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Abstract

We consider the Constant Elasticity of Variance (CEV) process, reviewing the relationships
between its transition density and that of the non-central chi-squared distribution. When
the CEV parameter exceeds one, the forward price process is a strictly local martingale, and
the price of a plain vanilla European call option reflects this fact. We develop techniques
for Monte Carlo simulation of the CEV process, for all parameter regimes, and compare the
results against the analytic expressions for plain vanilla European option prices. Using these
techniques, we also verify the local martingale property.
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1. Introduction

Pricing derivatives under the assumption of constant volatility, as in the classic Black-
Scholes-Merton model [3, 19] of option pricing, is well-known to give results which cannot
be reconciled with market observations, although these problems did not widely manifest
themselves until the 1987 market crash. After this event, the so-called volatility smile or
volatility skew became common place in equity markets.

The volatility smile is a market phenomenon whereby the Black-Scholes implied volatility
of an option exhibits a dependence on the strike price. An alternative to the Black-Scholes
model, which exhibits such a volatility skew, is the constant elasticity of variance (CEV)
process, first proposed by Cox & Ross [5].

The CEV model is a continuous time diffusion process satisfying1

dF = σFα dW, F (0) = F0 > 0, (1)

where F (t) is the state variable representing the forward price of some underlying asset at
time t and W is a standard Brownian motion. The parameter α is called the elasticity and
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1We ignore a possible drift term here, but its inclusion is straightforward, and has no substantial effects.
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we take α 6= 1 to distinguish (1) from the Black-Scholes model. To ensure σ has the correct
dimensions, we take σ = σLNF 1−α

0 , where σLN is the effective lognormal volatility.
Feller’s work [10] on singular diffusion processes underpins much of our theoretical un-

derstanding of (1) and demonstrates that the CEV process admits three distinct types of
solution according to the parameter regimes α < 1/2, 1/2 ≤ α < 1 and α > 1. These distinct
regimes allow the CEV model to capture qualitative features of several asset classes present
in the financial industry. For example, in the case α < 1, it is well known that F = 0 is an
accessible case and therefore the CEV model allows for bankruptcy.

The pricing of derivatives under the CEV process was originally investigated by Cox &
Ross [4, 5] who obtained closed-form European option prices when α < 1 in terms of a sum
of incomplete gamma functions. Schroder [20] established a connection between these pricing
formulae and the non-central chi-squared distribution.

The case α > 1 was studied by Emanuel & MacBeth [9] by constructing the relevant
transition density function, which was in turn used to show that E[FT |F0] 6= F0. Therefore
FT is a strictly local martingale when α > 1 (FT can be shown to be martingale for α < 1).
An important consequence of this martingale property is that the widely-quoted European
call price (see, e.g., [14]; the origin of these results being [20]) does not represent an arbitrage
free value unless augmented with a correction term. This feature of (1) has been noticed by
Lewis [17], discussed by Atlan & Leblanc [2, 15] and is the main focus herein.

Of particular interest is the numerical treatment of (1) in the light of this local martingale
property and the non-zero absorption probability at F = 0 when α < 1. In the former case,
paths of (1) are constructed from inversion of a cumulative distribution function and the
results are consistent with the local martingale property. In the latter case, we show how
to account both for the absorption probability and the unusual distribution while obtaining
results consistent with the analytic properties. Such numerical techniques can thus be used
to price arbitrary derivatives written on an underlying asset whose dynamics is described by
(1).

The paper is structured as follows. In §2, we review the CEV process, the results of
Feller concerning the transition density function, highlight the connections with the non-
central chi-squared distribution, and establish a symmetry relationship between the regimes
α < 1 and α > 1. In §3, we compute the expected value of FT itself, and confirm the
local martingale nature of the process in this case. Closed-form expressions for the prices
of plain vanilla European options, derived directly from the transition density function, are
also developed. In §4, we develop techniques for Monte Carlo simulation of the CEV process
(1), in all parameter regimes, and test them against the analytic result for both the forward
price of the underlying, and the prices of plain vanilla European options. We find very good
agreement. Finally in §5 we discuss our results.

