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We present an efficient moving mesh method for the simulation of fourth order nonlinear 
partial differential equations (PDEs) in two dimensions using the Parabolic Monge–Ampére 
(PMA) equation. PMA methods have been successfully applied to the simulation of second 
order problems, but not on systems with higher order equations which arise in many 
topical applications. Our main application is the resolution of fine scale behavior in 
PDEs describing elastic–electrostatic interactions. The PDE system considered has multiple 
parameter dependent singular solution modalities, including finite time singularities and 
sharp interface dynamics. We describe how to construct a dynamic mesh algorithm for 
such problems which incorporates known self similar or boundary layer scalings of the 
underlying equation to locate and dynamically resolve fine scale solution features in these 
singular regimes. We find a key step in using the PMA equation for mesh generation in 
fourth order problems is the adoption of a high order representation of the transformation 
from the computational to physical mesh. We demonstrate the efficacy of the new method 
on a variety of examples and establish several new results and conjectures on the nature 
of self-similar singularity formation in higher order PDEs.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We present a parabolic Monge–Ampére (PMA) r-adaptive moving mesh method for numerical solutions of fourth order 
partial differential equations (PDEs) in two dimensions. There has been significant recent success on applying PMA methods 
to classic second order problems such as Burger’s equation, semi-linear blow up equations [13] and numerical weather 
prediction [17]. PMA methods have not previously been considered for higher order systems, though such problems feature 
in many topical applications such as rock folding [26], ion bombardment lithography [59], thin film dynamics [56,45,68] and 
pattern formation [35,34,23]. The prototypical system considered here is the parabolic semi-linear equation

∂u

∂t
= −�2u + f (u),

for a convex nonlinearity f (u), however, the methods developed here can be applied to a wide variety of fourth order 
problems.
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Fig. 1. Schematic diagram of a MEMS device a deflecting membrane in contact with an insulating layer of thickness h and aspect ratio d/L. Figure reproduced 
from [63].

The principal application in the present work is to study the formation of singularities and the dynamics of sharp inter-
faces arising from elastic contact problems in micro-electromechanical systems (MEMS). MEMS are a family of miniaturized 
technologies which combine restorative elastic and attractive electrostatic forces to perform a variety of tasks on tiny scales 
[66]. Effective control and simulation of these dynamical processes is crucial for the design and operation of modern nan-
otechnology which has wide ranging applications such as microscopic drug delivery [2], resonators [73] and many more (cf. 
review [43]). Many components of MEMS consist of capacitor like structures (cf. Fig. 1) in which a deformable elastic plate 
is held fixed above a rigid and immobile ground plate. When a voltage V is applied between the two surfaces, the upper 
surface will deflect towards the ground plate, and may come into physical contact if the voltage is large enough. This critical 
event is known as touchdown or snap through and its efficient numerical simulation is the topic of this work. Touchdown 
is a rapid event in which energy is focused at specific spatial locations over very short timescales – an adaptive strategy is 
essential for accurate and efficient numerical simulation of this phenomenon.

Under the assumption of a small aspect ratio (d/L � 1 in Fig. 1), the following parabolic nonlinear PDE system has 
recently been proposed [63] as a model for the dimensionless deflection z = u(x, t) of the deformable elastic surface at 
x = (x, y),

∂u

∂t
= −(−�)pu − λ

(1 + u)2
+ λεm−2

(1 + u)m
, (x, t) ∈ � × (0, T ) (1a)

where the deflecting surface occupies � ⊂ R
2. The parameter λ ∝ V 2 is a non-dimensional parameter quantifying the 

relative importance of electrostatic and elastic forces in the system. The term λεm−2(1 + u)−m for m > 2 represents surface 
effects which are important when the plates are in physical contact. For example, m = 3 represents Van der Waal forces 
while m = 4 accounts for the Casimir effect [44,6]. The dimensionless parameter 0 ≤ ε � 1 depends on a combination of 
geometrical and dielectric properties of the MEMS device [63]. The material properties of the elastic surface are reflected in 
the parameter p signifying the order: for p = 1 the surface is modeled as a simple membrane with stretching energy only. 
The case p = 2 reflects a beam model of the surface which is ubiquitous in engineering models of MEMS and accurately 
reflects real devices. The boundary and initial conditions are specified as

p = 1 : u = 0, x ∈ ∂�;
u = u0(x), x ∈ �.

p = 2 : u = �u = 0, x ∈ ∂�;
u = u0(x), x ∈ �.

(1b)

Typical 1D solutions of (1) for p = 2 are shown in Fig. 2. The singular solutions of (1) are qualitatively different in the cases 
ε = 0, ε > 0 and we treat them separately.
Case ε = 0: In this scenario touchdown occurs when λ is sufficiently large and corresponds to a finite time quenching 
singularity of (1) for which minx∈� u(x, t) → −1 as t → t−

c [62]. The case p = 1 has been studied extensively including 
results on existence and stability of equilibria, bounds on singularity time and blow-up dynamics [66,31]. In the fourth 
order case p = 2, equation (1) develops multiple singularities with the location and multiplicity depending sensitively on 
the voltage parameter λ and the shape and topology of �. In 1D [62], a single singularity can form at the center of the 
interval or two can form around the center, if λ is large enough (cf. Fig. 2a). In 2D, the multiplicity of singularities can 
be higher [61,36]. This paper establishes a numerical strategy that automatically detects the number and location(s) of 
singularities, and dynamically resolves these features while incorporating the scaling structure of the underlying PDE.
Case ε > 0: In this scenario the presence of the regularizing term λεm−2(1 + u)−m yields a well-posed system [63] which 
describes the evolution of (1) when the elastic surfaces are in contact. After initial contact, the solution forms sharp prop-
agating layers which spread throughout the domain until they are eventually pinned at the boundary [60]. Equilibria of (1)
for ε > 0 have been studied in [53,77,59].
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Fig. 2. Solutions of (1) for p = 2 calculated with the 1D r-adaptive method MOVCOL4 [68]. When ε = 0, touchdown is a finite time singularity which occurs 
for λ sufficiently large at two distinct points. For ε > 0, a dynamic sharp interface develops after initial contact.

Fig. 3. Examples of the parabolic Monge–Ampére method developed in this paper applied to equation (1) in the singular (ε = 0) and regularized case 
(ε > 0).

The propagating interfaces (cf. Fig. 2b) have a triple-deck structure comprised of multiscale sublayers for ε � 1 [60]. 
The numerical method developed here resolves these propagating multiscale interfaces, and their growth, interaction and 
merging.

In the present work, we develop an efficient r-adaptive moving mesh strategy for the numerical solution of (1) in two 
dimensions for p = 1, 2 (cf. Fig. 3). In 1D, the r-adaptive method MOVCOL4 [68] has been successfully applied to this effect 
(cf. [62,60]). To generate a dynamic 2D mesh that dynamically adapts to the solution, we employ a Parabolic Monge–
Ampére (PMA) approach (cf. [70,12]) which uses equidistribution to allocate mesh points in high interest regions. A central 
component in this approach is the determination of a transformation, F , between a fixed computational mesh �C and 
a non-uniform physical mesh �P (cf. Fig. 4). The underlying PDE is discretized on �P while all computations are per-
formed on the fixed mesh �C via the mapping F . Computationally, this is significantly simpler than traditional h-adaptive 
approaches as the number of mesh points and its connectivity structure are fixed throughout.

The extension to fourth order PDEs presents a significant challenge largely because additional derivatives of the coordi-
nate transformation F are required to evaluate �2u on a non-uniform mesh (cf. subsection 2.3). This increases regularity 
requirements on F which we address with a fourth order finite difference scheme. To our knowledge, this is the first appli-
cation of PMA methods to MEMS problems and the first use of the PMA method for fourth order PDEs in several dimensions 
(cf. [68] for 1D). The methods of this paper can be applied to many topical problems featuring higher order derivatives [30,
67,64,51,42,40,27].

