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Abstract. Numerical and analytical methods are developed for the investigation of contact sets in electrostatic-elastic
deflections modeling micro-electro mechanical systems. The model for the membrane deflection is a fourth-order semi-linear
partial differential equation and the contact events occur in this system as finite time singularities. Primary research interest
is in the dependence of the contact set on model parameters and the geometry of the domain. An adaptive numerical strategy
is developed based on a moving mesh partial differential equation to dynamically relocate a fixed number of mesh points to
increase density where the solution has fine scale detail, particularly in the vicinity of forming singularities. To complement this
computational tool, a singular perturbation analysis is used to develop a geometric theory for predicting the possible contact
sets. The validity of these two approaches are demonstrated with a variety of test cases.

1. Introduction. The present work is concerned with numerical simulation and singular perturbation

analysis of the initial-boundary value problem of a fourth-order parabolic partial differential equation (PDE)

(1)


ut = −ε2∆2u− 1

(1 + u)2
, (x, t) ∈ Ω× (0, T );

u = ∆u = 0, (x, t) ∈ ∂Ω× (0, T );

u(x, 0) = 0, x ∈ Ω;

in a variety of bounded two dimensional geometries Ω. The system (1) models the non-dimensional vertical

deflection z = u(x) for x = (x, y) ∈ Ω of a Micro-electro mechanical systems (MEMS) capacitor [30, 35, 37].

The MEMS capacitor is a key component of modern nanotechnology [3, 44, 45] that features a deformable

elastic membrane held fixed above a rigid substrate (see Fig. 1(a)). When an electric potential is applied

between the deflecting plates, the top surface deforms towards the substrate. In equation (1), the parameter

ε quantifies the relative importance of electrostatic and elastic forces in the system. If the restorative elastic

forces are too weak, the attractive Coulomb forces between the two surfaces will bring them into physical

contact. This event, called touchdown or snap-through, can be useful or deleterious to operation, depending

on the design of particular MEMS. The mechanism of the pull-in phenomenon has been studied extensively

and many references can be found in the reviews [3, 52].

The design and operation of MEMS can be aided by placing physical limiters or constraints at locations

where contact between the two membranes is more likely [25]. These limiters can prevent damage to the

device that could occur when the two surfaces meet. In addition, they allow for bistability in the system by

creating stable large deflection configurations [26, 27, 30, 32, 40]. Therefore, it is important to know at which

location(s) in Ω singularities can form. In the one-dimensional case with Ω = (−1, 1), equation (1) can form

one singularity at the origin or two singularities located symmetrically about the origin, depending on the

particular value of ε [29]. In the physically relevant two-dimensional scenario, the details of the geometry Ω
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(a) Schematic diagram. (b) A MEMS device (source: [42])

Fig. 1. A MEMS device (right) and a schematic (left) around which models are formulated.

and the dependence on the parameter ε combine to make the set of possible singularity locations much more

complex [31, 33].

Touchdown is a very rapid process in which energy is rapidly focussed in small spatial regions of Ω. This

process is manifested in the governing equations (1) by a finite time quenching singularity. The term

quenching refers to the fact that u(x, t) is finite at the point of singularity while ut(x, t) diverges as t→ T .

Theoretical results on the quenching behavior of fourth-order parabolic equations such as (1) have established

conditions under which quenching may occur [28, 29], studied the local form of the profile near singularity

[4, 14, 29, 33] and given upper and lower estimates of the singularity time [13, 29, 39]. For reviews on the

extensive literature on blow-up/quenching for parabolic PDEs, see [15] and references therein.

The aim of this paper is to explore, through numerical simulations and asymptotic analysis of (1) as ε→ 0,

the potential set of locations at which touchdown may occur. In particular, we consider how the complex

geometry and topology of MEMS devices, as seen in Fig. 1(b), influences the possible set of contact locations.

We present an adaptive moving mesh strategy [24] for the solution of (1) which dynamically relocates the

mesh points to provide resolution in the vicinity of forming singularities. An example of our method for the

rectangular domain Ω = (−1, 1)× (−0.8, 0.8) is shown in Fig. 2 which shows either 4, 2 or 1 contact points

for different values of ε. The sensitive dependence of the contact set on the domain Ω and parameter ε will

be explored with a geometric skeleton theory (Sec. 2) and adaptive numerical simulations (Sec. 3).

(a) ε = 0.02. (b) ε = 0.068. (c) ε = 0.1.

Fig. 2. Solutions u(x, t) of (1) at touchdown for ε = 0.02, 0.068, 0.1 in the rectangle Ω = (−1, 1)× (−0.8, 0.8).
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In previous computational studies of singularity formation in second-order PDEs, moving mesh methods

based on parabolic Monge-Ampére (PMA) discretization have been successfully employed in one-dimensional

[8] or rectangular two-dimensional domains [6, 7, 9]. The PMA moving mesh approach has recently [10]

been extended to the fourth-order PDE problem (1) by constructing a high regularity mapping between

the computational and physical domains. The study [10] was based on a finite difference discretization

of the PMA equation that restricted computations to rectangular domains. The main contribution of the

present work is a combined asymptotic and adaptive numerical framework for the resolution and location

prediction of singularities for (1) in non-simply connected two-dimensional regions utilized in real MEMS

devices (cf. Fig. 1(b)).

The outline of the paper is as follows. In Sec. 2 we outline a geometric theory for predicting the location of

singularities based on a singular perturbation analysis of (1) as ε → 0. We find that singularities are more

likely to form on a set SΩ ⊂ Ω known as the skeleton. The skeleton of Ω is defined roughly as the collection

of points x ∈ Ω at which inward facing normal vectors meet at points equidistant to ∂Ω. This geometric

construction is a unique minimal representation of the domain Ω and is widely used in computer vision to

store two- or three-dimensional objects [34].

In Sec. 3 we describe a precision numerical tool for exploring the touchdown set of equation (1) in general

two-dimensional geometries. The adaptive strategy underpinning this method is a moving mesh partial

differential equation (MMPDE) which dynamically relocates the mesh points to increase the density in

regions where the solution has fine scale detail requiring additional spatial resolution. A notable strength

of this method is the ability to resolve solutions very close to singularity in non-convex and non-simply

connected geometries. A finite element method is used to discretize the system (1) on the dynamic mesh.