2. General properties of the CEV process

The CEV process applied to the forward price F (t) of some underlying asset satisfies the
stochastic differential equation (SDE) (1). We take the view that (1) applies only up to the
stopping time

τ ≡ inf
t>0

{F (t) = 0} . (2)

The treatment of the process after the stopping time requires consideration of the underlying
financial problem. For example, when F represents some equity asset price, the stopping time
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(2) would indicate the time of bankruptcy. In other financial scenarios, however, F could
represent a volatility in which case a return to F > 0 after the stopping time would be more
sensible.

It is advantageous to work with the transformed variable

X =
F 2(1−α)

σ2(1 − α)2
, (3)

which follows the square root process

dX = δ dt + 2
√

X dW, δ ≡ 1 − 2α

1 − α
. (4)

Equation (4) is a squared Bessel process BESQδ, with δ degrees of freedom. We again take
the view that a path of (4) is defined only up to the stopping time.

For δ a positive integer, equation (4) is that governing the squared distance, X, from
the origin of a Brownian particle in δ spatial dimensions. Accordingly, it has a non-central
chi-squared distribution

pχ′ 2(x; δ, λ) =
1

2

(x

λ

)ν/2
exp

[

−x + λ

2

]

Iν(
√

xλ), ν =
δ

2
− 1. (5)

where χ′ 2(x; k, λ) is the non-central chi-squared distribution with degrees of freedom k and
non-centrality parameter λ, Iν(x) is the modified Bessel function of the first kind, and ν is
the index of the squared Bessel process. Of course, δ is generally not an integer and need
not be positive. For δ ∈ R

+, however, the properties of (4) are well developed, but the case
δ < 0(α > 1) has received less attention (see [21, 22, 12, 7, 8] and references therein).

To build a theory for the CEV process for all α 6= 1, the classic analysis of Feller [10]
is employed. From a direct solution of the Fokker-Planck equation, Feller showed that the
square root process (4) has very different properties according to whether

• δ ≤ 0, or α ∈ [0.5, 1): the boundary X = 0 is attainable and absorbing.

• 0 < δ < 2, or α < 0.5: the boundary X = 0 is attainable, and can be absorbing or
reflecting.

• δ > 2, or α > 1: the boundary X = 0 is not attainable.

Since the boundary X = 0 may be accessible and absorbing, probability mass can be lost.
Solutions, pδ(XT , T ;X0), of the Fokker-Planck equation can thus be norm-decreasing :

∫

∞

0
pδ(X,T ;X0) dX < 1. (6)

A norm-preserving solution, on the other hand, satisfies (6) but with an equality replacing
the inequality.
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2.1. The case δ ≤ 0

For δ ≤ 0, or α ∈ [0.5, 1), the Fokker-Planck equation has a unique norm-decreasing
solution. Hitting the X = 0 boundary in (4) is equivalent to hitting the F = 0 boundary
in the original CEV process (1), so that the process is also absorbed at the origin. The
transition density2 is

pδ(XT , T ;X0) =
1

2T

(

XT

X0

)ν/2

exp

[

−XT + X0

2T

]

I−ν

(√
XT X0

T

)

. (7)

This expression is obtained after solving the Fokker-Planck equation via Laplace transforms,
see [13] for detailed derivation. Direct integration of pδ(XT , T ;X0) gives:

∫

∞

0
pδ(X,T ;X0) dX = Γ

(

−ν;
X0

2T

)

< 1, (8)

where Γ(n;x) is the normalized incomplete gamma function

Γ(n;x) =
1

Γ(n)

∫ x

0
tn−1e−t dt. (9)

Equation (8) gives the probability that the process has not become trapped at X = 0 by
time T . As shown in Figure 1, in the limit as T → ∞, the integral vanishes, indicating that
every path will be trapped at X = 0 for δ ≤ 0.

