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Abstract. Many transport processes in ecology, physics and biochemistry can be described by the average time to first find
a site or exit a region, starting from an initial position. Typical mathematical treatments are based on formulations that allow
for various diffusive forms and geometries but where only initial and final positions are taken into account. Here, we develop
a general theory for the mean first passage time (MFPT) for velocity jump processes. For random walkers, both position and
velocity are tracked and the resulting Fokker-Planck equation takes the form of a kinetic transport equation. Starting from the
forward and backward formulations we derive a general elliptic integro-PDE for the MFPT of a random walker starting at a
given location with a given velocity. We focus on two scenarios that are relevant to biological modelling; the diffusive case and
the anisotropic case. For the anisotropic case we also perform a parabolic scaling, leading to a well known anisotropic MFPT
equation. To illustrate the results we consider a two-dimensional circular domain under radial symmetry, where the MFPT
equations can be solved explicitly. Furthermore, we consider the MFPT of a random walker in an ecological habitat that is
perturbed by linear features, such as wolf movement in a forest habitat that is crossed by seismic lines.
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1 Introduction A key issue in the study of species movement is determining the time necessary
for individuals to find a target, such as a food source, shelter, or mate, for the first time [38, 58, 66]. In
ecology, the time required for an animal to first reach (or exit from) a region can be recorded via satellite
tracking and the data used to understand how the environment, road layout, seasonality, climate and the
presence of other species affect habitat selection, foraging and migration patterns. This information may
be useful in ecosystem management [24, 41, 42, 47]. Within cellular biology, identifying the time to first
reach a specific site is also of primary interest, since first arrivals may trigger irreversible on-site biochemical
transformations that indicate the onset of disease, the initiation of repair, or the completion of extracellular
signaling [5, 25, 40, 44, 61]. Examples include the first time a T-cell finds an antigen presenting cell during
immune response [49], the first time a fibroblast reaches a wound to initiate healing [3], the first time a base
excision repair enzyme reaches a lesion on a DNA strand via charge transport [26]. The first arrival time to a
target is often a proxy for the efficiency of the search and a common goal is to expedite, hinder or otherwise
control the search process itself [1, 6, 19, 45]. For example, in receptor-mediated viral entry a virus can enter
a cell only after binding to a critical number of surface receptors as in the case of HIV, the SARS coronavirus,
and hepatitis C [6, 28, 39]. The timing of gene expression also depends on the first time a specific set of
intracellular proteins reach a threshold concentration [27, 63]. Related questions arise in chemistry, material
and polymer science, and pertain to identifying the first assembly time of a cluster starting from individual
subunits, determining how fast protein, filaments or other molecular aggregates reach a predetermined size,
how fast bacteriophage and viral capsids are assembled [17, 23, 43, 70, 72].

First arrival times distributions can be quite broad, especially if outliers or rare events are possible. For
some state space trajectories finding the target may occur quickly, for others the search may take longer,
and in some cases it may never be completed, being halted by degradation or adsorption into trapped
states. A useful quantity is the mean first passage time (MFPT), the average of all first arrival times of
the underlying stochastic process [62]. Note that since the MFPT is an average over all completion times,
it is enough for one trajectory to never reach the target site or threshold for it to diverge. In transport
phenomena the MFPT depends on dimensionality, geometry, the type of motion involved, heterogeneity of
the environment; in threshold phenomena it depends on the reversibility of events that drive the process,
cooperativity, and ordering effects [21]. Multiple theories have been developed to evaluate the MFPT in a
variety of spatio-temporal scales and geometries, mostly (but not all) in the context of diffusion type models
[12, 13, 29, 36, 38, 46, 60]. The most common forms of movement are Brownian motion, random walks,
Levy flights, ballistic motion, and their combinations to represent run-and-tumble motility in bacteria for
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Fig. 1. Schematic of anisotropic transport in a bounded planar region Ω ∈ R2 in the presence of one-dimensional
substructures. Diffusion is one-dimensional along the linear features and two-dimensional away from them. This schematic can
represent, for example, organelle transport within a two-dimensional cell, grown on a flat surface, whereby particles transition
from performing linear random walks along microtubules and/or other filaments emanating from the nucleus, to undergoing
two-dimensional planar diffusion in the cytoplasm. Similarly, it can represent animal motion in a given environment with roads
or other one-dimensional features that direct the animal’s movement. Due to the stochastic nature of the transport process,
each individual trajectory starting at a given position x ∈ Ω and with a given velocity v will reach the target area, shown in
red, at a specific time. Our goal is to determine the mean first arrival time to the target. We can model this transport scenario
using a kinetic transport equation with turning kernel given by the bimodal von-Mises distribution in a circular geometry and
assuming that motion is biased along the radial direction.