The rest of the paper is outlined as follows. In section 2 we summarize the theory of mesh generation using the Parabolic 
Monge–Ampére equation (cf. [15]). We introduce the PMA in two dimensions and discuss elements of the solution proce-
dure, such as discretization of spatial operators and selection of the monitor function. In section 3, we present numerical 
results obtained from the method to solve (1) for p = 2 for the ε = 0 case and p = 1, 2 for the ε > 0 case. In each case, we 
validate the numerical solution with known exact and asymptotic solutions where possible. The method is able to resolve 
multiple sharp features and complex interfacial dynamics which would be extremely challenging and computationally ex-
pensive on a fixed mesh. In the case p = 2 and ε = 0, our results give very strong numerical evidence for self-similar blow 
up, and reveal a new and unexpected phenomenon in which blow up is accelerated by the fourth order term. Finally, in 
section 4 we conclude by summarizing the results and discussing avenues for future investigation.
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Fig. 4. An example of a transformation F between the computational mesh �C and the physical mesh �P . The PDE (1) is solved on the mesh �P with all 
numerical computations performed on the uniform mesh �C .

2. Moving mesh adaptive methods and equidistribution principles

Adaptivity is essential in numerical resolution of PDEs with sharp or fine scale features. Two prevalent adaptive re-
finement strategies deploy additional resolution by adding mesh points (h-adaptivity) or increasing local approximation 
order (p-adaptivity). A third approach (r-adaptivity) uses a fixed number of mesh points coupled with a dynamic rearrange-
ment strategy to transit mesh points so that local mesh density is increased in spatial regions where the solution is under 
resolved. The r-adaptive moving mesh approach generally requires fewer degrees of freedom and is simpler in its imple-
mentation details than other adaptive methods. Moreover, when certain scaling structures of the underlying PDE are already 
known, it is relatively convenient to incorporate these into the computational mesh.

Strategies for the dynamical generation of these meshes has been the subject of many studies [54,25,23,48,72,57]. Vari-
ational approaches [46,49] use a matrix valued monitor function that controls specific mesh quality conditions, such as 
alignment or orthogonality and aims to minimize a related functional. These methods generate a large computationally 
expensive nonlinear system to solve for the mesh.

A more recent approach, based on optimal transport theory (cf. [12,15,1,19]), utilizes a scalar monitor function to deter-
mine a coordinate transformation

F : �C → �P ,

between a fixed uniformly spaced computational mesh �C with coordinates ξ = (ξ, η) and a non-uniform physical mesh �P
with coordinates x = (x, y) on which the PDE is solved (cf. Fig. 4). The mapping assumes the computational and physical 
domains are convex. In the present work, we consider transformations which leave the boundary unchanged so that F :
∂�C → ∂�P . The goal of moving mesh methods is to determine a transformation F which increases the local density of 
mesh points in spatial regions where the PDE has fine scale behavior requiring additional resolution.

A powerful tool for constructing such maps is the equidistribution principle derived by de Boor (cf. [28]). In this context, 
the equidistribution principle takes a monitor function M(x, t), which acts as a surrogate for the local error in the PDE 
solution, and distributes it evenly over the domain. This requires that the mesh is denser in regions where the solution 
M(x, t) is large and less dense elsewhere.

The equidistribution principle for any reference set D ⊂ �c with corresponding image F (D, t) ⊂ �P is constructed as∫
D

dξ

∫
�C

dξ

=

∫
F (D,t)

M(x, t)dx

∫
�P

M(x, t)dx
. (2)

The reference set D is arbitrary and therefore

M(x, t)| J (x)| = θ(t) :=

∫
�P

M(x, t)dx

∫
�C

dξ

, (3a)

where J (x) and | J (x)| are the Jacobian of F and its determinant given by
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J (x) =
[

xξ xη

yξ yη

]
, | J (x)| = det J (x) = xξ yη − xη yξ . (3b)

To avoid any mesh tangling, the map must be locally invertible which implies that | J (x)| 	= 0 for all (ξ , t).
Equation (3), supplemented with appropriate boundary conditions, is sufficient for uniquely defining a mesh in one di-

mension [68], but not higher dimensions. There are many options of varying complexity for constraining the transformation 
to obtain a unique mesh [46,49]. A simple recent method (cf. [11,16]) uses optimal transport theory to fix the transformation 
by seeking the F which minimizes the distance

I =
∫
�C

|F (ξ , t) − ξ |2dξ . (4)

This approach seeks a mesh which equidistributes the monitor function M(x, t) while staying as close to a uniform mesh as 
possible. These “optimally transported maps” have good regularity properties [20,71,19] and moreover allow the transfor-
mation to be represented as the gradient of a convex scalar function P (ξ , t), called the mesh potential. In this setting, the 
transformed mesh is given by

x = ∇ξ P = (Pξ , Pη), (5)

where, following from (3), P (ξ , t) satisfies the Monge–Ampére (MA) equation

M(x, t)H(P ) = θ(t), H(P ) = Pξξ Pηη − P 2
ξη, (6a)

which describes an appropriate coordinate transformation. To fix the boundary of the physical domain, we consider a rect-
angular computational region �C = [xl, xr] × [yb, yt] and, recalling x = ∇ξ P , apply the Neumann boundary conditions

Pξ = xl, xr for ξ = xl, xr; Pη = yb, yt for η = yb, yt, (6b)

which yields the MA equation system (6). It has been shown (cf. [9, pp. 379–381], [21]), and in the context of mesh 
generation (cf. [29]), that for convex 2D regions, the MA system (6) admits a unique convex solution.

The monitor function M(x, t) must be chosen judiciously for the method to generate good meshes for solving the under-
lying PDE. The particular form of M(x, t) is application dependent and in problems like (1) where blow-up is a possibility, 
it must also be chosen so that the mesh inherits the strong scaling structures of the PDE.

2.1. Parabolic Monge–Ampére equation

The mesh equation (6) is a fully nonlinear equation that can be computationally expensive to solve, especially when 
coupled to a high order nonlinear PDE [29]. As the main goal is obtaining an accurate solution of the underlying PDE (1), 
it is not necessary to solve (6) to high precision. Instead Budd et al. [12,15] have suggested solving a time dependent 
relaxation of (6), where the gradient of the relaxed equations evolve toward the gradient of the solutions of (6) over a 
relatively short timescale similar to that of the underlying PDE. Assuming the relation x = ∇ξ Q (ξ , t) the equations take the 
form of the Parabolic Monge–Ampére Equation (PMA),

α(I − γ �ξ )Q t = (|H(Q )|M(∇ξ Q ))
1
2 , (7a)

with the boundary conditions

Q ξ = xl, xr for ξ = xl, xr; Q η = yb, yt for η = yb, yt . (7b)

Assuming that the monitor function evolves on a similar time scale as the solution to the MA equation (i.e., εPt is small) 
the mesh potential function Q (ξ , t) evolves towards P (ξ , t), the solution of (6) and provides a mesh with good regularity 
properties (see Lemmas 5.2 and 5.3 in [12]). This evolution toward the solution of the MA requires that for certain initial 
conditions, such as sharp fronts, the PMA must be solved independently to equidistribute the monitor function and create 
a good initial mesh that will evolve on a similar time scale as required. The right hand side of (7) is raised to the power 
1/2 so that it scales linearly with Q to guarantee global solution existence. The operator L = α(I − γ�ξ ) on the left hand 
side of (7) decreases stiffness (cf. [25,74]). The parameter γ > 0 controls the extent of smoothing while α > 0 controls the 
mesh adaption speed to help the mesh evolve on a similar timescale as the underlying PDE. In our simulations we choose 
α = 0.1 and γ = 0.1. With a judicious choice of the monitor function M(x, t), the PMA allows for dynamic allocation of 
mesh density to resolve fine scale features of the PDE solution.

