//\
Adv Comput Math @ CrossMark
https://doi.org/10.1007/s10444-017-9580-6

A boundary integral equation method for mode
elimination and vibration confinement in thin plates
with clamped points

Alan E. Lindsay! - Bryan Quaife?
Laura Wendelberger!

Received: 10 April 2017 / Accepted: 6 December 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract We consider the bi-Laplacian eigenvalue problem for the modes of vibra-
tion of a thin elastic plate with a discrete set of clamped points. A high-order
boundary integral equation method is developed for efficient numerical determina-
tion of these modes in the presence of multiple localized defects for a wide range of
two-dimensional geometries. The defects result in eigenfunctions with a weak sin-
gularity that is resolved by decomposing the solution as a superposition of Green’s
functions plus a smooth regular part. This method is applied to a variety of regular
and irregular domains and two key phenomena are observed. First, careful placement
of clamping points can entirely eliminate particular eigenvalues and suggests a strat-
egy for manipulating the vibrational characteristics of rigid bodies so that undesirable
frequencies are removed. Second, clamping of the plate can result in partitioning of
the domain so that vibrational modes are largely confined to certain spatial regions.
This numerical method gives a precision tool for tuning the vibrational characteristics
of thin elastic plates.
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1 Introduction

The eigenvalues of fourth-order differential operators are central in determining
mechanical properties of rigid bodies. This paper considers the small amplitude out-
of-plane vibrations of a thin elastic plate [45]. The vibrational frequencies A > 0 and
modes u(x) satisfy the bi-Laplacian eigenvalue problem

A%y = A, X € Q; / udx = 1, (1a)
Q

where @ C R? is a closed planar region representing the extent of the plate, x =
(x,y), and AU = Uprrx + 2Uxxyy + Uyyyy. Conditions on the boundary €2 are
application specific, with a common condition being that the plate is clamped on its
periphery which stipulates that

u = oqu =0, X € 092, (1b)

where 9, is the outward facing normal derivative. A wide variety of engineering
systems utilize thin perforated plates in their construction. Examples include heat
exchangers [36, 42, 48], porous elastic materials, and acoustic tilings [5, 31, 49]. The
specific placement of these perforations permits the manipulation of acoustic and
vibrational properties of the plate while economizing on weight and material cost.
Homogenization theories have been proposed to replace the natural elastic modulus
of the plate with an effective modulus [4, 11], however, an averaging approach omits
the pronounced localizing effects that clamping has on vibrational modes [23].

In the present work, we consider a finite collection of M defects or punctures
on (la—c) with the conditions

u(x;))=0, j=1,...,M. (1c)

These point constraints arise in singular perturbation studies of (1a—c) in the presence
of M small circular perforations of radius ¢ (cf. Fig. 1). As the radius ¢ of the perfora-
tions shrink to zero, the behavior of the limiting eigenvalue A¢ as ¢ — 0 satisfies [12,
37, 39, 40]

M
he = A+4T Y [Vux)P+00?),  v=
j=1

1
loge’

2)

where (X, u) satisfies (1a—b) plus the point constraints (1c). In the degenerate case
Zyzl |Vu(x j)|2 = 0, Eq. 2 is not valid and a separate limiting form can be
derived [12, 37]. The fact that the clamping condition on each perforation leaves
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= xr oK Gt
0 Q

Fig. 1 In the limit of vanishing hole radius ¢ — 0, a point constraint u(x;) = 0 must be enforced at each
of the hole centers for j =1, ..., M

an imprint as the radius shrinks to zero (Fig. 1) implies that no matter how small a
perforation is, the vibrational characteristics are distinct from the no hole problem

A%u* = Vut, xeQ: u* =0u* =0 xe€0Q; / udx = 1. (3)
Q

The discontinuous limiting behavior of (2) is qualitatively different from the spec-
tral problem for the Laplacian in the presence of small perturbing holes [24, 35, 43,
50, 51]. A consequence of the point constraints (1c) is that the eigenfunctions u(x)
are not necessarily smooth but satisfy local conditions

u@ ~ajlx—x;Ploglx —x;l,  x—x;  j=1...,M, 4

where the constants {o; }?”I: | reflect the strength of each puncture and depend on the

domain €2 and the clamping locations {x; }]}’[: |- The difference between the punctured
eigenvalues A of (1a—c) and the puncture free eigenvalues A* of (3) satisfies (cf. [39])

M
A=A (u,u*) = —8m Zaju*(xj), (u,u*y = f uX)u*(x)dx. (5
j=1 @

The presence of clamped locations also has a profound localizing effect on the eigen-
functions. In a rectangular domain with a single clamped point located along the
long axis, the effect of clamping on (1a—c) has been observed (cf. [23]) to partition
Q2 into two distinct domains on the left and right of the clamping location, as shown
in Fig. 2. One aim of this work is to numerically investigate the global effects that
point constraints have on the eigenfunctions of (1a—c) in a variety of different planar
geometries.