The absorbing nature of the X = 0 (F = 0) boundary in this regime allows the CEV
process to represent assets whose value may reach zero. The most natural example of this
scenario would be the company, or indeed an interest rate, whose value reaches zero. On
the other hand this parameter regime should not be used to model processes which should
remain positive i.e. volatility processes.

The full norm-preserving transition density is thus given by the sum of the defective
density (7) and a Dirac measure at zero, namely

pfull
δ (XT , T ;X0) = 2

[

1 − Γ

(

−ν;
X0

2T

)]

δ (XT ) + pδ(XT , T ;X0), (10)

The coupling of a defective density with a Dirac mass at the origin has been used to study
the non-central chi-squared distribution with zero degrees of freedom [21] and the squared
Bessel process (4) with δ = 0 [12]. Indeed, taking δ = 0 in expression (10) agrees with the
result presented in [12].

Finally, the transition density is related to the non-central chi-squared distribution (5)
since by inspection,

pδ(X,T ;X0) = pχ′ 2

(

X0

T
; 4 − δ,

X

T

)

1

T
, (11)

where the right-hand side is well-defined since 4− δ > 0, but note that it is a function of the
non-centrality parameter. Schroder, however, proves3 that [20]

∫

∞

x
pχ′ 2 (X0; 4 − δ,X) dX = χ′ 2 (X0; 2 − δ, x) , (12)

2This is a special case of the solution arrived at by Feller, although there is a minor typo in his work: the
term 4b2 in equation (6.2) of [10] should be 1. After that one may take the limit as b → 0 to arrive at (7).
This error was also noticed by Lewis [17].

3There is also a claim in [20] that χ′ 2(x; k, λ) + χ′ 2(λ; 2 − k, x) = 1, but the proof of this relies on using
the identity I−n(x) = In(x), which is true only for integer n, so in general the result will not hold.
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Figure 1: The right hand side of (8) is plotted for several values of δ < 2. At the center line, we have
from left to right curves for δ = 1, 0,−2,−5, or α = 0, 1/2, 3/4, 6/7, respectively. For fixed X0, all
paths will eventually be trapped as each curve tends to 0 for T → ∞. For fixed T , the probability
of a path having been trapped by time T increases (decreases) when X0 decreases (increases), i.e.

when α → −∞ (α → 1).

which gives

∫ XT

0
pδ(X,T ;X0) dX = Γ

(

−ν;
X0

2T

)

− χ′ 2

(

X0

T
; 2 − δ,

XT

T

)

. (13)

Including the Dirac mass in the full transition density (10), X is thus distributed according
to

Pr (X ≤ XT |X0) =

∫ XT

0
pfull

δ (X,T ;X0) dX = 1 − χ′ 2

(

X0

T
; 2 − δ,

XT

T

)

. (14)

2.2. The case 0 < δ < 2

For 0 < δ < 2, or α < 0.5, the boundary X = 0 is accessible, just as when δ ≤ 0. When
such a path hits X = 0, we may either impose an absorbing boundary and terminate the
process, or impose a reflecting boundary and return to X > 0. Hitting the X = 0 boundary
in (4) is again equivalent to hitting the F = 0 boundary in the original CEV process (1), so
appropriate boundary conditions must also be applied at the origin for that process in the
regime α < 0.5.

This freedom to return the process to X > 0 after hitting the origin suggests that asset
classes which must remain strictly positive are best described by the CEV process in this
regime. Examples of such processes include interest rates and volatilities.

The unique fundamental solution assuming an absorbing boundary condition is given by
(7). Accordingly, all paths will eventually be trapped at the origin as in the δ ≤ 0 case. As for
that case, probability mass is present at the origin, and the full norm-preserving transition
density is given by (10). This equation is thus valid for δ < 2, with an absorbing boundary
at X = 0.