In Sec. 4 we employ the numerical method to investigate the singularity set of (1) for a variety of symmetric,

asymmetric, and non-simply connected domains. In the case of the rectangular domain with two point

symmetries, we find the singularity set to be well described by the skeleton SΩ. In particular, we observe

that the symmetries of the domain allow for touchdown to occur at multiple locations simultaneously. In

domains without symmetries, we observe that the set of possible touchdown locations is more complex and

that single point touchdown is the expectation for fixed ε values. In such cases we find the analytical SΩ to

provide a good qualitative prediction of the set of potential contact locations. Finally in Sec. 5 we summarize

the results of the paper and highlight areas for future work.

2. A geometric theory for singularity set prediction. In this section, we use asymptotic analysis

in the limit as ε→ 0 to establish a prediction of the singularity set of (1). This theory explains the sensitivity

of the contact set and the multiplicity of touchdown points on the parameter ε and the geometry Ω.

2.1. Asymptotic analysis. In the leading order analysis of (1) as ε→ 0, it is assumed that the term

−ε2∆2u is negligible almost everywhere, except in the vicinity of ∂Ω. This suggests that the solution is

largely spatially uniform satisfying u(x, t) ∼ u0(t), where u0(t) is the solution of the initial value problem

(2a)
du0

dt
= − 1

(1 + u0)2
, t ∈ (0, T0), u0(0) = 0.
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The solution of (2a) is

(2b) u0(t) = −1 + (1− 3t)
1
3 , t ∈

(
0,

1

3

)
.

This gives a leading order approximation of the singularity time as T0 = 1
3 . We remark upon the quenching

phenomenon whereby u0 is finite as t→ T−0 while u0t diverges. Clearly (2b) does not satisfy the boundary

condition u = 0 on ∂Ω which must be enforced in a boundary layer. To analyze this layer for a general

geometry, we introduce an orthogonal coordinate system (ρ, s) where ρ = dist(x, ∂Ω) > 0, while s, for

x ∈ ∂Ω, denotes the arc-length along ∂Ω. In this coordinate system, (1) becomes

ut = −ε2

[
∂ρρ −

κ

1− κρ
∂ρ +

1

1− κρ
∂s

(
1

1− κρ
∂s

)]2

u− 1

(1 + u)2
, ρ > 0;(3a)

u =

[
∂ρρ −

κ

1− κρ
∂ρ +

1

1− κρ
∂s

(
1

1− κρ
∂s

)]
u = 0, ρ = 0,(3b)

where κ = κ(s) is the curvature of ∂Ω. To analyze the boundary layer in this new coordinate system, we

introduce the stretched variables

(4) u = f(t)w(z), z =
ρ

φ(t; ε)
, φ(t; ε) = ε

1
2 f(t)

1
4 , f(t) = −u0(t) = 1− (1− 3t)

1
3 .

The variables (4) are substituted into (3) and the resulting system is expanded in the form

(5) w(z) = w0(z) + φw1(z) + · · · .

Collecting terms at each order gives a sequence of problems for {w0, w1, . . .}. At leading order we have

w0zzzz −
z

4
w0z + w0 = −1, z > 0;(6a)

w0 = w0zz = 0, z = 0; w0 ∼ −1, z →∞.(6b)

While the solution of (6) can be developed in terms of hypergeometric functions, the resulting expression

is quite cumbersome and not particularly useful. The most important property is the behavior of w0(z) as

z →∞ which can be derived from a WKB analysis [31]. In particular,

(6c) w0(z) ∼ −1 +Ae−ωz
4
3 sin[

√
3ωz

4
3 + ψ] + · · · , z →∞,

where ω = 3 · 2− 11
3 and A,ψ are constants. The crucial observation from the limiting behavior (6c) is the

oscillatory decay for z large. This phenomenon is a manifestation of the lack of a maximum principle for

fourth-order equations. In particular, w0(z) attains its global minimum at a finite value, which can be

approximated numerically as z0 ≈ 2.89 - see Fig. 3.

At the next order, we apply the decomposition w1(z, s) = κ(s)w̄1(z) and find that w̄1(z) satisfies

w̄1zzzz −
z

4
w̄1z +

5

4
w̄1 = 2w0zzz, z > 0;(7a)

w̄1 = w̄1zz − w0z = 0, z = 0; w̄1 ∼ 0, z →∞.(7b)

The two profiles w0(z) and w̄1(z) are shown in Fig. 3.
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Fig. 3. The two profiles w0(z) and w̄1(z) satisfying (6) and (7).

The lack of monotonicity in the profiles of the stretching boundary layer lowers the value of the solution at

certain points. By superimposing the boundary layer solution with the flat solution u0(t), and subtracting

the overlap term, the following global solution at a particular x ∈ Ω is

(8) u(x, t) = u0(t)− u0(t)

N∑
j=1

(
1 + w0

(
|x− yj |

φ

)
+ φκ(yj)w̄1

(
|x− yj |

φ

)
+ · · ·

)

where φ = ε
1
2 |u0(t)| 14 . For each x ∈ Ω, the boundary points {y1, . . . ,yN} ∈ ∂Ω are those with inward facing

normal vectors that pass through x, i.e., points such that the straight line between x and yj is contained

in Ω and meets ∂Ω orthogonally. The quantity κ(yj) is the local boundary curvature at the point yj . The

asymptotic expansion (8) is valid for φ � 1 which corresponds to short times t � 1. In this regime, the

solution is composed of a flat central region coupled to propagating boundary interfaces.

2.2. The skeleton of the domain. We now use the asymptotic solution (8) to develop a predictive

theory for how the geometry Ω and ε combine to select possible singularity locations. The key reason for

the multiple singularity phenomenon (cf. Fig. 2) is the non-monotonicity of the profile w0(z) which lowers

the value of the solution at certain points in the domain and promotes faster touchdown there. As shown in

Fig. 3, the profile w0(z) has a unique global minimum at z = z0 whose value can be estimated numerically

as z0 ≈ 2.89. In light of this, and the arguments of the solution (8), the set of points

(9) ω(t) = {x ∈ Ω | dist(x, ∂Ω) = z0φ(t; ε)}

are particularly important. The condition (9) describes a curve of points (cf. Fig. 4(a)) that extend inwards

from ∂Ω a distance z0φ(t; ε) and along which the solution of (1) is, to first order in φ, at a local minimum.