example, or to model alternating periods of movement and rest [4, 50, 54].
For however a MFPT theory is missing. These equations were introduced in biological modeling in the

1980s, and have become a powerful tool in the study of ecological and cell movement [2, 31, 33, 34, 56, 58, 59].
They are particularly useful when movement characteristics of single individuals can be measured such as
the velocities, turning rates and directional preferences of migrating cells or animals. Recent advances in
microscopy and communication systems have facilitated the merging of theoretical results with actual data,
as it is now possible to observe molecular or cellular motion at high resolution and to follow in detail
the movement of animals over large distances or underwater. It is therefore of great interest to develop a
MFPT theory for kinetic equations as first passage computations may serve as a bridge between theoretic
estimates that depend on microscopic features of the transport process and the average timescales observed
experimentally or in the field.

Here, we are interested in animal or cellular species that orient their movement along directional features
of the environment. We derive expressions for the mean first arrival time to a target as a function of the
initial position and velocity. Broadly speaking, since directional motion is anisotropic, the mean first arrival
time will depend on the microscopic features of the transport process, such as turning rates, initial speed
and direction of movement. For the most general case we are not able to find a closed-form equation for
the MFPT. However, for diffusive and anisotropic transport we are able to write integral equations of the
first kind for the MFPT starting from an initial position and velocity. In special cases, for example for
anisotropic, symmetric motion under the bimodal von-Mises distribution, this general expression leads to a
differential equation for the MFPT that can be solved analytically and that can be readily applied to glioma
movement [20, 22, 34, 37, 57, 68], sea turtle orientation [58] and hill topping of butterflies [56]. Our main
results are contained in (36) and (42); the analytically solvable variant of (42) for the special case of the
bimodal von-Mises distribution is shown in (60).

The rest of this paper is organized as follows. In Section 2 we introduce kinetic transport equations
for biological modelling, and we categorize them as of Boltzmann type, diffusive type and anisotropic type.
We consider the forward and backward formulations, define the survival probability, and write its dynamics
using the backward equation. We thus derive the MFPT equation for the expected exit time Θ(x, v) of a
random walker starting at (x, v) for the diffusive type in Section 3 and for the anisotropic case in Section
4. The main results are given in formulas (36) and (42), respectively. The parabolic scaling in Section 5
allows us to consider the limit in cases of macroscopic spatio-temporal scales. In this scaling we derive an
anisotropic MFPT for the mean exit time Θ(x, v) = T (x) which no longer depends on the initial velocity as
shown in (60). In Section 6 we apply our results to various cases. For anisotropic movement in a radially
symmetric circular domain we evaluate the MFPT to reach given boundaries in the disk and in the annulus.
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A second application considers oriented movement in a habitat that is criss-crossed by linear features. This
scenario has been used to explain wolf movement in presence of seismic lines in a forest landscape in Northern
Canada by [47]. Here we show how the analysis carried out by [47] fits within our more general framework.
We close with a conclusion Section 7 in which we relate our results to existing methods and open the door
to interesting forthcoming problems.