The PMA (7) is typically initialized from the uniform computational mesh

Q (ξ ,0) = |ξ |2
2

= 1

2

(
ξ2 + η2

)
. (8)

When the initial data u0(x) of (1) has fine scale features, such as interfaces or layers, a refined initial mesh is necessary to 
diminish errors early in the simulation. This is achieved by solving the PMA (9a) for a fixed computational time, yielding a 
mesh adapted to fine scale structures of u0(x), before coupling it to the PDE.
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2.2. Coupling the PDE and PMA

The moving mesh formulation requires solving a system of parabolic nonlinear equations for both the mesh (7) and 
the underlying PDE (1). There are two main ways to couple the equations (cf. [15]). First, the mesh equation (7) and the 
underlying PDE can be solved in an alternating procedure, using interpolation to cast the solution of the PDE onto the 
updated mesh at a discrete number of timesteps (cf. [16]). Second, the PMA and PDE can be solved simultaneously by 
including a Lagrangian term in the PDE, which is determined from the solution Q of the PMA.

In our implementation, we have found the second approach works well. The coupling method reformulates the under-
lying PDE with an additional Lagrangian term ∇xu · xt = ∇xu · ∇ξ Q t which creates a single coupled system. Here ∇x is the 
gradient operator in physical variables. This prevents lag in mesh movement and avoids an expensive interpolation step, 
however, the additional Lagrangian term must be carefully discretized to avoid instabilities, especially as singularities are 
approached (cf. [55,56]). With the Lagrangian coupling term included, the coupled system is

α(I − γ �ξ )Q t = (|H(Q )|M(x, t))
1
2 , (9a)

ut − ∇xu · ∇ξ Q t = −(−�x)
pu − λ

(1 + u)2
+ λεm−2

(1 + u)m
. (9b)

In the next section we describe the finite difference discretization of (9) on the computational domain �C = [−1, 1]2 with 
a fixed square mesh of N2 points given by

(ξi, η j) = (−1 + (i − 1)�ξ,−1 + ( j − 1)�η), �ξ = �η = 2

N − 1
, (10)

for i = 1, . . . , N and j = 1, . . . , N .

2.3. Discretizing the equations

The fully coupled system with the additional Lagrangian term (9) is discretized by finite differences. The first equa-
tion (9a) is solved on the uniform computational mesh �C with mesh derivatives Q ξξ , Q ηη and Q ξη approximated by 
fourth order finite differences which invoke the Neumann boundary conditions (7b) on Q . From these terms, the Hessian 
H(Q ) = Q ξξ Q ηη − Q 2

ξη is calculated directly. As discussed below, high order approximations of the mesh derivatives are 
required for accurate discretization of �2

xu near the boundary. So that the boundary ∂�P remains fixed, a homogeneous 
Neumann boundary condition is invoked on Q t in the discretization of �ξ . For completeness, we give the full finite differ-
ence stencils in Appendix A.

Once the right hand side of (9a) is formed, inversion yields that

Q t = L−1 F, F = (|H(Q )|M(x, t))
1
2 . (11)

The inversion of L = α(I − γ�ξ ) is efficiently performed by discrete cosine transform.
The spatial derivatives in physical space are determined in computational space via the coordinate transformation(

uξ

uη

)
=

(
xξ yξ

xη yη

)(
ux

u y

)
. (12)

Inverting (12) and using (x, y) = ∇ξ Q = (Q ξ , Q η) gives that

ux = J̄
(

Q ηηuξ − Q ξηuη

)
, (13a)

u y = J̄
( − Q ηξ uξ + Q ξξ uη

)
, (13b)

where J̄ = |H(Q )|−1 is the reciprocal of the Jacobian. The second derivatives are

uxx = J̄ Q ηη

(
J̄ (Q ηηuξ − Q ξηuη)

)
ξ
− J̄ Q ξη

(
J̄ (Q ηηuξ − Q ξηuη)

)
η
, (14a)

u yy = J̄ Q ξη

(
J̄ (Q ξηuξ − Q ξξ uη)

)
ξ
+ J̄ Q ξξ

(
J̄ (−Q ηξ uξ + Q ξξ uη)

)
η
. (14b)

The Laplacian is formed from these expressions and concisely rearranged as

�xu = uxx + u yy = J̄ ∇ξ · [ J̄ A∇ξ u], (15a)

where A is the symmetric 2 × 2 matrix whose entries are

A11 = Q 2
ηξ + Q 2

ηη, A21 = A12 = −Q ηξ (Q ξξ + Q ηη), A22 = Q 2
ηξ + Q 2

ξξ . (15b)
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Equation (15a) indicates that the non-uniform mesh results in an anisotropic diffusion problem which can be discretized by 
a finite difference approximation (see Appendix B). The discretization of the bi-Laplacian

�2
xu := �x(�xu) = uxxxx + 2uxxyy + u yyyy, (16)

can be achieved one of two ways. The first option is to compute expressions for the fourth order derivatives (16) directly 
from further differentiation of (14). This results in a large number of individual fourth order derivative terms to approximate. 
The second approach is to apply (15a) twice – first to obtain v = �xu, and once more to find �x v = �2

xu. The second 
option is appealing since the discretization of (15a) is straightforward and applying it twice to obtain �2

xu adds minimal 
complexity.

A complication of this approach, arising from the implementation of boundary conditions, is that the finite difference 
approximations of Q ξξ , Q ηη , Q ξη , and consequently �xu, exhibit discontinuous truncation errors at mesh points adjacent 
to ∂�. As v = �xu has discontinuities, applying the discrete Laplacian a second time to obtain �2

xu will result in a loss of 
two orders of numerical accuracy at those near boundary points. Therefore, the frequently used second order discretization 
of the Laplacian gives rise to a non-convergent approximation of the bi-Laplacian.

To maintain convergence near ∂�, we employ a fourth order finite difference method to discretize the operator (14) and 
obtain v = �xu. The mesh derivatives terms Q ηη , Q ξξ and Q ηξ are also approximated by fourth order finite differences. 
The Laplacian �x v is then obtained using a second order finite difference approximation of (14), which completes the 
calculation of the bi-Laplacian of u. We give the appropriate fourth order stencils in Appendix B. We remark that it is not 
sufficient to apply a fourth order approximation at certain near boundary points and a second order method elsewhere 
since this will only propagate the discontinuity.

The discontinuities in the truncation error result in a numerical method which converges with a reduced order of accu-
racy at near boundary points. In summary, we expect �xu to converge with order four at internal points and order three 
at near boundary points. The bi-Laplacian �2

xu converges with order two at internal points and order one at near boundary 
points. This reduction in boundary accuracy can not be bypassed by direct evaluation of �2

xu which requires evaluation of 
the third derivatives of Q ηη , Q ξξ and Q ηξ and results in an equivalent reduction of order.

The final term considered is the Lagrangian term ∇xu · ∇ξ Q t where Q t is calculated in (11). Approximation of this 
coupling term by centered differences is well known to generate instabilities (cf. [24,55,56]) which are especially pronounced 
in the vicinity of a forming singularity. Following [55], we implement a second order upwinding scheme extended to two 
dimensions which results in a stable solution. The appropriate stencils are given in Appendix C.