In computer vision literature [34], this set is known as the firefront. In a radially symmetric scenario for

which the boundary is of uniform curvature, the singularities may form simultaneously along a ring of points

[31, 48]. For domains whose boundaries have non-uniform curvature, the effect is to promote touchdown at

certain points rather than along entire curves. This can be deduced from the asymptotic solution (8) by
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(a) ω(t) (b) SΩ

Fig. 4. The two sets ω(t) and SΩ on which touchdown may occur.

seeking a regular expansion solution zmin = z0 + φz1 + · · · of the equation ∇u = 0. This reveals that

(10a) zmin = z0 − αφ
1

N

N∑
j=1

κ(yj) +O(φ2), α = − w̄1z(z0)

w0zz(z0)
≈ 0.3533.

The corresponding asymptotic prediction of the minimum is found from (8) to be

(10b) u(x, t) |z=zmin
= u0(t)− u0(t)

N∑
j=1

(
1 + w0(z0) + φκ(yj)w̄1(z0) + · · ·

)
,

where numerically we determine the values

(10c) w0(z0) = −1.0822, w̄1(z0) = −0.1186.

Since w̄1(z0) < 0, we conclude that the solution will take lower values at points of ω(t) whose contributing

boundary points correspond to maxima of the boundary curvature κ(s).

As t increases and the curve ω(t) propagates, it may self-intersect at some time t = tS . If this occurs,

the solution minimum (10b) goes through a distinct change since the number of contributing boundary

points, N , increases. For example, in the scenario displayed in Fig. 4, the set ω(t) eventually intersects

the point x ∈ Ω which receives boundary contributions from the two points {y1,y2} and the number of

boundary contributions increases from N = 1 to N = 2. These points are important as multiple boundary

contributions arrive simultaneously and superimpose to lower the value of (10b) further - this set of points

is called the skeleton of the domain and denoted SΩ. The time tS is then known as the skeleton arrival time

and can be defined explicitly as

(11) tS = inf
t≥0
{t | ∃x ∈ SΩ, dist(x, ∂Ω) = z0φ(t; ε)} .

As indicted in Fig. 4(b), a point x ∈ SΩ if it has at least two closest boundary points, i.e., dist(x, ∂Ω) =

dist(x,yj) for {y1, . . . ,yN} ∈ ∂Ω and N ≥ 2. The skeleton SΩ ⊂ Ω is a minimal representation of the
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domain Ω. They are homotopic to one another so that each Ω defines a unique SΩ and vice-versa [34]. A

particular point x ∈ SΩ can potentially be associated with multiple boundary distances in which case the

most pertinent one is the shortest as that is where the trough associated with w0(z) will reach first.

In summary the asymptotic analysis makes the following prediction for the touchdown set. Let SΩ be the

skeleton of the domain, tS ≥ 0 be the skeleton arrival time and define T to be maximum global existence

time of (1). Then, the leading order asymptotic analysis predicts the following the dichotomy of possibilities:

1. If T < tS , the singularities form on ω(t) at point(s) corresponding to maximum boundary curvature.

2. If T ≥ tS , the singularities form on SΩ at points x ∈ SΩ satisfying dist(x, ∂Ω) = φ(T ; ε).

In the following sections, we explore the predictive ability of this asymptotic framework for describing the

potential touchdown sets of (1). In the following section, we describe a new moving mesh finite element

method for resolving solutions of (1) very close to singularity. In Sec. 4, we demonstrate the asymptotic and

numerical methodologies on a variety of two-dimensional regions Ω.

3. The adaptive moving mesh finite element method. In this section we describe an adaptive

MMPDE finite element method for solving the MEMS system. We apply the MMPDE method to dynamically

concentrate the mesh nodes around the places where the solution is touching down. Numerical examples

will be presented in Section 4.

It should be pointed out that a number of other moving mesh methods have been developed in the past

and there is a vast literature in the area. The interested reader is referred to the books or review articles

[1, 2, 5, 24, 43] and references therein and some recent interesting applications [46, 50, 51].

3.1. Finite element discretization. We now describe the finite element approximation of the PDE

system (1) up to a finite time instant T . We introduce the auxiliary variable v defined as

v = ∆u.

Then, the fourth-order PDE (1) can be written as the second-order system

(12)



ut = −ε2∆v − 1

(1 + u)2
, (x, t) ∈ Ω× (0, T )

v = ∆u, (x, t) ∈ Ω× (0, T )

u = v = 0, (x, t) ∈ ∂Ω× (0, T )

u(x, 0) = v(x, 0) = 0, x ∈ Ω.

The computation alternates between the integration of the PDE and the mesh equation. Assume that we

are given time instants

0 = t0 < t1 < . . . < tnf
= T

and the physical mesh T nh and the numerical solution unh(·, t) and vnh(·, t) defined thereon at tn. The new

physical mesh T n+1
h is first generated by an MMPDE-based strategy (to be described in Section 3.2) and

then the physical PDEs are integrated from tn to tn+1. The procedure is repeated until T is reached. The

number of the mesh elements and the mesh connectivity are fixed throughout the computation.
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Denote the coordinates of the vertices of T nh and T n+1
h by xnj and xn+1

j , j = 1, 2, . . . , Nv, respectively. We

define the coordinates of the vertices between tn and tn+1 as

xj(t) =
t− tn

tn+1 − tn
xn+1
j +

tn+1 − t
tn+1 − tn

xnj , j = 1, . . . , Nv, t ∈ [tn, tn+1].

The corresponding mesh is denoted by Th(t). Then, a linear finite element approximation for (12) is to find

uh(·, t), vh(·, t) ∈ V 0
h (t), for t ∈ (t0, T ], such that

(13)


∫

Ω

∂uh
∂t

ψ dx− ε2

∫
Ω

∇vh · ∇ψ dx +

∫
Ω

ψ

(1 + uh)2
dx = 0, ∀ψ ∈ V 0

h (t)∫
Ω

vhψ dx +

∫
Ω

∇uh · ∇ψ dx = 0, ∀ψ ∈ V 0
h (t)

where V 0
h (t) is the span of the linear basis functions that are compactly supported on Th(t) at t. Notice

that linear basis functions and the linear finite element function space are time dependent. For simplicity,

we assume that the first Nvi out of Nv vertices are interior vertices. Denoting the linear basis function

associated with the vertex xj by ψj(·, t), V 0
h (t) can be expressed as

V 0
h (t) = span{ψ1(·, t), . . . , ψNvi

(·, t)}.