Fourth-order eigenvalue problems (Egs. 1a—c and (3)) exhibit other qualitatively
different properties compared to the well-understood Laplacian counterpart. For
example, the fundamental eigenfunction of (la—c), ie. the mode associated with the
lowest eigenvalue, is not necessarily single signed [14-16, 27, 29, 47]. In contrast,
the fundamental eigenfunction of the Laplacian is always single signed and the corre-
sponding eigenvalue is simple [21, 28]. An elementary example of this phenomenon
is the annular domain ¢ < r < 1 in which the radially symmetric and mode 1
eigenvalues of the bi-Laplacian cross at e~! ~ 762.36 [16]. Correspondingly, for
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Fig. 2 The localization of two eigenfunctions by a single clamped point, located at the black point, in a
rectangular domain. In each case, the eigenfunction is essentially zero on one side of the clamping point.
See [23] and Section 4.2 for more details

¢! > 762.36, the fundamental eigenfunction has multiplicity two and one nodal

line. Also, in domains with a corner, the first eigenfunction may possess an infinite
number of nodal lines [14]. Many numerical methods have been developed to treat
fourth-order eigenvalue problems in view of these characteristics [3, 10, 13, 32, 38,
53].

The main goal of this paper is to introduce a novel high-order boundary inte-
gral equation method for the numerical solution of (1a—c) in the presence of a finite
collection of punctures (1c¢). High-order methods for computing eigenvalues of the
Laplacian and Helmholtz equations in two and three dimensions have been devel-
oped with domain decomposition methods [9, 17, 19], radial basis functions [44],
boundary integral equations [6, 20, 46], the method of particular solution [8, 26, 34],
the Dirichlet to Neumann map [7], and the chebfun package [18]. The method of
fundamental solutions has also been used to compute eigenvalues of the biharmonic
equation [3, 41]. However, none of these works consider the eigenvalue problem with
clamped points. We extend the work of one of the previous authors [39] where a finite
difference method coupled with an inexact Newton method is used to solve (la—c)
in the unit circle with symmetrically chosen clamped points. Owing to the accu-
racy and robustness of the boundary integral equation methods, our new method
forms third-order solutions of (1a—c) in smooth two-dimensional geometries, includ-
ing multiply-connected geometries (Fig. 13), and with a large assortment of clamping
locations.

@ Springer



A boundary integral equation method for mode elimination...

Using our new method, we demonstrate the dependence of A on the number M and
locations {xi, ..., Xy} of the puncture sites for a variety of smooth planar regions
Q C R2. In particular, we investigate two effects that clamped points have on the
vibrational properties of plates with various regular and irregular geometries. Our
first observation is that by specific location of punctures, the vibrational proper-
ties can be dramatically altered—in particular, undesirable frequencies of vibration
can be tuned out by deliberate location of clamped points at nodal lines of the
unclamped eigenfunction u* of (3). Our second observation, extending previous
results in [23] for rectangular domains, is that mode confinement occurs in a variety
of two dimensional geometries.

The outline of the paper is as follows. In Section 2 we describe the details of a
boundary integral method for solving (1a—c). In Section 3, the implementation details
are discussed and third-order convergence of the method is verified for a closed-form
solution of (1a—c). In Section 4, we apply our method to a disk, rectangles, an ellipse,
a non-symmetric shape, and a multiply-connected region. Finally, in Section 5 we
discuss the results and areas of future investigations.

2 Integral equation formulation of the clamped eigenvalue problem

In this section, we first compute and analyze the fundamental solution of the modified
biharmonic operator A?> — A. We then use the fundamental solution to reformulate
Eq. 1 as a system of second-kind boundary integral equations with compact integral
operators.

2.1 Fundamental solution

We require the fundamental solution G(x, y) of the modified biharmonic operator
satisfying
A’G — G =8(x—y), x € R?,

where A = pu*. The factorization A2—u* = (A—u?)(A+ur?), and the fact the funda-
mental solution is radially symmetric, imposes that G (X, y) is a linear combination of
the Bessel functions Jo(up), Yo(up), lo(up), and Ko(up), where p = |x —y|. Using
a linear combination of the two singular Bessel functions that decay as r — oo, the
fundamental solution centered at y is of the form

Gx,y) =c1Yo(u|x —y]) + c2Ko(u|x —yl).

To find the appropriate constants ¢y, ¢3, we use the identities (A + Mz) Yo(ulx—yl|) =
—48(x—y) and (A —u?)Ko(u|x—y|) = —278(x—y), and compute the fundamental
solution by solving

(A — u) (A + e Yo(ulx —y) + (A + p?)(A — uHer Ko(ulx —y)) = 8(x — ).

