pN eigenform whose Up,1 eigenvalue is α (cf. §3.2.4). Let σ be the

slope of α and let z be the point on Eσ coming from fα.

We now explain the interaction between Taylor’s construction of the Galois rep-

resentation ρf,p ([Tay91, 3.6]) and the construction, in Proposition 3.6.4, of infinitely

many points zt ∈ Eσ in an affinoid neighborhood SpR of the point z. Let E be as in

Lemma 3.1.9 be a lift of the Hasse invariant, and let πn be the irreducible automor-

phic representation coming from the holomorphic Siegel modular form fEpn
. Then

fαE
pn

gives rise to an automorphic form in πn, while zt corresponds to the Hecke

eigensystem of a form ft which gives rise to an automorphic form in πn.

Let SpRα be an affinoid neighborhood of z such that zt are dense in SpRα. (If zt
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were not dense in SpR, they would be contained in an analytic hypersurface, hence

take an affinoid neighborhood in the intersection between SpR and this hypersurface.)

For simplicity of notation, we will write R instead of Rα from now on.

By Theorem 4.2.2, there are Galois representations ρzt : GQ → GL(4,Cp) associ-

ated to zt and the representation ρzt |GQp
is crystalline, since πn has level N . (In effect,

the points zt come from oldforms of level pN .) By [Che04, 7.1.1], since the points

zt are dense in SpR, there exists a pseudorepresentation T : GQ → R specializing

to Tr ρzt at the points zt, and the Galois representation ρπ,p = ρz : GQ → GL(4, Ez)

associated to the form f is the Galois representation whose trace is φz ◦ T , where

φz : R→ Ez represents the point z ∈ Eσ(Ez).

(4.2.5) We now make the assumption that the Galois representation ρf,p : GQ →

GL(4,Cp) is absolutely irreducible.

Proposition 4.2.6. By shrinking SpR if necessary, there exists a Galois represen-

tation ρ : GQ → GL(4,R) whose trace is the pseudorepresentation T .

Proof. This is a generalization of [CM98, 5.1.2], whose proof relies on the very explicit

formulae used by Wiles in his original definition of two dimensional pseudorepresen-

tations. For higher dimensional pseudorepresentations (for which explicit formulae

are not available) an indirect proof is required.

We start with the observation that local rings at analytic points on rigid varieties

are henselian ([dJvdP96, 2.1.1 (1)]), therefore the local ring OX,z is henselian, where

we write X = SpR. The residue field of OX,z has characteristic 0 and the repre-

sentation ρz is absolutely irreducible. By [Rou96, 5.2] it follows that there exists a

Galois representation ρOX,z
: GQ → GL(4,OX,z) having trace TOX,z

, and such that

φz ◦ ρOX,z
= ρz. Since, by definition, OX,z = lim−→OX(U) where the limit is over ad-

missible open neighborhoods U of z in X, it follows that we may shrink SpR to get

a Galois representation ρ : GQ → GL(4,R) whose trace is the pseudorepresentation
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T .

Remark 4.2.7. We remark that a more general phenomenon occurs. If X is a rigid

space and T : GQ → O(X) is a pseudorepresentation, and at each closed point x

of X, T is the trace of an absolutely irreducible representation, then there exists a

Galois representation ρ : GQ → A×, where A is an Azumaya algebra over X, such

that T is the reduced trace of ρ. This is the content of [Che04, 7.2.6], which follows

the suggestion after [CM98, 5.1.2].

4.3 Crystalline Eigenvalues

(4.3.1) We start this section with a theorem of Kisin, which is a concatenation of

Proposition 5.14 and Corollary 5.15 of [Kis03]. Let R be an affinoid over Qp and let

M be a finite free R-module with a continuous GQp-action. Let Y ∈ R× such that

Y is R-small. We will not repeat the definition of “R-small” here, but we remark

that this is satisfied for any sufficiently small affinoid SpR containing a closed point

x (cf. [Kis03, 5.2]). Associated to M we take the Sen polynomial P (T ) ∈ R[T ], as in

[Kis03, 2.2].