With the linear basis functions being time dependent, the main difference between the integration of (13)

from that on a fixed mesh lies in the term ∂uh

∂t . To see this, expressing uh as

uh(x, t) =

Nvi∑
i=1

ui(t)ψi(x, t)(14)

and differentiating it with respect to time, we get

∂uh(x, t)

∂t
=

Nvi∑
i=1

dui
dt
ψi(x, t) +

Nvi∑
i=1

ui(t)
∂ψi(x, t)

∂t
.

It has been proven (e.g., see [24]) that

∂ψi
∂t

= −∇ψi · Ẋ, a.e. in Ω

where the mesh velocity Ẋ is defined as

Ẋ =

Nv∑
i=1

ẋiψi(x, t)

and the term ẋi denotes the nodal mesh speed. Combining the results above, we get

∂uh
∂t

=

Nvi∑
i=1

dui
dt
ψi −∇uh · Ẋ.

Inserting these into (13) and taking ψ = ψj successively, we can rewrite (13) into a system of differential-

algebraic equations in the form as

(15)

M(X)U̇ = ε2B(X)V + F (X, Ẋ,U),

0 = M(X)V +B(X)U,

where X is a vector representing the location of the vertices, M(X) is the mass matrix, B(X) is the stiffness

matrix and U, V are vectors of the unknown nodal values. This system for U and V is integrated from

tn to tn+1 using the fifth-order Radau IIA method (e.g., see Hairer and Wanner [19]), and the time step is

chosen by a standard selection procedure [19] with a two-step error estimate of Gonzalez-Pinto et al. [18].
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3.2. The MMPDE moving mesh strategy. We now describe the MMPDE moving mesh strategy to

generate T n+1
h , given the physical mesh T nh and the computed solutions uh(tn) and vh(tn) at time step t = tn.

We use here a discrete approach of [22] for the MMPDE method. We remark that although [22] assumes a

bounded, simply connected, and polygonal domain, the MMPDE method described therein extends without

any modification to general bounded domains (including non-simply connected ones) with the understanding

that curved boundaries are approximated with polygonal curves. Moreover, it has been proven in [23] that

the mesh governed by the MMPDE stays non-singular if it is non-singular initially. This result holds at semi-

and fully-discrete levels and for convex or non-convex domains.

We shall use three meshes, the physical mesh Th = {x1, . . . ,xNv}, the computational mesh Tc,h = {ξ1, . . . ,

ξNv
}, and the reference computational mesh T̂c,h = {ξ̂1, . . . , ξ̂Nv

}, with all of them having the same number

of elements and the same connectivity. Typically, T̂c,h is chosen to be a mesh as uniform as possible (under

the Euclidean metric) and kept fixed throughout the computation. We may take Th = T nh or Tc,h = T̂c,h,

depending on which formulation, the ξ- or x-formulation, we use for generating T n+1
h . (See the description

below.) Notice that for each K ∈ Th, there exists a unique corresponding element Kc ∈ Tc,h. The affine

mapping between the elements is denoted by FK : Kc → K and its Jacobian matrix by F ′K .

The MMPDE method employs a metric tensor M = M(x) to specify the size, shape, and orientation of the

mesh elements throughout the domain. Here we always assume that M is symmetric and uniformly positive

definite on Ω. We define M as a piecewise constant function as

(16) MK = det(I + α−1
h |HK |)−

1
d+4 (I + α−1

h |HK |), ∀K ∈ Th

where HK is an approximate Hessian of uh on element K that is obtained using a least-squares Hessian recov-

ery technique, |HK | = Qdiag (|λ1|, . . . , |λd|)QT , with the eigen-decomposition of HK being Qdiag(λ1, . . . , λd)

QT , and αh is chosen such that ∑
K∈Th

|K|
√

det(MK) = 2|Ω|.

The choice (16) of M is known to be optimal with respect to the L2 norm of the linear interpolation error

[21], with the expectation that the mesh points will be concentrated around the regions where the recovered

Hessian of uh has a large determinant.

The main idea of the MMPDE method is viewing any adaptive mesh Th as a uniform one under the metric

M and in reference to the mesh Tc,h. Geometrically, this is equivalent to the requirements that the volume

of each K ∈ Th be of the same multiple of the volume of Kc ∈ Tc,h and that K be similar to Kc, all in the

metric M. Recall that the distance between two points x and x+dx under the metric tensor M is defined as√
dxTM(x)dx.

Then the above requirements can be approximately expressed as the equidistribution and alignment condi-

tions (e.g., see [24])

|K|
√

det(MK) =
σh|Kc|
|Ωc|

, ∀K ∈ Th(17)

1

d
tr
(
(F ′K)−1M−1

K (F ′K)−T
)

= det
(
(F ′K)−1M−1

K (F ′K)−T
) 1

d , ∀K ∈ Th(18)
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where |K| and |Kc| denote the volume of K and Kc, respectively, d is the dimension of Ω (d = 2 for the

current situation), and |Ωc| and σh denote the total volume of the computational mesh (in the Euclidean

metric) and the physical mesh (in the metric M), respectively,

|Ωc| =
∑

Kc∈Tc,h

|Kc|, σh =
∑
K∈Th

|K|
√

det(MK).

An energy function associated with these conditions [20] is given by

Ih(Th, Tc,h) =
1

3

∑
K∈Th

|K|
√

det(MK)
(
tr((F ′k)−1M−1

K (F ′K)−T )
) 3d

4

+
d

3d
4

3

∑
K∈Th

|K|
√

det(MK)

(
|Kc|

|K|
√

det(MK)

) 3
2

.(19)

Minimization of this energy function tends to produce a mesh satisfying (17) and (18).