2.4. The monitor function

An important component of a successful moving mesh method is the choice of monitor function so that mesh density 
is increased at regions of high interest in the PDE solution, such as singularities or propagating fronts. A common monitor 
function is the arc-length function,

M(x, t) =
√

1 + |∇xu|2, (17)

which clusters points in locations of high changes in the gradient of the solution. This monitor function has been successfully 
used to resolve fronts in Burger’s equation [15] and problems in numerical weather prediction [16]. In examples with 
blow-up [11,15], the monitor function can be chosen such that the mesh inherits the correct dynamic length scale of the 
underlying PDE, allowing singularities to be accurately resolved and tracked in time. To see this, consider the PMA

α(I − γ �ξ )Q t = (|H(Q )|M (∇ξ Q )
)
)

1
2 ,

and a small length scale L(t). Near a singularity, we can assume that

Q ∼ L(t)S(ξ , t).

The PMA will be independent of L(t) near the singularity so long as

M ∼
(

1

L

dL

dt

)2

.

For power law blow up profiles, L(t) = (tc − t)α , this yields that M should scale like

M ∼ 1

(tc − t)2
, (18)

so that the PMA is length scale independent near the singularity. A rigorous account of this scaling analysis is given in [11]. 
For the MEMS problem (1) in the case ε = 0, the underlying PDE reduces to

ut = −(−�)pu − λ

2
, (x, t) ∈ � × (0, tc). (19)
(1 + u)
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To obtain the correct scaling laws for the forming singularity, we observe that the transformations

t → at, x → a
1

2p x, (1 + u) → a
1
3 (1 + u), (20)

leave (19) unchanged. Therefore, if the distance to singularity (1 + u) halves, the time to singularity (tc − t) decreases 
by a factor of 8. Comparing with (18), an M(x, t) which gives a mesh that is independent of the length-scale near the 
singularity is

M(x, t) = 1

(1 + u(x, t))6
, Case ε = 0. (21)

For the regularized MEMS model (1) with ε > 0, choosing a proper monitor function is more complicated. The analysis 
discussed in [60] shows the presence of sharp interfaces with sublayer structure that must be detected, resolved, and 
tracked. Because the solution resolves curved interface problems, it was natural to consider arc-length and Laplacian monitor 
functions for tracking the interfaces. After testing both arc-length and Laplacian monitor functions in the p = 1, 2 cases, we 
found that the arc-length function worked well for the second order case, but caused instabilities in the fourth order case. 
This lead to the adoption of a Laplacian based monitor function in the p = 2 case. After accounting for the square root 
dependence on the right hand side of (9a), the monitor functions chosen are

M(x, t) = 1 + u2
x + u2

y, Case p = 1; (22a)

M(x, t) = |uxx + u yy|2, Case p = 2. (22b)

Before discretizing and solving (9), some additional steps are taken to assure good quality of the mesh. When singularities 
emerge in (1), equidistribution can cause many mesh points to rush toward the maxima of the monitor function, potentially 
leaving the solution under resolved in the rest of the domain. This issue can be mitigated by integral averaging, or Mackenzie 
regularization [7], to give

M(x, t) → M(x, t) + C

∫
�p

M(x′, t)dx′, (23)

where C tunes the proportion of mesh points which concentrate on high interest areas as determined by M(x, t). For C = 1, 
half the points are concentrated around the maxima of M(x, t) and half over the rest of the domain. In the case ε > 0, 
smaller values of C are chosen because the solution is largely uniform in regions behind the sharp interfaces, and so less 
resolution is required there.

It is also important to smooth the monitor function, since rapidly varying components in the monitor function could be 
hard to resolve and thus propagate errors (cf. [12,16,13]). We apply the fourth-order filter

Mi, j → Mi, j + 2

16
(Mi+1, j + Mi−1, j + Mi, j−1 + Mi, j+1)

+ 1

16
(Mi+1, j+1 + Mi−1, j−1 + Mi+1, j−1 + Mi−1, j+1), (24)

on M(x, t) four times during each iteration. This smoothing operation distributes variations over nearby grid points, creating 
a more regular mesh.

2.5. Adaptive time stepping

In the singularity forming case ε = 0, it is essential to dynamically reduce the timestep as the singularity is approached. 
To approach the finite time singularities, which form in (19) for λ sufficiently large [62], a computational time step τ based 
on the Sundman transformation (cf. [47,18]),

dt

dτ
= g(u), (25)

is applied. The function g(u) measures the closeness of the solution to singularity so that for a fixed dτ , the time step dt
gradually decreases as a singularity is approached. For the problem (19), singularities correspond to u → −1 in finite time 
so that g(u) → 0 as u → −1. The scalings (20), motivate the particular choice

g(u) = min
x∈�

(1 + u)3 (26)

for the computational time step. This can be easily integrated into our system of equations for the mesh and the PDE, 
creating a system of 2N2 + 1 equations to be solved (27) (where N is the number of mesh points in each spatial direction). 
In the case ε > 0, there are no finite time singularities so a computational time step is not required (g = 1).
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2.6. Fully spatially discrete system

After all terms have been discretized, we obtain the coupled system of ODEs,

d

dτ

⎛
⎜⎝

Q

u

t

⎞
⎟⎠ = g(u)

⎛
⎜⎜⎜⎝

L−1F

−(−�x)
pu − λ

(1 + u)2
+ λεm−2

(1 + u)m
+ ∇xu · xt

1

⎞
⎟⎟⎟⎠ , (27)

which is solved using the MATLAB routine ode23 with relative and absolute tolerances set at 1 × 10−6. Here F is the 
result of evaluating the right hand side of the PMA (9a) and the operator of L = α(1 − γ�ξ ) is inverted by discrete cosine 
transform. The moving mesh parameters are set at α = γ = 0.1. The function g(u) controls the adaptive computational time 
step used to approach the singularity. For the singularity forming case ε = 0, we use g(u) = minx∈�(1 + u)3 and for ε > 0, 
g(u) = 1.

3. Numerical results

3.1. Test of discretization on the non-uniform mesh

In this section, we use a test example to verify the accuracy of the discretizations of the Laplacian and bi-Laplacian 
operators on a non-uniform mesh. The test mesh is given by the potential Q as

Q (ξ,η) = ξ2

2
+ r exp

[
r(ξ2 − 1)2(η2 − 1)2] + η2

2
, (ξ,η) ∈ (−1,1)2. (28)

Here r ≥ 0 is a parameter for tuning the non-uniformity of the mesh such that more mesh points are concentrated near the 
origin for r > 0. A uniform mesh corresponds to r = 0. The discretization is verified against constructed solutions of the test 
problem

�2u = f (x), x ∈ �; (29a)

u = g(x), x ∈ ∂�; (29b)

�u = h(x), x ∈ ∂�, (29c)

for which we choose a u(x) and calculate the corresponding functions f , g, h exactly. In this example, we use function (30)
corresponding to a spike at the origin (cf. Fig. 5a) and verify that the spatial operator �pu for p = 1, 2 are being discretized 
correctly.

u(x, y) = √
20 cos

(πx

2

)
cos

(π y

2

)
e−20(x2+y2). (30)

The discrete approximations �uh and �2uh are formulated by fourth and second order finite differences respectively, as 
discussed in Sec. 2.3. The absolute error is computed as

E = ‖�pu − �puh‖L∞(�). (31)

In Fig. 5b we see that the numerical error decreasing at the expected rate as the number of mesh points increases. In 
Table 1, the absolute errors in the numerical approximation are displayed for the non-uniform ((28) with r = 0.24) and 
uniform mesh. The test solution is localized at the origin and the error is roughly halved on the non-uniform mesh for an 
equivalent number of grid points on a uniform mesh.

We remark that this example shows the method correctly discretizes the spatial operators for a smooth solution profile 
on a fixed mesh and that the approximation error can be reduced by increasing grid density in regions where the solution 
is localized. In the nonlinear time dependent problems of the following section, the r-adaptive method reaps additional 
advantages when resolving forming singularities and the dynamics of sharp layers. While reduced errors are expected on 
the adaptive mesh, a crucial additional advantage is that the mesh inherits the correct dynamic length-scale of the underling 
solution, and so accurately captures the self-similar structure of the underlying equation.