Feller does not derive the corresponding solution given a reflecting boundary condition,
but by imposing a zero flux at X = 0 it is straight forward to show4 that the transition

4Take equation (3.9) of [10], set f(t) = 0, and invert the resulting reduced Laplace transform.
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density in this case is

pδ(XT , T ;X0) =
1

2T

(

XT

X0

)ν/2

exp

[

−(XT + X0)

2T

]

Iν

(
√

XT X0

T

)

, (15)

and that it is norm-preserving. We thus have5

Pr (X ≤ XT |X0) =

∫ XT

0
pδ(X,T ;X0) dX = χ′ 2

(

XT

T
; δ,

X0

T

)

. (16)

2.3. The case δ > 2

Finally when δ > 2, or α > 1, a unique norm-preserving solution exists, the process never
hits X = 0, and boundary conditions cannot be imposed. The transition density for δ > 2 is
given by (15), but in this case pδ → 0 as XT → 0, paths being pushed away from the origin.
From the point of view of the original CEV process, however, this is a statement about the
F = ∞ boundary and indicates that solutions of (1) remain finite for all time6. On the
other hand, the Feller test for explosions (see, e.g., [16, 18]) shows that X will never become
unbounded in finite time if δ > 2. The origin F = 0 in the CEV process is thus also not
accessible (as in the limiting α = 1 lognormal case).

2.4. Symmetry of the transition density

If we choose absorbing boundary conditions at X = 0 when appropriate, then the norm-
decreasing part of the transition density is given by (7) for all δ < 2. On the other hand, for
δ > 2, the density is given by (15). It is straightforward to verify the following symmetry
between these two expressions.

If δ < 2 (δ > 2) then, for δ > 2 (δ < 2), we have

pδ(XT , T ;X0) = p4−δ(X0, T ;XT ). (17)

The boundary case at δ = 2 corresponds to α = 1, and so there is a similar symmetry relation
over α → 2 − α. This feature can be used to generate the density for α > 1 (α < 1) from
that for α < 1 (α > 1), although one must be careful to (re-)include the Dirac mass in (10)
when appropriate.

3. Local Martingale Property and Closed-form European option prices

In this section, we derive expressions for the expected value of the process FT based on
the transition densities developed in sections §2.1-§2.4. These quantities are then used to
establish closed form expressions for European options prices which take into account the
local martingale property of FT when α > 1.

5We also note that pδ(XT , T ; X0) = O(Xν
T ) as XT → 0. Since −1 < ν < 0, the transition density (15) is

not finite at XT = 0 although its expectation is, since E[XT ] = O(X1+ν
T ) as XT → 0. In terms of the squared

Bessel process (4), this indicates that paths have a propensity towards the vicinity of the origin.
6This is in contrast to the deterministic case dx = xαdt which is guaranteed to blow-up in finite time

whenever x(0) > 0 and α > 1.
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Figure 2: Plot of E[FT ]/F0 against α > 1 for parameter values F0 = 100, T = 1, σLN = 0.2.

3.1. Expected value of F , and the local martingale property

For any δ, the expected value of FT is

E [FT |F0] ≡ µF = σ−2ν(1 − α)−2ν

∫

∞

0
X−ν pδ(X,T ;X0) dX,

where, for δ < 2, the Dirac mass vanishes from the integral of pfull
δ . Substitution of (7) or

(15), and using the symmetry (17), gives

X−νpδ(X,T ;X0) = X−ν
0 pδ(X0, T ;X) = X−ν

0 p4−δ(X,T ;X0),

so that

µF = F0

∫

∞

0
p4−δ(X,T ;X0) dX.

For δ < 2 (α < 1), this integral is norm-preserving, making F a martingale as expected.
However, for δ > 2 (α > 1), the integral is norm-decreasing, so that F is a strictly local

martingale7:

µF = F0 Γ

(

−ν;
X0

2T

)

< F0. (18)

As discussed by Lewis [17], the CEV process (1) with α > 1 is such that the forward price is
only a local martingale. The discrepancy from a true martingale is shown in Figure 2.