This calculation reveals that the fundamental solution of A2 — u* centered at y is

1
Gx,y) = —c—5Yo(ulx -yl — Ko(ulx —yl). (6)

8 47t 2
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We will be using G in an indirect integral equation formulation, and this will require
the behavior of the fundamental solution when x — y. Without loss of generality, we
take y = 0 and expand the fundamental solution for small |x|. Using small argument
approximations of the Bessel functions (cf. [1]), as x — 0, we have

. |X|2 4 |X|2 M 4
Gx,0)=—loglx| (1 +O0(x|") )+ — (—-1+y+log(=)+O(x")),
8 8w 2
where y & 0.5772156649 is Euler’s constant. As mentioned in the introduction,
a key behavior of the solution of (1a—c) is the local behavior (4) near each of the
defects. Since the fundamental solution satisfies this required behavior, the solution
of (1a—c) can be written as

M
u(x) =us(x) +ur(x),  us(x) =87 Y ;G X)), (7)
j=1

where G(X,y) is given in (8a, b). In Section 3.2, we describe an inexact Newton
method to find the strength of the defects {o }?”: | and the eigenvalues A. The decom-
position (7) of the solution as the sum of a singular and regular part allows for the
local behavior (4) to be precisely enforced while the regular part up satisfies the
homogeneous fourth-order PDE

Augp —rug =0, xeQ; (8a)
Ur = —ug, OpuRr = —dyus, X € 012, (8b)

where ug is specified in (7). We note that in [39], the singular part was chosen to be

M
2
us(x) = Zajlx—xj| log [x — x;|.
Jj=l

While this choice has the correct local behavior (4), it leads to a forcing term in the
PDE for u g that, for a boundary integral equation method, is prohibitive. However,
the boundary conditions (8b) in our new formulation depends nonlinearly on the
unknown eigenvalue A.

Once the functions us and ug are computed, they can be easily evaluated at
the locations of the clamped points. This is used to iteratively solve the non-linear
equation (Section 3.2)

us(Xy) +ur(xp) 0
F(z) = : =11, )
ug(XM) + ”RZ(XM) 0
a] 4+ .0+ aM —1 0
where z = (aq,..., oy, A). The particular normalization condition Z?/I=1 oejz. =

1 is chosen purely for ease of implementation. Once a solution is obtained, the
eigenfunction can be normalized according to (1a—c) or any other condition.
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2.2 Computing the regular solution u g

Equation 2.1 is linear and homogeneous, so it can be recast in terms of a boundary
integral equation. In this section, we describe appropriate layer potentials. Since the
PDE is fourth-order, a sum of two linearly independent layer potentials must be used.
The regular part u g is written as

UR(X) =/ Gi(x, y)Ol(y)dsy+/ G2 (x, y)or(y)dsy, 10)
R 02

where G| and G, are linear combinations of G and its partial derivatives. The
choice of G| and G determines the nature of the boundary integral equation which
plays a crucial role on the conditioning of the linear system that arises after dis-
cretization. In particular, G| and G should be chosen so that the resulting boundary
integral equation is of the second-kind with compact integral operators. This means
that the limiting values of the layer potential ansatz (10) must have jumps that are
proportional to o1 and o2 as X — 9€2, and the kernels must be integrable.

To find kernels G| and G, with these desired results, we use the work of
Farkas [22] who formulated the desired second-kind integral equations for the fourth-
order biharmonic equation. For the biharmonic equation with Dirichlet and Neumann
boundary conditions, Farkas proposed the kernels

G1(X,Y) = Gunn + 3Gnze,
Ga(x,y) = AG — 2Gnn,

where the normal vector n and tangent vector 7 are taken with respect to the source
point y. Since the leading order singularity of G, % 1x|2 log |x|, is equal to the funda-
mental solution of the two-dimensional biharmonic equation, the jumps in the layer
potential (10) agree, to a first approximation, with the jumps found by Farkas. In par-
ticular, any additional jumps in G| and G> will result from the higher-order terms in
the expansion of G. Since the higher-order terms contain singularities of strength no
less than |x|®log |x|, no additional jumps will be present as long as G| and G, do
not involve derivatives of order six or higher. Since the derivatives G| and G, are no
more than third-order, the jumps of G; and G, will agree with those computed by
Farkas.

2.3 Explicit expressions of the kernels

For x, y € 02, we require the four kernels

Gux,y) = Gi(x,y),
Gix,y) = Gax,y),

d
Gr(x,y) = o Gi(x,y),
X
d
Gn(x,y) = on Ga(x,y).
X
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Substituting the fundamental solution (8a, b) into these expressions, and using the
identities
r-n 0 0 r- Ny

0 d
S~ r-n :_1’ " :_2_3 r-n — 1, :_2—’
an( ) an'o p? anx( ) 8nx'0 p?

where r = x—y, p = |r|, n = ny, and similar identities for the tangential derivatives,
the kernels G and G, are

1
A7 12

. )3 .
<3M3K 1(Mp)(r’fn) — 23K () p?) + 61> Ko (14p) (rpzn)

2 (r-n)3 (r~n)3 (r-n)
—8u”Ko(up) o — 16p K1 (np) pe + 121K (up) >3

Gii=—

. 3 .
—— (—3M3Y1(Mp)(rTfl)+2u3Y1(/Lp)(rp?) —6//L2Y0(/J,p)(rp2n)

) (r-n)3 (r-n)3 (r-n)
+8u Yo (1up) o —16uY1(up) e + 121 Y1 (1p) 5 )

(r - n)? 2
Gpn=—-— [1-2—F3 (KO(M,O) + —K| (MP))
4 P up

1 (r-n)? 2
+g (127 (Yo(up) -—n (up)) :
P up

The expressions for G»; and G»; require one additional derivative of G1; and G15.
For completeness, these lengthy expressions are given in Appendix.

