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Abstract. We consider the problem of determining the arrival statistics of unbiased planar random walkers to complex
target configurations. In contrast to problems posed in finite domains, simple moments of the distribution, such as the mean
(MFPT) and variance, are not defined and it is necessary to obtain the full arrival statistics. We describe several methods to
obtain these distributions and other associated quantities such as splitting probabilities. One approach combines a Laplace
transform of the underlying parabolic equation with matched asymptotic analysis followed by numerical transform inversion.
The second approach is similar, but uses a boundary integral equation method to solve for the Laplace transformed variable.
To validate the results of this theory, and to obtain the arrival time statistics in very general configurations of absorbers, we
introduce an efficient Kinetic Monte Carlo (KMC) method that describes trajectories as a combination of large but exactly
solvable projection steps. The effectiveness of these methodologies is demonstrated on a variety of challenging examples
highlighting the applicability of these methods to a variety of practical scenarios, such as source inference. A particularly useful
finding arising from these results is that homogenization theories, in which complex configurations are replaced by equivalent
simple ones, are remarkably effective at describing arrival time statistics.
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1. Introduction. We consider the problem of describing the full arrival time distribution of diffusing

particles to complex absorbing sets in planar regions R2 \Ω (see Fig. 1). For a particle released from location

x0 ∈ R2\Ω, the central quantities of interest are its occupation density p(x, t;x0) and its survival probability

P (t;x0) =
∫
R2\Ω p(x, t;x0) dx together with the dependence on the number and location of absorbing sites.

Our new contributions are several new efficient numerical and asymptotic methods to rapidly determine

these quantities in the presence of complex configurations of targets (cf. Fig. 1).

Fig. 1. Schematic of planar Brownian motion to a collection of targets Ω := ∪j=1Aε
j . We consider the vanishing limit

Aε
j → xj as ε → 0 and specifically parameterize targets as Aε

j = xj + εAj to accommodate individual target geometries Aj .
Each target can be combinations of absorbing and reflecting sections.

The general problem takes the form of a diffusion equation in x ∈ R2 \Ω where Ω := ∪j=1Aε
j is a collection

of targets, each with effective “radius” O(ε). In the vanishing limit ε → 0, we solve for the probability

1



2 Jake Cherry, Alan E. Lindsay, Adrián Navarro Hernández and Bryan Quaife

p(x, t;x0) of a particle originating at x0 being free at position x at time t. This probability density solves

the exterior parabolic problem

∂p

∂t
= D∆p, x ∈ R2 \ Ω, t > 0; p(x, 0) = δ(x− x0), x ∈ R2 \ Ω;(1.1a)

p = 0, x ∈ ∂Ωa; D∇p · n = 0, x ∈ ∂Ωr,(1.1b)

where D is the diffusivity of the particle and Ω is a subset of R2. The boundary ∂Ω is partitioned into an

absorbing set Ωa and its impermeable complement Ωr where reflecting boundary conditions are applied. We

choose n, the normal to the surface ∂Ω, to point into the bulk. Some key quantities of interest for which

rapid and accurate determination is desirable include the fluxes over each target, the splitting probabili-

ties (likelihood particle encounters a certain target first) and the arrival time distribution. The survival

probability

P (t;x0) =

∫
R2\Ω

p(x, t;x0) dx,

is another important quantity obtained, together with its dependence on the number and location of targets.

First passage time problems and their variants appear in a variety of disparate applications from cellular

biology [6–8, 25], ecology [2, 24, 32, 44], and electrostatics [10]. A few comprehensive survey references can

be found here [5, 17, 38, 39]. Preceding works on the theory of first arrival times to small absorbing sites have

largely focussed on determining moments such as the mean first passage time (MFPT) [11, 17, 20–22, 35, 36]

and in some cases the variance [24, 28, 30]. In the present scenario of an unbounded domain, these moments

are not finite [38, 39] and we must therefore seek the full distribution of arrival times. In the scenario where

diffusion occurs in a bounded domain, the full arrival time distributions to small absorbing targets have been

considered in two [7, 30] and three [6, 19] dimensions.

In the planar (unbounded) scenario considered here, capture is guaranteed; however, it may occur over very

long timescales. This becomes apparent from the arrival time distribution χ0(t) for a particle of diffusivity

D = 1, initially at distance R from a target disc of unit radius centered at the origin. This distribution χ0(t)

and its large time behavior (see [39] and Appendix A) are given by

χ0(t) =
2

π

∫ ∞

0

[
J0(ω)Y0(ωR)− J0(ωR)Y0(ω)

Y 2
0 (ω) + J2

0 (ω)

]
ωe−ω2t dω = O

(
1

t log2 t

)
, t → ∞,(1.2)

where J0(z), Y0(z) are Bessel functions. The slow rate of decay in the tail of this distribution reveals that very

long arrival times are typical (see Fig. 5(a)). For example, when R = 10, a particle with diffusivity D = 1

still has an approximately 20% chance of being free after t = 1010. Equilibrium quantities (e.g. splitting

probabilities) therefore emerge on timescales that may not necessarily be the most biologically meaningful.

For example, in applications such as a moth’s search for a mate [44], or cellular signaling where a downstream

event initializes as soon as a molecule reaches a receptor [25], the statistics of particles which reach the target

first are of most interest. These extreme statistics are governed by the behavior of P (t;x0) for t ≪ 1 [26]

and so it is necessary to have methodologies for determining full distributions of arrival time statistics.

In the present work, we outline several methods to solve (1.1). First, in Sec. 2 we apply a Laplace transform
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p̂(x, s) =
∫∞
t=0

p(x, t)e−st dt to (1.1) to arrive at an elliptic problem of modified Helmholtz type

D∆p̂− s p̂ = −δ(x− x0), x ∈ R2 \ Ω;(1.3a)

p̂ = 0 x ∈ Ωa; ∇p̂ · n = 0 x ∈ Ωr.(1.3b)

In the limit of well-separated traps, we solve the resulting transform problem in terms of an asymptotic

expansion where solutions are obtained in terms of modified Helmholtz Green’s function. This methodology

was originally developed in [30] and recently applied in [6, 7] to the study of first passage times of particles

with resetting. The Laplace transform is inverted numerically by Talbot quadrature [1] resulting in a hybrid

numerical-asymptotic method. In Sec. 3, we take a similar approach, but replace the asymptotic solution

of (1.3) with a layer potential representation. This results in a boundary integral equation that is solved

numerically using a collocation method.

In Sec. 4 we develop a particle based kinetic Monte-Carlo (KMC) method that evaluates solutions of (1.1)

by dividing the sojourn of particles into projection steps where exact solutions are available [18, 27]. This

offers a rapid, accurate and easy to implement method for the solution of (1.1) in very general geometries. In

Sec. 5 we demonstrate the applicability of these methods on a variety of examples. In particular, we provide

numerical validation of previously derived homogenization theories and find them to be highly effective in

reproducing the arrival time distributions. We also investigate the time dependent accumulation of signal

into the targets which are observed to converge very slowly to the static splitting probabilities that describe

the relative flux into each target. This suggests that a relevant physical or biological time scale should be

considered before using receptor arrival information to make inferences on environmental conditions.

2. Asymptotic description of arrival times of particles diffusing in R2. In this section we

use matched asymptotic expansions to derive an approximation for the density of a particle diffusing in

R2 \Ω in the presence of well-separated target sites. We assume N targets Aε
j with centers {xj}Nj=1 so that

Aε
j = xj + εAj and Aj is a rescaling of the target. The collection of target sites are then described by

Ω =

N⋃
j=1

(xj + εAj),(2.4)

where ε is a parameter controlling the extent of the targets and enforces the well-separated condition as

ε → 0. The geometry of individual targets Aj can be quite general.

The aim is to solve the solution of the initial-boundary value problem (1.1) and determine the free probability

P (t) =
∫
Ω
p(x, t) dx together with the capture time density C(t) = −P ′(t). The first step [30] in the analysis

is to define, for s ∈ C, the Laplace transform p̂(x, s) =
∫∞
t=0

p(x, t)e−st dt that solves (1.3). The mixed

boundary conditions (1.3b) indicate that the target boundary may have a combination of absorbing or

reflecting components so that ∂Ω = Ωa ∪ Ωr. In the absence of the target set Ω, the solution p̂ of (1.3) is

defined in terms of the free space modified Helmholtz Green’s function Gh(x; ξ, s)

D∆Gh − sGh = −δ(x− ξ), x ∈ R2 \ {ξ};(2.5a)

Gh(x; ξ, s) =
1

2πD
K0(

√
s/D|x− ξ|),

∫
R2

Gh(x; ξ, s) dx =
1

s
;(2.5b)

Gh(x; ξ, s) ∼ − 1

2πD
log |x− ξ|+Rh(s) + O(1), x → ξ.(2.5c)
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Here Rh(s) is the regular part of Gh(x; ξ, s) at the source. The small argument asymptotics K0(z) ∼
− log(z) + log 2− γe as z → 0 give this self-interaction term to be

(2.6) Rh(s) =
1

2πD

(
log 2− γe − log

√
s/D

)
,

where γe ≈ 0.5772 is the Euler-Mascheroni constant.