Theorem 4.3.2 (Kisin). Let {Ri}i∈I be a collection of Tate R-algebras such that for

each n > 0 there exists a subset In of the set of indices I with the following properties:

1. For every i ∈ In every GQp-equivariant map

M∗ ⊗R Ri → B+
dR/t

nB+
dR⊗̂QpRi

factors through (B+
cris⊗̂QpRi)

ϕ=Y , where ϕ is the crystalline Frobenius.

2. For each i ∈ In the image of P (k) in Ri is a unit.

3. The map R→
∏

i∈InRi is injective.

56



Then for any closed subfield E ⊂ Cp and any continuous map f : R→ E there is an

E-linear GQp-equivariant map

M∗ ⊗R E → (B+
cris⊗̂QpE)ϕ=Y

(4.3.3) We now get to the main theorem of this chapter. Let f be as in §4.2.4, i.e., a

holomorphic Siegel modular form of level N , weight κB = (k+1, 2) with k ≥ 1, giving

rise to an irreducible admissible cuspidal automorphic representation π of GSp(4,AQ),

whose infinite component π∞ is a limit of discrete series with Harish-Chandra param-

eter κ = (k, 0). Let ρπ,p : GQ → GL(4,Qp) be the Galois representation associated to

π. Let {αp, βp, γp, δp} are the Satake parameters of the local representation πp.

Theorem 4.3.4. If ρπ,p is irreducible, then

dimQp Dcris

(
ρπ,p|GQp

)
≥ #{αp, βp, γp, δp}

In particular, if the Satake parameters {αp, βp, γp, δp} are all distinct, then ρπ,p|GQp

is a crystalline representation, and the characteristic polynomial of the crystalline

Frobenius ϕ is

(x− αp)(x− βp)(x− γp)(x− δp)

Proof. Let α be one of the Satake parameters, let fα be as in §4.2.4 and let z be

the point on the eigenvariety coming from fα. Under the assumption that ρπ,p is

absolutely irreducibile, by Proposition 4.2.6 there exists a Galois representation ρ :

GQ → GL(4,R) where SpR is some affinoid neighborhood of z in Eσ. For a point

c ∈ Eσ(L) we write ρc for the specialization at c. Let M be the R-dual of ρ.

Let Et be the residue fields at the points zt. The Galois representations ρzt are

crystalline at p by construction (since they are the Galois representations associated to

regular holomorphic Siegel modular forms of level pN , which are old at p; cf. §4.2.4).

Therefore, if αt is the Up,1-eigenvalue of zt, there exists a nontrivial GQp-equivariant
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map

M∗ ⊗R Et → (B+
cris⊗̂QpEt)

ϕ=αt

(In effect, we are exhibiting a weak refinement in the sense of [BCa, 4.2.7].)

We will apply Theorem 4.3.2 to the affinoids Rt = Et and (for n > 0) for the sets

In consisting of those points zt such that k0(p − 1)pt > n. In that case, since the

weight of zt is w(zt) = (k, 0) + k0(p − 1)(pt, pt), the Hodge-Tate weights of ρzt are

included in the set

{0, k0(p− 1)pt, k + k0(p− 1)pt, k + 2k0(p− 1)pt}

and, since the points zt come from holomorphic Siegel modular forms, the Hodge-Tate

weights contain the set

{0, k + 2k0(p− 1)pt}

([Urb05, 3.4]). By choice of t, we have k0(p − 1)pt > n, so none of the roots of the

Sen polynomial P (T ) specialized at zt is equal to n, therefore P (n) is invertible in Et.

This verifies condition (2) of Theorem 4.3.2. Finally, condition (1) of the theorem is

verified by the above, and condition (3) is verified because the points zt are dense in

SpR (see the third paragraph of §4.2.4).

We conclude that if E is the residue field at z, there exists a nontrivial GQp-

equivariant E-linear map M∗⊗RE → (B+
cris⊗̂QpE)ϕ=α, in other words, the crystalline

Frobenius ϕ acting on Dcris(ρz) has an eigenvector with eigenvalue α. Therefore, each

distinct Satake parameter provides a crystalline eigenvalue, hence

dimQp Dcris

(
ρπ,p|GQp

)
≥ #{αp, βp, γp, δp}

If, moreover, the Satake parameters {αp, βp, γp, δp} are all distinct, we conclude that

dimQp Dcris(ρz) ≥ 4, therefore ρz is a crystalline representation. The statement about
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the characteristic polynomial of ϕ results from the fact that {αp, βp, γp, δp} are all the

eigenvalues of ϕ acting on the four dimensional vector space Dcris(ρz).
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Chapter 5

Modular Forms on GL(2)/K

5.1 Functorial Transfer to GSp(4)/Q

(5.1.1) We start with a brief overview of the results of [HST93].