2.4 The boundary integral equation

As discussed in Section 2.1, all four kernels G;; have the same asymptotic behavior
as the fundamental solution of the biharmonic equation. Therefore, the boundary inte-
gral equation for o is identical to the boundary integral equation for the biharmonic
equation [22],

D(x)o (x) + /m Ax, y)o (y)dsy = g(x), (1)
where
1
-0
px=| 2 |,
—k (X) 3
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Kk (X) is the curvature of €2 at x, and

us o1 G G2
= — , 0= , A= .
& <3nus> (02) (GZI Gzz)
To apply quadrature formulae, the limiting values of G;; as X — y are required.

These can be found by applying L’Hopital’s rule to each of the four kernels. For x, y
on 92 we have

lim G1(x,y) =0,
y—X

1
lim G2(x,y) = —«(X),
y—>x A7

3 (12)
Iim G71(x,y) = ——«(X)7,
y—X 4

lim Gy (x,y) = LK(X).

y—X 2
Since we only consider smooth geometries, the four kernels G;; are continuous, and
the integral operator f 90 AX, ¥)o (y)dsy is compact from L;(9€2) x L2(9€2) to itself.
Therefore, we are guaranteed that the density functions are square-integrable since
the boundary conditions are also. Moreover, the density functions are guaranteed to
be continuous (Proposition 3.13 in [25]).

3 Numerical methods

Here we describe a numerical method for solving the boundary integral Eq. 11
(Section 3.1), applying an inexact Newton method for (9) (Section 3.2), and an algo-
rithm for tracing the first eigenvalue, A, as clamped points are smoothly moved
through the geometry €2 (Section 3.3).

3.1 Discretization of the integral equation

We apply a standard collocation method to solve the second-kind boundary integral
Eq. 11. The boundary, 92, is first discretized at collocation points x;,i = 1,..., N.
To satisfy the boundary integral equation at these collocation points, we require

D(x;)o (x;) + /39 A(Xj, y)o (y)dsy = g(xi). (13)

The integral in (13) is approximated with the trapezoid rule where the abscissae are
the collocation points which yields the dense linear system

N
D(x;)o; + ZA(X,', Xj)ASjO’j =g,
j=1

@ Springer



A. E. Lindsay et al.

where 0; = 0(X;), g = g(X;), and As; is the Jacobian of the curve at point Xx;.
The limiting values from (12) are used for the diagonal terms A(x;, x;) of the linear
system.

The convergence order of the method depends on the regularity of the kernels G;;.
The regularity of the kernels can be computed by taking a simple geometry, such
as the unit circle, fixing x, and computing the limit as y — x of G;;(x,y) and its
derivatives. These calculations reveal that

G11 €C3, G12€C3, G21 ECI, G22€C3.

This reduction in regularity of Gj; relative to the other three kernels was also
observed by Farkas [22]. The accuracy of the trapezoid rule for a periodic C* func-
tion is k + 2, so we expect third-order convergence because of the C! regularity
of G»;. Higher-order accuracy can be achieved by using specialized quadrature [2,
33] designed for functions with weak logarithmic singularities. Once values for the
density function o ; are computed, we can compute u g (x) for any x € 2 with spec-
tral accuracy. In particular, we compute the value at the clamped locations with the
trapezoid rule to yield that

ur(x) = / Gi(x,y)o1(y)dsy + / Ga(x,y)o2(y)dsy
02 19

2
~ (G1(x,¥))o1; + Ga(x,yj)02;) As;.
J

If a target point x is sufficiently close to €2, then the accuracy of the trapezoid rule
will be diminished due to large derivatives in G; (X, y). In this case, we simply upsam-
ple the geometry and density functions so that sufficient accuracy can be achieved at
the clamped locations.

3.2 Nonlinear solvers

To solve the nonlinear Eq. 9 for {« j}y: | and A, we apply one of two strategies. First,
in symmetric cases such as the disk geometry, if the clamped points are equidis-
tributed in the azimuthal direction at a fixed radius, then «; = - - - = apy. Therefore,
aj =M -3 for j = 1,..., M, and the only parameter remaining is A. For such a
case, and any scenario in which symmetry considerations reduce the unknown to just
A, a bisection method can be applied to reliably solve (9) since convergence to the
desired root is guaranteed for an appropriately chosen initial interval. This method is
generally preferred in cases where all the «; are equal and the single unknown is the
eigenvalue itself.

Second, when symmetry can not be assumed, we apply an inexact Newton’s
method to (9). In our calculations, the Jacobian matrix J of F is formed by finite
difference approximations which we have found to be accurate and efficient.