We integrate the gradient system of the energy function for minimization. In the x-formulation, we take

Tc,h = T̂c,h and Ih is a function of the coordinates of the physical vertices. The MMPDE mesh equation is

defined as

(20)
∂xi
∂t

= −Pi
τ

(
∂Ih
∂xi

)T
, i = 1, . . . , Nv, t ∈ (tn, tn+1],

where ∂Ih
∂xi

is a row vector, Pi is a positive function chosen as Pi = det(M(xi))
1
4 (to make (20) to be invariant

under the scaling transformation of M), and τ > 0 is a positive parameter used to adjust the response

time of mesh movement to the changes in M. It has been proven in [23] that the mesh governed by (20)

stays non-singular if it is non-singular initially. This result holds for any convex or concave domain in any

dimension and for the semi-discrete form (20) or a fully-discrete form of (20). (In the latter case, the time

step is required to be sufficiently small but not diminishing.) The drawback of this formulation is that M,

a function of x, needs to be constantly updated during the integration, which can be costly especially in

higher dimensions.

To avoid this disadvantage, we now consider the ξ-formulation with which Th is taken as T nh in (19) and Ih is

minimized with respect to the coordinates of the computational vertices. Then the MMPDE mesh equation

reads as

(21)
∂ξi
∂t

= −Pi
τ

(
∂Ih
∂ξi

)T
, i = 1, . . . , Nv, t ∈ (tn, tn+1].

This equation, with proper modifications for the boundary vertices (to keep them on the boundary), is in-

tegrated from the initial mesh Tc,h(tn) = T̂c,h. The Matlab R© function ode15s, a Numerical Differentiation

Formula based integrator, is used for this purpose in our computation. Since T nh is fixed during the integra-

tion, there is no need of constantly reassigning the metric tensor M. The new computational mesh obtained

in this way is denoted by T n+1
c,h . Notice that T nh and T n+1

c,h form a correspondence, i.e., T nh = Ψh(T n+1
c,h ).

Then, the new physical mesh at tn+1 is defined as

T n+1
h = Ψh(T̂c),

which can be approximated readily by linear interpolation.

10



The derivative ∂Ih/∂ξi in (21) can be found analytically using scalar-by-matrix differentiation and has a

relatively simple matrix form [22]. In this way, we can rewrite (21) as

(22)
∂ξi
∂t

=
Pi
τ

∑
K∈ωi

|K|vKiK , i = 1, . . . , Nv,

where ωi is the set of all the elements having xi as a vertex and vKiK is the local velocity contributed by the

element K to vertex xi, with iK denoting the local index of xi in K. The local velocities on element K are

given by

(23)

(vK1 )T

...
(vKd )T

 = −E−1
K

∂G

∂ det(J)
− ∂G

∂ det(J)

det(ÊK)

det(EK)
Ê−1
K , vK0 = −

d∑
i=1

vKd ,

where EK = [xK1 − xK0 , . . . ,x
K
d − xK0 ] and ÊK = [ξK1 − ξK0 , . . . , ξ

K
d − ξK0 ] denote the edge matrices of K

and Kc, respectively, J = (FK)−1 = ÊKE
−1
K , and G = G(J,det(J),MK) is the function associated with the

energy functional (19), i.e.,

G =
1

3

√
det(MK)(tr(JM−1

K JT ))
3d
4 +

d
3d
4

3

√
det(MK)

(
det(J)√
det(MK)

) 3
2

.

The partial derivatives ∂G/∂J (a matrix-valued function) and ∂G/∂ det(J) (a scalar function) can be found

as

∂G

∂J
=
d

2

√
det(MK)(tr(JM−1

K JT ))
3d
4 −1M−1

K JT ,

∂G

∂ det(J)
=
d

3d
4

2
det(MK)−

1
4 det(J)

1
2 .

We note that the MMPDE equation (22) is already discrete in space (and thus no further spatial discretization

is needed). Moreover, its computation mainly involves the calculation of the edge matrices and matrix

inversion and multiplications.

4. Numerical results. In this section, we demonstrate the efficacy of adaptive numerical methodology

and the asymptotic predictions on a variety of examples. For each of the domains Ω considered, we first

calculate the skeleton SΩ of the region defined in Sec. 2.2. The numerical integration of the PDE system

(13) is performed until minx∈Ω uh = −0.99. For simple domains, an initial physical mesh is obtained from

a rectangular mesh by dividing each rectangle into four triangles while an initial mesh is obtained using

DistMesh [38] for complex domains (such as those with holes). In the former cases, the size of the mesh will

be presented as, for instance, N = 15680 (70 × 56×4), where 70 × 56 is the size of the initial rectangular

mesh.

Example 4.1 (Rectangular domain). We first consider the rectangular domain Ω = (−1, 1)× (−0.8, 0.8).

In Fig. 5 we show Ω and the skeleton SΩ together with numerically obtained touchdown points for the

parameter range ε ∈ (10−4, 10−1). In Fig. 5(a) and Fig. 5(b) results are shown for meshes of size N =

5120 (40 × 32× 4) and N = 15680 (70 × 56× 4), respectively. We observe the location of touchdown is

11
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(a) Skeleton with mesh size N = 5120 (40×32×4).
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(b) Skeleton with mesh size N = 15680 (70×56×4).

Fig. 5. Skeleton for rectangular domain (solid blue) with numerically obtained touchdown locations (red dots). Figs. 5(a)
and 5(b) show results obtained with mesh sizes N = 5120 (40× 32×4) and N = 15680 (70× 56×4) respectively.
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(a) Mesh at touchdown, ε = 0.02.
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(b) Mesh at touchdown, ε = 0.068.
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(c) Mesh at touchdown, ε = 0.1.

(d) Solution at touchdown, ε = 0.02. (e) Solution at touchdown, ε = 0.068. (f) Solution at touchdown, ε = 0.1.

Fig. 6. The profiles u(x, t) of (1) and associated meshes very close to singularity for ε = 0.02, ε = 0.068 and ε = 0.1 in
the rectangle (−1, 1)× (−0.8, 0.8). The mesh size is N = 15680 (70× 56×4).

robust as the mesh size increases. The set SΩ meets the boundary ∂Ω and so the skeleton arrival time

satisfies tS = 0.