In the limit of well-separated absorbers ε → 0, we employ a matched asymptotic analysis to replace each

target (1.3b) by effective singularity conditions. To establish this singularity condition, the following change

of variables is introduced near the jth absorber

(2.7) y =
x− xj

ε
, v(y) = p̂(xj + εy).

In these coordinates, the transformed equation (1.3a) is D∆yv − sε2v = −ε2δ(x − x0). In addition to the

limit ε → 0, we additionally consider the case sε2 ≪ 1 which is valid provided s is not too large. The limit

s → ∞ corresponds to t → 0 and therefore we cannot expect good agreement for arbitrarily short times.

With these points in mind, we continue by considering the local solution v(y) = vj(y)+O(ε) near the target

where vj(y) satisfies the exterior problem

∆yvj = 0, y ∈ R2/Aj , vj = 0, y ∈ ∂Aj ;(2.8a)

vj(y) ∼ log |y| − log dj +O
( 1

|y|2
)
, |y| → ∞.(2.8b)

Here the parameter dj is the logarithmic capacitance which depends on the shape of Aj and the boundary

conditions applied to it. In section 2.2 we give an overview of many scenarios in which dj can be calculated.

The behavior of vj(y) at infinity gives the matching condition for p̂(x) as x approaches xj . That is,

p̂(x, s) ∼ Sjνj

(
log

∣∣∣∣x− xj

ε

∣∣∣∣− log dj

)
= Sjνj log |x− xj |+ Sj , x → xj ; νj = − 1

log εdj
,(2.9)

where Sj is a strength term to be determined in terms of (N + 1) parameters (s,ν) = (s, ν1, . . . , νN ).

Therefore, in the outer region away from targets, we pose the asymptotic expansion

p̂(x; s) = p̂0(x; s,ν) + ε p̂1(x; s,ν) + O(ε), ε → 0.

The leading order solution p̂0(x; s,ν) “sums-the-logs” and is accurate to all logarithmic orders. The correction

term p̂1, which we do not explicitly determine, describes how target orientation influences capture and can

be found following methods outlined in [29]. The leading order problem satisfies

D∆p̂0 − s p̂0 = −δ(x− x0), x ∈ R2/{x1, . . . ,xN},(2.10a)

p̂0 ∼ Sjνj log |x− xj |+ Sj , x → xj , j = 1, . . . , N.(2.10b)

The solution p̂0(x, s) of (2.10) is described in terms of the modified Helmholtz Green’s function (2.5) as

(2.11) p̂0(x, s) = Gh(x;x0, s)− 2πD

N∑
j=1

SjνjGh(x;xj , s).

The coefficients Sj can be determined by equating the regular parts in (2.10b) and in (2.11). That is,

(2.12) Sj = Gh(xj ;x0, s)− 2πD

SjνjRh(s) +

N∑
i=1
i ̸=j

SiνiGh(xj ;xi, s)

 , j = 1, . . . , N.
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In summary, we have that the transform equation (1.3) has asymptotic solution p(x; s) ∼ p0(x; s) + · · · as

ε → 0 where p0(x; s) satisfies

(2.13a) p̂0(x, s) = Gh(x;x0, s)− 2πD

N∑
j=1

SjνjGh(x;xj , s).

The strengths {Sj}Nj=1 satisfy (2.12) which can be represented in compact matrix form as

(2.13b) (I + 2πD GhV)S = g0, [Gh]i,j =

{
Rh(s), i = j,

Gh(xi;xj , s), i ̸= j.
[V]i,j =

{
νi i = j,

0, i ̸= j,

where I ∈ RN×N is the identity, S ∈ RN and g0 ∈ RN are given by

S = [S1, S2, . . . , SN ]T , g0 = [Gh(x1;x0, s), Gh(x2;x0, s), . . . , Gh(xN ;x0, s)]
T .(2.13c)

The matrix G describes the interactions between targets and their competition for flux while the vector g0

reflects the influence of the initial location on each of the targets. The vector Ĵ = 2πDVS(s) describes the
transformed fluxes through each of the targets and is obtained from solving the linear system (2.13).

At this stage we calculate additional quantities of interest, namely the survival probability P (t) and arrival

time distribution C(t). Using equation (2.11) and (2.5c), the Laplace transform P̂ (s) of the free probability

is given by

(2.14a)

P̂ (s) =

∫
Ω

p̂0(x, s) dx =

∫
Ω

Gh(x;x0, s)dx− 2πD

N∑
j=1

Sjνj

∫
Ω

Gh(x;xj , s)dx =
1

s

1− 2πD

N∑
j=1

νjSj(s)

 .

The relationship C(t) = −P ′(t), yields that the Laplace transform of the arrival time distribution C(t) is

(2.14b) Ĉ(s) = −[sP̂ (s)− P (0)] = −sP̂ (s) + 1 = 2πD

N∑
j=1

νjSj(s).

2.1. Inverse Laplace Transform. To obtain P (t) and C(t) defined by (2.14), the inverse Laplace

transform

(2.15) P (t) =
1

2πi

∫
ΓB

estP̂ (s) ds,

must be evaluated where ΓB is the Bromwich contour ΓB = {γ + iy | − ∞ < y < ∞}. The parameter γ is

chosen so that all singularities of P̂ (s) lie to the left of Re(s) = γ. In the present scenario associated with

diffusive motion, the singularities of P̂ (s) lie along the negative real axis due to the branch cut of
√
s. Rapid

and effective numerical evaluation of (2.15) can be achieved by deforming the contour around Re(s) = 0 since

the integrand of (2.15) decays very rapidly for Re(s) < 0. The Talbot contour ΓT is a family of deformations

(see Fig. 2) to ΓB where

(2.16) ΓT = {σ + µ(θ cot θ + νi θ) | − π < θ < π},

and σ, µ and ν are parameters that control the curve shape [48, 49]. Rapid and accurate evaluation of the

inverse Laplace transform is then achieved by applying the midpoint rule on this curve.



6 Jake Cherry, Alan E. Lindsay, Adrián Navarro Hernández and Bryan Quaife

-20 -15 -10 -5 0

-4

-3

-2

-1

0

1

2

3

4

Fig. 2. A schematic of the Talbot curve (2.16) for parameter values σ = 0, µ = 2, ν = 0.5. The red line indicates the
singularities along the negative real line arising from the

√
s singularity.

2.2. Logarithmic capacitance for various shapes. The asymptotic solution (2.14) encodes the

geometry of each target Aj into the logarithmic capacitance dj , determined by the solution of (2.8). Here we

discuss the determination of dj and briefly recap known results for regular geometries and simple boundary

conditions.

Regular geometric shapes. For simple shapes such as circles, ellipses, triangles and squares with all

absorbing perimeters, the logarithmic capacitance is known exactly. A list of these quantities, reproduced

from [24], is included in Table 1.

Shape of Aj Logarithmic capacitance dj

circle of radius a dj = a

ellipse, semi-axes a, b dj =
a+b
2

equilateral triangle, side-length h dj =
√
3Γ( 1

3 )
3h

8π2 ≈ 0.422h

isosceles right triangle, side-length h dj =
33/4Γ(1/4)2h

27/2π3/2 ≈ 0.476h

square, side-length h dj =
Γ(1/2)2h
4π3/2 ≈ 0.590h

Table 1
The logarithmic capacitance of some simple geometries with absorbing boundary conditions, reproduced from [24].

Partially absorbing disk: Single window. For a circular trap that is absorbing except for the reflecting

portion θ ∈ (−σ, σ), the problem (2.8) may be expressed in polar coordinates (r, θ) as

∆v = 0, r ≥ 1, θ ∈ (−π, π);(2.17a)

∂rv = 0, r = 1, θ ∈ (−σ, σ); v = 0, r = 1, θ ∈ (σ, π) ∪ (−π,−σ);(2.17b)

v ∼ log r − log dc +O
(
r−1
)
, r → ∞.(2.17c)
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The separable solution of (2.17) takes the form of the cosine series

v(r, θ) = log r +
a0
2

+

∞∑
n=1

an
rn

cosnθ,

where the coefficients {an}∞n=0 satisfy the dual trigonometric series

a0
2

+

∞∑
n=1

an cosnθ = 0, θ ∈ (σ, π),(2.18a)

∞∑
n=1

nan cosnθ = 1, θ ∈ (0, σ).(2.18b)

The solution of (2.18) was determined in [29] from an integral equation theory which reveals that

(2.19) − log dc =
a0
2

=

√
2

π

∫ σ

0

u sin u
2√

cosu− cosσ
du.

