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THE TRANSITION TO A POINT CONSTRAINT IN A MIXED
BIHARMONIC EIGENVALUE PROBLEM∗

A. E. LINDSAY† , M. J. WARD‡ , AND T. KOLOKOLNIKOV§

Abstract. The mixed-order eigenvalue problem −δΔ2u + Δu + λu = 0 with δ > 0, modeling
small amplitude vibrations of a thin plate, is analyzed in a bounded two-dimensional domain Ω that
contains a single small hole of radius ε centered at some x0 ∈ Ω. Clamped conditions are imposed
on the boundary of Ω and on the boundary of the small hole. In the limit ε → 0, and for δ = O(1),
the limiting problem for u must satisfy the additional point constraint u(x0) = 0. To determine
how the eigenvalues of the Laplacian in a domain with a small hole are perturbed by adding the
small fourth-order term −δΔ2u, together with an additional boundary condition on ∂Ω and on the
hole boundary, the asymptotic behavior of the eigenvalues of the mixed-order eigenvalue problem are
studied in the dual limit ε → 0 and δ → 0. Leading-order behaviors of eigenvalues are determined for
three ranges of δ � 1: δ � O(ε2), δ = O(ε2), and O(ε2) � δ � 1. In the first two of these regimes,
the limiting behavior depends of the radius of the hole ε, while in the regime O(ε2) � δ � 1 the
eigenvalue is asymptotically independent of ε. Therefore, it is this regime that provides a transition
to the point constraint behavior characteristic of the range δ = O(1). The asymptotic results for the
eigenvalues are validated by full numerical simulations of the PDE.
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1. Introduction. The determination of eigenfrequencies and eigenmodes char-
acterizing the small amplitude vibration of thin plates is an important problem in
mechanics. In the framework of Kirchhoff–Love plate theory (cf. [21]), an eigenmode
of vibration, characterizing the out-of-plane deflection w of the plate, is a nontrivial
solution of

(1.1) −DΔ2w + TΔw + ρhω2w = 0 , x ∈ Ω ⊂ R
2 ; w = ∂nw = 0 , x ∈ ∂Ω ,

that occurs for certain discrete values of ω. Here, ρ is the material density and
D = Eh3/

[
12(1− μ2)

]
is the flexural rigidity of the plate defined in terms of Young’s

modulus E, the plate thickness h, and Poisson’s ratio μ, while T is the in-plane tension
applied at the edges of the plate. To understand the physical significance of each of
the terms in (1.1), it is useful to consider it as the Euler–Lagrange equation of the
energy functional

(1.2) E [φ] ≡
∫
Ω

[
1

2
ρh

(
∂φ

∂t

)2

+
1

2
D
(
Δφ
)2

+
1

2
T |∇φ|2

]
dx

after applying the ansatz φ(x, t) = w(x)eiωt. The three terms in the integrand of (1.2)
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Fig. 1. Schematic diagram of a perturbed region Ω \ Ωε consisting of three small holes.

correspond to the kinetic, bending, and stretching energies of the plate, respectively.
In the present work, the density ρ, the thickness h, the flexural rigidity D, and the
tension T are taken to be spatially uniform positive constants.

The eigenproblem (1.1), augmented by inserting small clamped holes, can be
recast in a more convenient dimensionless form as

−δΔ2uε +Δuε + λεuε = 0 , x ∈ Ω \ Ωε ;
∫
Ω\Ωε

u2
ε dx = 1 ,(1.3a)

uε = ∂nuε = 0 , x ∈ ∂Ω ; uε = ∂nuε = 0 , x ∈ ∂Ωε .(1.3b)

Here, Ω is a bounded domain in R
2, and Ωε is a collection of N small nonoverlapping

holes with centers xj ∈ Ω for j = 0, . . . , N−1, for which the jth hole shrinks uniformly
to a point xj ∈ Ω as ε → 0. A schematic representation of the perturbed domain
Ω \Ωε is shown in Figure 1. In (1.3), the key parameter δ, which reflects the relative
importance of the bending and stretching energies, and a new eigenvalue parameter
λε are defined by

(1.4) δ ≡ D

T
, λε ≡ ρhω2

T
.

The eigenvalues λε of (1.3) determine the frequencies of vibrations of the perforated
thin plate by ω =

√
Tλε/ρh.

Perforated plate structures are commonly used in many engineering design sys-
tems such as heat exchangers in nuclear power systems, sound absorbing screens, or
pressure vessels (cf. [7, 4, 16]). In engineering design, drilling a small hole inside
a plate is generally the easiest method to alter an undesirable natural frequency of
a plate structure without incurring any significant degradation in the structural in-
tegrity of the plate (cf. [4, 16]). Effective medium theories, with varying degrees of
success, have been used to model the effect of perforations on either the bending of
a rectangular plate (cf. [3]) or on the resonant frequencies of a plate (cf. [7, 4]). The
development of methodologies to numerically compute resonant frequencies of plates,
with and without perforations, are described in [2], [6], and [16].

In this paper, we will use the method of matched asymptotic expansions to analyze
(1.3) in the dual limit ε → 0 and δ → 0. Before describing our work in detail, we set
the context of our study by first briefly summarizing some key previous mathematical
results for singularly perturbed biharmonic eigenvalue problems.
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From a mathematical viewpoint, the spectrum of the pure biharmonic operator
is known to have some rather surprising features owing to the lack of a maximum
principle. In a domain with a single small hole Ωε of radius ε centered at some
x0 ∈ ∂Ω, the (pure) biharmonic eigenvalue problem is formulated as

Δ2u = λu , x ∈ Ω \ Ωε ; u = ∂nu = 0 , x ∈ ∂Ω;(1.5a)

u = ∂nu = 0 , x ∈ ∂Ωε ;

∫
Ω\Ωε

u2 dx = 1 .(1.5b)

This system can be obtained formally from (1.3) by setting N = 1 and taking the
limit δ → +∞ while replacing λ by δλ. For the annular domain 0 < ε ≤ |x| ≤ 1 in
two dimensions, it was shown in [8] and [9] that the principal eigenfunction for (1.5) is
not radially symmetric when ε is below a critical value. More general results showing
that the fundamental mode of vibration for the biharmonic operator is not necessarily
of one sign are given in (cf. [22]).

Another key qualitative feature of the spectrum of (1.5), as described in [5], is
that the limiting behavior of a simple eigenvalue λ of (1.5) is given by

(1.6) λ = λ0 + 4π|∇u0(x0)|2νb +O(ν2b ), νb ≡ − 1

log ε
,

where (u0, λ0) is an eigenpair of the associated point constraint problem

(1.7) Δ2u0 = λ0u0 , x ∈ Ω \ {x0} ; u0 = ∂nu0 = 0 , x ∈ ∂Ω;∫
Ω

u2
0 dx = 1 ; u0(x0) = 0 .

A remarkable feature of the limiting problem (1.7) is that, due to the additional
point-constraint requirement u0(x0) = 0 in (1.7), it is not the problem in the absence
of a perturbing hole. This result implies that no matter how small ε is made, the
vibrational frequencies of the perturbed plate do not approach those of a defect free
plate. In [5] and [15], asymptotic expansions for λ were derived for (1.5) to capture
higher-order ε-dependent correction terms to (1.6) for both the generic situation where
|∇u0(x0)| 	= 0 and for the degenerate case where |∇u0(x0)| = 0. Point constraints also
arise in the construction of solutions to nonlinear eigenvalue problems Δ2u = λf(u)
in two dimensions [17, 18].

This limiting point constraint behavior for (1.5) as ε → 0 is qualitatively very
different from the well-known results (cf. [19, 12, 14, 23, 24]) for the asymptotic
behavior of eigenvalues of the Laplacian in the limit of asymptotically small hole
radius ε → 0, formulated as

Δu+ λu = 0 , x ∈ Ω \ Ωε;
∫
Ω\Ωε

u2 dx = 1;(1.8a)

u = 0 , x ∈ ∂Ω ; u = 0 , x ∈ ∂Ωε .(1.8b)

For the case of a single hole (N = 1) centered at x0, it was shown in [23] that the
asymptotic behavior of a simple eigenvalue of (1.8) is

(1.9) λ ∼ λ�(ν) +O (εν) , where ν ≡ −1/ log(εd) ,

and d is the logarithmic capacitance (cf. [20]) associated with the hole. Here, the
function λ�(ν), which has the effect of summing an infinite logarithmic series in powers
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of ν, satisfies a transcendental equation involving the regular part of the Green’s
function for the Helmholtz operator. As ν → 0, then λ� → λ0, where λ0 is a simple
eigenvalue of the following limiting problem in the absence of a hole:

(1.10) Δu0 + λ0u0 = 0 , x ∈ Ω ;

∫
Ω

u2
0 dx = 1 ; u0 = 0 , x ∈ ∂Ω .

With this background, the goal of this paper is to investigate the mixed-order
eigenvalue problem (1.3) in the limit ε → 0 for various ranges of the parameter δ > 0,
measuring the relative strength of the fourth-order term. For simplicity, we will only
consider the case of a single hole where N = 1. For δ = O(1), and in the limit
ε → 0 of small hole radius, an eigenvalue of the perturbed problem (1.3) tends to an
eigenvalue of the corresponding point constraint problem associated with (1.3) (see
(3.1) below). However, the previous analyses of (1.5) and (1.8), as described above,
suggest a dichotomy of possible behaviors associated with (1.3) in the dual limit ε → 0
and δ → 0. If δ is small enough relative to ε, then the limiting problem as ε → 0
should be the problem with no hole, whereas if δ is large enough (relative to ε), the
limiting problem as ε → 0 should be one with a point constraint. The goal of this
paper is to study the transition between these two cases as δ � 1 is varied.

Our analysis on (1.3) reveals that there are three distinguished regimes in the ε, δ
plane as ε → 0 and δ → 0, where different eigenvalue asymptotics occur. For the
regime δ � O(ε2), the leading-order eigenvalue asymptotics for (1.3) is essentially
the same as that for the Laplacian, as given in (1.9) (see Principal Result 4.3 below).
For the distinguished limit δ = O(ε2), the leading-order eigenvalue asymptotics as
ε → 0 is again given by (1.9), but where d is replaced by a new quantity d(δ0), where
δ0 ≡ δ/ε2 = O(1). Here, d(δ0) is determined from the far-field behavior of a canonical
fourth-order problem defined near the hole (see Principal Result 4.2 below). The third
regime is where O(ε2) � δ � O(1). In this regime, we show in Principal Result 4.4
that the leading-order asymptotics of an eigenvalue of (1.3) is given by (1.9), but where
εd is replaced by 2

√
δe−γe . Since the resulting leading-order eigenvalue asymptotics

is independent of the hole radius, it is this regime that provides a transition to the
point constraint behavior characteristic of the δ = O(1) regime. Finally, in Principal
Result 4.5, we improve this leading-order eigenvalue approximation by adding to it a
transcendentally small term of order O(

√
δ) that results from analyzing the boundary

layer near ∂Ω.
The outline of this paper is as follows. In section 2, we study the exactly solvable

problem (1.5) in an annular domain in order to clearly motivate the necessity of a
point constraint for the limiting solution as ε → 0. In section 2.2, we formulate and
analyze an exactly solvable model biharmonic BVP in an annulus so as to motivate the
various scalings in δ and ε that arise in the asymptotic analysis of (1.3). In section 3,
we analyze the δ → 0 limit of the solution to the point constraint problem associated
with (1.3) for a single hole. In sections 4.2–4.4, which constitute the main focus of
this paper, we will analyze (1.3) for a single hole in the limit ε → 0 for the three
asymptotic ranges of δ � 1 given by δ = O(ε2), δ � O(ε2), and O(ε2) � δ � 1. For
δ � 1, the effect of the boundary layer along ∂Ω on the eigenvalue asymptotics is also
examined. In sections 4.4 and 5, we validate our asymptotic theory for the regime
O(ε2) � δ � 1 with full numerical PDE computations of (1.3). Finally, in section 6,
we suggest a few open problems that warrant further study.