We validate the method with the unit disk geometry. A closed-form solution
of (1a—c) can be developed in the special case M = 1 and x; = (0, 0). In a similar

@ Springer



A boundary integral equation method for mode elimination...

manner to the construction of the fundamental solution (8a, b), a linear combination
of Ko and Y( can be chosen to eliminate the logarithmic singularity at the origin.
Therefore radially symmetric eigenfunctions of (1a—c) are a combination of Yy (up),
Ko(up), Jo(up) and Io(up) with p = |x|. The eigenfunctions that are finite at the
origin and satisfy #(0) = 0 and u(1) = 9,u(1) =0 are

Jo(o,n) — To(eo,n) 2
— 9 9 _K n Y n
“() [(%KO(MO,H)+ Yo(Mo,n)> <7T 0k0.10) + Yolto, p))

Jo(o,np) — IO(MO,nP)]

where A is a normalization constant and the eigenvalues Ay, = M3 , satisfy the
relationship

2 K1 (ko) + Y1(10,n) B 2 Ko(po.n) + Yo(1to.n)
J1(o,n) + I (ro,n) Jo(ro,n) — Io(pon)

(14)

The smallest positive solution of (14) gives rise to the eigenvalue Ayye & 516.9609.
This solution provides a benchmark against which the efficacy of our numerical
method can be verified. We compute the relative error £ between the numerically
determined value of Ay and the exact value Ayye. In Fig. 3, the numerical error
scales O(N ~3) as the number of boundary points N increases which agrees with our
expected third-order convergence. In this example, the bisection method was used,
and the strength of the singularity is o« = 1.

grel

32 128 512 2048

N

Fig. 3 The relative error (black) of our numerical method when using the bisection method to find the
first eigenvalue of (1a—c) with a single clamped point at the center of the unit disk. A line of slope —3
(red) indicates the expected third-order convergence
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3.3 Initialization, parameterization of puncture patterns, and arclength
continuation

The solution of the nonlinear system (9) by Newton’s Method relies on good initial
iterates. In addition, a careful selection of the initial guess is necessary to reliably
locate the lowest mode of the punctured problem (la—c). For the unit circle, we start
with the clamped points at the center of the circle and initialize Newton iterations
for (9) with the known eigenvalue A ~ 516.9609 for a single clamped point at the
origin. For other geometries, we start the clamped point near 0€2. In this scenario,
Eq. 9 is initialized with a mode of the unclamped problem (3) calculated from a
low-accuracy finite element approximation [30]. Once a solution of (1a—c) has been
generated, the punctures are gradually moved, and (9) is repeatedly solved until the
punctures occupy a specified target set. In practice we apply Newton iterations until
the €2 norm of the solution residual F (Eq. 9) is less than 1 x 10~>—this generally
requires 2 or 3 iterations.

In the examples that follow, we compute eigenvalues A = A(r) of (1a—c) for fam-
ilies of puncture patterns described by a single parameter r > (0. For reasons of
efficiency and to provide robustness to the Newton iterations, we use arc-length adap-
tively to focus resolution at sharp peaks of the curve as compared to the surrounding
areas. The algorithm to find points on the curve A = A(r) is initialized with a rela-
tively large step size dr with the concavity monitored until proximity to an extrema is
detected. Once an extrema of the curve is detected, dr is reduced based on the current
slope up to a minimum allowable step size.

4 Numerical examples

In this section we demonstrate the effectiveness of the method on regular and irreg-
ular domains. However, we only consider smooth boundaries to avoid specialized
quadrature for corners in an integral equation framework. To understand the role
of clamping in the eigenvalue problem, and interpret the results obtained with our
numerical method, we recall from (5) that

M
(A= 2% (. u*) = =87 Y aju*(x;), (u, u*) = f u(x)u* (x) dx,
Q

j=1

which relates the modes (A, u) of (1a—c) to the unclamped modes (A*, u*) of (3). In
each of the examples that follow, we use a P finite element method [30] to obtain
the required solutions of (3).

All calculations, except those in Fig. 10, were performed on a desktop computer
with a 3.4 Ghz i7 processor and 16GB of RAM. The results of Fig. 10 feature 27
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separate runs which were run in parallel on the Center for Research Computing
(CRC) cluster at the University of Notre Dame.

4.1 Unit circle

The relationship (5) shows how the distinct eigenvalues and eigenfunctions of the
clamped and unclamped problems, (1a—c) and (3), respectively, are related. For each
domain it is therefore important to consider the solutions (A*, u*) to understand the
effect of puncture configurations.

For the unit disk case, the solutions of problem (3) are found by first factorizing
A% — u* = (A — ) (A + u?) = 0 which indicates that the basis for the space of
eigenfunctions is

; 1/4

™ (o (mn£)s Yo (o 0)s Ko GmnP)s In(Bomn )Y, Mo = Ao
where p = |x|. The indices m = 0, £1, &2, ... indicate the angular wavenumber
(and number of angular nodal lines) where as n = 0, 1, 2, ... counts the number of

radial nodal lines for each wavenumber. In the unclamped problem (3), the smooth
eigenfunctions satisfying u* = d,u* =0on p = 1 are

u* 0) = eim@ J * _
m,n(lo ) [ m(Mm,n/O) I,n ,LL:n’n)

I (M;m/?)} :

with the eigenvalues u;, , determined by the relationship

Ty Wy ) I () = T G ) Tt () (15)

The first four eigenvalues A}, , = (uy,,. )%, found from the numerical solution of (15),
are