Let K be an imaginary quadratic field and let π be an irreducible cuspidal au-

tomorphic regular algebraic representation of GL(2,AK) whose central character χπ

satisfies χπ ∼= χcπ (where c is the nontrivial element of Gal(K/Q)) and such that the

Langlands parameter associated to the infinity component π∞ is

z 7→

z1−k

(zc)1−k


where k ≥ 2. For π as above let αv and βv be the Satake parameters of πv if it is an

unramified principal series.

(5.1.2) If W ⊂ M2×2(K) is the subspace of Hermitian matrices, then − det is a bi-

linear form on W of signature (3, 1). The map σ : GL(2)/K → GO(W ) = GO(3, 1)◦/Q

given by σ(g) : x 7→ gxgct gives a bijection between cuspidal automorphic represen-

tations π̃ of GO(3, 1)◦/Q and pairs (π, χ̃) where π is a cuspidal automorphic represen-
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tation of GL(2)/K and K̃ : Q×\A×
Q → C× is a character such that χ̃ ◦NK/Q = χπ.

Using the fact that GO(3, 1)◦/Q is the connected component of the identity in

GO(3, 1)/Q one obtains a bijection between cuspidal automorphic representations π̂

of GO(3, 1)/Q and triples (π, χ̃, δ) where (π, χ̃) are as above, and δ is a map from the

places of Q to {−1, 1}, which is 1 at almost all places, it is 1 at places v such that

πv ∼= πcv and, if π ∼= πc then
∏

v δ(v) = 1 (cf. [HST93, p. 383]).

(5.1.3) Assume π is a cuspidal automorphic representation of GL(2)/K as above and

suppose that π̂ = (π, χ̃, δ) is a cuspidal representation of GO(3, 1,AQ) such that

• δ(∞) = −1,

• there exists a character φ : K×\A×
K → C× with φ|A×

Q
= χ̃ such that if πv ∼= πcv

then δ(v) = χ̃v(−1)ε

(
πv ⊗ φ−1

v ,
1

2

)
and

• L
(
π ⊗ φ−1,

1

2

)
6= 0.

The main result of [HST93] (contained in Proposition 3 loc. cit.) is that under

the assumptions enumerated above, the theta lift Θ(π̂) from GO(3, 1)/Q to GSp(4)/Q

is a nonzero cuspidal automorphic representation of GSp(4,AQ). Moreover, if Π is an

irreducible quotient of Θ(π̂), then Π∞ is a holomorphic discrete series representation.

5.2 The Galois Representations

This paragraph is based on [Tay91], [Tay93] and [BH07].

(5.2.1) For an automorphic representation π of GL(2,AK) as in §5.1.1, let S(π) be

the set of places of Q containing:

• the infinite place,

• places p such that v | p ramifies over Q,

61



• inert primes p = v such that πv is not an unramified principal series, and

• split primes p = v · vc such that πv or πvc is not an unramified principal series.

A last bit of notation: a setM of quadratic characters µ : A×
K/K

× → C× is dense

if for any quadratic character µ̃ : A×
K/K

× → C× and any finite set S of places of K

there exists a character µ ∈M such that µ̃v = µv for v ∈ S.

(5.2.2) We have seen that, associated to the cuspidal representation π, together with

choices of χ̃ and δ satisfying certain conditions there exists a nonzero cuspidal auto-

morphic representation Π of GSp(4,AQ). In order to ensure that Π does not degener-

ate (the essential problem being the nonvanishing of the L-function at 1
2
), one must

twist the original representation π by a quadratic character. Using a dense set of

such characters allows one to recover the Galois representation associated to π. The

following theorem is [BH07, Theorem 2.3]:

Theorem 5.2.3. For π as above there exists a dense set M of quadratic characters

such that for each µ ∈ M there exists a cuspidal automorphic representation Πµ of