3.2. Closed-form European option prices.

Here we establish the prices of plain vanilla European options, based on the results devel-
oped in sections §2.1-§2.4. The forward, or at-expiry, price of a plain vanilla European call
option is

C = E [max (FT − K, 0)|F0] =

∫

∞

K
(F − K) pδ(F, T ;F0) dF,

where K is the strike price of the option, with maturity T . The forward price of the corre-
sponding put option can be found through put-call parity:

P = C − E [FT − K|F0] = C − E [FT |F0] − K, (19)

7A rigorous definition of a strictly local martingale is given in, e.g., [16]. For our purposes, however, if will
suffice to take a local martingale to be a process dF = σ(F, t) dW with E[FT |F0] < F0.
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where, if FT is only a local martingale, the right-hand side is not equal to C − F0 − K.
Once we transform to the X coordinate, we need to differentiate between the δ < 2 and

δ > 2 regimes. In the former, one can derive expressions which agree with [20]:

Cδ<2 = F0

[

1 − χ′ 2

(

K̃

T
; 4 − δ,

X0

T

)]

− Kχ′ 2

(

X0

T
; 2 − δ,

K̃

T

)

, (20)

However, for δ > 2, or α > 1, we have

Cδ>2 =

∫ K̃

0

[

X−ν

(σ(1 − α))2ν − K

]

pδ(X,T ;X0) dX,

where the relevant (norm-preserving) transition density is given by (15). The second integral
is a cumulative non-central chi-squared distribution, but the first integral becomes

F0

∫ K̃

0
p4−δ(X,T ;X0) dX,

upon use of the symmetry (17). Since δ > 2, the transition density p4−δ is the norm-decreasing
density given in (7) and, from (13), we have

Cδ>2 = F0

[

Γ

(

ν;
X0

2T

)

− χ′ 2

(

X0

T
; δ − 2,

XT

T

)]

− Kχ′ 2

(

K̃

T
; δ,

X0

T

)

. (21)

The expression (21) for Cδ>2 agrees with Lewis [17], and as he has pointed out, it is not

the same as that widely reported in the literature. On the other hand, the put price does
agree with that in the literature, but only by a cancellation of errors: the replacement of
F0Γ(ν;X0/(2T )) with F0 in (21) is canceled out by the mistaken assumption that FT is a
martingale.

4. Monte Carlo simulation

In this section, we perform an exact simulation of the squared Bessel and CEV processes,
and compute both the forward prices E[XT ] and E[FT ], as well as plain vanilla European
prices. We find good agreement with the analytic results obtained above. We actually
perform quasi-Monte Carlo simulations, using the Sobol sequence of numbers (see, e.g., [11]
for an overview of these techniques). We always sample XT , and obtain FT through inversion
of (3). We assume an absorbing boundary where appropriate, and always take N = 220 − 1
in our simulations8.

As Xt and XT are arbitrary, this method can be also be used to generate detailed paths
required for the pricing of more exotic derivatives. By calculating paths using this method,
one automatically takes care of the local martingale property of the CEV process with α > 1.
Additionally, discretization is not required with the effect that good accuracy is guaranteed
and extraneous work is minimized by only sampling at points required for derivative pricing.
Detracting from this method is the relatively large amount of computational effort required
for each sample obtained.

8For quasi-Monte Carlo simulations with the Sobol sequence of numbers, one should use 2n −1 paths, with
n an integer, so that the mean of the set of numbers used is precisely equal to 1/2.
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4.1. The case δ < 2

For δ < 2, or α < 1, the full transition density (10) consists of the norm-decreasing density
(15) and a Dirac mass at the origin.

To simulate XT , one might think to sample directly from the distribution given in (14).
Drawing numbers U = Pr (X ≤ XT |X0) ∈ (0, 1) from a uniform distribution, one would have

χ′ 2

(

X0

T
; 2 − δ,

XT

T

)

= U, (22)

so XT /T would be the formal inverse of the non-central chi-squared distribution as a function
of the non-centrality parameter: with F(x) ≡ χ′ 2(X0/T ; 2 − δ, x), we would have

XT

T
= F−1 (U) .

However, accounting for the absorption at X = 0 that this distribution captures is difficult
numerically; there are many values of U for which XT = 0 is the correct solution.