For the half absorbing case (σ = π/2), a0 = 2 log 2, while in the singular mostly reflecting limit σ ≪ 1, it can

be determined that a0 ∼ −4 log σ
2 . In other scenarios, the integral (2.19) is readily evaluated by quadrature.

Partially absorbing disk: Multiple windows. In the scenario of a circular trap with N small absorbing

windows of length σ centered at points {yj}Nj=1, it was shown in [29] that as σ → 0

(2.20a) − log dc =
a0
2

∼ − 2

N
log

σ

4
− 2

N2

N∑
i=1

log

N∏
j=1
j ̸=i

|yi − yj |.

For windows centered at roots of unity yj =
(
cos 2πj

N , sin 2πj
N

)
, and for Nσ < 1, (2.20a) reduces to

(2.20b) − log dc =
a0
2

= − 2

N
log

σ

4
− 2

N2
(N logN) = − 2

N
log

σN

4
.

Partially absorbing disk: Homogenization limit. The results (2.20) can be used to identify an homog-

enization limit as N → ∞ and σ → 0. The absorbing fraction f is defined through Nσ = 2πf and the

homogenized logarithmic capacitance problem satisfies

∆vh = 0, r > 1; σ
∂vh
∂r

+ κ(f)vh = 0, r = 1;(2.21a)

vh ∼ log r − log dc + · · · , r → ∞.(2.21b)

In the dilute limit f ≪ 1, the homogenized parameters were identified in [29] to be

(2.21c) κ(f) = − πf

log πf
2

, log dc =
σ

κ(f)
.

In Section 5.2, we show numerical results that validate this homogenized formulation and demonstrate that

it is highly accurate in predicting the arrival time statistics of the full problem.

The logarithmic capacitance for a two trap cluster. In the case of two circular traps separated by distance

ℓ, it was derived in [24] (see also [20, 35, 40, 45]) from an expansion in bi-polar coordinates that

(2.22) log dc =
1

2
log(ℓ2 − 4)− β

2
+

∞∑
k=1

e−kβ

k cosh(kβ)
, β = cosh−1

(
ℓ

2

)
.
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Numerical evaluation of the logarithmic capacitance for general configurations. For very general config-

urations of clusters, the logarithmic capacitance problem (2.8) can be obtained numerically by a boundary

integral approach [14]. Another approach developed in [20, 35], and based on works [10, 47], is to develop a

series solution of (2.8) followed by a least squared method to obtain the unknown coefficients. For the case

of m circular absorbers with centers {cj}mj=1, the series takes the form

(2.23) v(z) = − log dc +

m∑
j=1

ej log |z − cj |+
m∑
j=1

n∑
k=1

(
ajkRe(z − cj)

−k + bjkIm(z − cj)
−k
)
, z ∈ C.

The constants dc, ej , ajk, bjk are to be determined while
∑m

j=1 ej = 1 enforces the far field behavior v ∼ log |z|
as |z| → ∞. A system for the unknown constants is formed by evaluating (2.23) at a collection of boundary

points along which v = 0. A similar methodology was used in [29] to solve a truncated version of the dual

trigonometric series (2.18) by evaluation at a set of boundary values followed by least squared solution.

3. Boundary integral equation description of arrival times of particles diffusing in R2. An

alternative approach to matched asymptotics for solving (1.1) is to use an integral equation approach.

Integral equations are a natural choice for unbounded complex domains such as the one in Fig. 1 since

they easily resolve complex geometries while automatically satisfying the far-field boundary conditions.

Others have applied integral equation methods to solve (1.1) using the full space-time heat kernel [16] or

by discretizing in time and solving the resulting elliptic PDE with an integral equation formulation [9,

23]. However, these approaches have several challenges that include maintaining long time histories and

computing volume integrals. We take a new approach by solving for the Laplace transformed variable p̂(x, s)

that satisfies (1.3). We only consider the case where ∂Ω is absorbing so that the boundary condition is

Dirichlet and homogeneous.

We begin by writing p̂ as the sum of a particular and homogeneous solution of (1.3)

p̂(x, s) = Gh(x;x0, s) + p̂H(x, s),

where Gh is the free space modified Helmholtz Green’s function (2.5). Using the boundary condition (1.3b),

p̂H satisfies the homogeneous PDE

D∆p̂H − sp̂H = 0, x ∈ Ω,(3.24a)

p̂H(x) = f(x), x ∈ ∂Ω,(3.24b)

where f(x) = −Gh(x;x0, s). We represent the solution of (3.24) with the double-layer potential

p̂H(x) = D[σ](x) =

∫
∂Ω

∂

∂ny
Gh(x;y, s)σ(y) dsy, x ∈ Ω,

where σ is an unknown density function. We remind the reader that the unit normal ny points into the

bulk. To satisfy the boundary condition (3.24b), the density function must solve

f(x) =
1

2
σ(x) +D[σ](x), x ∈ ∂Ω.(3.25)

A numerical solution of the second-kind integral equation (3.25) is formed by discretizing ∂Ω at N quadrature

points and approximating the integrals with the trapezoid rule. The resulting linear system is

f(xi) =
1

2
σ(xi) +

1

2π

N∑
j=1

Gh(xi;xj , s)σ(xj)∆sj , i = 1, . . . , N,(3.26)
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and the diagonal term of this linear system is replaced with the limiting value

lim
y→x
x∈∂Ω

Gh(x;y, s) = −1

2
κ(x),

where κ(x) is the curvature of ∂Ω. The linear system (3.26) is solved with the generalized minimal residual

method (GMRES), and since it is the discretization of a second-kind integral equation, the number of

required iterations is mesh-independent. This method to solve for p̂(x, s) is coupled with the inverse Laplace

transform (2.15), where we use the same Talbot contour illustrated in Fig. 2.

The flux at point x ∈ ∂Ω and time t is J (x, t) = ∂
∂np(x, t). Since we write p̂(x, s) as the sum of a fundamental

solution and a homogeneous solution, we compute the flux of these terms individually, and the flux due to

the fundamental solution is computed analytically. The flux due to the homogeneous solution p̂H is

ĴH(x; s) =
∂

∂nx
D[σ](x) =

∫
∂Ω

∂

∂nx

∂

∂ny
Gh(x;y, s)σ(y) dsy,(3.27)

which needs to be estimated with quadrature. As x → y, the integrand of (3.27) satisfies

∂

∂nx

∂

∂ny
Gh(x;y, s) ∼ ∥x− y∥−2,

and the trapezoid rule cannot be used. An alternative quadrature rule uses the odd-indexed quadrature

points for even-indexed discretization points, and uses the even-indexed quadrature points for odd-indexed

discretization points [43]. However, this odd-even integration quadrature rule converges only when the

singularity of the integrand is no stronger than ∥x− y∥−1.

To formulate the normal derivative of the double-layer potential with a tractable integrand, we first add and

subtract the leading order asymptotics of Gh described in (2.5c). That is, ĴH(x; s) = I1 − I2 where

I1 =

∫
∂Ω

∂

∂nx

∂

∂ny

(
Gh(x;y, s) +

1

2π
log |x− y|

)
σ(y) dsy,

I2 =

∫
∂Ω

∂

∂nx

∂

∂ny

(
1

2π
log |x− y|

)
σ(y) dsy.

The singularity of the integrand in I1 behaves as ∥x− y∥−1, and odd-even integration can be applied. The

integral I2 is further decomposed as

I2 =
1

2π

∫
∂Ω

∂

∂nx

∂

∂ny
log |x− y|(σ(y)− σ(x)) dsy − σ(x)

2π

∫
∂Ω

∂

∂nx

∂

∂ny
log |x− y| dsy.

The second integral in this expression is the normal derivative of a constant function, and therefore is zero.

The remaining integral has an integrand with a singularity that also behaves as ∥x − y∥−1, and odd-even

integration can be applied.