3.2. Adaptivity to touchdown

For the finite time singularity case of equation (1) with ε = 0, we discretize the computational domain � = (−1, 1)2

using N grid points and integrate until minx∈�(1 + u) = 1 × 10−3. In the particular case ε = 0, we work with a rescaled 
form for the equation (19) by taking a new time variable t → λt and defining λ = β−2. This rescaling give the equation
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Fig. 5. The test case on the non-uniform mesh (28) with r = 0.24. Panel (a): the solution corresponding to a spike at the origin (30). Panel (b): The absolute 
error E against mesh points N on a logarithmic scale. Straight lines of slope −4 and −2 (red dotted) are present for comparison.

Table 1
The absolute global error E = ‖�p u − �p uh‖L∞(�) for the test case (29) on a non-uniform grid (28)
with r = 0.24 and a uniform grid (r = 0).

Grid size Laplacian abs. error (p = 1) Bi-Laplacian abs. error (p = 2)

Mesh Uniform Non-uniform Uniform Non-uniform

40 × 40 7.50 × 10−2 7.41 × 10−2 2.48 × 103 1.23 × 103

60 × 60 2.53 × 10−2 1.59 × 10−2 1.12 × 103 5.47 × 102

80 × 80 9.31 × 10−3 5.20 × 10−3 6.32 × 102 3.08 × 102

100 × 100 4.07 × 10−3 2.19 × 10−3 4.06 × 102 1.97 × 102

120 × 120 2.03 × 10−3 1.06 × 10−3 2.82 × 102 1.37 × 102

∂u

∂t
= −β2(−�)pu − 1

(1 + u)2
, (x, t) ∈ � × (0, tc(β)), (32a)

u(x,0) = 0, x ∈ �; u = �u = 0, x ∈ ∂�. (32b)

We solve the PMA system (27) with the monitor function and computational timestep

M(x, t) = 1

(1 + u(x, t))6
+

∫
�

1

(1 + u(x′, t))6
dx′, (33a)

g(u) = min
x∈�P

(1 + u(x, t))3, (33b)

with the MATLAB routine ode23.

3.2.1. Numerical simulations
In the results shown in Fig. 6, we observe that the PDE solution for p = 2 is well resolved by the PMA method in this 

singular regime. In particular Figs. 6e–6f show that the mesh exhibits no signs of tangling or crossing nodes and stays 
regular even while very close to the singularity point. As the parameter β decreases through β ≈ 0.09 in the case p = 2, the 
multiplicity of singularities increases from one to four. The case p = 1 does not exhibit this multiplicity in blow-up location 
and only one singularity will form at the origin [58]. In Fig. 7, we display the dependence of the number, location(s) and 
time of singularities on the parameter β . The method is able to automatically detect and resolve the multiple singularities 
that may develop. In examining the dependence of the singularity time tc(β) as β → 0, we observe a new phenomenon in 
that the bi-Laplacian term may accelerate the formation of the singularity. In the case of no elastic resistance force β = 0, 
equation (32) reduces to the ODE ūt = −(1 + ū)−2 with initial condition ū(0) = 0. This is solved to give

ū = −1 + (1 − 3t)
1
3 , t ∈ (0, tc(0)), tc(0) = 1

3
. (34)

In the case p = 1, we see in Fig. 7b that tc(β) > tc(0) with limβ→0 tc(β) = tc(0). This result follows from the maximum 
principle which gives that ū(t) < u(x, t) since ū(t) is a subsolution of u(x, t) in the case p = 1. In the fourth order case 
p = 2, there is no maximum principle and we observe that tc(β) < tc(0) for β small enough (β � 0.28). Moreover, we 
conjecture from these numerical results that

lim tc(β) 	= tc(0), (Case p = 2). (35)

β→0
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Fig. 6. PDE and mesh for the solution of (32) for β = 0.15 and β = 0.07 for minx∈�(1 + u) = 1 × 10−3. Figs. 6e–6f show the profile of the solution and the 
mesh in the vicinity of the touchdown point. The computations are performed with N = 51 (left panels) and N = 61 (right panels) grid points respectively.

This result is counter intuitive because the term β2�2u in (32) reflects an elastic restorative force that resists the motion 
of the beam and so impedes the formation of singularities. However, as β decreases below a certain threshold (β ≈ 0.28), 
this term acts as an accelerant to quicken the onset of touchdown. A rigorous theory for this numerical observation and the 
determination of the correct limiting problem for limβ→0 tc(β) are two open problems for future investigation.

3.2.2. Self-similar behavior of the limiting solution
In this section we consider the limiting form of quenching solutions to (1) for ε = 0 and with minx∈� u(x, t) → −1

as t → t−
c . In particular, we construct self similar profiles and integrate the PDE (1) close to singularity in order to verify 

convergence. The problem of determining existence and stability of self-similar blow-up profiles is a long studied problem 
in nonlinear PDEs arising in many diverse applications [75,35,34].

For the MEMS problem (32) in the second order case (p = 1), the blow up behavior was found to be approximately 
self-similar (cf. [45]) in a way analogous to classical semi-linear problems with power nonlinearities [35]. In the fourth 
order case (p = 2), a numerical-analytical approach (cf. [62]) in the one dimensional setting strongly suggested a self-similar 
singularity structure in (32). The prevalence of self similar blow up in higher order equations has also been observed in other 
contexts [38,37,17,36].
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Fig. 7. The location xc (left) and time tc(β) (right) of singularities for equation (32) on the square domain � = [−1, 1]2. The singularity location plotted 
corresponds to the first quadrant. The singularity time tc(β) has distinct limiting behavior as β → 0 in the p = 1 and p = 2 cases.

Following the methodology of [75,8], we seek a two dimensional self-similar quenching profile by using the scale invari-
ance (20) to motivate the new variables

u(x, t) = −1 + (tc − t)
1
3 w(y), y = x − xc

β
1
2 (tc − t)

1
4

, (36)

for p = 2. Substituting (36) into (32) yields the PDE for the self similar profile

−�2
y w − 1

4
y · ∇y w + w

2
− 1

w2
= 0, y ∈R

2. (37)

Equation (37) is a nonlinear, non-variational and non-constant coefficient problem and so challenging to analyze exactly. 
As a simplification, we assume radial symmetry in terms of the variable ρ = |y| and a solution of form v(ρ) = w(|y|). The 
reduced problem satisfies the fourth-order nonlinear ordinary differential equation,

v ′′′′ + 2

ρ
v ′′′ − 1

ρ2
v ′′ + 1

ρ3
v ′ + 1

4
ρ v ′ − v

3
+ 1

v2
= 0, ρ > 0 (38a)

together with the symmetry condition at the origin

v ′(0) = v ′′′(0) = 0. (38b)

The far field behavior of (38) can be found from a WKB analysis to reveal that

v(ρ) ∼ [αρ4/3 + O(ρ4/3)] + Cρ−16/9exp[−3ρ4/32−8/3] + . . . , ρ → ∞ (38c)

where C is a constant. This gives rise to the effective Robin condition

ρ

4
v ′ − 1

3
v = 0, ρ → ∞. (38d)

We seek a numerical solution to (38) on the interval [0, L] using a finite difference approximation with the boundary 
conditions (38b) at ρ = 0 and (38d) on ρ = L. A damped Newton’s method [3] is applied to the system obtained for L = 20
and iterations are initialized from the solutions of the reduced problem

ρ

4
v̄ ′ − v̄

3
+ 1

v̄2
= 0, =⇒ v̄ = (α3ρ4 + 3)1/3. (39)

The parameter α plays the role of a nonlinear eigenvalue and equation (38) is expected to have solutions only at discrete 
values of α.