2. Two exactly solvable model problems. In this section, we present two
examples in which the domain is taken to be the annulus ε < |x| < 1 so that x0 = (0, 0)
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Fig. 2. The lowest radially symmetric eigenvalue με,0 versus ε (solid line), as determined from
the numerical solution of (2.2) on 0 ≤ ε ≤ 0.1. The limiting value of με,0 as ε → 0 is not the lowest
eigenvalue μ�,0 of the unperturbed problem with no hole determined by (2.1).

and Ωε = {x | |x| ≤ ε}. In this setting, closed form solutions can be obtained in terms
of Bessel functions. The role of these examples is to develop intuition for the point
constraint requirement and the scaling laws associated with the dual limit ε → 0,
δ → 0. In the first example (cf. section 2.1), we focus on the point constraint problem
(1.7) and explicitly determine the jump in the eigenvalue between the hole free and
point constraint problem. This formula is verified explicitly in the annulus case for
the lowest eigenvalue of the radially symmetric eigenfunctions. The second example
(cf. section 2.2) focuses on an exactly solvable mixed problem for which the dual limit
δ → 0, ε → 0 can be investigated and the transition-to-a-point-constraint regime
O(ε2) � δ � 1 is identified.

2.1. An exactly solvable eigenvalue problem. To obtain exact radially sym-
metric solutions of (1.5) for the annulus, we factor Δ2u−λu = (Δ−μ2)(Δ+μ2)u = 0,
where μ ≡ λ1/4, so that the separable radially symmetric eigenfunctions are spanned
by {J0(μr), I0(μr),K0(μr), Y0(μr)}, where J0, I0, K0, and Y0 are Bessel functions.
For the ε = 0 problem, with no perturbing hole at the origin, the radially symmetric
eigenfunctions u�(r) with smooth behavior at the origin are given by

(2.1) u�(r) = A

[
J0(μ�r) − J0(μ�)

I0(μ�)
I0(μ�r)

]
,

where I1(μ�)J0(μ�) + I0(μ�)J1(μ�) = 0 .

For the annulus, where ε > 0, an exact radially symmetric solution uε(r) is
constructed from a linear combination of the set {J0(μr), I0(μr),K0(μr), Y0(μr)},
such that uε = ∂ruε = 0 on r = ε and r = 1. The eigenvalues of the system, with

λ
1/4
ε = με, are determined by the condition

(2.2) det

⎡
⎢⎢⎢⎢⎣
J0(με) I0(με) K0(με) Y0(με)

J1(με) −I1(με) K1(με) Y1(με)

J0(εμε) I0(εμε) K0(εμε) Y0(εμε)

J1(εμε) −I1(εμε) K1(εμε) Y1(εμε)

⎤
⎥⎥⎥⎥⎦ = 0 .

In Figure 2, the lowest eigenvalue με,0, determined from numerical solution of
(2.2), is plotted for a range of values of ε. We observe that the limiting behavior of
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με as ε → 0 is not to an eigenvalue of (2.1) for the problem with no hole. Instead,
as shown in [5] and [15], the limiting problem as ε → 0 requires a point constraint
u0(0) = 0, as specified in (1.7). The physical interpretation of this result is that a
clamped patch of radius O(ε), for any ε > 0, will in general generate an O(1) jump
in the eigenvalue and the vibrational frequencies of the plate.

In the present example of a disk with a puncture at the center, we can construct
the radially symmetric eigensolutions of this limiting problem satisfying u0(0) = 0 as

(2.3a)

u0 = A

[
J0(μ0r) − I0(μ0r) −

(
J0(μ0)− I0(μ0)

2
πK0(μ0) + Y0(μ0)

)(
2

π
K0(μ0r) + Y0(μ0r)

)]
.

Here, A is a normalization constant, and μ0 is a root of the eigenvalue equation
(2.3b)

(J0(μ0)− I0(μ0))

(
2

π
K1(μ0) + Y1(μ0)

)
= (J1(μ0) + I1(μ0))

(
2

π
K0(μ0) + Y0(μ0)

)
.

Using the well-known behavior of the Bessel functions for the small argument, we
then identify the local behavior as
(2.4)

u0(r) = α0 r
2 log r+O(r2) , as r → 0 , where α0 ≡ Aμ2

0 [J0(μ0)− I0(μ0)]

2K0(μ0) + πY0(μ0)
.

It follows that the limiting eigenfunction u0 is not smooth at the puncture point but
merely differentiable. Moreover, the r2 log r singularity structure of (2.4) corresponds
to the Green’s function for the bi-Laplacian, therefore implying that the clamped
patch acts like a Dirac source in the limit ε → 0.

In terms of this singularity behavior and the constant α0, we now derive an ex-
pression for the difference μ0−μ� between the lowest eigenvalue of the point constraint
problem and that of the unperturbed problem. We will derive an expression for this
difference in a more general context than an annular domain. We consider the limiting
point constraint problem, with u0(x0) = 0, given by

Δ2u0 = λ0u0 , x ∈ Ω \ {x0} ; u0 = ∂nu0 = 0 , x ∈ ∂Ω ;

∫
Ω

u2
0 dx = 1 ;

(2.5a)

u0(x) ∼ α0|x− x0|2 log |x− x0|+∇xR(x;x0)|x=x0 · (x− x0) +O(|x − x0|2) ,
(2.5b)

as x → x0 ,

and the problem in the absence of a hole, with smooth solution u�, satisfying

(2.6) Δ2u� = λ�u� , x ∈ Ω ; u� = ∂nu� = 0 , x ∈ ∂Ω ;

∫
Ω

u2
� dx = 1 .

The following result gives an expression for the difference between any two eigen-
values of (2.5) and (2.6).

Principal Result 2.1. Let (u0, λ0) be any simple eigenpair of the limiting prob-
lem (2.5) with a point constraint u0(x0) = 0 and let (u�, λ�) be any simple eigenpair
of the problem (2.6) with no hole. Then for 〈u0, u�〉 	= 0,

(2.7) λ0 − λ� = −8π α0 u�(x0)

〈u0, u�〉 , where 〈u0, u�〉 ≡
∫
Ω

u0u� dx .
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Proof. We use Green’s second identity over the domain Ω\B(x0, σ), whereB(x0, σ)
is a ball of radius σ � 1 centered at x0. This yields that

(λ0 − λ�)

∫
Ω\B(x0,σ)

u0u�dx(2.8)

=

∫
Ω\B(x0,σ)

(u�Δ
2u0 − u0Δ

2u�) dx

=

∫
∂B(x0,σ)

(u�∂n(Δu0)−Δu0∂nu� − u0∂n(Δu�) + Δu�∂nu0) ds .

Then, with r = |x − x0| and ∂n = −∂r on B(x0, σ), we use (2.5b) to calculate as
r → 0 that

u0 ∼ α0r
2 log r + acr cos θ + asr sin θ + · · · ,

u0r ∼ 2α0r log r + α0r + ac cos θ + as sin θ + · · · ,
Δu0 ∼ 4α0[log r + 1] + · · · , ∂rΔu0 ∼ 4α0

r
,

where (x − x0) = r(cos θ, sin θ) and (ac, as) ≡ ∇xR(x;x0)|x=x0 . Then, since u� is
smooth as x → x0, it follows that only the first term in the boundary integral on
∂B(x0, σ) in (2.8) is nonvanishing in the limit σ → 0. Therefore,

(λ0 − λ�) 〈u0, u�〉 = − lim
σ→0

∫
∂B(x0,σ)

u�∂r(Δu0) ds

= − lim
σ→0

2πσ

[
u�(x0)

4α0

σ

]
= −8π α0 u�(x0) .

In the scenario where 〈u0, u�〉 	= 0, we recover the result (2.7).
To verify this result in the exactly solvable case of the unit disk with the hole

centered at the origin, we can without loss of generality set A = 1 for the normalization
constants in (2.1) and (2.3b) and calculate that

(2.9) u�(0) = 1− J0(μ�)

I0(μ�)
, α0 =

μ2
0 [J0(μ0)− I0(μ0)]

2K0(μ0) + πY0(μ0)
.

For the case of the lowest eigenvalue eigenvalues of (2.1) and (2.3b), we evaluate
numerically that

μ0 = 4.7683 , μ� = 3.1962 , u�(0) = 1.0557 ,

α0 = 618.2445 , 〈u0, u�〉 = −39.758 .

This yields λ0 − λ� = μ4
0 − μ4

� ≈ 412.6 from (2.7) and is in agreement with the
numerical results from Figure 2.

2.2. An exactly solvable mixed-order BVP. To motivate the different scal-
ings appearing in sections 3–5 below, it is instructive to consider the following radially
symmetric model BVP for u = u(r):

(2.10) −δΔ2u+Δu = 1 , ε < r < 1 ; u(1) = ur(1) = 0 , u(ε) = ur(ε) = 0 .
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Here, Δu ≡ urr + r−1ur and ε � 1. The particular solution for (2.10) is r2/4, while
the homogeneous solution is a linear combination of {1, log r, I0(r/

√
δ),K0(r/

√
δ)}.

In this way, the exact solution to (2.10) is readily obtained as

uε =
(r2 − 1)

4
+

[
− cε√

δ
I ′0

(
1√
δ

)
− 1

2
− dε√

δ
K ′

0

(
1√
δ

)]
log r(2.11a)

+ cε

[
I0

(
r√
δ

)
− I0

(
1√
δ

)]
+ dε

[
K0

(
r√
δ

)
−K0

(
1√
δ

)]
,

where the constants cε and dε satisfy the 2× 2 linear system

cε

[
I0

(
ε√
δ

)
− log ε√

δ
I ′0

(
1√
δ

)
− I0

(
1√
δ

)]
(2.11b)

+ dε

[
K0

(
ε√
δ

)
− log ε√

δ
K ′

0

(
1√
δ

)
−K0

(
1√
δ

)]

=
1

4
− ε2

4
+

log ε

2
,

cε

[
I ′0

(
ε√
δ

)
− 1

ε
I ′0

(
1√
δ

)
−
√
δI0

(
1√
δ

)]
(2.11c)

+ dε

[
K ′

0

(
ε√
δ

)
− 1

ε
K ′

0

(
1√
δ

)
−
√
δK0

(
1√
δ

)]

=

√
δ

2ε
− ε

√
δ

2
.

We now investigate three different asymptotic limits of (2.11).
We first suppose that δ = O(1) and ε → 0. In (2.11b) and (2.11c), we use the

small argument expansions K ′
0(z) ∼ −1/z, K0(z) ∼ − log (z/2) − γe, and I0(z) ∼ 1

as z → 0 to obtain, after some algebra, that (2.11) reduces to
(2.12a)

uε ∼ u0 ≡ r2

4
+ c0

[
I0

(
r√
δ

)
− 1

]
+ d0

[
K0

(
r√
δ

)
+ log r − log

(
2
√
δ
)
+ γe

]
,

where γe is Euler’s constant. Here, cε ∼ c0 and dε ∼ d0 as ε → 0, where c0 and d0
satisfy the linear system

c0

[
I0

(
1√
δ

)
− 1

]
+ d0

[
K0

(
1√
δ

)
− log

(
2
√
δe−γe

)]
= −1

4
,

c0I
′
0

(
1√
δ

)
+ d0

[
K ′

0

(
1√
δ

)
+
√
δ

]
= −

√
δ

2
.