Mo =1044, A7 (=4520, A, =12164, A5, =1581.7. (16)

In Fig. 4, the first few eigenfunctions are plotted with the nodal lines along which
u* = 0 highlighted. For punctures away from the origin, we seek solutions of (1a—c)
with parameterized puncture sets to minimize the number of unknowns over which
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Fig. 4 The contour lines of the first 15 modes of the unclamped problem (3) on the unit disk. The nodal
lines (u* = 0) are plotted in black. Eigenfunctions are repeated according to their multiplicity

nonlinear iterations are processed. In the disk case, our first example is a single ring
of punctures given explicitly as

2mj 2mj

X, =r|cos—,sin— ), i=1,..., M. 17
J r( M M) J (17)

There is now a single parameter r over which various configurations can be inves-
tigated from 0 < r < 1. From the eigenvalue A ~ 516.96, which is the lowest
positive solution of (14), we form an initial guess for the Newton iterations. Since
our search pattern (17) is radially symmetric, the puncture strengths {o j}?’lz , can be
assumed to be identical in this case.

In Fig. 5 we see that as the eigenvalue is varied, A attains a maximum value
depending on the number of punctures and the radius of the ring. In Table 1, we
display the maximum value of the lowest eigenvalue A, and the critical radius r, of
puncture ring where it is attained. The results in Table 1 for increasing values of M are
in good agreement with [39] and show the principal eigenvalue A, is bounded from
above and does not increase with the addition of more than four clamping points.
That is, the first eigenvalue saturates.

To explain the saturation effect, we recall Eq. 5 that relates the puncture and
puncture free modes. Consider a mode (A}, u}) of the puncture free eigenfunction
problem (3) such that u}(x;) = 0, for j = 1,..., M. Then from (5) we have that
(A—=A%) (u, up) = 0. This implies that either A = A} or (u, u}) = O so thatif u — u,
then A — A}. From this we conclude that by centering punctures on the nodal set of
a puncture free eigenfunction u7, then that eigenfunction becomes a mode of (la—c)
thereby eliminating other modes from the spectrum.
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1500 T

a s wN

0 0.2 04 06 0.8 1

(a) Single puncture ring pat- (b) The lowest eigenvalue against ring ra-
tern dius

Fig. 5 Left: A disk with a single ring puncture configuration (red dots). Right: The lowest radially sym-
metric eigenvalue as a function of the puncture ring radius r. The integral Eq. 11 is discretized with
N = 128 boundary points

In this disk case with a single ring of punctures, saturation occurs when the punc-
tures are placed on the nodal set of ”6,1(M6,1 p)—the mode with zero angular nodal
lines and one radial nodal line. From (16), we see that the corresponding eigenvalue is
Ay.1 = 1581.7 which agrees closely with the saturating value in Table 1. The critical
radius r, is found by solving

ug (up re) =0 = r.~0.379,

which agrees closely with the numerical results in Table 1.

The practical importance of this phenomenon is that undesirable frequencies of
the plate can be removed by specific placement of clamping locations. For exam-
ple, the placement of five clamped points equally spaced on a circle of radius
re ~ 0.379 yields that the lowest mode of (1a—c) becomes ”6,1 ~ 1585.3, and the
first four (including multiplicities) vibrational frequencies in Fig. 4 have been tuned
out. For four equally spaced clamping points, the lowest mode would have been
)‘5,0 ~ 1218.9 resulting in the lowest three modes being tuned out.

Table 1 The maximum value A, of the lowest eigenvalue of the unit disk with a single ring of punctures

M 2 3 4 5 6 7 8
re 0.222 0.348 0.379 0.379 0.379 0.379 0.379
Ae 734.96 1264.2 1581.5 1581.5 1581.5 1581.5 1581.5

The values are obtained by numerical simulations with N = 128 boundary points
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4.2 Rectangular domain

In this section, we consider rectangular domains and demonstrate a qualitative agree-
ment with a previous study [23] on the localization of eigenfunctions of (la—c). We
parameterize the boundary as

(x,y)=(ar@)cosO,br(®)sind), 0 ¢€l[0,27), r@) = [cosp9 + sin” 9]_% ,
(18)

where p is a parameter which regularizes the corners of the rectangle while a and
b give the aspect ratio. We use p = 16 in our calculations. Our first simulation
investigates the effect of a single clamping location on the eigenvalue A of (la—c).
We take a single clamped point and vary its location on the horizontal axis while
calculating A(r) for r € (0, 1) where r = 0 and r = 1 correspond to the left and
right hand boundaries. In the curve Fig. 6b we see that the lowest eigenvalue attains
a maximum at r = 1/2 when the clamping occurs at the origin. The value of A
at that peak corresponds to the second unclamped mode seen in eigenfunction of
Fig. 6a. Therefore a single clamping point placed at the center of the rectangle shifts
the first mode of the clamped problem (1a—c) to the second mode of the unclamped
problem (3).