As predicted by the analytical skeleton, there are four singularities close to each corner for small ε. As ε

increases, the four singularities move inwards along SΩ merging first into two singularities and, as ε increases,

eventually into one. The final mesh and solution for values ε = 0.02, 0.068 and 0.1 are shown in Fig. 6. In

each case shown in Figs. 6(a)-6(c), the numerical algorithm correctly locates the position and multiplicity of

the forming singularities and increases local mesh density in their vicinity to accurately resolve the solution.
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(a) Mesh at touchdown, ε = 0.02.
Mesh size N = 5120 (40× 32×4).
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(b) Mesh at touchdown, ε = 0.068.
Mesh size N = 5120 (40× 32×4).
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(c) Mesh at touchdown, ε = 0.1. Mesh
size N = 5120 (40× 32×4).
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(d) Mesh at touchdown, ε = 0.02.
Mesh size N = 15680 (70× 56×4).
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(e) Mesh at touchdown, ε = 0.068.
Mesh size N = 15680 (70× 56×4).
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(f) Mesh at touchdown, ε = 0.1. Mesh
size N = 15680 (70× 56×4).

Fig. 7. The profiles u(x, t) of (1) and associated meshes very close to singularity for ε = 0.02, ε = 0.068 and ε = 0.1 in
the rectangle (−1, 1)× (−0.8, 0.8). The top row is obtained by mesh size N = 5120 (40×32×4), and the bottom row is obtained
by mesh size N = 15680 (70× 56×4).

To demonstrate that the solution is robust with respect to grid refinement, we present the final mesh for

ε = 0.02, 0.068 and 0.1 obtained with mesh size N = 5120 (40×32×4) and N = 15680 (70×56×4) in Fig. 7.

In comparing SΩ with the numerical touchdown points, we see that at smaller values of ε (for which the

singularities are confined to the corners) the set SΩ accurately predicts the touchdown set. At larger values

of ε, in particular those at which the four singularities merge into two, we observe that SΩ has reduced

accuracy in predicting the contact set. This reduction in the quality of the prediction is not surprising

considering the asymptotic formulation relies on the peaks being well separated at touchdown which is not

valid for larger ε values. Nevertheless, the skeleton theory gives a qualitatively accurate description of the

possible touchdown locations and multiplicities.

In Fig. 8 we display the evolution of the solution to (1) for the fixed value ε = 0.02 and several temporal

snapshots with the accompanying mesh. For this value of ε, touchdown is observed at four points simulta-

neously. At short times (Fig. 8(a)), the computational mesh is adapted to the propagating boundary layers

emanating around ∂Ω. By the touchdown time (Fig. 8(c)), the mesh generation algorithm allocates resources

between each of the four forming singularities and the sharp ridges that join them.

Example 4.2 (Rectangular domain with a hole). Here we consider the rectangular domain Ω = (−1, 1) ×
(−0.8, 0.8), with a circular hole of radius 0.2, centered at (0.2, 0.3). In this example Ω is non-convex.

For this example, we have found that it is important to keep a level of mesh concentration around the hole.
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(a) Mesh at t = 0.002.
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(b) Mesh at t = 0.163.
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(c) Mesh at t = 0.312.

(d) Solution at t = 0.003. (e) Solution at t = 0.163. (f) Solution at t = 0.312.

Fig. 8. Evolution of the solution of (1) and the associated mesh for ε = 0.02 in the rectangular domain for three time
instants.

To this end, we modify the metric tensor as

(24) M̃K = MK + βI,

where MK is defined as in (16) and β is chosen as

β =

e4(0.2−
√

(x−0.2)2+(y−0.3)2 ) − 1 +
2

max
K∈Th

√
det(MK)

−1

.

Notice that for (x, y) on the circle, this gives

M̃K = MK +
1

2
max
K∈Th

√
det(MK) I,

which will give a level of mesh concentration around the circle comparable to that in the regions with largest√
det(MK). The exponential term makes β decrease sufficiently fast such that the mesh elements are not

over concentrated near the circle.

The skeleton SΩ of the domain which is displayed in Fig. 9. In this example SΩ is formed from straight line

segments that originate from each corner and are linked by four curved segments contorted around the hole.

The expressions for the parabolic segments of SΩ are found analytically by considering the points that are

equidistant from the boundary of the outer rectangle and the perturbing hole. In this example, SΩ intersects

with the boundary hence the skeleton arrival time is tS = 0.

The presence of the hole breaks the symmetry of the domain. In simulations, we observe that this precludes

touchdown at multiple points simultaneously, except for certain fixed values of ε. Simultaneous touchdown at

multiple points, as observed in the previous example of the rectangle with no hole, relies on the symmetric
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properties of the domain. In the absence of such symmetries, single point touchdown is the expectation

for solutions of equation (1). However, as is clear from the solution profile of (1) for ε = 0.044 shown

in Fig. 10(e), the solution may be forming multiple troughs. When there are multiple troughs present, the

singularity location will be selected by the trough which has the lowest value as the singularity is approached.

In terms of applications to MEMS, each of these troughs can form contacts between the two surfaces and are

important to track. We remark that SΩ describes a set of potential points at which the asymptotic solution

has a local minimum and therefore considers all potential contact locations.
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Fig. 9. Skeleton of rectangular domain hole (blue solid line) and numerically computed touchdown locations (red dots).
The points marked 1 − 9 correspond to the first touchdown location for solutions of (1) for values ε = 10−4, 2.662 × 10−3,
5.2× 10−3, 7.78× 10−3, 0.01, 0.036, 0.044, 0.051, and 0.06, respectively. The solution and mesh for Mark 5 (ε = 0.01), Mark
7 (ε = 0.044), and Mark 9 (ε = 0.06) are shown in Fig. 10.

One interesting observation from the skeleton and singularity points shown in Fig. 9 is that the track of the

first touchdown point does not vary continuously with ε. We observe that the first singularity point switches

between branches several times suggesting that multiple simultaneous singularities are possible only at fixed

values of ε. In Figs. 10 and 11, single point touchdown is observed, however, other troughs in the solution

are also very close to singularity which helps explain the sensitivity of the touchdown set on ε.
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(a) Mesh at touchdown, ε = 0.01.
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(b) Mesh at touchdown, ε = 0.044.
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(c) Mesh at touchdown, ε = 0.06.