The key observation is that the limiting solution (2.12a) satisfies u0(1) = u0r(1) =
0 and the point constraint u0(0) = 0. We emphasize that this limiting behavior for
(2.11) as ε → 0 when δ = O(1) is not to the smooth unperturbed solution u� in the
absence of a hole, which is given by

(2.13) u� =
1

4

(
r2 − 1

)−
√
δ

2I ′0
(
1/

√
δ
) [I0

(
r√
δ

)
− I0

(
1√
δ

)]
.

The fact that the limiting solution of (2.10) as ε → 0 with δ = O(1) is not the
unperturbed solution u� is also apparent from a failure of the method of matched
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asymptotic expansions. More specifically, if we were to use (2.13) as the leading-order
solution in the outer region, then in the inner region, and with local variable ρ = r/ε,
the leading-order inner problem for (2.10) would be Δ2v = 0 in ρ ≥ 1, subject to
v = vρ = 0 on ρ = 1 together with the matching condition v → u�(0) as ρ → ∞. Since
u�(0) 	= 0 from (2.13), and v must be a linear combination of {1, log ρ, ρ2, ρ2 log ρ}, it
follows that there is no such solution to this inner problem. This, at least formally,
suggests that (2.13) cannot be used as the outer solution for (2.10), and instead we
must use the solution u0 in (2.12) satisfying the point constraint u0(0) = 0 as the
outer solution.

The second use of the model problem is to investigate the asymptotic behavior
of the solution to (2.10), as δ and ε both tend to zero. Two cases are considered:
Case I, in which δ = O(ε2), and Case II, in which O(ε2) � δ � O(1). For Case I,
we set δ = δ0ε

2 in (2.11) and let ε → 0. Upon using the well-known large argument
expansions of K0(z) and I0(z) as z → ∞, we obtain after some straightforward, but
rather lengthy, algebraic manipulations on (2.11) that

dε ∼ − ν
√
δ0

4K ′
0

(
1/

√
δ0
) , ν ≡ − 1

log (εe−χ)
,(2.14a)

χ ≡
√
δ0K0

(
1/

√
δ0
)

K ′
0

(
1/

√
δ0
) ; cε ∼ − ε

√
δ0

I ′0
(
1/ε

√
δ0
) (ν

4
+

1

2

)

and that the outer limit of (2.11a) becomes

(2.14b) uε ∼ (r2 − 1)

4
− ν

4
log r for O(ε) � r � 1−O(δ) .

As a remark, if we include a boundary layer correction term in order to satisfy ur = 0
on r = 1, a composite expansion for this modified asymptotic solution is readily
obtained as
(2.14c)

uε ∼ (r2 − 1)

4
− ν

4
log r +

√
δ

(
1

2
− ν

4

)(
1− e

− (1−r)√
δ

)
for O(ε) � r ≤ 1 .

The approximation (2.14b) can also be obtained by using the method of matched
asymptotic expansions directly on the BVP (2.10), with the analysis being very similar
to that given, in a more general context, below in section 4.2.

Finally, we consider Case II, where O(ε2) � δ � O(1). After some algebra, we
obtain from (2.11b) and (2.11c) that
(2.15a)

dε ∼ −ν∞
4

, ν∞ ≡ − 1

log
(
2
√
δe−γe

) ; cε ∼ −
√
δ

I ′0
(
1/

√
δ
) (ν∞

4
− 1

2

)

and that the outer limit of (2.11a) is

(2.15b) uε ∼ (r2 − 1)

4
− ν∞

4
log r for O(

√
δ) � r � 1−O(δ) .

The composite expansion satisfying ur = 0 on r = 1 for this asymptotic solution is
readily obtained to be
(2.15c)

uε ∼ (r2 − 1)

4
− ν∞

4
log r +

√
δ

(
1

2
− ν∞

4

)(
1− e

− (1−r)√
δ

)
for O(

√
δ) � r ≤ 1 .
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Fig. 3. Left panel: the exact solution (2.11) versus r for δ = 0.002 and ε = 0.02 (heavy
solid curve) is compared with the asymptotic solution (2.15b) without the boundary layer correction
term (solid curve) and with the boundary layer correction term (2.15c) (dotted curve). Right panel:
similar figure for δ = ε2 with ε = 0.02, so that δ0 = 1. The asymptotic result is given in (2.14c) and
(2.14b) with and without the boundary layer correction term, respectively.

A key feature of this limiting solution, valid on the range O(ε2) � δ � O(1), is
that the outer solution is asymptotically independent of the radius ε of the hole. In
this sense, this regime exhibits a transition to the point constraint behavior associated
with the regime δ = O(1). This limiting solution (2.15b) can also be rederived by
using the method of matched asymptotic expansions applied to the BVP (2.10), with
the analysis being similar to that given below in section 4.4. In Figure 3, we show a
favorable comparison between the asymptotic results in (2.14) and (2.15) for Case I
and Case II, respectively, and the exact result given in (2.11).

3. The mixed-order eigenvalue problem: Asymptotics of the point con-
straint problem. As motivated by the analysis in section 2 in the limit ε → 0, an
eigenvalue λε of (1.3) for fixed δ = O(1) tends to an eigenvalue λ0 of the point
constraint problem

−δΔ2u0 +Δu0 + λ0u0 = 0 , x ∈ Ω\{x0} ;
∫
Ω

u2
0 dx = 1 ,(3.1a)

u0 = ∂nu0 = 0 , x ∈ ∂Ω ; u0(x0) = 0 .(3.1b)

The effect of this point constraint is that the smoothness of u0 is lost in the sense
that Δu0 = O (log |x− x0|) as x → x0.

To solve (3.1), it is convenient to introduce the Green’s function Gδ(x;x0, λ0)
satisfying

(3.2a) Δ2Gδ− 1

δ
ΔGδ− λ0

δ
Gδ = δ(x−x0) , x ∈ Ω ; Gδ = ∂nGδ = 0 , x ∈ ∂Ω .

Then, Gδ can be decomposed in terms of a singular part and a C2 smooth “regular”
part Rδ(x;x0, λ0) as

(3.2b) Gδ(x;x0, λ0) =
1

8π
|x− x0|2 log |x− x0|+Rδ(x;x0, λ0) .

As x → x0, Gδ in (3.2b) has the limiting behavior

Gδ(x;x0, λ0) =
1

8π
|x− x0|2 log |x− x0|+Rδ(x0;x0, λ0)(3.3)

+∇xRδ(x;x0, λ0)|x=x0 +O(|x− x0|2) .
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In terms of Gδ, the solution to (3.1) is simply u0 = N0Gδ(x;x0, λ0), where λ0 is
a root of

(3.4) Rδ(x0;x0, λ0) = 0 ,

and N0 = 1/
(∫

Ω G2
δ dx

)1/2
. The roots of the point constraint condition (3.4), which is

a transcendental equation in λ0, give the leading-order eigenvalue asymptotics of (1.3)
in that λε → λ0, as ε → 0. We will assume that λ0 is a root of (3.4) of multiplicity
one and that x0 is such that u0 satisfies the nondegeneracy condition ∇xRδ|x=x0 	= 0.

The goal of this section is to derive an approximation to the point constraint
condition (3.4) when δ � 1. To do so, we will use the method of matched asymptotic
expansions to analyze the Green’s function of (3.2) as δ → 0.

In the outer region Ωout, defined as Ωout = {x | |x−x0| � O(
√
δ) and dist(x, ∂Ω) �

O(
√
δ)}, we expand Gδ = G0 + o(1) to obtain from (3.2a) that

(3.5a) ΔG0 + λ0G0 = 0 , x ∈ Ωout ; G0 → 0 , as x → ∂Ω .

This effective zero Dirichlet boundary condition for G0 as x → ∂Ω arises as a leading-
order condition for matching G0 to a boundary-layer solution defined in an O(

√
δ)

neighborhood of ∂Ω. To construct a solution to (3.2a) that has a singularity at x0,
we first impose that G0 has a logarithmic singularity as x → x0, so that

(3.5b) G0 ∼ S log |x− x0| , as x → x0 ,

for some S to be determined. The solution to (3.5) is then simply

(3.6) G0 = −2πSGh(x;x0, λ0) ,

where Gh is the Helmholtz Green’s function satisfying

ΔGh + λ0Gh = −δ(x− x0) , x ∈ Ω ; Gh = 0 , x ∈ ∂Ω ,(3.7a)

Gh ∼ − 1

2π
log |x− x0|+Rh(x;x0, λ0)|x=x0 +∇xRh(x;x0, λ0)|x=x0(3.7b)

· (x− x0) + · · · , as x → x0 .

Here, Rh0 ≡ Rh(x;x0, λ0)|x=x0 and ∇xRh0 ≡ ∇xRh(x;x0, λ0)|x=x0 are the regular
part of the Helmholtz Green’s function and its gradient, respectively, which depend
on λ0 and the domain Ω. From (3.6) and (3.7b), it follows that

(3.8) G0 ∼ S [log |x− x0| − 2πRh0 − 2π∇xRh0 · (x− x0) + · · · ] , as x → x0 .

This behavior will be used as the matching condition for an inner solution in a neigh-
borhood of x0. In the inner region, defined in an O(

√
δ) neighborhood of x0, we

introduce new variables y and w by

(3.9) y = (x− x0)/
√
δ , w(y) = Gδ(x0 + εy;x0, λ0) .

We obtain from (3.2a) that w ∼ w0 + · · · , where w0 satisfies

(3.10a) Δ2
yw0 −Δyw0 = 0 , y ∈ R

2\{0} .
In terms of the inner variable, the matching condition as |y| → ∞, as obtained from
(3.8), is that

(3.10b) w0 ∼ S log |y|+ S log
√
δ − 2πSRh0 − 2πS

√
δ∇xRh0 · y , as |y| → ∞ .



1204 A. E. LINDSAY, M. J. WARD, AND T. KOLOKOLNIKOV

Moreover, upon substituting the inner scale y = (x− x0)/
√
δ into (3.3), we require

that

(3.11) w0 ∼ δ

8π
|y|2 log |y|+ a+ b · y +O(|y|2) , as y → 0 ,

for some scalar a and vector b to be found. We remark that the unknown a represents
the limiting asymptotics of Rδ(x0;x0, λ0) as δ → 0, which we seek to determine.

The solution to (3.10) that is bounded as y → 0 is simply

(3.12) w0 = S
[
log |y|+ log

(√
δ
)
− 2πRh0 +K0(|y|)

]
− 2πS

√
δ∇xRh0 · y ,

where K0(|y|) is the modified Bessel function of the second kind of order zero. To
determine S, we use the well-known refined asymptotics of K0(|y|) as |y| → 0 from
(4.20) below to obtain in terms of Euler’s constant γe ≈ 0.5772 that

(3.13) w0 ∼ −S

4
|y|2 log |y|+S

[
log
(√

δ
)
− 2πRh0 + log 2− γe

]
− 2πS

√
δ∇xRh0 ·y .

The final step in the analysis is to choose S so that the O(|y|2 log |y|) terms in
(3.11) and (3.13) agree, and then identify the constant a in (3.11) from the O(1) term
in (3.13). In this way, we obtain that S = −δ/(2π) and that

(3.14) Rδ(x0;x0, λ0) ∼ − δ

2π

[
log
(
2
√
δ e−γe

)
− 2πRh0

]
, as δ → 0 .