After initializing iterations over a wide range of α values, convergence is observed to only two distinct profiles cor-
responding to α0 = 0.7625, α1 = 0.0966. By calculating the eigenvalues of the linearization about these profiles, we find 
the profile v0(ρ) corresponding to α0 is stable while the second profile v1(ρ), corresponding to α1, is unstable – see 
Fig. 8a. This instability of v1(ρ) is also suggested by the additional critical point of the profile. It remains an open question 
whether or not there exists an infinite number of these profiles for discrete values of α, as suggested by recent exponential 
asymptotic approaches [26,51]. If such an infinite family does exist, those additional profiles are expected to be unstable.

We now investigate the convergence of the numerical solution to the full PDE (32) for p = 2 with the stable self similar 
profile v0(ρ), through the transformation (36). We select the value β = 0.15 which corresponds to a single singularity 
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Fig. 8. Left: The self-similar profiles v0(ρ) and v1(ρ). The inset shows the region near the origin for v1(ρ) to highlight the additional critical point. Right: 
Comparison of stable profile v0(ρ) (red line) to the moving mesh solution of (32) with β = 0.15 evolved to (1 + u) ≈ 5 × 10−4. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

forming at the origin. The solution on the dynamic mesh is interpolated onto a local polar grid centered at the origin. The 
self similar profile v0(ρ) is then compared with a radial version of the interpolated solution formed by averaging each ρ
value over the angular direction. For the case of a single touchdown point, we observe in Fig. 8 good agreement between the 
moving mesh solution and the rescaled self similar profile when (1 + u) ≈ 5 × 10−4 corresponding to (tc − t) ≈ 1.2 × 10−10.

3.3. Case 2: adaptivity after touchdown, ε > 0

In this section, we apply the moving mesh method to equation (1) in the regularized regime ε > 0. While the parame-
ter m can take different values depending on particular substrate and surface physics being modeled, we specialize here to 
m = 4 and solve

∂u

∂t
= −(−�)pu − λ

(1 + u)2
+ λε2

(1 + u)4
, (x, t) ∈ � × (0, T ), (40a)

u = �u = 0, (x, t) ∈ ∂� × (0, T ). (40b)

In contrast to the ε = 0 case (32), the solution of (40) is globally well posed for all time given suitable initial data [63]. 
After an initial touchdown event, the solution develops sharp interfaces followed by additional dynamics before eventual 
equilibration.

The numerical resolution of these sharp features is significantly more challenging than the ε = 0 case for two reasons: 
First, the mesh must adaptively resolve to expanding sharp interfaces, rather than fine scale behavior around discrete points. 
These propagating interfaces grow, interact and merge and the mesh must accommodate these dynamics. The second chal-
lenge, as seen in Fig. 2b for the equivalent 1D problem, is that each interface has a distinct multiscale structure – the 
notorious triple deck phenomenon in high Reynolds number flow [52].

In our numerical simulations of (40), we initialize with a profile that is very close to touchdown so that the number and 
shape of the initial contact interfaces can be carefully controlled. We build a sharp interface initial condition around the 
planar curve (x, y) = r(θ)(cos(θ), sin(θ)) for 0 ≤ θ < 2π with

u0(x, y) = a[tanh[b((x − x0)
2 + (y − y0)

2 − r(arctan(y/x))2)] − 1], (41)

where (x0, y0) is the center of the interface in the domain. The parameter a tunes the height of the profile while b controls 
the sharpness of the interface. As the initial condition is highly localized, the PMA equation (9a) is iterated independently 
of the PDE with the arc-length monitor function (17) to obtain a suitable initial mesh. The coupled system (27) is then 
integrated until it the solution reaches equilibrium.

In the case of a single interface solution, the motion of the contact region can be expressed in terms of a geometric 
evolution law derived by a singular perturbation expansion. The two interface motion laws for (40) with the shelf like 
initial condition (41) were derived, in the limit ε → 0, to be (Sec. 3 of [60])

Case p = 1. ρt =
√

4λ

3ε

1

(1 − 3λt)
1
3

− κ + O(1); (42a)

Case p = 2. ρt =
(

4λ

3ε

) 3
4 1

(1 − 3λt)
1
2

−
√

4λ

3ε

1

(1 − 3λt)
1
3

κ + O(1), (42b)



K.L. DiPietro, A.E. Lindsay / Journal of Computational Physics 349 (2017) 328–350 341
where κ is the local curvature of the interface. The interface laws (42) can be evolved by a level set method [69] and the 
evolution compared with that arising from the moving mesh method. These asymptotic formula provide additional checks 
on the validity of the numerical method for highly non-trivial examples.

After accounting for initial transient behavior seen from the numerical approximation, we find good matching between 
the asymptotic approximation and the extracted curve for single interface solutions (see Fig. 13 and Fig. 14). We demonstrate 
the method on four different examples.

Example 1: Case p = 1 and a single interface with a five fold symmetry given by

r(θ) = √
0.1(1 + cos(5θ)).

The initial profile and its evolution are shown in Fig. 9. The parameter values are ε = 0.05, λ = 10 and N = 81 grid points 
are used. As discussed in Section 2.4, the regularized monitor function used is

M(x, t) = 1 + |∇xu|2 + 1

2

∫
�P

(1 + |∇xu|2)dx′. (43)

We remark that the factor C = 1/2 used in the integral averaging term is smaller than C = 1 used in (33a) for the ε = 0
case. This increases the mesh density along the interface where additional resolution is required.

As predicted by the geometric evolution law (42a), the interface grows while also circularizing. A comparison between 
the interface predicted by (42a) and the moving mesh simulation is shown in Fig. 13 and good qualitative agreement is 
observed.

Example 2: Case p = 1 with an initial condition featuring four circular interfaces of radius r = 0.175 and centers 
(±0.4, ±0.4) like the example shown in Fig. 6b. The monitor function (43) is also used in this example. The interfaces 
expand and coalesce before eventually reaching the boundary. The parameter values are ε = 0.05, λ = 10 and N = 81. 
Results shown in Fig. 10.

Example 3: Case p = 2 and a single interface. Parameter values ε = 0.05 and λ = 20000 and N = 81 mesh points. This 
example mimics a single touchdown point at the origin with a slightly perturbed elliptical shape given by

r(θ) = c1c2[c2
2 cos2 θ + c2

1 sin2 θ]− 1
2 ,

with c1 = 0.1312 and c2 = 0.2625. The regularized monitor function (Sec. 2.4) used in this example is

M(x, t) = |�xu|2 + 1

2

∫
�P

|�xu|2 dx′, (44)

where again, less integral averaging is employed to concentrate more mesh points along the interface.
The results are shown in Fig. 11 and there are several features to remark upon. First, as also observed in 1D behavior 

(cf. Fig. 2b), the layer has an oscillatory overshoot, a common feature of higher order problems which lack a maximum 
principle. Moreover, the amplitude of this overshoot varies along the length of the interface with its magnitude modulated 
by the local curvature. As the evolution progresses, the interface expands and circularizes as predicted by (42b). Finally, the 
interface motion is arrested once it reaches the domain boundary. In Fig. 14 we show a comparison between the interface 
predicted from the moving mesh solution and a level-set solution of (42b) which agree well.

Example 4: Case p = 2 with four initial contact regions and parameter values ε = 0.05, λ = 20000 and N = 81 grid 
points. The initial configuration, similar to that of Example 2, is inspired by taking the solution shown in Fig. 6d as an 
initial condition and evolving under the regularized equation (40). The initial condition has four circular interfaces each of 
radius r = 0.175 and arranged symmetrically at points (±0.4, ±0.4). The four interfaces begin by independently evolving 
and eventually merge to create a single front which is pinned by the boundary – see results in Fig. 12. This example is 
particularly challenging to resolve as the oscillatory overshoots from each layer interact in a complex fashion during the 
merging process. A comparison between Fig. 12 and the results from Example 2 (Fig. 10) in the p = 1 case shows much 
more complexity in the solution as the interfaces interact.