Having developed a quadrature method to compute ĴH(x; s), the point-wise flux can be computed at time

t by applying the midpoint rule along the Talbot contour in Fig. 2. Then, the total flux into ∂Ω can easily

be computed by applying the trapezoid rule to

S(t) =

∫
∂Ω

J (s, t) ds.
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4. Particle based Kinetic Monte Carlo simulations. Monte Carlo simulations provide a valuable

tool for numerically estimating the distribution of capture times of diffusing particles for problems such as

(1.1) and have been used extensively [4, 31, 33, 34]. Trajectories associated to the density (1.1) can be

constructed through the discretization

(4.28) x(t+ dt) = x(t) +
√
2DdtZ, x(0) = x0,

where Z ∼ N(0, 1). The sequence of small displacements (4.28) terminates when the particle encounters the

absorbing surface ∂Ωa. The algorithm is repeated for many particles (millions or even billions) to sample

the capture time distribution. This approach is flexible and easy to implement but hampered by a set of

problems.

If a fixed stepsize dt is adopted, errors are introduced at that lengthscale that accrue near boundaries. First,

for a capture event in the interval (t, t + dt), we typically choose t + dt as the arrival time which is an

overestimate. Second, trajectories drawn from (4.28) will necessarily miss some encounters with boundaries

and therefore overestimate the hitting time. Another challenge is that capture problems associated with

(1.1) are notorious for their fat-tailed distributions, i.e., a significant fraction of realizations undergo long

excursions before capture. A key component of any efficient method is adaptivity in stepsize since a trajectory

of (4.28) simulated with a fixed step method will take a very long time to reach an absorbing site.

4.1. Kinetic Monte Carlo (KMC) method for simulation of planar diffusion to absorbers.

Decreasing the step size in an adaptive manner based on distance to target can ameliorate these issues. The

Kinetic Monte Carlo (KMC) method [3] maximizes this opportunity by advancing the diffusion process in a

spatial stepsize corresponding to the distance to the target, d(x0, ∂Ω). The geometry of each step can take

many forms, but it should be chosen such that the details of the sojourn can be rapidly and accurately sampled

from closed form expressions. Similar ideas have been employed in N -body simulations of kinetic gases [34],

chemical reactions [50] and epitaxial crystal growth [41, 42, 46]. In this paper we describe implementation

details and rudimentary analysis of such a scheme that can handle complex geometries and mixed boundary

conditions. This method completely bypasses the need to advance particles based on discretized steps such

as (4.28).

Setup. We adopt a piecewise linear representation for the boundary ∂Ω of the target set Ω based on

vertexes with M straight edges ∂Ωj so that ∂Ω =
⋃M

j=1 ∂Ωj . On each boundary edge ∂Ωj , we precalculate

midpoints, unit normal vectors and associate either Neumann or Dirichlet boundary conditions (others such

as Robin can be incorporated too). In addition, we calculate R0, the radius of the smallest circle centered

at the origin that encloses all targets (see Fig. 4(b)).

A frequent and potentially expensive operation is the determination of d(x0, ∂Ω), the distance of x0 ∈ R2 \Ω
to the nearest target. A simple approach is to calculate the distance of x0 to each vertex of ∂Ω and select

the minimum. However, for highly refined target geometries or numerous targets, the number of vertexes to

scan over may be prohibitive.

To accommodate such scenarios, we employ a quadtree, a common data structure in computational graphics

[13]. This structure consists of a hierarchy of Cartesian grids that envelop ∂Ω. At the coarsest level, the

bounding box of the target is subdivided into 4 cells. Any cell that contains one or more boundary points is
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subdivided into 4 sub-cells, thereby creating the next branch in the tree. This process continues until each

cell contains exactly one point, or a predetermined number of levels is used (see Fig. 3).

To determine the closest pointwise distance, the method first queries the midpoints of the coarsest grid and

uses simple geometric criteria to eliminate those that cannot contain the closest point. Queries are made

of remaining subgrids at the next level of refinement until a predefined level of refinement or a single point

remains. This results in a vastly smaller set of candidate vertexes to calculate pointwise distances at the

cost of some overheard and extends this approach to large and complex targets sets.

Fig. 3. Visualization of the quadtree structure method for efficient evaluation of the distance d(x0, ∂Ω). The coloring of
each point indicates the highest grid level that the vertex of ∂Ω is considered for the closest point evaluation. If the maximum
refinement level is k, then all points in levels 1, 2, . . . , k − 1 are excluded from the distance calculation of d(x0, ∂Ω).

With this setup in place, for each free particle x0 ∈ R2 \Ω, we calculate the shortest distance R = d(x0, ∂Ω)

and the associated projection p = projPj
x0 where Pj is the line that contains the closest edge ∂Ωj . The

position of the particle is advanced based on four projection steps (Fig. 4) described below.

Stage I: Radially symmetric projector. If R ∈ (Rmin, Rmax) such that the particle is neither too close

nor too far from a target, we project to a ball of radius R centered at x0. The parameters Rmin, Rmax are

associated with stages II and III respectively and defined shortly. The time duration of this projection step

is determined from the solution of the radial diffusion equation with a zero Dirichlet boundary condition at

r = R and a Dirac initial condition specifying the particle is initially at the origin. The solution u(r, t) of

the parabolic equation

∂u

∂t
= D

1

r

∂

∂r

(
r
∂u

∂r

)
, r ∈ (0, R), t > 0; u(R, t) = 0, t > 0; u(r, 0) =

δ(r)

r
, r ∈ (0, R),

gives the cumulative distribution of arrival times at r = R to be

(4.29) F (τ) = 1− 2

∞∑
n=0

e−z2
nτ

znJ1(zn)
, t =

D

R2
τ, J0(zn) = 0, n = 0, 1, 2, . . . .

This distribution is sampled by drawing a uniform number U ∈ (0, 1) and solving F (τ) = U . The CDF F (τ)

is efficiently sampled by precomputing values of zn and J1(zn) and using only as many terms as is necessary

to approximate F (τ) to a predetermined tolerance.
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(a) Stage I: walk on sphere step. (b) Stage II: reinsertion step.

(c) Stage III: square projection step. (d) Stage IV: reflection step.

Fig. 4. Schematic of the four stages of the planar KMC algorithm.

Stage I (alternative for convex shapes): Plane projector. This projector can be adopted when the target

is strictly convex so that the entire absorbing target lies to one side of the tangent plane to the surface.

After translating the projection point p to the origin and rotating by the slope of the incident edge, the

projection step arises from the solution to the heat equation in the upper half plane with initial location

(0, y0). Combining the relevant fundamental solutions with method of images yields the density

u(x, y, t) =
1

4πDt

[
e−

x2+(y−y0)2

4Dt − e−
x2+(y+y0)2

4Dt

]
,

with association arrival time distribution to the plane

ρT (t) =

∫
R
uy(x, 0, t) dx =

y0

2
√
π(Dt)

3
2

e−
y2
0

4Dt .

The cumulative distribution is
∫ t

0
ρT (τ) dτ = erfc(y0/

√
4Dt) so that the arrival time is sampled as

t∗ =
1

4D

[
y0

erfc−1(η)

]2
, η ∈ (0, 1).(4.30a)

The hitting location on the tangent line is determined by the displacement x∗ from the projection point p

which has the (Gaussian) distribution

PX(x∗) =
uy(x∗, 0, t∗)

ρT (t∗)
=

1√
4πDt∗

e−
x2
∗

4Dt∗ ,(4.30b)

so that x∗ ∼ N (0, 2Dt∗).
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Stage II: Reinsertion. It is inefficient to simulate the detailed trajectory of particles far from the ab-

sorbers. Therefore, when the distance R = d(x0, ∂Ω) exceeds a threshold (R > Rmax), we project the

particle to a smaller disc of radius Rins > R0 that encloses all the absorbers (Fig. 4(b)). Similar reinsertion

procedures have been utilized in Monte Carlo solutions of elliptic problems [15, 18]. Here we must take

additional care to sample both the reinsertion time and the time dependent reinsertion location correctly.

The arrival distribution for a particle initially on the x-axis (see Appendix A) is

J (τ, θ) =
D

R2
ins

[
1

2π
χ0(τ) +

1

π

∞∑
n=1

χn(τ) cosnθ

]
, θ ∈ (−π, π), t > 0, τ =

D

R2
ins

t,(4.31a)

where the coefficients are

χn(τ) =
2

π

∫ ∞

0

[
Jn(ω)Yn(ωµ)− Jn(ωµ)Yn(ω)

Y 2
n (ω) + J2

n(ω)

]
ωe−ω2τ dω.(4.31b)

Here µ := |x0|/Rins is the ratio of the distance |x0| of the initial location from the origin to the reinsertion

radius Rins. The optimal reinsertion radius is Rins = R0 where R0 is the radius of the smallest disc enclosing

all absorbers as shown in Fig. 4(b). However, many computational efficiencies are gained by sampling (4.31)

for a fixed value of µ - in practice we take µ = 60, Rmax = µR0 and reinsert to the disc of radius Rins = |x0|/µ.
By fixing µ, the integrands of (4.31b) can be tabulated over a range of ω values for efficient quadrature.