Finally, upon substituting (3.14) into the point constraint condition (3.4), it follows
for δ → 0 that λ0 is a root of

(3.15) Rh0 = − 1

2πν∞
, where ν∞ ≡ −1/ log

(
2
√
δe−γe

)
.

Here, Rh0 ≡ Rh(x0;x0, λ0) is the regular part of the Helmholtz Green’s function as
defined by (3.7).

This analysis of the limiting behavior as δ → 0 of the point constraint condition
(3.4) is insufficient for identifying the range of δ � 1 and ε � 1 for which (3.15)
holds as an approximation to an eigenvalue of (1.3). In the more refined analysis of
section 4.4, leading to Principal Result 4.4, it is shown that (3.15) yields the leading-
order asymptotics for an eigenvalue of (1.3) on the range O(ε2) � δ � O(1) for a
hole Ωε of arbitrary shape centered at x0.

4. Asymptotics for δ → 0 of the mixed-order eigenvalue problem. In
this section, we investigate the limiting behavior as δ → 0 of the mixed-order problem

−δΔ2u+Δu + λu = 0 , x ∈ Ω \ Ωε ;
∫
Ω\Ωε

u2 dx = 1 ,(4.1a)

u = ∂nu = 0 , x ∈ ∂Ω ; u = ∂nu = 0 , x ∈ ∂Ωε .(4.1b)

Here, Ωε is a hole of diameter O(ε) that shrinks uniformly to a point x = x0 ∈ Ω as
ε → 0. In our analysis of (4.1) in sections 4.2–4.4, we will consider the limit ε → 0 for
the three asymptotic ranges of δ � 1 given by δ = O(ε2), δ � O(ε2), and O(ε2) �
δ � 1. For each of these regimes, we will determine asymptotic approximations for
any O(1) simple eigenvalues of (4.1). However, first, in order to isolate the effect of
the outer boundary ∂Ω, in section 4.1 we begin by calculating the eigenvalues and
eigenfunctions of (4.1) for the case δ � 1 when there is no hole.
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4.1. Boundary layer at ∂Ω. In this subsection, we analyze the perturbation
of the eigenvalues λ due to the fourth-order term −δΔ2u with δ � 1 in the absence
of a hole. Assuming, for simplicity, that the boundary ∂Ω is C2, this eigenproblem is
(4.2)

−δΔ2u+Δu+ λu = 0 , x ∈ Ω ; u = ∂nu = 0 , x ∈ ∂Ω ;

∫
Ω

u2 dx = 1 .

In the limit δ → 0, the formal leading-order problem for (4.2) is Δu + λu = 0.
For this reduced problem, both boundary conditions for u cannot be applied on ∂Ω.
To understand how the full boundary conditions are enforced, a boundary layer is
introduced in the vicinity of ∂Ω. Since ∂Ω is arbitrary but smooth, it is convenient to
employ an orthogonal system (η, s), where η > 0 measures the perpendicular distance
from x ∈ Ω to ∂Ω, while on ∂Ω, s measures arc-length. In terms of these coordinates,
valid in a neighborhood of ∂Ω, (4.2) becomes

(4.3) − δ

[
∂ηη − κ

1− κη
∂η +

1

1− κη
∂s

(
1

1− κη
∂s

)]2
u

+

[
∂ηη − κ

1− κη
∂η +

1

1− κη
∂s

(
1

1− κη
∂s

)]
u+ λu = 0 .

Here, κ = κ(s) is the curvature of ∂Ω with κ = 1 for the unit disk. Equation (4.3) is
valid when η < 1/ (max∂Ω κ).

In the inner boundary layer region near ∂Ω of extent O(δ1/2), we introduce the
inner variables and inner expansion

(4.4) η̂ = η/δ1/2 , u = δ1/2v , v = v0 + δ1/2v1 + δv2 + · · · .
Upon substituting (4.4) into (4.3) and collecting powers of δ, we obtain the following
sequence of problems on η̂ ≥ 0:

−v0η̂η̂η̂η̂ + v0η̂η̂ = 0 , v0 = v0η̂ = 0 , on η̂ = 0 ,(4.5a)

−v1η̂η̂η̂η̂ + v1η̂η̂ = −2κv0η̂η̂η̂ + κv0η̂ , v1 = v1η̂ = 0 , on η̂ = 0 .(4.5b)

To asymptotically match the inner solution to an outer solution, as constructed below,
we require that the solution to (4.5) has no exponential growth as η̂ → +∞. In this
way, the solution to (4.5) is
(4.6)

v0 = −c0 + c0η̂ + c0e
−η̂ ; v1 = −c1 +

(
c1 − κc0

2

)
η̂ + c1e

−η̂ +
κc0
2

η̂2 +
κc0
2

η̂e−η̂ ,

where c0(s) and c1(s) are to be determined. As η̂ → ∞, these solutions have the
dominant asymptotic behavior

v0 ∼ −c0 + c0η̂ , v1 ∼ −c1 +
(
c1 − κc0

2

)
η̂ +

κc0
2

η̂2 .

In terms of the outer variable η = δ1/2η̂, the far-field behavior of the two-term inner
expansion is

(4.7) u ∼ c0η +
κc0
2

η2 + δ1/2
[
−c0 + η

(
c1 − κc0

2

)]
+ δ [−c1 +O(η)] + · · · .

In the outer region, defined away from an O(δ1/2) distance from ∂Ω, we pose the
outer expansion

(4.8) u = u0 + δ1/2u1 + δu2 + · · · .
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In terms of the boundary-fitted orthogonal coordinate system, the local behavior of
this outer solution as η → 0 is

(4.9) u ∼ u0 + η∂ηu0 +
η2

2
∂ηηu0 + δ1/2 [u1 + ηu1η + · · · ] + δ [u2 + · · · ] + · · · ,

where u0, u1, and their derivatives are to be evaluated on η = 0. Upon comparing
(4.9) with the required matching condition (4.7) and noting that the outer normal
derivative ∂nu on ∂Ω is simply ∂nu = −∂ηu, we obtain

(4.10) u0 = 0 , u1 = ∂nu0 , u2 =
κ

2
∂nu0 + ∂nu1 , x ∈ ∂Ω .

Moreover, from this matching condition, c0 and c1 in (4.6) are given by

(4.11) c0 = −∂nu0 , c1 = −κ

2
∂nu0 − ∂nu1 , x ∈ ∂Ω .

Next, we substitute (4.8), together with the eigenvalue expansion λ = λ0+δ1/2λ1+
δλ2 + · · · , into (4.2), and collect powers of δ, to obtain a sequence of outer problems.
The effective boundary conditions as x → ∂Ω for these outer problems are given by
(4.10). In this way, we obtain that

Δu0 + λ0u0 = 0 , x ∈ Ω ; u0 = 0 , x ∈ ∂Ω ;

∫
Ω

u2
0 dx = 1 ,

(4.12a)

Δu1 + λ0u1 = −λ1u0 , x ∈ Ω ; u1 = ∂nu0 , x ∈ ∂Ω ;

∫
Ω

u0u1 dx = 0 ,

(4.12b)

Δu2 + λ0u2 = (λ2
0 − λ2)u0 − λ1u1 , x ∈ Ω ;

(4.12c)

u2 = ∂nu1 +
κ

2
∂nu0 , x ∈ ∂Ω ;

∫
Ω

(2u0u2 + u2
1) dx = 0 .

We assume that (u0, λ0) is a base eigenpair of (4.12a) of multiplicity one. Solvability
conditions are then applied to (4.12b) and (4.12c) to fix the values of λ1 and λ2, and
the solutions u1 and u2 are made unique from the integral constraints in (4.12b) and
(4.12c). In terms of the unique u0 and u1, the functions c0(s) and c1(s), as needed in
the inner solution (4.6), are calculated from (4.11). Our result is summarized in the
following formal statement.

Principal Result 4.1. Let (u0, λ0) be an eigenpair of (4.12a) with multiplicity
one and assume that ∂Ω is smooth. Then, for δ � 1, and with κ(s) denoting the
curvature of ∂Ω, there is an eigenvalue of (4.2) with asymptotics
(4.13)

λ(δ) = λ0 + δ1/2
[∫

∂Ω

(∂nu0)
2 ds

]
+ δ

[
λ2
0 +

∫
∂Ω

∂nu0(∂nu1 +
κ

2
∂nu0) ds

]
+O(δ3/2) .

We conclude that the biharmonic term and the extra boundary condition ∂nu = 0
on ∂Ω induce an O(

√
δ) correction to the eigenvalue of the Laplacian. In the three

subsections below, the various scalings δ = δ(ε) that are investigated as ε → 0 in
(4.1) are all such that eigenvalue correction terms due to the boundary layer are
asymptotically smaller than those generated by the hole. However, by including a
transcendentally small boundary layer contribution to the eigenvalue approximation,
a quantitatively more accurate result is obtained at moderately small values of δ.
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4.2. The distinguished limit δ = δ0ε
2. In the limit ε → 0, in this subsection

we study the eigenvalue problem

−δ0ε
2Δ2u+Δu+ λu = 0 , x ∈ Ω ;

∫
Ω\Ωε

u2 dx = 1 ,(4.14a)

u = ∂nu = 0 , x ∈ ∂Ω ; u = ∂nu = 0 , x ∈ ∂Ωε ,(4.14b)

where δ0 = O(1) is a positive parameter controlling the influence of the bi-Laplacian
term in (4.14). Our analysis begins by introducing a canonical local problem defined
near the hole Ωε. In terms of the local variables

(4.15) y = ε−1(x− x0) , v(y) = u(x0 + εy) ,

we obtain the following inner problem from (4.14):

(4.16) −δ0Δ
2
yv +Δyv + ε2λv = 0 , y ∈ R

2 \ Ω0 ; v = ∂nv = 0, x ∈ ∂Ω0 ,

where Ωε = x0 + εΩ0 and Ω0 is the magnified domain of the hole. We define the
canonical solution vc as the solution to (4.16), upon neglecting the O(ε2) term, that
satisfies vc ∼ log |y| as |y| → ∞. As such, vc is taken to satisfy

−δ0Δ
2
yvc +Δyvc = 0 , y ∈ R

2 \Ω0 ; vc = ∂nvc = 0 , y ∈ ∂Ω0 ;(4.17a)

vc ∼ log |y|+ χ(δ0) + O(1) , as |y| → ∞ .(4.17b)

Here, the O(1) constant χ(δ0) in the far-field behavior of vc depends on both δ0 and
the shape of the hole Ω0. For an arbitrarily shaped hole Ω0, χ(δ0) must be calculated
numerically.

For the special case where Ωε is the circular disk |x − x0| ≤ ε, so that Ω0

is the unit disk |y| ≤ 1, we can find χ(δ0) analytically. To do so, we note that
any radially symmetric solution of −δ0Δ

2
yvc + Δyvc = 0 is a linear combination of

{1, log ρ,K0(ρ/
√
δ0), I0(ρ/

√
δ0)}. Here, ρ = |y| while I0(z) and K0(z) denote modi-

fied Bessel functions of the first and second kinds of order zero. To ensure that vc
grows only logarithmically as ρ → ∞, we must eliminate the I0 component. A simple
calculation yields that
(4.18)

vc = log ρ+ a+ bK0

(
ρ/

√
δ
)
; a = −

√
δ0K0

(
1/

√
δ0
)

K1

(
1/

√
δ0
) , b =

√
δ0

K1

(
1/

√
δ0
) .

Then, upon comparing (4.18) with (4.17b), and using K0(z) → 0 as z → +∞, we
readily identify χ(δ0) in (4.17b) as

(4.19) χ(δ0) = −
√
δ0K0

(
1/

√
δ0
)

K1

(
1/

√
δ0
) .