It is more straightforward to account for the absorption “by hand” as it were. We draw
numbers U ∈ (0, 1) from a uniform distribution. If

U > Umax ≡ Γ

(

−ν;
X0

2T

)

,

we simply set XT = 0. On the other hand, if U ≤ Umax, then we sample from the norm-
decreasing density (7) by inverting the integral (13) to obtain

XT

T
= F−1 (Umax − U) .

To compute this numerically, we perform a root search over values of XT . For each such value,
we construct a new cumulative non-central chi-squared distribution, which is nevertheless
always evaluated at the point X0/T .

The cumulative non-central chi-squared distribution is easily computed numerically along
the lines of [6]. This method uses the fact that

χ′ 2(x; k, λ) =

∞
∑

i=1

e−λ/2(λ/2)i

i!
χ2(x; k + 2i).

To avoid numerical difficulties, the sum should be performed starting from the i = ⌊λ/2⌋
term for which the coefficient of χ2(x; k + 2i) is a maximum, and should then proceed for
increasing and decreasing i until convergence is reached in both directions.

The simulated values of European call and put prices are compared with (20). We again
find good agreement, as shown for selected values of α in Table 1, in which we have again
taken F0 = 100, σLN = 50%, T = 4 and have calculated option prices for K = 100. Similarly
good agreement is observed for other values of K.

4.2. The case δ > 2

For δ > 2, or α > 1, the variable XT can be simulated by sampling from a non-central chi-
squared distribution directly, as in (16). This can be done in various ways (see, e.g. [11]). The
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Call K = 100 Put K = 100

α Simulated Analytic Simulated Analytic

-2 34.42926 ± 0.03259 34.42928 34.42925 ± 0.04602 34.42928
-1 37.38754 ± 0.04146 37.38750 37.38744 ± 0.04630 37.38750
0 39.04504 ± 0.05709 39.04516 39.04513 ± 0.04396 39.04516

0.1 39.00895 ± 0.05943 39.00891 39.00885 ± 0.04327 39.00891
0.2 38.93068 ± 0.06202 38.93077 38.93073 ± 0.04242 38.93077
0.3 38.82058 ± 0.06492 38.82088 38.82086 ± 0.04139 38.82088
0.4 38.69621 ± 0.06822 38.69635 38.69630 ± 0.04019 38.69635
0.5 38.57511 ± 0.07203 38.57528 38.57523 ± 0.03886 38.57528
0.6 38.47236 ± 0.07653 38.47251 38.47246 ± 0.03746 38.47251
0.7 38.39167 ± 0.08199 38.39215 38.39212 ± 0.03608 38.39215
0.8 38.33770 ± 0.08895 38.33554 38.33544 ± 0.03476 38.33554
0.9 38.30141 ± 0.09812 38.30366 38.30365 ± 0.03350 38.30366

Table 1: Simulated and analytic values of call and put prices for α < 1, F0 = 100, σLN = 50%,
T = 4 and K = 100. Similarly good agreement is observed for a variety of strikes K.

simplest method, and the one we choose here, is to draw numbers U = Pr (X ≤ XT |X0) ∈
(0, 1) from a uniform distribution, and invert (16) directly to give

XT

T
= χ′−1

(

U ; δ,
X0

T

)

,

where χ′ −1 (x; k, λ) denotes the inverse cumulative non-central chi-squared distribution, with
k degrees of freedom and non-centrality parameter λ.

The inversion of the non-central chi-squared distribution is again performed using a root
search over the cumulative non-central chi-squared distribution. Although computationally
expensive, this method will suffice for our purposes. An alternative would be to use the
quadratic-exponential method described by Andersen [1].

We compare the simulated values of E[XT ] and E[FT ] with the standard result for the non-
central chi-squared distribution and (18) respectively, and find good agreement. In particular,
the latter comparison confirms that FT is a strictly local martingale when α > 1: a plot of
the simulated value of E[FT ] would show no difference to the analytic result in Figure 2.