The first step in the sampling of (4.31) is to determine the arrival time density
∫ 2π

θ=0
J (τ, θ) dθ = D

R2
ins

χ0(τ)

with associated CDF FT (t) =
∫ τ

0
χ0(η) dη where τ = D

R2
ins

t. The arrival time is sampled first since the

location will be dependent on this value—for shorter times the arrival location is more tightly focussed

around the initial location while for larger arrival times, the insertion location has a weaker dependence on

the start location and approaches a uniform distribution (see Fig. 5(b)). For smaller values of τ (in practice

τ < 1010), the values of the integrand (4.31b) and the associated CDF are tabulated over a range of ω values

for rapid quadrature. The sampling of χ0(τ) can be quite delicate for large τ due to the slow convergence

of the integral. To see this, consider that for τ ≫ 1 the main contribution to the integral χ0(τ) is when

ω2τ = O(1) or ω ≪ 1. In this regime we have that,

χ0(τ) ∼
4 logµ

π2

∫ ∞

0

w

1 + 4
π2 (γe + log(w/2))2

e−ω2τ dω = O
(

1

τ | log τ |2

)
, τ → ∞.(4.32)

When τ ≫ 1 (in practice τ > 1010), we use the limiting form (4.32) to posit the following explicit form of

the density

χ0(τ) =
4 logµ

π2

1

τ(a1 + a2 log τ + a3 log τ2)
+O

(
1

τ2

)
, τ ≫ 1,

for constants a1, a2, a3 determined from fitting. This gives the exact cumulative density function for τ ≫ 1

FT (t) = 1−
∫ ∞

τ

χ0(η) dη = 1− 4 logµ

π2
√

4a1a3 − a22

(
π − 2 tan−1

[
a2 + 2a3 log τ√

4a1a3 − a22

])
, τ =

D

R2
ins

t,(4.33)

where for µ = 60, we obtain from fitting the constants

a1 = 1.4670, a2 = 0.3102, a3 = 0.2029.

For a particular arrival time realization τ = τ∗, the angular location θ of reinsertion satisfies
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(a) Arrival time distribution.
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(b) Arrival angle distribution for several τ∗ values.

Fig. 5. CDFs of arrival time and location for the reinsertion step when D = 1, µ = 60. Left: The reinsertion time
distribution Fθ(τ) =

∫ τ
0 χ0(η) dη given by (1.2) (dashed line indicates the cutoff τ = 1010 after which the fitted density (4.33)

is used). Right: The arrival location CDF (4.34) for several arrival times τ∗. The distribution is largely uniform for large τ∗.

(4.34) Fθ(θ; τ∗) =

∫ θ

−π

J (τ∗, η)

χ0(τ∗)
dη =

θ + π

2π
+

1

π

∞∑
n=1

sin(nθ)

n

χn(τ∗)

χ0(τ∗)
, θ ∈ (−π, π).

To sample from (4.34), a uniform number U ∈ (0, 1) is drawn and the equation Fθ(θ; τ∗) = U solved for θ.

In practice we use an adaptive procedure where we retain only the terms satisfying |χn(τ∗)/(nχ0(τ∗))| > τtol

in the summation of (4.34). For a large proportion of realizations, the arrival time τ∗ is sufficiently large (in

practice τ∗ > 1010) so that the first term is negligible and the arrival location is uniformly distributed on the

disc. In Fig. 5, we plot the CDFs of arrival time distribution and arrival location distribution for µ = 60.

This method permits rapid and accurate sampling of the reinsertion step.

Stage III: Square projector. If R < Rmin, then the particle is close enough to determine if contact

occurs. By “close enough”, we mean that the projection p lies within the edge segment so that a square of

side length 2R centered at x0 lies entirely within the target edge (cf. Fig. 4(c)). This gives explicitly that

Rmin = min(d1, d2) where d1, d2 are the distances between p and the edge vertexes (cf. Fig. 4(c)). The

projection step is then determined from the solution to the parabolic equation on the square S = [−R,R]2

∂u

∂t
= D

(
∂2u

∂x2
+

∂2u

∂y2

)
, x ∈ S, t > 0; u(x, t) = 0, x ∈ ∂S, t > 0;(4.35a)

u(x, 0) = δ(x)δ(y), x ∈ S, t = 0.(4.35b)

The separable solution to (4.35) yields the CDF of first arrival times to the square edge ∂S

PT (τ) =

∫ τ

0

ρT (η) dη = 1− 32

π2

∞∑
l=0

∞∑
k=0

2k + 1

2l + 1

(−1)l+k

(2k + 1)2 + (2l + 1)2
e−((2l+1)2+(2k+1)2)π2τ . τ =

D

R2
t.

This distribution is sampled by drawing a uniform number U ∈ (0, 1) and solving PT (τ
∗) = U . Each side of

the square has an equal probability 1/4 of being hit and the arrival location is sampled from the density

ρX(x) =
4uy(x, 0, τ

∗)

ρT (τ∗)
=

π

2

∞∑
l=0

∞∑
k=0

(2l + 1)(−1)l+k e−((2l+1)2+(2k+1)2)π2τ∗
sin[(2k + 1)πx]

∞∑
l=0

∞∑
k=0

2k + 1

2l + 1
(−1)l+ke−((2l+1)2+(2k+1)2)π2τ∗

.



Arrival times of planar diffusion 15

In practice, we sample with replacement from 105 precalculated pairs {(τj , xj)}. Further samples can ob-

tained from interpolation on this set.

Stage IV: Reflection step. In the scenario that the particle hits a reflecting portion of the target surface,

it is then projected back into the bulk onto a semi-circle of radius R = min(d1, d2), corresponding to the

distance to the nearest vertex. In practice, we avoid rounding errors by setting R = max(ϵ,min(d1, d2))

where ϵ is a small number comparable to machine precision. In the reflecting boundary condition scenario,

the projection step is identical to that of stage I with uniform location and arrival time sampled from (4.29).

For highly convoluted geometries, it may be that this semi-circle intersects with distal elements of the target.

This scenario can be accounted for by calculating the shortest distance d to other segments of the boundary

and setting R = max(ϵ,min(d1, d2, d)).

4.2. Rudimentary convergence analysis in half plane case. In this section we present some

analysis of the convergence properties of the KMC approach in the simplified scenario of diffusion in the

upper half plane with capture in the window {(x, 0) | |x| < h/2} with particular emphasis on the role of

reinsertion. Specifically, we solve the equation

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
, x ∈ R, y > 0, t > 0;(4.36a)

u = 1, y = 0, |x| < h

2
, uy = 0, y = 0, |x| ≥ h

2
;(4.36b)

u = δ(x− x0)δ(y − y0), x ∈ R, y > 0, t = 0.(4.36c)

with a simplified KMC method composed of Stages 1(alternative) and 3. From an initial point x0 = (x0, y0),

this algorithm results in a sequence of points (x1,x2, . . . ,xn) ∈ R2+ which will eventually alight on the

absorbing portion. For an ensemble of particles, we denote an to be the fraction free after n iterations so

an+1 = (1− pn)an, a0 = 1,

where pn is the probability of capture at the nth iteration. To investigate pn, we first consider the splitting

problem p(x, y) for the probability that a particle starting at (x, y) first contacts the plane y = 0 on the

absorbing window. This satisfies

∂2p

∂x2
+

∂2p

∂y2
= 0, x ∈ R, y > 0;(4.37a)

p = 1, y = 0, |x| < h/2, p = 0, y = 0, |x| ≥ h/2,(4.37b)

and admits the solution

(4.37c) p(x, y) =
1

π

[
tan−1

(
x+ h

2

y

)
− tan−1

(
x− h

2

y

)]
.

We consider that the current location xn = (xn, yn) has arisen from a projection step (stage III). Without

loss of generality, we assume the previous contact (x̄n, 0) with the yn = 0 plane is such that x̄n > h
2 . We

may then parameterize (cf. Fig. 6) the point xn = (xn, yn) as

xn =
h

2
+ r̄n(1 + cosϕ), yn = r̄n sinϕ, ϕ ∈ (0, π), x̄ ∈ (h/2,∞).
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(a) KMC step (b) Reinsertion

Fig. 6. A schematic showing the simplified KMC solution in the upper half place. (a) the projection step from the real
line back into the bulk. (b) The reinsertion step to keep the particle in the vicinity of the absorbing set.