To determine the asymptotics of χ(δ0) as δ0 → ∞, we use the well-known asymptotics
for z → 0 given by

K0(z) ∼ − log z + log 2− γe − 1

4
z2 log z +

z2

4
(log 2 + 1− γe) ,(4.20)

K1(z) ∼ 1

z
+

z

4
(2γe − 1) +

z

2
log
(z
2

)
,
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Fig. 4. Plot of χ(δ0) versus δ0 for a circular hole of radius ε as computed numerically from
(4.19) (solid curve). The dotted curves are the approximations in (4.21) that are valid for either
δ0 � 1 or for δ0 � 1.

where γe ≈ 0.5772 is Euler’s constant. In contrast, the asymptotics of χ(δ0) for δ0 → 0
relies on the identity K0(z)/K1(z) ∼ 1− 1/(2z)+ 51/(128z2) as z → ∞. In this way,
we readily calculate that

χ ∼ − log
(
2
√
δ0

)
+ γe − 1

2δ0

[
log
(
2
√
δ0

)]2
(4.21a)

+
1

δ0

(
γe − 1

2

)
log
(
2
√
δ0

)
−
(
1− 2γe + 2γ2

e

)
4δ0

, as δ0 → ∞ ,

χ ∼ −
√
δ0 +

δ0
2

− 51

128
δ
3/2
0 +O(δ20) , as δ0 → 0 .(4.21b)

In Figure 4, we plot χ(δ0), as computed from (4.19), and compare it with the limiting
asymptotic behavior in (4.21).

Finally, it is convenient to introduce the constant d = d(δ0) ≡ e−χ(δ0) defined so
that

(4.22) vc ∼ log |y| − log d+ O(1) , as |y| → ∞ ; d ≡ e−χ(δ0) .

When Ωε is the disk of radius ε, d can be calculated from χ(δ0) in (4.19). From (4.21),
it has the leading-order behavior

(4.23) d ∼ 2
√
δ0 e

−γe , as δ0 → ∞ ; d ∼ 1 +
√
δ0 +O(δ

3/2
0 ) , as δ0 → 0 .

Next, we construct an infinite asymptotic series in powers of ν ≡ −1/ log(εd) for
a simple eigenvalue of (4.1). In terms of the canonical inner solution vc and unknown
constants cj , we expand the inner solution for (4.16) as

(4.24) v ∼ ν

∞∑
j=0

νjcjvc , ν ≡ −1/ log(εd) , d ≡ e−χ(δ0) .

To determine the far-field behavior of (4.24), we use (4.22) in (4.24) and write the
resulting expression in terms of the outer variable. This yields the following matching
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condition for the outer solution of (4.1):

(4.25) u ∼ c0 +

∞∑
j=1

νj [cj−1 log |x− x0|+ cj ] , as x → x0 .

In the outer region, where |x − x0| � O(ε) and dist(x, ∂Ω) � O(δ1/2) = O(ε),
we expand the eigenvalue λ and the outer eigenfunction u as

(4.26) u ∼ u0 +

∞∑
j=1

νjuj + · · · , λ ∼ λ0 +

∞∑
j=1

νjλj + · · · .

Here, u0(x) and λ0 is assumed to be any simple eigenpair of the unperturbed problem
(4.12a) for which u0(x0) 	= 0. The leading-order matching condition from (4.25) is
that c0 = u0(x0). Since νj � O(ε) for any j ≥ 0, the correction to λ0 induced by the
boundary layer near ∂Ω is asymptotically smaller than any term in the infinite series
(4.26). As such, in our analysis of the outer region, we can neglect both the boundary
layer near ∂Ω and the term −δε2Δ2 in (4.1), while imposing u → 0 as x → ∂Ω. Thus,
upon substituting (4.26) into (4.1) and the matching condition (4.25), we obtain upon
equating powers of ν that uj for j ≥ 1 satisfies

Δuj + λ0uj = −λju0 − (1− δ1j)

j−1∑
i=1

λiuj−iu0 , x ∈ Ω\{x0} ;(4.27a)

uj = 0 , x ∈ ∂Ω ,

uj ∼ cj−1 log |x− x0|+ cj , as x → x0 ,(4.27b) ∫
Ω

u0uj dx = −1

2
(1− δ1j)

j−1∑
i=1

∫
Ω

uiuj−i dx ,(4.27c)

where c0 = u0(x0) 	= 0 and δ1j is the usual Kronecker symbol.
The coefficients cj for j ≥ 1 and the eigenvalue corrections λj for j ≥ 1 are

determined recursively from (4.27). Suppose that cj−1 and ui for 0 ≤ i ≤ j − 1 are
known. Then, the solvability condition for (4.27) yields that

(4.28) λj = 2πcj−1u0(x0)− (1− δ1j)

j−1∑
i=1

λi

∫
Ω

uj−iu0 dx for j ≥ 1 .

With λj now determined, we can solve (4.27a) with uj ∼ cj−1 log |x− x0| as x → x0

to obtain uj to within an additive multiple of u0. This multiple is then determined
uniquely by the normalization condition (4.27c). Finally, with uj now uniquely de-
termined, we calculate the constant cj from the limiting behavior cj = limx→x0(uj −
cj−1 log |x − x0|). This process is repeated recursively in j. It is initialized with
c0 = u0(x0), where (u0, λ0) is an eigenpair of (4.12a).

We illustrate this procedure by deriving a three-term expansion for λ. For j = 1,
(4.28) yields that λ1 = 2π[u0(x0)]

2. To identify u1 from (4.27), it is convenient to
introduce the uniquely defined Gm(x;x0) by

ΔGm + λ0Gm = u0(x0)u0(x) − δ(x− x0) , x ∈ Ω ; Gm = 0 , x ∈ ∂Ω ,(4.29a)

Gm(x;x0) ∼ − 1

2π
log |x− x0|+Rm(x0) + o(1) ,(4.29b)

as x → x0 ;

∫
Ω

Gmu0 dx = 0 ,
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where Rm(x0) is the regular part of the modified Green’s function Gm. The solution
to (4.27) with j = 1 is simply

(4.30) u1 = −2πu0(x0)Gm(x;x0) .

Next, expanding u1 as x → x0 and comparing with (4.27b) for j = 1, we get c1 =
−2πu0(x0)Rm(x0). Finally, since

∫
Ω u0u1 dx = 0, (4.28) for j = 2 yields that λ2 =

−4π2 [u0(x0)]
2
Rm(x0). We summarize the result as follows:

Principal Result 4.1. Let (u0, λ0) be an simple eigenpair of (4.12a) with
u0(x0) 	= 0. Then, for δ = ε2δ0 with δ0 = O(1), (4.14) has an eigenvalue with
three-term asymptotics

λ ∼ λ0 + 2π [u0(x0)]
2
ν − 4π2 [u0(x0)]

2
Rm(x0)ν

2 +O(ν3) ;(4.31)

ν ≡ −1/ log (εd) , d = e−χ(δ0) ,

where χ(δ0) is defined in (4.17b) in terms of the far-field behavior of the canonical
inner solution vc. For a circular hole of radius ε, χ(δ0) is given in (4.19). Here,
Rm(x0) is the regular part of the modified Green’s function in (4.29).

We conclude this section by deriving a transcendental equation for λ that has the
effect of summing the infinite logarithmic series in (4.26). Since the analysis is similar
to that in [23], we only briefly outline it here.

In the inner region, the solution to (4.16) is given asympotically in terms of some
unknown function C(ν) as
(4.32) v ∼ C(ν)νvc .
Upon using vc ∼ log |y| − log d + o(1) as |y| → ∞ in (4.32), we derive the matching
condition for the outer solution:

(4.33) u ∼ Cν log |x− x0|+ C , as x → x0 .

In the outer region, instead of expanding u and λ term-by-term in powers of ν as in
(4.26), we expand u = u�(x; ν) + t.s.t. and λ = λ�(ν) + t.s.t., where t.s.t indicates
terms that are transcendentally small in comparison with ν. In addition, u� is to
satisfy the matching condition (4.33). In this way, we find that u� and λ� satisfy

Δu� + λ�u� = 0 , x ∈ Ω\{x0} ; u� = 0 , x ∈ ∂Ω ;

∫
Ω

[u�]
2
dx = 1 .

(4.34a)

u� ∼ Cν log |x− x0|+ C , as x → x0 .(4.34b)

The singularity structure (4.34b) specifies both the regular and singular part of the
singularity. As such, it provides a constraint to determine λ�. The solution to (4.34)
is

(4.35) u� = −2πC(ν)Gh(x;x0, λ
�) ,

where C is found from the condition
∫
Ω
[u�]2 dx = 1. Here, Gh is the Helmholtz

Green’s function satisfying

ΔGh + λ�Gh = −δ(x− x0) , x ∈ Ω ; Gh = 0 , x ∈ ∂Ω ,(4.36a)

Gh ∼ − 1

2π
log |x− x0|+Rh(x0;λ

�) + o(1) , as x → x0 ,(4.36b)
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where Rh(x0;λ
�) is the regular part of Gh. Then, by expanding u� in (4.35) as x → x0

and comparing the resulting expression with (4.34b), we get −2πνRhC = C, which is
an equation for λ�. We summarize the result as follows.

Principal Result 4.2. For δ = ε2δ0 with δ0 = O(1), there is an eigenvalue λ
of (4.14) with λ ∼ λ�(ν) + t.s.t, where λ�(ν) satisfies the transcendental equation

(4.37) Rh(x0;λ
�) = − 1

2πν
, ν ≡ −1/ log (εd) , d = e−χ(δ0) ,

where χ(δ0) is defined by (4.17b) and is given in (4.19) for a circular hole of radius
ε. Here, Rh is the regular part of the Helmholtz Green’s function defined in (4.36).
Since Rh is unbounded as λ� → λ0, it follows from (4.37) that λ� → λ0 as ν → 0,
where λ0 is an eigenvalue of (4.12a).

As a test of Principal Result 4.2, we consider the exactly solvable case of the
annulus ε < r < 1. By factorizing the operator −δΔ2+Δ−λ as a quadratic in Δ, we
find that the radially symmetric solutions of (4.2) are spanned by {J0(ξ1r), Y0(ξ1r),
K0(ξ2r), I0(ξ2r)}, where

(4.38) ξ1 ≡
√

−1 +
√
1 + 4δλ

2δ
, ξ2 ≡

√
1 +

√
1 + 4δλ

2δ
.

With the clamped boundary conditions u0 = ∂ru0 = 0 on r = 1 and r = ε, the
eigenvalues are determined

(4.39) det

⎡
⎢⎢⎢⎢⎣

J0(ξ1) Y0(ξ1) K0(ξ2) I0(ξ2)

ξ1J1(ξ1) ξ1Y1(ξ1) ξ2K1(ξ2) −ξ2I1(ξ2)

J0(ξ1ε) Y0(ξ1ε) K0(ξ2ε) I0(ξ2ε)

ξ1J1(ξ1ε) ξ1Y1(ξ1ε) ξ2K1(ξ2ε) −ξ2I1(ξ2ε)

⎤
⎥⎥⎥⎥⎦ = 0 .