GSp(4,AQ) with the following properties:

• the component at infinity Πµ
∞ is a limit of discrete series representation with

Harish-Chandra parameter (k − 1, 0), and

• if p = v /∈ S(π ⊗ µ) then Πµ
p is an unramified principal series with Satake

parameters

±
√
αvµv($v),±

√
βvµv($v)

• if p = v · vc /∈ S(π ⊗ µ) then Πµ
p is an unramified principal series with Satake

parameters

αvµv($v), αvcµvc($vc), βvµv($v), βvcµvc($vc)

where for each finite place v, we denote by $v a uniformizer for Kv.
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For each µ ∈M, Taylor associates Galois representations ρΠµ,p : GK → GL(4,Qp)

to Πµ using congruences (given by the specialization of the Galois representation ρ

from Proposition 3.4.3 at the system of Hecke eigenvalues coming from Πµ). In [BH07]

it is shown that there exists ρπ,p : GK → GL(2,Qp) such that

IndQ
K (ρπ,p ⊗ µ) ∼= ρΠµ,p

We cite the theorem below ([BH07, Theorem 1.1]):

Theorem 5.2.4. There exists a continuous irreducible representation ρπ,p : GK →

GL(2,Qp) such that if v 6∈ S(π) ∪ {v | p} is a place of K, then ρπ,p|GKv
is unramified

and

L(πv, s) = det(1− ρπ,p(Frobv)q
−s
v |ρπ,p|GKv

)−1

Remark 5.2.5. In the original paper due to Taylor, the existence of the dense set

of characters M was proven with some restrictions on the weight. In [BH07] this

restriction is removed, by using a result of Friedberg and Hoffstein on nonvanishing

of L-functions.

We end this section with a lemma.

Lemma 5.2.6. Let ρ : GK → GL(2,Qp) be an irreducible Galois representation.

Then IndQ
K ρ : GQ → GL(4,Qp) is irreducible if and only if ρ 6∼= ρc.

Proof. Assume IndQ
K is reducible and let f : τ ↪→ IndQ

K ρ be a nontrivial subrepre-

sentation. By Frobenius reciprocity g : τ |GK
↪→ ρ is also a subrepresentation. Since

ρ is irreducible, it follows that g : τ |GK
∼= ρ, where the map g can be computed as

g(v) = f(v)(1). Then v 7→ f(v)(c) is an isomorphism between ρ and ρc.

Reciprocally, if ρ ∼= ρc and e1, e2, e3, e4 is the basis of IndQ
K ρ with respect to which
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for h ∈ GK we have

(IndQ
K ρ)(h) =

ρ(h)
ρ(h)


and

(IndQ
K ρ)(ch) =

 ρ(h)

ρ(h)


then the subspace generated by e1 + e3 and e2 + e4 is a subrepresentation isomorphic

to ρ.

5.3 Behavior at p

The purpose of this thesis is to answer the question of what happens in Theorem

5.2.4 when v | p. Our main result is the following:

Theorem 5.3.1. Let π be a cuspidal automorphic representation of GL(2,AK) with

infinite component π∞ having Langlands parameter z 7→

z1−k

z1−k

 where k ≥ 2,

and such that the central character χπ satisfies χπ ∼= χcπ. Let p be a prime number

such that K/Q is not ramified at p.

• If p = v is inert in K assume πv is an unramified principal series with distinct

Satake parameters αv, βv;

• If p = v · vc splits assume that πv and πvc are unramified principal series with

Satake parameters αv, βv and αvc , βvc respectively, such that {αv, βv, αvc , βvc}

are all distinct.

Then ρπ,p|GKv
(as well as ρπ,p|GKvc

in the split case) is a crystalline representation.

Proof. Let v /∈ S(π). Choose µ ∈M such that

1. if p = v is inert then µ is unramified at p and µp(p) = 1,
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2. if p = v ·vc is split then µ is unramified at v and vc, and µv($v) = µvc($vc) = 1,

3. (ρπ,p ⊗ µ) 6∼= (ρπ,p ⊗ µ)c.