It follows from the splitting probability (4.37c) that

p(xn, yn) =
1

π

[
tan−1

(
xn − h

2

yn
+

h

yn

)
− tan−1

(
xn − h

2

yn

)]

=
1

π

[
tan−1

(
cot

ϕ

2
+

h

r̄n
cscϕ

)
− tan−1

(
cot

ϕ

2

)]

=
1

π

[
tan−1

(
tan

(
π

2
− ϕ

2

)
+

h

r̄n
cscϕ

)
−
(
π

2
− ϕ

2

)]
,

where the angles ϕ ∈ (0, π) are distributed uniformly. Applying the change of variables η = π−ϕ
2 yields

p =
1

π

[
tan−1 (tan η + αn csc 2η)− η

]
, αn =

h

r̄n
.

We now define the average probability pn = 1
π

∫ π

ϕ=0
p dϕ = 2

π

∫ π/2

η=0
p dη and find that

pn =
2

π2

∫ π
2

η=0

[
tan−1 (tan η + αn csc 2η)− η

]
dη, αn =

h

r̄n
.(4.38)

Without reinsertion, many trajectories will yield very small values for the parameter αn as r̄n can attain

very large values. To gain further insight into this scenario, we consider the limiting case of (4.38) as α → 0.

4.3. Asymptotic analysis of splitting probability. Here we develop an asymptotic approximation

for (4.38) in the limit as α → 0 (subscript n dropped for convenience). The integral features global contri-

butions and local contributions near η = 0. To delineate between these contributions, we define the small

parameter δ > 0 such that α ≪ δ ≪ 1. Then we have that

pn(α) =
2

π2

∫ δ

η=0

[
tan−1 (tan η + α csc 2η)− η

]
dη︸ ︷︷ ︸

A1

+
2

π2

∫ π
2

η=δ

[
tan−1 (tan η + α csc 2η)− η

]
dη︸ ︷︷ ︸

A2

.(4.39)

where A1 and A2 will be considered separately and combined so that their sum is independent of δ.

Evaluation of A1. In this region we apply the approximation tan−1(x+y) = tan−1(x)+y/(1+x2)+O(y2)

for y → 0 with x = α csc 2η and y = tan η. Then we have that

A1 :=
2

π2

∫ δ

0

[
tan−1 (tan η + α csc 2η)− η

]
dη ∼ 2

π2

∫ δ

0

[
tan−1(α csc 2η) +

tan η

1 + α2 csc2(2η)
− η

]
dη.
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Applying small argument approximations for η ≪ 1, we have that

A1 ∼ 2

π2

∫ δ

0

(
tan−1

(
α

2η

)
− α2η

4η2 + α2

)
dη =

α

π2

∫ 2δ
α

0

(
tan−1 1

z
− α

2

z

z2 + 1

)
dz, (η = αz/2)

=
α

π2

[
1

2
log(1 + z2) + z tan−1 1

z
− α

4
log(1 + z2)

] 2δ
α

0

=
α

π2

[(
1

2
− α

4

)
log

(
1 +

4δ2

α2

)
+

2δ

α
tan−1 α

2δ

]
.

The parameter δ is defined so that α ≪ δ and therefore δ
α ≫ 1. Applying Taylor we find that

A1 =
α

π2

(
log

2δ

α
+ 1

)
+O

(
α3

δ2
, α2 log

(
δ

ε

))
.(4.40)

Evaluation of A2. In the integral A2 we have that α ≪ δ and apply the approximation tan−1(x+ y) =

tan−1(x) + y/(1 + x2) +O(y2) for y → 0 with x = tan η and y = α csc 2η. It then follows that

A2 :=
2

π2

∫ π
2

η=δ

[
tan−1 (tan η + α csc 2η)− η

]
dη ∼ 2

π2

∫ π
2

δ

[
tan−1(tan η) + α

csc 2η

1 + tan2 η
− η

]
dη

=
2α

π2

∫ π
2

δ

csc 2η

1 + tan2 η
dη =

α

π2

∫ π
2

δ

cot η dη =
α

π2
[log sin η]

π
2

δ

= − α

π2
log δ.(4.41)

To finalize the approximation of (4.39), we combine expressions (4.40) and (4.41) and reintroduce αn reflect-

ing that this parameter changes over each iteration. This yields that

(4.42) pn ∼ A1 +A2 =
αn

π2

(
log

2

αn
+ 1

)
, αn → 0, αn =

h

r̄n
.

Hence we see that while the probability of capture is positive at each iteration, it can become arbitrarily

small as |x̄n| = h
2 + r̄n → ∞. This results in an algorithm with polynomial convergence rate (see Fig. 8(a)).

A comparison of the asymptotic approximation (4.42) with (4.38) is displayed in Fig. 7(a).

4.4. Reinsertion analysis. The aim of reinsertion is to reestablish exponential convergence rate in

the algorithm by limiting the maximum value of x̄n and hence promoting faster capture.

Reinsertion projects wayward particles back to a smaller disc of radius R that encloses all targets and

therefore omits simulating trajectories far from the capture regions. When reinserting from sufficiently

distant points, the placement on the disc is largely uniform with (x, y) = R(cos θ, sin θ) with small corrections

given by (4.34). Points on this disk have average probability of capture (see (4.37))

pn =
1

π

∫ π

0

p(R cos θ,R sin θ) dθ =
1

π2

∫ π

0

[
tan−1

(
cot θ +

h

2R
csc θ

)
− tan−1

(
cot θ − h

2R
csc θ

)]
dθ

∼ 2

π2

h

R
, as

h

R
→ 0.(4.43)

The accuracy of the approximation (4.43) is shown in Fig. 7(b). In an ensemble of particles, some will be

reinserted to the disk x2 + y2 = R2 while others remain inside it. Those inside have greater probability of

capture at the next step, therefore the quantity (4.43) reflects a lower bound on the likelihood of capture.

Hence we see that the probability of capture after n stages has bound pn ⪆ 2
π2

h
R . The key observation here
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(a) Capture probability without reinsertion. (b) Capture probability from reinsertion disk.

Fig. 7. (Left figure) Comparison of the capture probability pn(α) (solid curve) (4.38) and the small arguement approxi-
mation (4.42) (dashed curve) without reinsertion. We note that p → 1/4 for αn = h/r̄n → ∞. (Right figure) Here we show
the probability of capture with reinsertion to a disk of radius R.

is that the probability of capture at each iteration is now bounded below by a constant defined in term of

the geometric parameter h and the reinsertion radius R. This ensures an exponential convergence rate of

the algorithm with slower rates associated with smaller targets (h ≪ 1) and a faster rate associated with a

smaller reinsertion radius R.

As an exposition of this analysis, we show in Fig. 8 the convergence of the KMC method on the simplified half

plane problem (4.36) with and without reinsertion. In the absence of reinsertion, polynomial convergence is

attained as shown by linear behavior on a log-log plot. When reinsertion is implemented (to radius R = 1),

we observe exponential convergence shown by linear behavior on a log plot. This demonstrates the key role

of reinsertion in attaining exponential convergence of the KMC method.
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(a) Convergence without reinsertion
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(b) Convergence with reinsertion

Fig. 8. Convergence statistics of the KMC method for the simplified problem (4.36). Left: In the absence of reinsertion,
a polynomial rate of convergence is attained shown by the linear behavior on the log-log plot. Right: Reinsertion recovers
exponential convergence as seen in the linear behavior on the log plot. Simulations based on ensemble of 106 particles.
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5. Results. In this section we show a variety of examples to demonstrate the ability of these method-

ologies for approximating full arrival time distributions to complex absorbing sets. In our simulations, we

have used a common diffusivity of D = 1. Arrival times from the KMC method are translated with t → t+1

so that t = 0 is mapped to 100 in log space. MATLAB’s histogram function is then applied with the “proba-

bility” normalization option. The hybrid approaches refer to solving the Laplace transform using either the

expansion asymptotic (2.13) or the boundary integral method (BIM) described in Sec. 3. This is followed

by numerical inversion of the transform equation as described in Sec. 2.1.

5.1. Planar results. Here we use three examples to validate the numerical KMC method and corrob-

orate with both the hybrid approaches (asymptotic and boundary integral). The first example is a simple

one target scenario in which the closed form solution (A.58) is available for comparison. The remaining two

examples show the efficacy of the method on more complex absorbing sets consisting of multiple targets of

varying radii. The parameter values for the three examples are

(One target) x1 = (0, 0), r1 = 0.05, x0 = (5, 0).

(Three targets) x1 = (3, 3), x2 = (8, 8), x3 = (10, 10), r1 =
1

8
, r2 =

1

6
, r3 =

1

3
, x0 = (0, 0).