To test the accuracy of Principal Result 4.2, we set δ = ε2 (δ0 = 1) in (4.38) and
numerically obtain the zeros of (4.39) over a range of ε values. For the particular
case x0 = 0, the Helmholtz Green’s function satisfying (4.36) is a linear combination
J0(

√
λ�r) and Y0(

√
λ�r). The regular part Rh(0, λ

�) is readily calculated to be

(4.40) Rh(0;λ
�) = − 1

2π

[
− log 2 + γe + log(

√
λ�)
]
+

1

4

Y0(
√
λ�)

J0(
√
λ�)

,

which allows for a numerical solution of the transcendental equation (4.37).
In Figure 5, a comparison of the lowest eigenvalue from the asymptotic prediction

(4.37) and the exact solution shows agreement between the two theories as ε → 0.
In particular, the asymptotic result shows the limiting behavior λ� → λ0 as ε → 0,
where λ0 is determined by (4.12a). For this particular example, λ0 = z20 ≈ 5.7832,
where J0(z0) = 0.

4.3. Weaker bi-Laplace: δ � O(ε2). In this subsection, we consider the
case where δ � O(ε2). In terms of the inner variables y = ε−1(x − x0) and v(y) =
u(x0 + εy), the canonical inner solution satisfies

− δ

ε2
Δ2

yvc +Δyvc + ε2λvc = 0 , y ∈ R
2 \ Ω0 ; v = ∂nv = 0 , y ∈ ∂Ω0 ,

(4.41a)

vc ∼ log |y|+ χ , as |y| → ∞ ,(4.41b)
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Fig. 5. A quantitative test of Principal Result 4.2. The solid curve is the smallest eigenvalue
calculated from the exact solution by a numerical evaluation of (4.39). The dotted curve is the
asymptotic prediction determined from numerical solution of the transcendental equation (4.37).
The right panel shows an enlargement for small values of ε and captures the limiting behavior
λ� → λ0 as ε → 0.

for some constant χ to be determined. In our analysis below, where we allow Ω0 to
have an arbitrary shape, there are two regions that must be analyzed: The region
where |y| = O(1) is called the inner region, and the range of y where dist(y, ∂Ω0) =
O(
√

δ/ε2) � 1 is called the subinner region.
Similar to the boundary layer analysis of section 4.1, the leading-order inner

solution vc0 for (4.41), defined away from an O(
√

δ/ε2) neighborhood of ∂Ω0, must
satisfy the effective boundary condition vc0 → 0 as y → ∂Ω0. In the inner region, we
expand vc and χ in (4.41) as

(4.42) vc = vc0 +

√
δ

ε2
vc1 + · · · , χ ∼ χ0 +

√
δ

ε2
χ1 + · · · .

Upon substituting (4.42) into (4.41), we obtain the leading-order problem

Δvc0 = 0 , y ∈ R
2\Ω0 ; vc0 = 0 , y ∈ ∂Ω0 ,(4.43a)

vc0 ∼ log |y| − log d0 , as |y| → ∞ ; χ0 ≡ − log d0 .(4.43b)

In order that the term ε2λvc appears at a lower-order than O(
√

δ/ε2), we assume
that δ � O(ε6) and obtain the problem for vc1

(4.44) Δvc1 = 0 , y ∈ R
2\Ω0 ; vc1 ∼ χ1 , as |y| → ∞ .

In our analysis below of the subinner layer near ∂Ω0, we will derive an effective
boundary condition for vc1 on ∂Ω0. Then, by imposing that vc1 is bounded as |y| → ∞,
we will identify the constant χ1 in (4.44).

The PDE (4.43) is a classical problem in electrostatics (cf. [23], [20]), where the
constant d0 is referred to as the logarithmic capacitance of Ω0. The logarithmic
capacitance is known analytically for various shapes of Ω0 (cf. [23], [20]). For the
circular domain Ω0 = {y | |y| ≤ 1}, we have vc0 = log |y| and d0 = 1.

Next, we insert a subinner layer near ∂Ω0 to satisfy the boundary condition
∂nvc = 0 on ∂Ω0. As in section 4.1, we use the orthogonal boundary-fitted coordinates
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(η, s) so that (4.41) is transformed on the region η ≤ 0 to (see (4.3))

(4.45) − δ

ε2

[
∂ηη − κ0

1− κ0η
∂η +

1

1− κ0η
∂s

(
1

1− κ0η
∂s

)]2
vc

+

[
∂ηη − κ0

1− κ0η
∂η +

1

1− κ0η
∂s

(
1

1− κ0η
∂s

)]
vc + ε2λvc = 0 ,

subject to vc = ∂ηvc = 0 on η = 0. Here, κ0 = κ0(s) is the curvature of ∂Ω0 with
κ0 = 1 when Ω0 is the unit disk.

We introduce the subinner layer variables η̂ and wc by

(4.46) η̂ = η/σ , vc = σwc , where σ =

√
δ

ε2
� 1 .

Then, we expand wc = wc0 + O(1) and obtain to leading-order from (4.45) that

(4.47a) −∂η̂η̂η̂η̂wc0 + ∂η̂η̂wc0 = 0 , η̂ ≤ 0 ; wc0 = ∂η̂wc0 = 0 , η̂ = 0 .

The leading-order matching condition to the inner solution is that

(4.47b) wc0 ∼ −η̂∂nvc0
∣∣
∂Ω0

, as η̂ → −∞ ,

where ∂n is the outward normal derivative to ∂Ω0. The solution to (4.47) is wc0 =
−∂nvc0|∂Ω0 [1 + η̂− eη̂]. In this way, the leading-order solution in the subinner region
is

(4.48) vc ∼
√

δ

ε2
(wc0 + · · · ) = −

√
δ

ε2

[
∂nvc0

∣∣
∂Ω0

(
1 + η̂ − eη̂

)
+ O(1)

]
.

Next, we employ a higher-order matching condition between the far-field behavior of
(4.46) as η̂ → −∞ and the near-field behavior as η → 0 of the inner expansion (4.42).
This yields the effective boundary condition

(4.49) vc1 = −∂nvc0
∣∣
∂Ω0

, y ∈ ∂Ω0 .

The problem for vc1 is (4.44), subject to the boundary condition (4.49) and with vc1
bounded as |y| → ∞. To determine χ1 = lim|y|→∞ vc1, we apply Green’s identity to
vc0 and vc1 over the region ΩL\Ω0, where ΩL = {y | |y| ≤ L}, and then pass to the limit
L → ∞. This yields that

∫
∂Ω0

(−vc0∂nvc1+vc1∂nvc0) ds = − limL→∞
∫
∂ΩL

(vc0∂nvc1−
vc1∂nvc0) ds. Since vc0 = 0 and vc1 = −∂nvc0 on ∂Ω0, while vc0 ∼ logL, vc1 ∼ χ1,
and ∂nvc1 = O(L−2) on ∂ΩL, we get that

(4.50) χ1 = − 1

2π

∫
∂Ω0

(∂nvc0)
2
ds .

In this way, the two-term expansion for χ in (4.41), valid for an arbitrarily shaped
hole Ω0, is

(4.51a) χ ∼ − log d0 − 1

2π

√
δ

ε2

∫
∂Ω0

(∂nvc0)
2
ds+ · · · .

It is then convenient to define dδ by χ ≡ − log dδ so that

(4.51b) dδ = e−χ ∼ d0

(
1 +

1

2π

√
δ

ε2

∫
∂Ω0

(∂nvc0)
2
ds

)
.
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Here, d0 is the logarithmic capacitance of Ω0 defined in terms of vc0 by (4.43). For
the unit disk Ω0 = {y | |y| ≤ 1}, we have vc0 = log |y|, d0 = 1, and hence χ ∼ −√δ/ε2

from (4.51a). If we set δ = δ0ε
2 in this last expression, we recover χ ∼ −√

δ0, as
was previously derived in (4.21b) of section 4.2 for the small δ0 limit for the critical
scaling regime δ = δ0ε

2.
Finally, with dδ determined as in (4.51b), we can then simply repeat the analysis

in (4.32)–(4.36) involving the matching of the inner and outer solutions, which yields
an approximation to the eigenvalue of (4.1). In place of Principal Result 4.2, we
obtain the following result.

Principal Result 4.3. For O(ε6) � δ � O(ε2), there is an eigenvalue λ of
(4.1) with λ ∼ λ�(νδ) + t.s.t, where λ�(νδ) satisfies the transcendental equation

(4.52) Rh(x0;λ
�(νδ)) = − 1

2πνδ
, νδ ≡ −1/ log (εdδ) ,

dδ ∼ d0

(
1 +

1

2π

√
δ

ε2

∫
∂Ω0

(∂nvc0)
2
ds

)
.

Here, d0 is the logarithmic capacitance of Ω0 defined in terms of vc0 by (4.43), and
Rh is the regular part of the Helmholtz Green’s function defined in (4.36). For the
unit disk Ω0 = {y | |y| ≤ 1}, we have dδ ∼ 1 +

√
δ/ε2.

We remark that the leading-order term dδ ∼ d0 still holds even without the extra
technical restriction that δ � O(ε6). Using the leading-order result dδ ∼ d0, Principal
Result 4.3 shows that when δ � O(ε2), the approximation to the eigenvalue for (4.1)
is the same to within all logarithmic terms as that for an eigenvalue of the Laplacian
in a domain with a hole, as analyzed in [23]. The second-order term for dδ in (4.52)
characterizes the weak influence on λ� of the fourth-order term −δΔ2 in the regime
O(ε6) � δ � O(ε2) for an arbitrarily shaped hole.

4.4. Stronger bi-Laplace: O(ε2) � δ � O(1). Next, we consider the
range O(ε2) � δ � O(1). In terms of the inner variable y = ε−1(x − x0) and
v(y) = u(x0 + εy), the canonical inner solution still satisfies (4.41). In our analysis,
there are two regions that must be analyzed: an inner region with |y| = O(1), where
Δ2 dominates in (4.41), and a far-inner region with z = y/(

√
δ/ε) = O(1), where

−Δ2 and Δ balance in (4.41). We will first consider the special case of a circular hole
where Ω0 = {y | |y| ≤ 1}.

In the far-inner region, we introduce the local variables z and wc, and we obtain
to leading order from (4.41) that

(4.53) −Δ2
zwc0 +Δwc0 = 0 , |z| ≥ 0 .

We look for a radially symmetric solution to (4.53) satisfying wc0 ∼ log |z| as |z| → ∞
and wc0 → 0 as |z| → 0. The necessity of this second condition, which allows for an
asymptotic matching of wc0 as |z| → 0 with the far-field behavior of the leading-order
inner solution, is discussed in Remark 1. Any radially symmetric solution to (4.53)
is a linear combination of {1, log |z|,K0(|z|), I0(|z|)}. Upon using the asymptotics
(4.20) for K0(|z|) as |z| → 0, it readily follows that the solution to (4.53) that satisfies
wc0 ∼ log |z| as z → ∞ and wc0 → 0 as |z| → 0 is

(4.54) wc0 = γe − log 2 + log |z|+K0(|z|) .



MIXED BIHARMONIC EIGENVALUE PROBLEM 1215

Upon using (4.20), we obtain the more refined behavior

(4.55) wc0 ∼ −1

4
|z|2 log |z|+ |z|2

4
(log 2 + 1− γe) , as |z| → 0 .

In terms of the inner variable y, defined by z = y/(
√
δ/ε), (4.55) then yields

(4.56) wc0 ∼ −|y|2
4

ε2

δ
log

(
ε√
δ

)
+

ε2

4δ

[−|y|2 log |y|+ |y|2 (log 2 + 1− γe)
]
+ · · · .

The matching condition is that the far-field behavior as |y| → ∞ of the inner solution
must agree with (4.56).

Motivated by (4.56), which suggests the asymptotic gauge functions, the inner
solution for (4.41) is expanded as

(4.57) vc ∼
(
−ε2

δ
log

(
ε√
δ

))
vc0 +

ε2

δ
vc1 + · · · .