In our second simulation, we investigate the effect clamping points has on the
eigenfunctions oscillations (cf. [23]). In Fig. 7 we display two modes for (1a—c) for
the rectangular domain with @ = 2, b = 1/2 with one and two clamped points.
The main observation is that a result of clamping is a confinement region, i.e. the
eigenfunction is effectively zero on either the left or right of the clamping point.

A= 1510 260
=N\ 240 |
T * 77 I
N ,
— . 200 |
A = 253.3 180
. _ R I
S L
Al -
ae -
- | K 140 : : : :
N N // 0 02 04 06 08 1
— T
(a) The first two unclamped (b) The first clamped mode along the centerline
modes.

Fig. 6 Results for the rectangular domain (18) with a = +/2, b = 1/+/2 and a single clamped point on
the horizontal axis. The eigenvalue attains its maximum when clamping is at the origin
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A = 530.8 A = 555.0
1 1
0.5 : 0.5
- - |
0.5 : -0.5
1 1
A = 7880.0 A = 7861.0
1 1
- 05 - » 05
I 3
0.5 _ O -0.5
1 -1
(a) One clamped point. (b) Two clamped points.

Fig. 7 Mode confinement effect with one (left panel) and two (right panel) point constraints on higher
(bottom) and lower (top) modes of (1a—c) in the rectangular domain (18) with @ = 2, b = 1/2. Clamping
occurs on the horizontal axis at locations (1.2, 0). The simulations use N = 512 discretization points of
the domain’s boundary

4.3 Elliptical domain

In this section, we consider Eq. 1 on the elliptical domain defined parametrically as
Q= (x,y) = (acosb,bsinf), 0 €10, 2m). (19)

As with the disk problem, the defect free eigenfunctions u* satisfying Eq. 3 gives
insight into the effect that puncturing will have on the modes. In Fig. 8, we display
the first 15 modes of (3) for a = %, b= % with nodal lines. The choice a = b~ ! is
made so that the ellipse has area 7.

@ dio <= P
= dilb ) > &
s—F = dlill

Fig. 8 The first 15 clamped modes of (3) of an ellipse (19) with a = 3/2, b = 2/3. The nodal lines
(u* = 0) are in black
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As with the disk domain, we determine solutions of (la—c) over one parameter
families of puncture patterns. In this example we choose inscribed ellipses, circular
patterns, and rectangular patterns. For the elliptical and rectangular cases, the aspect
ratio of the puncture pattern is chosen to be the same as the outer ellipse and the
pattern is stretched in a uniform way by a single parameter r (cf. Fig. 9).

The results for the puncture patterns corresponding to Fig. 9 and the circular pat-
tern Fig. 5 are given in Fig. 10. The curves show that the pattern that generates the
maximum eigenvalue varies for different M. The horizontal axis is a positive parame-
ter r which is a scale factor controlling the size of the pattern. The elliptical puncture
pattern generates the largest eigenvalue for all M tested except for M = 5 where the
rectangular pattern generates a higher value. The circular pattern generally results in
a lower maximum eigenvalue than the other patterns tested, expect in the M = 4 case
where the circular example generates a slightly larger value than the rectangle.

The discussion from the previous circular and rectangular examples, together with
formula (5), suggest that clamping along the nodal lines of the unperturbed mode
results in a maximum deviation of the eigenvalue A of (1a—c). This suggests that the
better performance of the elliptical pattern in maximizing the eigenvalue is that it
more closely places punctures on the nodal lines (cf. Fig. 9) of u*(x).

4.4 Non-symmetric geometry

Here we consider the asymmetric domain whose boundary €2 is specified paramet-
rically as

= (r(@)cosf,r(@)sinf), 6 €[0,2x); r(0) = 140.25 sin 6+0.15 cos 30,

and investigate the solution of (1a—c) with a single clamped point. As in the previous
examples, the first step is to consider the eigenvalues of the hole free problem (3).
The first two modes are shown in Fig. 11a.

M=4 M=5 M=6

M=7 M=38 M=9

1\[*11 M*lz

(a) Ellipse puncture patterns. b) Rectangular puncture patterns.

Fig. 9 Elliptical and rectangular puncture patterns for M = 4, ..., 12, inside an ellipse (19) with a =
3/2, b = 2/3. The aspect ratio of the patterns matches that of the outer ellipse
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M=4 M=5 M=6
2500 2500 2500
2000 2000 2000
A1500 A1500 A1500
1000 1000 1000
500 500 500
0 r 0.6 0 r 0.6 0 r 0.6
M=7 M=38 M=9
2500 2500 2500
2000 2000 2000
A1500 A1500 A1500
1000 1000 1000
500 500 500
0 0.6 0 0.6 0 r 0.6
M =10 M=11 M =12
2500 2500 2500
2000 2000 2000
A1500 A1500 A1500
1000 1000 1000
500 500 500
0 r 0.6 0 r 0.6 0 r 0.6

Fig. 10 The first eigenvalue of (1a—c) for the ellipse (19) witha = 3/2,b =2/3 and M = 4,...,12,
punctures. Curves for rectangular (blue), elliptical (black) and circular (red) patterns

To initiate Newton iterations for this example, we begin with a single clamped
point near the boundary so that the unperturbed mode A* &~ 118.3 in Fig. 11a pro-
vides a good initial guess for the system. From this start point, we vary the puncture
location along a straight line (blue line in Fig. 11a) through the center of the domain
to the opposing boundary. The maximum of this curve is attained when the clamp-
ing location coincides with the maximum of the first eigenfunction, occurring at the
solid dot shown in Fig. 11a.