(Six targets) x1 = (−3, 0), x2 = (0,−2), x3 = (
√
2,−

√
2), x4 = (2, 0),

x5 = (
√
2,
√
2), x6 = (0, 2), r1 = 0.275, r2 = . . . = r6 = 0.02, x0 = (0, 0).

The results shown in Fig. 9 show good agreement between the three approaches. In Fig. 9(a) we com-

pare the hybrid-asymptotic, KMC and exact one-pore solutions showing excellent agreement. In the two

more challenging examples, we generally see good agreement between the asymptotic and boundary integral

approaches. In the more challenging 6 target case, we see in Fig. 9(c) a slightly diminished agreement is

observed near the peak.

(a) One target example (b) Three target example (c) Six target example

Fig. 9. Relative frequency of arrival times to planar targets from N = 1 × 106 KMC arrival times, exact solution (one
target case), and hybrid approaches (asymptotic and boundary integral). Schematics of target arrangements shown as insets.

5.2. Homogenization. In this example, we consider the case of a single target with a mix of absorbing

and reflecting portions. This describes the scenario where an impermeable cellular membrane surface is

covered in surface receptors. We determine the full distribution of arrival times using both the KMC method

and the hybrid asymptotic-homogenization result (2.21). In the application of the hybrid approach, we use
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the analytically determined logarithmic capacitance (2.21), or equivalently the effective radius, in the single

patch result.

(a) Ex 1: M = 12, f = 1/3. (b) Ex 1: M = 12, f = 1/3.

(c) Ex 2: M = 8, f = 1/8. (d) Ex 2: M = 8, f = 1/8.

Fig. 10. Results from the KMC and asymptotic method on the homogenization examples (5.44). Left panels: target (scaled
to unity radius) with layout of absorbers. Contours indicate the numerical solution of (2.8). Right figures: Agreement between
the full arrival time densities obtained from N = 105 KMC arrival times and the hybrid-asymptotic method.

In the two examples shown in Fig. 10, we take a circular absorbing target centered at the origin with

radius ε = 0.05. The target itself features M equally spaced absorbing windows centered at the roots of

unity (cos 2πk
M , sin 2πk

M ). The windows occupy a combined fraction f and each has common angular extent

σ = 2πf
M . In each case we use the homogenized formula (2.21c) to obtain the logarithmic capacitance d and

then apply the result (2.14) for N = 1.

The relevant parameters obtained for the two examples are

Ex 1: M = 12, f =
1

3
, d = 0.8978, x0 = [5, 0];(5.44a)

Ex 2: M = 8, f =
1

8
, d = 0.6657, x0 = [2, 0].(5.44b)
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In Fig. 10(b),(d) we show good agreement between the two methods while in Fig. 10(a),(c) we display a

visualization of the solution to the capacitance problem (2.8). We remark that the homogenization effect

can be seen through the gradual radial symmetrization of the contours.

5.3. Clustering. In this section, we use two examples of clustered target configurations to compare

results from the KMC method with both the asymptotic and BIM approaches. In addition, we show the

effectiveness of homogenization where the clustered target configuration is replaced by a single circular target

of appropriately chosen radius. The specific parameters are given by

Ex 1: xk =
3

2

(
cos

2πk

5
, sin

2πk

5

)
, k = 1, . . . , 5, x6 = (0, 0), r1,...,6 = 0.1, x0 = (10, 0);(5.45a)

Ex 2: xk =
3

2

(
cos

2πk

8
, sin

2πk

8

)
, k = 1, . . . , 8, r1,...,8 = 0.05, x0 = (5, 0).(5.45b)
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(a) Numerical solution of
(2.8) yielding logarithmic ca-
pacitance d = 1.2295.
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(b) Normalized target fluxes. (c) Agreement of capture times (from KMC)
with asymptotic and homogenized densities.
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(d) Numerical solution of (2.8)
yielding logarithmic capaci-
tance d = 1.2737.
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(e) Normalized target fluxes. (f) Capture times (from KMC) with asymp-
totic and homogenized densities.

Fig. 11. Comparison of the full asymptotic density with those arising from the KMC method, boundary integral method
(BIM) and homogenization (replacing the target cluster with a single absorbing target). Panels (a,d) display schematics of
the target configuration. Panels (b,e) show fluxes over groups of receptors as colored in the schematic. Panels (c,f) favorably
compare homogenized and asymptotic densities of to those derived from N = 105 KMC times.

The numerical method described by equation (2.23) allows for the computation of the logarithmic capacitance

for each of the absorbing sets (cf. Fig. 11(a,d)). For the parameters specified in (5.45), we determine
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d = 1.2295 (Ex 1) and d = 1.2737 (Ex 2). The logarithmic capacitance can be interpreted as the effective

radius of a single target that reflects the capture potential of the cluster. As with the homogenization

example in Sec 5.2, we observe that replacing complex configurations with a single target of appropriately

chosen radius produces a very accurate representation of the full arrival time distribution. However, the

single target representation does reduce certain direction information encoded in the distribution of arrivals

over the targets in the cluster. The hybrid-asymptotic method can rapidly determine the fluxes by numerical

inverse Laplace transform of Ĵj = 2πDνjSj where each Sj is determined by (2.13). In Fig. 11(b,e) we show

normalized fluxes into four sets of traps that are symmetrically arranged with respect to the initial location.

The traps aligned towards the initial data accrue most of the inbound flux while the peaks, representing

most likely arrival times at a particular target, are ordered by their distance to the initial location. The

distribution of fluxes over the targets encode directional information that can infer the source location [25].

5.4. Splitting Probabilities. In this section, we demonstrate the convergence of the dynamic fluxes

to the static splitting probabilities {ϕk(x)}Nk=1, where ϕk(x) denotes the probability that a diffusing particle

originally at x reaches the kth target before any others. For exposition purposes, we focus on the scenario

of completely absorbing targets. These probabilities satisfy the exterior Laplace problem

∆ϕk = 0, x ∈ R2 \ Ω; ϕk(x) = δjk, x ∈ ∂Aj , j = 1, . . . , N ;(5.46a)

ϕk(x) finite as |x| → ∞,(5.46b)

where δjk is the Kronecker delta. The asymptotic solution of (5.46) as ε → 0 is developed along similar lines

to Sec. 2 (also see [24, Sec 5]). Accordingly, we present the solution as ε → 0 directly as

(5.47a) ϕk(x) ∼ 2π

N∑
j=1

νjAjG0(x;xj) + ϕ̄, G0(x;y) =
1

2π
log |x− y|,

where the (N + 1) constants (A1, . . . , AN , ϕ̄) are determined from the linear system,

(5.47b)

N∑
j=1

νjAj = 0; −Aj + 2π

N∑
i=1
i ̸=j

νiAiG0(xj ;xi) + ϕ̄ = δjk, j = 1, . . . , N.

The gauge functions νj = −1/ log εdj are defined in (2.9). We remark that since capture is guaranteed for

planar Brownian motion, we have that
∑N

k=1 ϕk(x) = 1.

To demonstrate this theory, we compare these static splitting probabilities with the time-dependent fractional

signals

(5.48) qk(t) =

∫ t

0
Jk(η)dη∑N

j=1

∫ t

0
Jj(η)dη

, k = 1, . . . , N ;

into each target (see Fig. 12) obtained from the hybrid-asymptotic method (Sec. 2). We draw attention to

two important conclusions from this example. First, the dynamic signal converges to the static splitting

probabilities on a very long timescale. For many physically or biologically relevant timescales, this questions

the usefulness of using splitting probabilities for inference [25] purposes. Second, the ordering of the relative

fluxes into each target changes over the displayed time interval. Specifically, at short times (t ⪅ 101), target
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(a) Schematic of target configuration.
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(b) Splitting probabilities and dynamic fluxes.

Fig. 12. Left: A schematic of the three target configuration from Sec. 5.1. Right: The fractional signal qk(t) (5.48) into
each target together with the steady state splitting probabilities ϕk obtained from (5.47).

1 captures almost all the signal and indeed is the most significant absorber over the entire timeline. Target

1 is the smallest target but closest to the initial location demonstrating that this distance is a significant

indicator of capture ability. Later in the timeline, we see that targets 2 and 3 interchange their prominence

in signal (around t ≈ 104) implying that proximity to the initial location promotes faster capture at short

times while at larger times, target size can play a more significant role. Importantly, none of these subtleties

are apparent from the static splitting probabilities highlighting the necessity of obtaining full time dependent

statistics.