Upon substituting (4.57) into (4.41), and by using the matching condition (4.56), we
obtain that the radially symmetric functions vc0(|y|) and vc1(|y|) satisfy

(4.58a) Δ2
yvc0 = 0 in |y| ≥ 1 ; vc0 = v′c0 = 0 on |y| = 1 ;

vc0 ∼ |y|2/4 , as |y| → ∞
and

Δ2
yvc1 = 0 in |y| ≥ 1 ; vc1 = v′c1 = 0 on |y| = 1 ,(4.58b)

vc1 ∼ −|y|2
4

log |y|+ |y|2
4

(log 2 + 1− γe) , as |y| → ∞ .(4.58c)

These two problems can be solved explicitly to obtain

(4.59) vc0 =
1

4

(|y|2 − 1
)− 1

2
log |y| ; vc1 =

1

4
(log 2 + 1− γe)

(|y|2 − 1
)

− |y|2
4

log |y| −
(
1

2
log 2 +

1

4
− γe

2

)
log |y| .

Remark 1. The condition wc0 → 0 as |z| → 0 for the solution (4.53) is required in
order to match to the inner solution. If, instead, wc0 → A 	= 0 as |z| → 0, then in the
inner region we would expand vc ∼ vc0(|y|)+O(1) to obtain the leading-order problem
Δ2

yvc0 = 0 in |y| ≥ 1 with vc0 = v′c0 = 0 on |y| = 1 with vc0 → A as |y| → ∞. Since vc0
is a linear combination of {1, log |y|, |y|2, |y|2 log |y|}, there is no such solution when
A 	= 0.

Next, to determine the matching behavior as x → x0 required for the outer
solution, we let |z| → ∞ in (4.54), and we write the resulting expression in terms of
y using |z| = y/(

√
δ/ε). This yields that

(4.60) vc ∼ log |y| − log d∞ + O(1) , as |y| → ∞ ; d∞ ≡ 2
√
δ

ε
e−γe .

With the far-field behavior of the solution to (4.41) now known for the regimeO(ε2) �
δ � 1, we then simply repeat the analysis in (4.32)–(4.36) for the matching to the
outer solution. This leads to the following result.

Principal Result 4.4. Consider (4.1) with a circular hole of radius ε centered
at x = x0 for the range O(ε2) � δ � O(1). Then, there is an eigenvalue λ of (4.1)
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with λ ∼ λ�(ν∞), where λ�(ν∞) satisfies the transcendental equation

(4.61) Rh(x0;λ
�) = − 1

2πν∞
, ν∞ ≡ −1/ log

(
2
√
δe−γe

)
.

Here, Rh is the regular part of the Helmholtz Green’s function defined in (4.36) and
γe is Euler’s constant.

The central implication of this result is that on the range O(ε2) � δ � O(1),
the approximation λ� to the eigenvalue is independent of the radius ε of the hole and
depends on δ, the hole location x0, and the shape of Ω. Therefore, we state that it
is in this asymptotic range of δ where the asymptotic result for λ provides a smooth
transition to the result obtained in section 3 involving a point constraint. More
precisely, the result (4.61) was previously obtained in (3.15) from formally taking
the small δ limit of the point constraint formulation of section 3. Alternatively, if
we formally set δ = ε2δ0 in (4.61), we recover the same limiting expression as that
obtained by letting δ0 � 1 in the asymptotic result (4.37) of Principal Result 4.2
derived for the critical scaling regime δ = O(ε2).

Although (4.61) does provide the leading asymptotic behavior as δ → 0, the
example below for the annulus shows that it is not particularly accurate for moderately
small δ. The discrepancy at moderately small values of δ arises from neglecting the
boundary layer of width O(δ1/2) in the vicinity of ∂Ω in which the clamped boundary
conditions (1.3b) are satisfied. For an arbitrary domain with smooth boundary, we
now extend the analysis leading to Principal Result 4.4 to account for the boundary
layer near ∂Ω. Motivated by the analysis in section 4.1, we substitute the expansion

(4.62) u = u�(x, ν∞) + δ1/2u1(x, ν∞) + · · · , λ = λ�(ν∞) + δ1/2λ1(ν∞) + · · ·

into (1.3) and equate powers of δ1/2. At leading order, (λ�, u�) satisfy (4.34), with

normalization condition
∫
Ω
[u�]

2
dx = 1, while the pair (λ1, u1) satisfies

(4.63)

Δu1+λ�u1 = −λ1u
� , x ∈ Ω\{x0} ; u1 = ∂nu

� , x ∈ ∂Ω ;

∫
Ω

u1u
� dx = 0 .

The boundary condition for u1 on ∂Ω in (4.63) arises from a similar boundary layer
analysis as in section 4.1 (see (4.12b)).

To establish a condition that fixes λ1, the singular behavior of u1 as x → x0 is
obtained by writing u1 = A1(ν∞)ν∞vc(|y|) in the inner region. Using the established
behavior of vc in (4.60), we have that u1 must satisfy

(4.64) u1 ∼ A1ν∞ log |x− x0|+A1 , as x → x0 .

We then decompose u1 = u1p + u1s, where u1p is a smooth particular solution and
u1s is a solution that is singular as x → x0. The local behavior (4.64) indicates that
u1s = −2πA1ν∞Gh(x;x0, λ

�), leaving u1p to solve

(4.65) Δu1p + λ�u1p = −λ1u
� , x ∈ Ω ; u1p = ∂nu

� , x ∈ ∂Ω .

The local behavior of the decomposed solution as x → x0 is obtained by using (4.36b)
and the fact that u1p is smooth for all x ∈ Ω. This yields

(4.66) u1 ∼ u1p(x0) +A1ν∞ log |x− x0| − 2πA1ν∞Rh(x0, λ
�) + O(1), x → x0 .
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Upon comparing (4.66) and (4.64), and noting that−2πν∞Rh(x0, λ
�) = 1 from (4.61),

we conclude that u1p(x0) = 0. We now show that this condition determines λ1. By
applying Green’s identity to u1p and Gh, we derive∫

Ω

[u1p(ΔGh + λ�Gh)−Gh(Δu1p + λ�u1p)] dx =

∫
∂Ω

(u1p∂nGh −Gh∂nu1p) ds .

Upon substituting (4.63) and (4.36) into this identity, we obtain that −u1p(x0) +
λ1

∫
Ω
u�Gh dx =

∫
∂Ω

(∂nu
�) (∂nGh) ds . Finally, applying the condition u1p(x0) = 0

and recalling from (4.35) that u� = −2π CGh(x;x0, λ
�), we conclude that

(4.67) λ1 =

∫
∂Ω

(∂nGh)
2 ds∫

Ω

(Gh)
2
dx

.

The constant A1 is A1 = − [2πν∞]−1 ∫
Ω
Ghu1p dx/

∫
Ω
G2

h dx, which results from im-
posing the normalization condition

∫
Ω u�u1dx = 0. We summarize the result as

follows.
Principal Result 4.5. Consider (4.1) with a circular hole of radius ε centered

at x = x0 for the range O(ε2) � δ � O(1). Then, there is an eigenvalue λ of (4.1)
with

(4.68) λ ∼ λ�(ν∞) + δ1/2λ1(ν∞) + · · · ,

where λ�(ν∞) satisfies the transcendental equation (4.61), and λ1 is given in (4.67).
As a test of the accuracy of Principal Result 4.5, we revisit the case considered at

the end of section 4.2 where Ω is the annular domain ε < r < 1, for which closed form
solutions are available. The exact eigenvalues are determined by (4.39), which are
solved numerically. To implement the asymptotic theory, we recall that Rh is given
in (4.40). In addition, by calculating Gh analytically from (4.36), we determine λ1 in
(4.67) as

λ1(ν∞) =
4

π2

(∫ 1

0

r
[
Y0(
√

λ�(ν∞)r)J0(
√
λ�(ν∞))(4.69)

− Y0(
√

λ�(ν∞))J0(
√
λ�(ν∞)r)

]2
dr

)−1

.

As δ → 0, for which λ� → λ0, where λ0 is an eigenvalue of the Laplacian, (4.69)
readily reduces upon using the Wronskian relation between J0 and Y0 to λ1 → 2λ0.
A similar boundary layer correction term can be added to the result for λ� in (4.37)
of Principal Result 4.2 that is valid when δ = O(ε2). This leads to the approximation

(4.70) λ ∼ λ�(ν) + δ1/2λ1(ν) + · · · .

Here, λ�(ν) and ν are defined in (4.37) and λ1 is obtained by replacing ν∞ in (4.69)
with ν.

For a circular hole with radius ε = 0.01, in Figure 6 we show a reasonably favorable
comparison over a range of values of δ between the asymptotic results (4.68) and
(4.70) for the lowest eigenvalue and the exact result, as obtained by solving (4.39)
numerically. From the insert in this figure, we observe that (4.70) provides a more
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Fig. 6. Comparison of the asymptotic result (4.68) for the lowest eigenvalue λ versus δ (dotted
curve) and the exact result (solid curve), as obtained by solving (4.39) numerically, for an annular
domain ε ≤ |x| ≤ 1 with ε = 0.01. The dashed curve is the asymptotic result (4.70) that represents
adding a boundary layer correction term to the result for λ�(ν) of Principal Result 4.2 that applies
for the regime δ = O(ε2). As expected, this latter result is more accurate than (4.68) when δ is
small, and it tends to the result in (4.68) as δ is increased.

accurate prediction than (4.68) when δ is small and that the results in (4.70) and
(4.68) are essentially indistinguishable for larger δ. However, neither approximation
is particularly accurate when δ ≈ 0.01. The reason for the discrepancy is likely due to
not including higher-order boundary layer contributions of order O(δ). In fact, from
(4.13), one of the terms of O(δ) is λ2

0δ, which is quantitatively significant even when
δ = 0.01.

We remark that, although we have derived Principal Results 4.4 and 4.5 only for
the case of a circular hole, these results still hold for an arbitrarily shaped hole Ω0.
Therefore, the effect of the hole shape on the eigenvalue on the range O(ε2) � δ �
O(1) is only through higher-order correction terms to (4.61) and (4.68). To show this,
we observe that the leading-order solution for the far-inner region still holds, which
in turn motivates the inner expansion (4.57). For an arbitrarily shaped hole, and in
place of (4.58), the nonradially symmetric functions vc0 and vc1 now satisfy

Δ2
yvc0 = 0 , y ∈ R

2\Ω0 ; vc0 = ∂nvc0 = 0 , y ∈ ∂Ω0 ,(4.71a)

vc0 ∼ |y|2/4 , as |y| → ∞ ,(4.71b)

Δ2
yvc1 = 0 , y ∈ R

2\Ω0 ; vc1 = ∂nvc1 = 0 , y ∈ ∂Ω0 ,(4.71c)

vc1 ∼ −|y|2
4

log |y|+ |y|2
4

(log 2 + 1− γe) , as |y| → ∞ .(4.71d)

Since the solutions of the homogeneous problem for vck for k = 0, 1 are linear combina-
tions of {ρ2 log ρ, ρ2, log ρ, 1}, {ρ3, ρ log ρ, ρ, ρ−1}×{cos θ, sin θ}, and {ρ4, ρ2, 1, ρ−2}×
{cos 2θ, sin 2θ}, etc., where y = ρ(cos θ, sin θ) and ρ = |y|, the far-field behavior of the
solution v0 to (4.71) must have the form

(4.72) vc0 ∼ 1

4
|y|2 +A0 log |y|+ f0 · y + yTD0y

|y|2 + o(1) , as |y| → ∞

for some constant A0, vector f0, and matrix D0, all determined by the shape of Ω0.
Notice that we have imposed that |y|−1(vc0 − |y|2/4) is bounded as |y| → ∞. In
contrast, for vc1 we must allow for a growth of order O(y log |y|) as |y| → ∞. In terms
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of an arbitrary vector b1, the far-field behavior of this solution to (4.71) has the form

(4.73) vc1 ∼ −1

4
|y|2 log |y|+ |y|2

4
(log 2 + 1− γe) + b1 · y log |y|

+ f1 · y +A1 log |y|+ yTD1y

|y|2 + o(1) , as |y| → ∞

for some constant A1, vector f1, and matrix D1 determined in terms of the unknown b1
and the shape of Ω0. We remark that the unknown vector b1 is eventually determined
by the gradient of the regular part of the Helmholtz Green’s function at x = x0. The
terms Aj , fj , Dj for j = 0, 1 then induce new higher-order nonradially symmetric
correction terms to the far-inner solution. However, it is clear that the effect of these
terms on the eigenvalue is of negligible asymptotic order as compared to (4.61).