The simulated values of European call prices are compared with (21) and good agreement,
as shown for selected values of α in Table 2, in which we have again taken F0 = 100,
σLN = 20%, T = 1 and have calculated option prices for K = 100. We also include the
standard call option prices, based on the Cox pricing formula, which clearly deviate from the
corrected value, particularly for large values of α.

5. Conclusion

We have reviewed properties of the CEV process (1), discussing the Feller classification of
boundary conditions and associated probability transition functions, according to the value
of the CEV exponent α. Since the transition density of the squared Bessel process is norm-
decreasing in the δ ≤ 0 regime (and also, given an absorbing boundary condition, in the
0 < δ < 2 regime), we have argued that it should be amended with a Dirac mass at the
origin, with strength such that the resulting full transition density is norm-preserving. The
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Call K = 100 Put K = 100

α Simulated Analytic Standard Simulated Analytic

1.5 7.96872 ± 0.01385 7.96887 7.96885 7.96883 ± 0.00967 7.96885
2 7.96872 ± 0.01528 7.97879 7.97885 7.97883 ± 0.00924 7.97885

2.5 7.95335 ± 0.01742 7.95453 7.99598 7.99597 ± 0.00885 7.99598
3 7.95335 ± 0.01773 7.58979 8.02115 8.02113 ± 0.00849 8.02115

3.5 6.75691 ± 0.01597 6.75739 8.05605 8.05604 ± 0.00815 8.05605
4 5.71528 ± 0.01366 5.71516 8.10331 8.10330 ± 0.00783 8.10331

4.5 4.70077 ± 0.01151 4.70092 8.16394 8.16393 ± 0.00753 8.16394
5 3.82032 ± 0.00970 3.82051 8.23453 8.23453 ± 0.00723 8.23453

5.5 3.09733 ± 0.00822 3.09681 8.30843 8.30842 ± 0.00695 8.30843
6 2.51872 ± 0.00702 2.51885 8.37860 8.37860 ± 0.00667 8.37860

6.5 2.06033 ± 0.00605 2.06009 8.43965 8.43964 ± 0.00641 8.43965
7 1.69776 ± 0.00525 1.69846 8.48825 8.48824 ± 0.00616 8.48825

Table 2: Values of call and put prices for α > 1, F0 = 100, σLN = 20%, T = 1 and K = 100.
The column of standard results is obtained from the Cox pricing formula [4, 5]. Similarly good
agreement is observed for a variety of strikes K.

cumulative distribution in this case is related to the non-central chi-squared distribution, but
as a function of non-centrality parameter.

The forward price FT is a strictly local martingale when α > 1, and this gives rise to
a correction to the standard European call price for α > 1. This is included naturally in a
direct calculation of the expectation value of the option payoff.

We have developed techniques for Monte Carlo simulation of the CEV process, in partic-
ular a new scheme has been given to simulate the forward price when α < 1, which accounts
for the probability of absorption at the origin. We used these techniques to simulate the
expectation values, both of X and F , and of European option prices, and compared them to
the analytic results. The agreement is extremely good.

For α > 1, the simulated results show that the forward price in the CEV model is indeed
a local martingale, and agrees with the corrected call price. The α > 1 regime is not often
discussed in the literature and at any rate, fairly large values of α must be considered to see
these results.

The methods developed herein can be used to generate detailed paths required for the
pricing of more exotic derivatives . By calculating paths using this method, one automatically
takes care of the local martingale property of the CEV process with α > 1. Additionally,
discretization is not required with the effect that good accuracy is guaranteed and extraneous
work is minimized by only sampling at points required for derivative pricing.

Detracting from this method is the relatively large amount of computational effort re-
quired for each sample obtained. One would expect discretization methods to become more
competitive as the number of desired time points per path increases. There are several possi-
ble avenues for speeding up this exact method based on reduction of the underlying density.
The quadratic exponential method, or QE [1] proposes a simplified form of the non-central
chi squared density and has been successfully used in simulations of the Heston model.
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