6. Discussion. In this work we have demonstrated several methodologies for obtaining arrival time

statistics of diffusing particles to complex sets of absorbing targets in planar regions. The Laplace transform

approach seeks to solve an equation of modified Helmholtz type by either an asymptotic expansion for well

separated targets or a boundary integral representation. In both cases the target geometries can be very

general, but for the boundary integral method, it is presently limited to purely absorbing targets. In future

work, we aim to extend to targets with both absorbing and reflecting components. The inverse transform

is obtained by quadrature of the Bromwich integral. To complement these approaches, we developed a

particle based kinetic Monte-Carlo (KMC) method that can resolve the arrival distribution for very general

configurations of targets and boundary sets. These methods are rapid, accurate and easy to implement. The

hybrid asymptotic method is particularly suited to the scenario of well-separated targets while the KMC

method is applicable to general geometric scenarios and varied boundary conditions.

There are a few conclusions that emerge from our study. Homogenization is a powerful technique that

accurately reproduces the first passage time distributions of complex target sets by replacing them with a

single circular target of appropriately chosen radius. However, homogenization brings limitations with it,

particularly as it coarse grains the spatial distribution of arrivals across the targets. The relative fraction

of particles that arrive across a distribution of targets has directional information that can be used to infer

source location [25]. Additionally, the dynamics available from the full distribution of arrival statistics
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Absorbing
Reflecting

Fig. 13. A tricky first passage time distribution to evaluate using either KMC or hybrid-asymptotic methods.

reveals the limitations of using static information, (e.g. splitting probabilities) which are only representative

of very long time behavior. Our example of dynamic splitting probabilities (Sec. 5.4) suggests that there are

several timescales over which arrival statistics can be important and that the relevant physical or biological

timescale must be considered when inferring source location from arrival information. Coarse graining is

also unreasonable for non-homogeneous distributions of grains that arise in applications such as microscale

erosion [12, 37].

While the methods developed here are quite general, there are certain scenarios where they fail and new

approaches are needed. For example, in the scenario where there are numerous targets but only a few are

reactive (Fig. 13), particles must navigate a torturous route through inert targets to reach the destination.

The combination of targets with either purely Neumann or Dirichlet boundary conditions hampers all the

approaches developed here. This scenario is particularly challenging for the KMC method due to the fact

that on a reflecting target surface, the particle will tend to perform a surface diffusion characterized by many

small jumps. The very long wait time for a large jump necessary to leave the target vicinity means that

the convergence rate is greatly reduced. To address these shortcoming, we plan extensions to the boundary

integral formulation.

Appendix A. Two dimensional problem arrival problem. Arrival time and angle distribution.

For a particle with diffusivity D originally at x ∈ (b, 0), the occupation density in r = |x| > a satisfies

pt = D

(
prr +

1

r
pr +

1

r2
pθθ

)
, r > a, θ ∈ (−π, π), t > 0;(A.49a)

p(a, θ, t) = 0, θ ∈ (−π, π), t > 0;(A.49b)

p(r, π, t) = p(r,−π, t), r > a, t > 0;(A.49c)

p(r, θ, 0) =
1

r
δ(r − b)δ(θ), r > a, θ ∈ (−π, π).(A.49d)
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Our goal is to determine closed form expressions for the quantities

P (t) =

∫ π

θ=−π

∫ ∞

r=a

p(r, θ, t) rdrdθ, [Survival probability](A.50a)

C(t) = 1−
∫ π

θ=−π

∫ ∞

r=a

p(r, θ, t) rdrdθ, [Capture probability](A.50b)

S(t) = −P ′(t), [Arrival time distribution](A.50c)

Applying the divergence theorem to S(t) = −P ′(t), we see that

(A.51) S(t) = −
∫ π

θ=−π

∫ ∞

r=a

pt(r, θ, t) rdrdθ = −D

∫ π

θ=−π

∫ ∞

r=a

(rpr)r drdθ = Da

∫ π

θ=−π

pr(a, θ, t) dθ.

To obtain the flux pr(a, θ, t), we non-dimensionalize by introducing variables

(A.52a) p(r, t) =
1

a2
p̃(r̃, θ, t̃), r̃ =

1

a
r, t̃ =

D

a2
t, R =

b

a
.

so that S(t) = D
a2

∫ π

θ=−π
p̃r̃(1, θ, t̃) dθ. Under the change of variables (A.52a), (A.49) becomes

p̃t̃ =

(
p̃r̃r̃ +

1

r̃
p̃r̃ +

1

r̃2
p̃θθ

)
, r̃ > 1, θ ∈ (−π, π), t̃ > 0;(A.52b)

p̃(1, θ, t̃) = 0, θ ∈ (−π, π), t̃ > 0;(A.52c)

p̃(r̃, θ, 0) =
1

r̃
δ(r̃ −R)δ(θ), r̃ > 1, θ ∈ (−π, π).(A.52d)

After dropping the tildes, we solve for the dimensionless occupation density p(r, θ, t) by transforming to

Laplace space p̂(r, θ, s) =
∫∞
t=0

p(r, θ, t) e−stdt, to see that (A.52b) satisfies the PDE

(A.53) p̂rr +
1

r
p̂r +

1

r2
p̂θθ − sp̂ = −1

r
δ(r −R)δ(θ), r > 1, θ ∈ (−π, π), s ∈ C.

The separable solution that is continuous, bounded and satisfies p̂(1, θ, s) = 0 is

(A.54) p̂(r, θ, s) =


∞∑

n=0

An

[
In(

√
sr)− In(

√
s)

Kn(
√
s)
Kn(

√
sr)

]
cosnθ, 1 < r ≤ R;

∞∑
n=0

An

[
In(

√
sR)

Kn(
√
sR)

− In(
√
s)

Kn(
√
s)

]
Kn(

√
sr) cosnθ, r > R,

with constants An determined from incorporation of the Dirac source to be

(A.55) An = Kn(
√
sR)

[∫ 2π

θ=0

cos2(nθ) dθ

]−1

=

{
1
2πK0(

√
sR) n = 0

1
πKn(

√
sR) n ≥ 1

Correspondingly, the flux over r = 1 is given in series form by

(A.56) p̂r|r=1 =
1

2π

K0(R
√
s)

K0(
√
s)

+
1

π

∞∑
n=1

Kn(R
√
s)

Kn(
√
s)

cosnθ.

To invert the Laplace transform of p̂r|r=1, we must evaluate the Bromwich integrals

1

2πi

∫ c+i∞

c−i∞

Kn(
√
sR)

Kn(
√
s)

est ds, n = 0, 1, 2, . . .
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where c is chosen to lie to the right of any poles of the integrand. Since the only singularity is a branch cut

on the negative real axis, we deform the contour to a hairpin along the negative real axis and introduce the

substitution s = −w2. The integral becomes

1

πi

∫ ∞

0

[
Kn(iωR)

Kn(iω)
− Kn(−iωR)

Kn(−iω)

]
ωe−ω2t dω =

2

π

∫ ∞

0

[
Jn(ω)Yn(ωR)− Jn(ωR)Yn(ω)

Y 2
n (ω) + J2

n(ω)

]
ωe−ω2t dω,

where we have used Kn(−iz) = π
2 [−Yn(z) + iJn(z)]. The expression for the flux J (t, θ) = pr|r=1 is now

(A.57a) J (t, θ) =
1

2π
χ0(t) +

1

π

∞∑
n=1

χn(t) cosnθ, θ ∈ (−π, π), t > 0,

where the coefficients are

(A.57b) χn(t) =
2

π

∫ ∞

0

[
Jn(ω)Yn(ωµ)− Jn(ωµ)Yn(ω)

Y 2
n (ω) + J2

n(ω)

]
ωe−ω2t dω.

The total flux to the inner disk, and distribution of arrival times, is given by

(A.58) χ0(t) =

∫ 2π

0

J (t, θ) dθ =
2

π

∫ ∞

0

[
J0(ω)Y0(ωR)− J0(ωR)Y0(ω)

Y 2
0 (ω) + J2

0 (ω)

]
ωe−ω2t dω.

Returning to dimensional time through (A.52a), we have that S(t) = D
a2χ0(

D
a2 t). To determine C(t) and

P (t) = 1− C(t), we note from P ′(t) = −S(t) that

(A.59) P (t) = 1−
∫ D

a2 t

0

χ0(η) dη, C(t) =

∫ D
a2 t

0

χ0(η) dη.

For the dimensional arrival time t = t∗, the conditional distribution of arrival angles θ is then given by

J (D
a2 t

∗, θ)/χ0(
D
a2 t

∗) with cumulative distribution

(A.60) F (θ; t∗) =

∫ θ

−π

J (D
a2 t∗, η)

χ0(
D
a2 t∗)

dη =
θ + π

2π
+

1

π

∞∑
n=1

χn(
D
a2 t∗)

nχ0(
D
a2 t∗)

sinnθ, θ ∈ (−π, π).
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