(d) Solution at touchdown, ε = 0.01. (e) Solution at touchdown, ε = 0.044. (f) Solution at touchdown, ε = 0.06.

Fig. 10. Solutions of (1) and meshes at singularity for values ε = 0.01, 0.044, 0.1 in the rectangular domain with hole.
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(a) Mesh at t = 0.035.
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(b) Mesh at t = 0.275.
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(c) Mesh at t = 0.311.

(d) Solution at t = 0.035. (e) Solution at t = 0.275. (f) Solution at t = 0.311.

Fig. 11. The evolution of the solution for ε = 0.01. The mesh size is N = 11658.
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Example 4.3 (Rectangular domain with four holes). We consider an example based on a domain similar to

the real MEMS device in Fig. 1(b) by solving equation (1) on the rectangular domain Ω = (−1, 1)×(−0.8, 0.8)

punctured by four circular holes. The holes have common radius 0.15 and are arranged symmetrically at the

points ±(0.5,±0.3). A similar modification to the metric tensor as in (24) has been used for this example

to keep a level of mesh concentration near the holes.

We display the skeleton together with the numerically computed singularities obtained for ε ∈ (0.005, 0.1)

in Fig. 12. For small ε values, four singularities that are close to the corners are observed. As ε increases,

four singularities merge into two, and eventually into one. For the values ε = 0.007, ε = 0.02, and ε = 0.04,

the snapshots of the evolution are presented in Fig. 13, Fig. 14, and Fig. 15. Note that multiple troughs are

observed in Fig. 13 and Fig. 14, while only the smallest touchdown locations are captured.
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Fig. 12. Skeleton (blue curve) and touchdown points (red points) for the rectangular domain with four holes.
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(a) Mesh at t = 0.095.
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(b) Mesh at t = 0.275.

-1.0 -0.5 0.0 0.5 1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

(c) Mesh at t = 0.307.

(d) Solution at t = 0.095. (e) Solution at t = 0.275. (f) Solution at t = 0.307.

Fig. 13. The evolution of the solution for ε = 0.007. The mesh size is N = 20018.
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(a) Mesh at t = 0.092.
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(b) Mesh at t = 0.304.
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(c) Mesh at t = 0.309.

(d) Solution at t = 0.092. (e) Solution at t = 0.304. (f) Solution at t = 0.309.

Fig. 14. The evolution of the solution for ε = 0.02. The mesh size is N = 19846.
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(a) Mesh at t = 0.112.
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(b) Mesh at t = 0.282.
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(c) Mesh at t = 0.307.

(d) Solution at t = 0.112. (e) Solution at t = 0.282. (f) Solution at t = 0.307.

Fig. 15. The evolution of the solution for ε = 0.04. The mesh size is N = 19734.

Example 4.4 (Asymmetric Domain). We consider the asymmetric domain given in polar coordinates by

(25) (x, y) = r(θ)(cos θ, sin θ), r(θ) = 1 + (0.15 sin 2θ + 0.3 cos 3θ).

In Fig. 16 the skeleton SΩ for the domain is displayed along with the first touchdown locations that arise
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Fig. 16. Skeleton and touchdown points for the non-symmetric domain (25). The points marked 1− 4 correspond to the
first touchdown location for solutions of (1) for values ε = 0.02, 0.024, 0.04, 0.092, respectively.

from the parameter values ε ∈ (0.02, 0.1). As ε increases, the singularity moves along each of the three

branches of the skeleton before becoming fixed near the center of the domain. As with Example 4.2, we see

that the track of the first touchdown location does not vary continuously with ε. For the parameter values

ε = 0.02 (Mark 1), 0.024 (Mark 2), 0.04 (Mark 3), 0.092 (Mark 4) marked on Fig. 16, we show snapshots of

the evolution of the solution in Figs. 17-20, respectively.

In Fig. 17(f) the solution of (1) close to singularity is shown for ε = 0.02 and three distinct troughs in the

solution are clear. The trough with the lowest value, and the one that contacts first, is centered at Mark 1

in Fig. 16. For the slightly increased parameter value ε = 0.024 the solution close to touchdown is shown

in Fig. 18(f). At this value, the qualitative solution features look very similar, however, the center of the

lowest trough is now shifted to Mark 2 on a separate branch of SΩ. At the value ε = 0.04, with final profile

shown in Fig. 19(f), the lowest point has shifted again and is now centered on the third arm of SΩ at Mark

3 on Fig. 16. These observations suggest that in this asymmetric case simultaneous two point touchdown

can occur for particular fixed values of ε in the ranges (0.02, 0.024) and (0.024, 0.4). The final profiles for

ε = 0.02, 0.024, and 0.04 obtained with mesh sizes N = 5244 and N = 11955 are shown in Fig. 21. The

associated mesh pictures are shown in Fig. 22. We can see that the allocation of the singularities is robust

with respect to grid refinement.

At the larger value ε = 0.092, the snapshots in Fig. 20 show that the three peaks merge very quickly in the

evolution of the solution. By the time the solution of (1) is close to singularity at this value of ε, the solution

has only one trough which is centered close to the geometric center of the domain at Mark 4 in Fig. 16.

In each of the intermediary evolution plots in Figs. 17(b)-20(b), the mesh is seen to be accurately capturing

the firestorm set ω(t). In this solution regime, the adaptive algorithm allocates grid resolution to the vicinity

of ∂Ω in order to capture this expanding boundary layer. The third snapshot of the solution is taken very close

to touchdown and the mesh has adapted to increase the resolution in the vicinity of the forming singularities.

This shows the numerical method capturing multiple types of dynamic fine scale solution modalities.
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(a) Mesh at t = 0.010.
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(b) Mesh at t = 0.232.
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(c) Mesh at t = 0.310.

(d) Profile at t = 0.010. (e) Profile at t = 0.232. (f) Profile at t = 0.310.

Fig. 17. Three snapshots of the evolution of the solution of (1) and the mesh for ε = 0.02 (Mark 1 in Fig. 16). The mesh
size is N = 5244.
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(a) Mesh at t = 0.009.
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(b) Mesh at t = 0.190.

-1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

(c) Mesh at t = 0.309.

(d) Profile at t = 0.009. (e) Profile at t = 0.190. (f) Profile at t = 0.309.