In this example we again see that the first frequency can be tuned out of the vibra-
tional characteristics of the plate by careful placement of just one clamping point.

= 1182 =413.3
450 :
400
350
A
300
250
200
150
100
0O 02 04,06 08 1
) The first and second unpunctured modes. (b) The first punctured eigen-
value.

Fig. 11 Panel (a): The first two modes of the hole free problem (3). Panel (b): The first eigenvalue
of (1a—c) for a clamped point located a distance r along the blue line in panel (a)
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(a) Domain and first un- (b) Effect of clamping along an ellipse.
clamped mode.

Fig. 12 Non simply-connected domain example: Left: The first mode corresponding to A* = 454.1 with
the shaded confinement zone in which u* ~ 0. Right: The clamped eigenvalue for a single point on inner
ellipses with a = 0.95 and b = 0.5 (red curve), 0.6 (blue curve), 0.7 (green curve). The clamped modes
corresponding to the black squares are shown in Fig. 13

4.5 Non-simply connected geometry

In this section, we consider a non-simply connected domain comprised of the
unit disk with a circle of radius 0.2 and center (—0.3, 0) removed. This multiply-
connected domain has a confinement zone in the eigenfunction (see Fig. 12).
Throughout this confinement zone (shaded region of Fig. 12a), the eigenfunction is

0.1
0.2
03
0.4
05
106
0.7
08
0.9
-1

(a) b= 0.5. (b) b=0.7.

Fig. 13 The clamped modes corresponding to solid squares in Fig. 12b. The mode changes sign in the
vicinity of the clamping point. Left: The single clamped point is x; = (0.114,0.496) and A = 494.5.
Right: The single clamped point is x; = (0.648, —0.512) and A = 503.4

o
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very close to zero indicating again that small defects (holes, clamping points) cause
a global perturbation to the modal characteristics in the fourth-order problem (1a—c).
To investigate the effect of clamping, we vary the location of a single clamped
point along an inner ellipse with parameterization (19) for a = 0.95 and the three
values b = 0.5, 0.6, 0.7. The results, displayed in Fig. 12b, show the eigenvalue as a
function of angular position on the ellipse. The flat region in the center of each curve
corresponds to the transit of the clamped point through the confinement zone. In this
region the eigenfunction is very close to zero (u* =~ 0), therefore the formula (5)
shows that the eigenvalue should correspond to the unperturbed mode of Fig. 12a.
In Fig. 13 we show two typical clamped modes which correspond to the particular
clamping locations marked in Fig. 12b. In each case a large confinement zone is seen to
the left of the hole while the mode is also suppressed in the vicinity of the clamped point.

5 Conclusions

This paper has analyzed the modes of vibrations of thin elastic plates with multiple
point constraints. We have developed and validated a novel boundary integral method
for determining the eigenvalues of the fourth-order bi-Laplacian problem (la—c)
with multiple clamped point constraints. This method is third-order accurate and
can be easily applied to a variety of symmetric, asymmetric and multiply-connected
geometries in two dimensions.

Our results indicate that the number and location of clamping points has two pro-
found effects on the modes of vibrations of thin plates. First, by placing the clamping
locations at the nodal lines of the unclamped eigenfunctions, certain eigenvalues
can be removed from the spectrum of the problem. This implies that the vibrational
characteristics of the plate can be manipulated or tuned by judicious placement of a
small number of clamping sites. A particularly important consequence of this effect
in engineering applications is that undesirable frequencies of vibration can be com-
pletely removed. Second, clamping can have the effect of partitioning the plate into
multiple subdomains in which vibrational modes are largely confined to a subset of
those smaller spatial regions. This localization effect, previously seen only in rect-
angular plates with a single clamping location [23], has been observed here in other
geometries and for multiple clamping locations.

There are many possibilities for future work that arise from this study. The order
of the numerical method could be improved by adopting quadrature methods (cf. [2,
33]) suited to integrals with logarithmic singularities. In addition, the boundary inte-
gral equation could be more efficiently solved with a fast summation method such as
the kernel-independent fast multipole method [52]. A more significant challenge is to
develop a numerical method for the point constraint eigenvalue problem (1a—c) which
does not require the solution of a nonlinear system, such as (9), but still enforces
the weak logarithmic singularity on the eigenfunction. This would eliminate the use of
Newton’s method and the need to carefully control the initial conditions of the system.
Such a method would easily accommodate a much larger number of clamping locations
and allow for more reliable evaluation of the high frequency modes of (1a—c).
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Appendix: Kernels

The four kernels that appear in the integral Eq. 11 are G11 = G1, G2 = G2, G =
onxG1, and Gy = dnxG». Expressions for G11 and G, are in Section 2.3. Here we
compute their normal derivatives with respect to the target point.
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