If for some place w /∈ S(π)∪{v} we have ρπ,p|GKw
6∼= ρπ,p|cGKw

then condition 3 above is

satisfied by requiring that µ be unramified at w and µw($w) = µwc($wc); otherwise, it

is satisfied by requiring that µ be unramified at w and µw($w) 6= µwc($wc). Finally,

there exists a quadratic character µ̃ satisfying the above conditions, and therefore

there exists a quadratic character µ ∈ M satisfying them, since M is dense. Note

that conditions 1 and 2 imply that S(π ⊗ µ) does not contain p.

By choice of µ and Lemma 5.2.6 it follows that ρΠµ,p
∼= IndQ

K ρ
µ
π is irreducible. If

we assume that p = v · vc splits completely, then Πµ
p is an unramified principal series

with distinct Satake parameters αv, αvc , βv, βvc . Therefore, by Theorem 4.3.4, the

Galois representation ρΠµ,p|GQp
is crystalline. If we assume that p = v is inert, then

Πµ
p is an unramified principal series with distinct Satake parameters ±√αv,±

√
βv.

Again, by Theorem 4.3.4, the Galois representation ρΠµ,p|GQp
is crystalline.

We conclude that ρΠµ,p|GQp

∼=
(
IndQ

K ρ
µ
π,p

)
GQp

is crystalline. We would like to

deduce that ρp|GKv
is crystalline when v | p.

First, start with the case when p = v · vc splits completely in K. Then

(
IndQ

K ρ
µ
π,p

)
|GQp

= ρµπ,p|GKv
⊕ ρµπ,p|GKvc

Therefore

D∗
cris

(
IndQ

K ρ
µ
π,p

)
|GQp

= D∗
cris

(
ρµπ,p|GKv

)
⊕D∗

cris

(
ρµπ,p|GKvc

)

Since
(
IndQ

K ρ
µ
π,p

)
|GQp

is crystalline, it follows that
(
ρµπ,p

)
|GKv

and
(
ρµπ,p

)
|GKvc

are

crystalline. Since we have chosen µ such that µv and µvc are trivial, it follows that

(ρπ,p) |GKv
and (ρπ,p) |GKvc

are crystalline.
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Second, assume that p = v is inert in K. Then

(
IndQ

K ρ
µ
π,p

)
|GQp

= Ind
Qp

Kv

(
ρµπ,p|GKv

)
Since Kv/Qp is a finite extension, Ind

Qp

Kv
is also a left adjoint to restriction, so as

Kv-vector spaces (remember that v /∈ S(π ⊗ µ) implies that Kv/Qp is unramified,

therefore Dcris is in fact a Kv-vector space) we have

D∗
cris

(
ρµπ,p|GKv

) ∼= HomGKv

(
ρµπ,p|GKv

, Bcris

)
∼= HomGQp

(
Ind

Qp

Kv

(
ρµπ,p|GKv

)
, Bcris

)
∼= D∗

cris

(
Ind

Qp

Kv

(
ρµπ,p|GKv

))

Since
(
IndQ

K ρ
µ
π,p

)
|GQp

is crystalline, we get

dimQp D
∗
cris

(
Ind

Qp

Kv

(
ρµπ,p|GKv

))
= 4

therefore

dimKv D
∗
cris

(
ρµπ,p|GKv

)
= 2

which shows that
(
ρµπ,p

)
GKv

is crystalline. As before, we get (ρπ,p)GKv
is crystalline.
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Chapter 6

Concluding Remarks

(6.1) The main hypothesis of Theorem 5.3.1, that of distinct Satake parameters,

is essential for our method of proof. If one could construct congruences between

holomorphic Siegel modular forms with equal Satake parameters at p and bounded

weight Siegel modular forms, potentially increasing the level away from p, then one

could use integral p-adic Hodge theory to extend the result to the case of equal

parameters. However, constructing congruences between nonregular Siegel modular

forms is beyond our current means.

(6.2) We mentioned in Theorem 4.3.4, that if the Satake parameters at p are distinct,

then the Galois representation crystalline and the characteristic polynomial of the

crystalline Frobenius ϕ is (x−αp)(x−βp)(x−γp)(x−δp). However, we cannot readily

conclude that the characteristic polynomial of ϕ on Dcris(ρπ,p|GKv
) is (x−αv)(x−βv)

since we deduced crystallinity of the latter by a dimension count.
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