Fig. 18. Three snapshots of the evolution of the solution of (1) and the mesh for ε = 0.024 (Mark 2 in Fig. 16). The
mesh size is N = 5244.
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(a) Mesh at t = 0.009.
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(b) Mesh at t = 0.280.
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(c) Mesh at t = 0.303.

(d) Solution at t = 0.009. (e) Solution at t = 0.280. (f) Solution at t = 0.303.

Fig. 19. The evolution of the solution of (1) and the mesh for ε = 0.04. The mesh size is N = 5244.
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(a) Mesh at t = 0.004.
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(b) Mesh at t = 0.250.

-1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

(c) Mesh at t = 0.303.

(d) Solution at t = 0.004. (e) Solution at t = 0.250. (f) Solution at t = 0.303.

Fig. 20. The evolution of the solution of (1) and the mesh for ε = 0.092. The mesh size is N = 5244.
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(a) Profile at touchdown, ε = 0.02.
Mesh size is N = 5244.

(b) Profile at touchdown, ε = 0.024.
Mesh size is N = 5244.

(c) Profile at touchdown, ε = 0.04.
Mesh size is N = 5244.

(d) Profile at touchdown, ε = 0.02.
Mesh size is N = 11955.

(e) Profile at touchdown, ε = 0.024.
Mesh size is N = 11955.

(f) Profile at touchdown, ε = 0.04.
Mesh size is N = 11955.

Fig. 21. The top row shows profiles pictures of ε = 0.02, ε = 0.024, ε = 0.04 with mesh size N = 5244. The associated
profiles obtained by mesh size N = 11955 are presented in the second row.
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(a) Mesh at touchdown, ε = 0.02.
Mesh size is N = 5244.
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(b) Mesh at touchdown, ε = 0.024.
Mesh size is N = 5244.
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(c) Mesh at touchdown, ε = 0.04.
Mesh size is N = 5244.
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(d) Mesh at touchdown, ε = 0.02.
Mesh size is N = 11955.
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(e) Mesh at touchdown, ε = 0.024.
Mesh size is N = 11955.
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(f) Mesh at touchdown, ε = 0.04.
Mesh size is N = 11955.

Fig. 22. The top row shows mesh pictures of ε = 0.02, ε = 0.024, ε = 0.04 with mesh size N = 5244. The associated
profiles obtained by mesh size N = 11955 are presented in the second row.

22



5. Conclusions. This paper has studied the influence of geometry and parameter values on the location

of singularities in a fourth-order PDE system modeling microscopic elastic-electrostatic deflections. We have

developed a precision numerical tool for exploring the contact sets in these elastic deformations which is

an important problem in the design of micro-electro mechanical systems. Specifically, we have developed

an adaptive moving mesh PDE method which dynamically relocates the mesh points to provide additional

resolution in spatial regions with fine scale solution behavior. This method can automatically detect and

resolve different types of dynamic features such as sharp interfaces and multiple forming singularities. The

method can also accommodate the complex geometries and topological defects common in the design of real

MEMS devices (cf. Fig. 1(b)).

To complement this numerical tool, we have used an asymptotic analysis to obtain the skeleton - a reduced

representation of the domain which gives an estimate of the potential singularity locations. This analysis

also reveals that the sensitive dependence of the contact set on the equation parameters and the shape of

the domain Ω is due to a non-monotone boundary layer profile. The superposition of the solution along

rays emanating from ∂Ω lowers the value of the solution at certain points in the domain which then become

more likely to be singularity locations. We find that the skeleton gives a good qualitative description of the

possible contact sets. The quantitative accuracy of the skeleton is variable and in particular we find it to be

diminished in non-simply connected domains. For engineers seeking to prevent the two surfaces coming into

physical contact through the placement of deflection limiters [25], the skeleton provides a good estimate of

the points at which these should be centered.

The range of potential applications for this new numerical method is significant. Adaptive methods for

higher-order PDE systems such as (1) have received somewhat less attention in comparison to their second-

order counterparts, particularly in higher dimensions (cf. [41] for one-dimension). The methods developed

here are applicable to a wide variety of other higher-order PDE systems that are central features in many

topical applications such as rock folding [12], ion bombardment lithography [36], thin films dynamics [47, 49]

and pattern formation [11, 16, 17].
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SIAM J. Sci. Comput., 31:3438–3465, 2009.

[8] C. J. Budd and J. F. Williams. How to adaptively resolve evolutionary singularities in differential

equations with symmetry. J. Eng. Math., 66:217–236, 2010.

[9] H. D. Ceniceros and T. Y. Hou. An efficient dynamically adaptive mesh for potentially singular solutions,

J. Comput. Phys., 172:609–639, 2001.

[10] K. L. DiPietro and A. E. Lindsay. Monge-Ampére simulation of fourth order PDEs in two dimensions

with application to elastic-electrostatic contact problems. J. Comput. Phys., 349:328–350, 2017.

[11] S. Dai and K. Promislow. Geometric evolution of bilayers under the functionalized Cahn–Hilliard

equation. Proc. R. Soc. Lond. Ser. A, 469:20120505 (20 pp.), 2013.

[12] T. J. Dodwell, M. A. Peletier, C. J. Budd, and G. W. Hunt. Self-similar voiding solutions of a single

layered model of folding rocks. SIAM J. Appl. Math., 72:444–463, 2012.

[13] A. Friedman and L. Oswald. The blow-up time for higher order semilinear parabolic equations with

small leading coefficients. J. Diff. Eq., 75:239–263, 1988.

[14] V. Galaktionov. Five types of blow-up in a semilinear fourth-order reaction-diffusion equation: an

analytical-numerical approach. Nonlinearity, 22:1695–1741, 2009.

[15] V. A. Galaktionov and J.-L. Vázquez. The problem of blow-up in nonlinear parabolic equations. Dis.

Cont. Dyn. Sys., 8:399–433, 2002.

[16] N. Gavish, G. Hayrapetyan, K. Promislow, and L. Yang. Curvature driven flow of bi-layer interfaces.

Phys. D, 240:675–693, 2011.

[17] K. B. Glasner and A. E. Lindsay. The stability and evolution of curved domains arising from one-

dimensional localized patterns. SIAM J. Appl. Dyn. Sys., 12:650–673, 2013.
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