4. Conclusion

This paper has developed a dynamic mesh method for the simulation of fourth order PDEs in two dimensions via 
a parabolic Monge–Ampére equation. Adaptive methods are essential for resolving fine spatial scale and rapidly varying 
temporal behaviors in a variety of applications, including the study of elastic–electrostatic interactions in MEMS. A key 
detail in the implementation of this method is that the transformation between the computational and physical domains 
must be computed to higher order than previous approaches in the literature. This requirement for extra regularity is due 
to the additional derivatives that must be computed to represent fourth order derivatives in the PDE. This method has been 
validated on a variety of examples and the results suggest many avenues for future investigations.
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Fig. 9. Results for Example 1. Solution to (40) and mesh with N = 81 gridpoints and ε = 0.05, p = 1 and λ = 10 showing the solution of the PDE and its 
mesh for that respective time step.

In respect to the study of blow up in the fourth order PDE (32), we give strong numerical evidence of a stable self-similar 
singularity mechanism. This finding corroborates previous findings in one dimension [62] and other analytical approaches 
[14,38]. A rigorous proof of this limiting behavior remains a challenging open problem.



K.L. DiPietro, A.E. Lindsay / Journal of Computational Physics 349 (2017) 328–350 343
Fig. 10. Results for Example 2. Solutions to (40) in the Laplacian case (p = 1) and the corresponding mesh with ε = 0.05, λ = 10 and N = 81 gridpoints. 
The initial condition is four separate circular interfaces which interact, coalesce and propagate until pinned at the boundary.

A new conjecture arising from our study is that the fourth order PDE (32) can blow up sooner than its ODE counterpart. 
The counter intuitive aspect of this result is that while the spatial term −β2�2u in the PDE is generally inhibitory to blow 
up, it may become an accelerant if β is small enough. This phenomena is due to the tendency for oscillations in systems that 
lack of a maximum principle, such as higher order PDE systems. A rigorous proof of this phenomenon is highly desirable.
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Fig. 11. Results for Example 3. Solutions to (40) and the corresponding mesh with p = 2, ε = 0.05, λ = 20000 and N = 81 grid points. In this case, the 
initial condition is a single elliptical interface which circularizes and expands before eventually being arrested at the boundary.

Finally, as with other quenching problems (cf. [58,61,62,76,39]), the location and multiplicity of singularities in (32) is 
highly dependent on the parameter β and the shape of the domain �. For these reasons an adaptive methodology which is 
able to locate and resolve singularities in arbitrary domains would be extremely valuable. This is particularly necessary for 
effective design MEMS since real world devices feature non-trivial geometries and may contain topological defects.

There are many potential approaches for extending the adaptive meshing techniques discussed in this paper to non-
rectangular domains. One choice assumes the same curved, convex topology for the computational and physical domains 
and uses existing interpolation formulas for finite difference methods on curved boundaries (cf. [50] [65, Ch. 3.4, 6.4]) to 
evaluate the derivatives. This would keep the direct mapping between the computational and physical domains, at the cost 
of reduced boundary accuracy and inability to use the fast Fourier transform to invert the parabolic operator of the PMA. 
Another option would be to keep a logically rectangular computational domain and use a transformation (cf. [22]) to map it 
to a curved physical domain. In this method, the simplicity of the rectangular computation domain is preserved at the cost 
of an additional mapping function. Alternatively, the system (9) could be spatially discretized using finite element methods, 
which are more easily generalized to curved domains. Discontinuous Galerkin methods have been applied to directly solve 
the bi-Laplacian problem (cf. [5,41]) and mixed finite elements have been used to solve the bi-Laplacian as coupled system 
of second order equations (cf. [10]). However, the extension to the nonlinear MA equation is less straightforward. The use of 
quadratic mixed finite has been suggested by [4], but with a Dirichlet boundary condition that would need to be reformu-
lated into the Neumann conditions of the PMA. The addition of a bi-Laplacian regularization term has also been suggested 
(cf. [32,33]) in order to create a finite element formulation for the MA equation.
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Fig. 12. Results for Example 4. Solutions to (40) in the bi-Laplacian case (p = 2) and the corresponding mesh. Parameters, ε = 0.05, λ = 20000 and N = 81
gridpoints. The initial condition is four circular interfaces which interact, coalesce and propagate until pinned at the boundary.
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Fig. 13. Results for Example 1. Comparison between the geometric evolution law (42a) and the interface obtained from the moving mesh solution.

Fig. 14. Results for Example 3. Comparison between the geometric evolution law (42b) and the interface extraction from the moving mesh solution.

Appendices

As discussed subsection 2.3, a fourth order discretization of the Laplacian is required to achieve desired convergence 
for the bi-Laplacian (particularly near the boundary). For completeness we provide the following differencing stencils on 
�C = (−1, 1)2:

• Fourth order stencils for the mesh derivatives Q ξξ , Q ηη and Q ξη , with inhomogeneous Neumann boundary conditions.
• Fourth order discretization of the Laplacian in computational space.
• A second order upwinding scheme for the coupling term.

Appendix A. Fourth order mesh potential derivatives

A.1. Discretizing Q ξξ , Q ηη

At internal points 3 ≤ i ≤ N − 2 and 1 ≤ j ≤ N ,

(Q ξξ )i, j = 1

12�ξ2

(
− Q i−2, j + 16Q i−1, j − 30Q i, j + 16Q i+1, j − Q i+2, j

)
.

At boundary and adjacent to boundary points for i = 1, 2 and 1 ≤ j ≤ N (i = N − 1, N have the same stencils with the 
indices adjusted accordingly):

(Q ξξ )1, j = 1

12�ξ2

(−415

16
Q 1, j + 96Q 2, j − 36Q 3, j + 32

3
Q 4, j − 3

2
Q 5, j

)
+ 25

6�ξ
,

(Q ξξ )2, j = 1

12�ξ2

(
10Q 1, j − 15Q 2, j − 4Q 3, j + 14Q 4, j − 6Q 5, j + Q 6, j

)
.

The term 25
6�ξ

appearing in the stencil for (Q ξξ )1, j invokes the inhomogeneous Neumann boundary condition Q ξ = −1 on 
ξ = −1 associated with the PMA (7b). The Q ηη discretization is the same up to changes of indices.

A.2. Discretizing Q ηξ , Q ξη

On the boundary, Q ξη = Q ηξ = 0 and so we discretize on the interior points. For the outer derivative we have for 
1 ≤ i ≤ N ,
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(Q ξη)i, j = 1

12�η

(
(Q ξ )i, j−2 − 8(Q ξ )i, j−1 + 8(Q ξ )i, j+1 − (Q ξ )i, j+2

)
, 3 ≤ j ≤ N − 2;

(Q ξη)i, j = 1

12�η

(
− 3(Q ξ )i, j−1 − 10(Q ξ )i, j + 18(Q ξ )i, j+1

−6(Q ξ )i, j+2 + (Q ξ )i, j+3

)
, j = 2;

(Q ξη)i, j = 1

12�η

(
3(Q ξ )i, j+1 + 10(Q ξ )i, j − 18(Q ξ )i, j−1

+6(Q ξ )i, j−2 − (Q ξ )i, j−3

)
, j = N − 1;

For each of the derivatives Q ξ , we use the following formulas for 1 ≤ j ≤ N ,

(Q ξ )i, j = 1

12�ξ

(
Q i−2, j − 8Q i−1, j + 8Q i+1, j − Q i+2, j

)
, 3 ≤ i ≤ N − 2;

(Q ξ )i, j = 1

12�ξ

(
− 3Q i−1, j − 10Q i, j + 18Q i+1, j − 6Q i+2, j + Q i+3, j

)
, i = 2;

(Q ξ )i, j = 1

12�ξ

(
3Q i+1, j + 10Q i, j − 18Q i−2, j + 6Q i−3, j − Q i−4, j

)
, i = N − 1.