5. A numerical experiment. In this section, we illustrate Principal Results 4.4
and 4.5 for the case where Ω is the unit disk with an off-centered hole of radius ε
centered at x0 ∈ Ω. We will consider the parameter regime where O(ε2) � δ � O(1).

We first must determine the regular part Rh(x0;λ
�) of the Helmholtz Green’s

function defined in (4.36). Set x = r (cos θ, sin θ) and suppose without loss of gener-
ality that x0 = (r0, 0). A standard Fourier series expansion of the solution to (4.36)
yields

Gh(x0;λ
�) = −1

4
J0 (r<c)

(
Y0 (r>c)− J0(r>c)

Y0(c)

J0(c)

)
(5.1)

− 1

2

∞∑
m=1

cos(mθ)Jm (r<c)

(
Ym (r>c)− Jm(r>c)

Ym(c)

Jm(c)

)
,

where we have defined r<, r>, and c by

r< ≡ min (r, r0) , r> ≡ max (r, r0) , c ≡
√
λ� .

Similarly, the Fourier series expansion of the free-space Green’s function is

(5.2) log |x− x0| = log r> −
∞∑

m=1

1

m

(
r<
r>

)m

cos (mθ) .

By combining (5.1) and (5.2), and noting the singularity behavior in (4.36), we identify
Rh as

Rh(x0;λ
�) =

1

2π
log r0 − 1

4
J0 (r0c)

(
Y0 (r0c)− J0(r0c)

Y0(c)

J0(c)

)
(5.3)

+
∞∑

m=1

{
− 1

2πm
− 1

2
Jm (r0c)

(
Ym (r0c)− Jm(r0c)

Ym(c)

Jm(c)

)}
.

The series in (5.3) is convergent, as can be seen by using the large-m asymptotics

Jm(r) ∼ (r/2)m

Γ(m+1) (1 +O(1/m)) , Ym(r) ∼ (r/2)−m Γ(m) (1 +O(1/m)) , so that for

large m, the terms of the sum in (5.3) behave like O(1/m2).
From Principal Result 4.4, λ� is a root of the transcendental equation

(5.4) Rh(x0; λ�) =
1

2π
log
(
2
√
δe−γ

)
.
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Fig. 7. For δ = 10−5 and hole radius ε = 0.001, we compare the one-term λ ∼ c20, two-
term (5.6), and hybrid approximation (5.4) for the lowest eigenvalue of (4.1) with the corresponding
“exact” result as obtained by solving (4.1) numerically. The domain is the unit disk with an off-
centered hole at distance r0 from the origin.

We seek to determine the lowest root of (5.4). First, consider the case where r0
is small. Using the small-r expansions Jm(r) ∼ rm2−m/Γ(1 + m), m > 0, and
Ym(r) ∼ −rm2mΓ(m)/π, m > 0, one readily sees that the sum in (5.3) tends to zero
as r0 → 0. Using the small-r asymptotics of Y0(r) ∼ 2/π(ln r− ln 2+γ) and J0(r) ∼ 1,
we readily obtain that

Rh(x0, λ
�) ∼ 1

2π
(log 2− γ − log c) +

1

4

Y0(c)

J0(c)
, |x0| � 1 .

Therefore, for x0 = 0, (5.4) reduces to

(5.5) − log c+
π

2

Y0(c)

J0(c)
=

1

2
log δ .

More generally, for |x0| 	= 0, expanding (5.4) to two orders yields the following two-
term approximation λ�,2 to λ�:

(5.6)
√
λ�,2 ∼ c0 +

π

log
(
2e−γ

√
δ
) J2

0 (c0r0)Y0(c0)

2J ′
0(c0)

.

Here, c0 ≈ 2.4048 is the first root of J0(c0) = 0.
For δ = 10−5 and hole radius ε = 0.001, in Figure 7 we compare the one-term

λ ∼ c20, two-term (5.6), and hybrid approximation (5.4) for the lowest eigenvalue of the
(4.1) with the corresponding “exact” result as obtained by solving (4.1) numerically.
The hybrid result is seen to provide a decent approximation to the eigenvalue.

Next, we show how to calculate the coefficient λ1, given in (4.67) as needed in
Principal Result 4.5. Upon using the Wronskian relation in (5.1), we calculate the
numerator in (4.67) as

(5.7)

∫
∂Ω

(∂nG)2 ds =
1

2π

∞∑
m=0

[
Jm (cr0)

Jm(c)

]2
.
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Table 1

For a single hole of radius ε =
√

δ/100, we compare the asymptotic and numerical results for
the lowest eigenvalue of (4.1) for various values of δ and r0, where r0 is the distance of the hole
from the center of the unit disk. The third column is the full numerical result, the fourth column λ�

is the solution to (5.4), the fifth colunn is the boundary layer correction term λ1 in (4.67), while the

sixth column is the asymptotic approximation λ ∼ λ� +
√
δλ1, which includes the boundary layer

correction term.

r0 δ λexact λ� λ1 λ� +
√
δλ1 (λexact − λ�)/

√
δ

0 0.0001 8.106 7.912 16.418 8.076 19.430
0 1e-05 7.443 7.391 15.126 7.439 16.346
0 1e-06 7.088 7.073 14.369 7.087 15.118
0.2 0.0001 7.718 7.545 14.740 7.692 17.267
0.2 1e-05 7.188 7.141 14.022 7.185 14.650
0.2 1e-06 6.898 6.885 13.557 6.899 13.020
0.5 0.0001 6.693 6.563 11.625 6.679 12.936
0.5 1e-05 6.434 6.400 11.630 6.437 10.734

Next, we compute the denominator in (4.67) as

(5.8)

∫
Ω

G2 dx =
π

2

∞∑
m=0

∫ 1

0

(Jm (cr<)Zm (cr>;m))
2
r dr ,

where Zm(x;n) ≡ Ym (x)− Jm(x)
Yn(c)

Jn(c)
.

Then, by using the indefinite integral (cf. [13] formula 5.54)

(5.9)

∫
B2

m(cr)r dr =
r2

2

(
B2

m(cr)−Bm−1(cr)Bm+1(cr)
)
,

where B is any Bessel function, we obtain, after some simplifications, that

∫ 1

0

(Jm (cr<)Zm (cr>;m))
2
rdr

= J2
m(cr0)

[
r20
2
Zm−1(cr0;m)Zm+1(cr0;m) +

1

2
Zm−1(c;m)Zm+1(c;m)

]

− r20
2
Z2
m(cr0;m)Jm−1(cr0)Jm+1(cr0).

This allows us to compute the denominator in (4.67).
In Table 1, we give some full numerical results for the lowest eigenvalue of (4.1).

The computations were done assuming a hole radius of ε =
√
δ/100. These “ex-

act” results are then compared with the asymptotic result λ ∼ λ� and the improved
asymptotic result λ ∼ λ� +

√
δλ1, which adds the boundary layer correction term.

From this table, we observe that the improved asymptotic result agrees very favorably
with the full numerical result. In each of the following examples, the “exact” results
are obtained by means of finite element simulation [11] of the full problem (4.1).

In Figure 8, we apply Principal Result 4.5 to the case of the disk but with the
perturbing hole centered away from the origin. The inclusion of the δ1/2λ� boundary
correction term improves the accuracy of the expansion dramatically, even when δ is
moderately small. The full numerical simulations of (4.1) with an off centered hole
are obtained from finite element simulation [11].
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Fig. 8. Application of Principal Result 4.5 for the case of a hole at x0 = (0.5, 0) with radius
ε = 0.01. The solid line is from full numerical simulation of (4.1) together with the leading-order
term (dotted line) and two term (dashed line) of the expansion (4.68).

6. Discussion. We have analyzed the limiting asymptotic behavior of the mixed
eigenvalue problem (4.1) in the dual limit ε → 0 and δ → 0. Our analysis has identified
the following three key parameter regimes, where different eigenvalue asymptotics
occur: δ = O(ε2), δ � O(ε2), and O(ε2) � δ � 1. In the regime O(ε2) � δ � 1, we
have shown in Principal Result 4.4 that the leading-order asymptotic behavior of an
eigenvalue of (4.1) is asymptotically independent of ε. As a result, this regime provides
a transition to the point constraint problem associated with the δ = O(1) regime.
Results from the asymptotic theory were favorably compared with full numerical
results.

There are several directions that warrant further investigation. First, by devel-
oping a boundary integral method to compute χ(δ0) numerically for an arbitrarily
shaped hole from the canonical inner problem (4.17) that holds for the scaling regime
δ = O(ε2), Principal Result 4.2 could then be readily implemented for general hole
shapes. In this paper, χ(δ0) has been determined analytically only for a circular-
shaped hole.

A second, more fundamental, open direction would be to analyze (4.1) for the
regime δ = O(1) in the presence ofN ≥ 1 holes of asymptotically small radiiO(ε) � 1.
In the limit ε → 0, and for δ = O(1), an eigenvalue λε of the perturbed problem tends
to an eigenvalue λ0 of the limiting point constraint problem

−δΔ2u0 +Δu0 + λ0u = 0 , x ∈ Ω ;

∫
Ω\Ωε

u2
0 dx = 1 ,(6.1a)

u0 = ∂nu0 = 0 , x ∈ ∂Ω ; u0(xj) = 0 , j = 1 . . . , N ,(6.1b)

where xj for j = 1, . . . , N are the centers of the small holes. It would be interesting
to develop a numerical method to compute the eigenvalues λ0 of this point constraint
problem and to determine how they depend on δ, with δ = O(1), and the hole loca-
tions. In particular, where should the centers of N holes be located so as to minimize
the principal eigenvalue of the limiting point constraint problem (6.1)? In the unit
disk, optimal configurations of small holes that minimize the principal eigenvalue of
the Laplacian in a two-dimensional domain Ω with Neumann boundary condition on
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∂Ω and with a homogeneous Dirichlet boundary condition on each of the N holes
were identified in [14]. For δ = O(1) and for the case of multiple small holes, it would
also be interesting to extend the analysis of [5] and [15], valid for a one hole pattern
for the pure biharmonic operator, to determine ε-dependent correction terms for the
difference λε − λ0.

Finally, it would be interesting to analyze localization behavior for the eigenfunc-
tions u0 of the point constraint problem (6.1). For the pure biharmonic eigenvalue
defined in a thin rectangular domain, and with a clamped point, the numerical com-
putations in [10] showed that almost all of the eigenfunctions of the point constraint
problem are typically confined to one side of a vertical line parallel to the thin edge
of the rectangle that goes through the clamped point. In this way, the existence of a
clamped point in the domain has a large effect on the geometric patterns and local-
ization behavior of the eigenfunctions. It would be interesting to extend this analysis
of [10] to (4.1).
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