Appendix B. Fourth order derivatives of the Laplacian

Here we describe the stencils used to discretize equation (15) with the boundary condition u = 0. The involves terms 
of the form (Auξ )ξ , (Buη)ξ , (Cuξ )η , (Duη)η . We give full details for (Auξ )ξ and (Buη)ξ with (Cuξ )η and (Duη)η being 
equivalent up to changes in indices.

B.1. Discretizing (Auξ )ξ , (Duη)η

Interior points: We discretize the outer ∂ξ derivative on a staggered grid and the internal derivatives with standard fourth 
order central differences. For 4 ≤ i ≤ N − 3, and 1 ≤ j ≤ N ,

[(Auξ )ξ ]i, j = 1

6�ξ

(
Ai−1, j(uξ )i−1, j − 8Ai− 1

2 , j(uξ )i− 1
2 , j

+ 8Ai+ 1
2 , j(uξ )i+ 1

2 , j − Ai+1, j(uξ )i+1, j

)
,

(uξ )k, j = 1

12�ξ

(
uk−2, j − 8uk−1, j + 8uk+1, j − uk+2, j

)
, k = i ± 1,

(uξ )k, j = 1

24�ξ

(
uk− 3

2 , j − 27uk− 1
2 , j + 27uk+ 1

2 , j − uk+ 3
2 , j

)
, k = i ± 1

2
,

Ak, j = 1

16

(
− Ak− 3

2 , j + 9Ak− 1
2 , j + 9Ak+ 1

2 , j − Ak+ 3
2 , j

)
, k = i ± 1

2
.

Boundary points: For i = 2, 3, N − 2, N − 1, the product (Auξ )ξ = Auξξ + Aξ uξ is expanded and each term discretized. 
We give stencils for i = 2, 3 and i = N − 2, N − 1 are equivalent up to changes in indices. For 1 ≤ j ≤ N ,

[(Auξ )ξ ]2, j = 1

12�ξ2
A2, j

(
10u1, j − 15u2, j − 4u3, j + 14u4, j − 6u5, j + u6, j

)

+ 1

144�ξ2

(
− 3u1, j − 10u2, j + 18u3, j − 6u4, j + u5, j

)
×

(
− 3A1, j − 10A2, j + 18A3, j − 6A4, j + A5, j

)
,

[(Auξ )ξ ]3, j = 1

12�ξ2
A3, j

(
− u1, j + 16u2, j − 30u3, j + 16u4, j − u5, j

)

+ 1

144�ξ2

(
u1, j − 8u2, j + 8u4, j − u5, j

)(
A1, j − 8A2, j + 8A4, j − A5, j

)
.
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B.2. Discretizing (Buη)ξ , (Cuξ )η

The terms (Buη)ξ , (Cuξ )η are discretized using the same stencils as Q ξη, Q ηξ , with the additional coefficient terms B, C . 
For example, with the term (Buη)ξ we have for 1 ≤ j ≤ N that

[(Buη)ξ ]i, j = 1

12�ξ

(
Bi−2, j (uη)i−2, j − 8Bi−1, j (uη)i−1, j + 8Bi+1, j (uη)i+1, j

− Bi+2, j (uη)i+2, j

)
, 3 ≤ i ≤ N − 2; (46a)

[(Buη)ξ ]i, j = 1

12�ξ

(
− 3Bi−1, j (uη)i−1, j − 10Bi, j (uη)i, j + 18Bi+1, j (uη)i+1, j

− 6Bi+2, j (uη)i+2, j + Bi+3, j (uη)i+3, j

)
, i = 2; (46b)

[(Buη)ξ ]i, j = 1

12�ξ

(
3Bi+1, j (uη)i+1, j + 10Bi, j (uη)i, j − 18Bi−1, j (uη)i−1, j

+ 6Bi−2, j (uη)i−2, j − Bi−3, j (uη)i−3, j

)
, i = N − 1. (46c)

In (46), we use the following stencils for uη for 1 ≤ i ≤ N ,

(uη)i, j = 1

12�η

(
ui, j−2 − 8ui, j−1 + 8ui, j+1 − ui, j+2

)
, 3 ≤ j ≤ N − 2;

(uη)i, j = 1

12�η

(
− 3ui, j−1 − 10ui, j + 18ui, j+1 − 6ui, j+2 + ui, j+3

)
, j = 2;

(uη)i, j = 1

12�η

(
3ui, j+1 + 10ui, j − 18ui, j−1 + 6ui, j−2 − ui, j−3

)
, j = N − 1.

Appendix C. Upwinding discretization

To maintain stability on the coupling term ∇xu · ∇xt , we use a two dimensional, second order upwinding scheme. Recall 
that xt = ∇ξ Q t and we discretize the ∇xu term by upwinding on Q t which is calculated explicitly from (11).

Let ∇ξ Q t = (a, b) = (Q tξ , Q tη), where the first spatial derivative is calculated using fourth order central differencing. For 
example, Q tξ is calculated as

ai, j = (Q tξ )i, j = 1

12�ξ

(
(Q t)i−2, j − 8(Q t)i−1, j + 8(Q t)i+1, j − (Q t)i+2, j

)
, (48a)

for 3 ≤ i ≤ N − 2 and 1 ≤ j ≤ N . At the left boundaries the formulas are

a1, j = (Q tξ )1, j = 1

12�ξ

(
− 25(Q t)1, j + 48(Q t)2, j − 36(Q t)3, j + 16(Q t)4, j − 3(Q t)5, j

)
,

a2, j = (Q tξ )2, j = 1

12�ξ

(
− 3(Q t)1, j − 10(Q t)2, j + 18(Q t)3, j − 6(Q t)4, j + (Q t)5, j

)
,

for 1 ≤ j ≤ N . The stencils for i = N − 1, N are equivalent after a change of sign and reversal of index order. The differencing 
formulas for b = Q tη are identical after indices are reversed. The coupling term is discretized by

(∇xu · ∇xt)i, j = ai, j(ux)i, j + bi, j(u y)i, j ,

where ux , u y are broken into cases based on the direction of the mesh flow,

(ux)i, j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(ubf
x )i, j, ai, j < 0, bi, j > 0;

(ubb
x )i, j, ai, j < 0, bi, j < 0;

(u f f
x )i, j, ai, j > 0, bi, j > 0;

(u f b
x )i, j, ai, j > 0, bi, j < 0.

(u y)i, j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(ubf
y )i, j, ai, j < 0, bi, j > 0;

(ubb
y )i, j, ai, j < 0, bi, j < 0;

(u f f
y )i, j, ai, j > 0, bi, j > 0;

(u f b
y )i, j, ai, j > 0, bi, j < 0.

(49)

In computational coordinates ux and u y depend on both uξ and uη which must be upwinded. For example, the term ubf
x

is the ux derivative with backward differencing in the ξ direction and forward differencing in the η direction. Applying the 
formula (13a), the discretization of this particular example has the following form:
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ubf
x = J̄ (Q ηηub

ξ − Q ξηu f
η),

(ub
ξ )i, j = 1

2�ξ

(
ui−2, j − 4ui−1, j + 3ui, j

)
,

(u f
η)i, j = 1

2�η

(
− 3ui, j + 4ui, j+1 − ui, j+2

)
.

The other terms in (49) are discretized similarly using the second order forward and backward differencing stencils above.
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