2 Transport Equations Transport equations describe the time evolution of a particle density
p(x, v, t) at time t ≥ 0, location x ∈ Ω ⊂ Rn and velocity v ∈ V ⊂ Rn. For simplicity, we take V =
[σ1, σ2]× Sn−1, where the speeds σ1, σ2 obey 0 ≤ σ1 ≤ σ2 <∞. The time evolution of p(x, v, t) is described
by the forward transport equation

(1) pt(x, v, t) + v · ∇xp(x, v, t) = Lp(x, v, t) ,

where the subscript t denotes the partial time derivative, the subscript x denotes the spatial derivative, and
L is the turning integral operator that describes the specific directional changes of the particles. A typical
form for L is

(2) Lφ(x, v, t) = −µ(x)φ(x, v, t) + µ(x)

∫
V

K(x, v, v′)φ(x, v′, t)dv′ .

The first term on the right hand side of (2) is the rate at which particles at position x change their velocity
from v to any other velocity v′ ∈ V ; the second term is the rate at which particles at location x switch
into velocity v from any other velocity v′, The quantity µ(x) is the turning rate and its inverse is typically
identified as the mean run time at position x. Although general formulations that include spatially dependent
turning rates µ(x) arise in many applications [8–11, 71], for simplicity we assume henceforth that µ(x) = µ
is spatially uniform. The turning kernel K(x, v, v′) denotes the probability density of switching velocity from
v′ to v, given that a turn occurs at location x. The properties of K(x, v, v′) are key to the analysis presented
in this work. The minimal assumptions on K are

(3) K(x, v, v′) ≥ 0, K(x, ·, ·) ∈ L2(V × V ),

∫
V

K(x, v, v′)dv = 1.

The second condition implies that the integral operator with kernel K is a compact Hilbert-Schmidt operator
in L2(V ) [32], and the last assumption ensures that during velocity changes no particle is lost. Among the
various possible forms of K(x, v, v′) are those that allow to represent collisions between particles, periods
of straight motion alternating with abrupt directional changes (run-and-tumble models) and general jump
velocity processes where a particle’s velocity undergoes a series of discrete changes [14, 18, 33, 52, 59].

Kinetic transport equations, such as (1) have been used in many applications, from physics to biology
to social sciences. They have a long history in the study of the thermodynamics of gases which include the
effects of collisions between particles [16]. In general formulations of the Boltzmann equation the turning
process is described by a non-linear interaction kernel and the set of velocities V is unbounded. A linear
kernel such as (2) arises as linearization of the collision kernel at a Maxwellian equilibrium distribution [16].
An important difference with respect to biological applications is that the Boltzmann equation conserves
mass, momentum and energy. i.e. the kernel of the operator L is five dimensional. In biological applications
there is only one conserved quantity, mass, and only in cases where there is no particle birth or death.
Our focus is on biological applications, and in this context it has proven useful to distinguish between the
isotropic diffusive and the anisotropic sub-classes of transport equations.

The isotropic diffusive transport equation is characterized by a turning integral operator L whose null
space consists of functions that are constant in velocity. This means that at equilibrium there are no preferred
directions and that over long time-scales the dynamics becomes diffusion-like. Full theories of the isotropic
diffusive transport equations have been developed and applied to biological processes such as chemotaxis
[33, 52]. We derive the MFPT equation for isotropic diffusive transport in Section 3.

The anisotropic transport equation is typically employed to describe the dynamics of particles that have
strong orientation guidance from the underlying environment. Mathematically this occurs via a non-trivial
one-dimensional kernel of the turning integral operator L. The MFPT equation for anisotropic transport is
discussed in Section 3.
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More specifically, for anisotropic transport it is assumed that the turning kernel K does not depend on
the incoming velocity v′, i.e.

(4) K(x, v, v′) = q(x, v),

where q ≥ 0. This assumption may seem restrictive, since many species would show some form of persistence
in movement direction and it is entirely possible to keep the dependence on v′ in anisotropic movement as
well. However, it has been shown in many applications that the simplifying assumption (4) is extremely
useful in the modelling process and it can be justified in many cases, for example, when particles change
direction using a well-defined underlying network structure. The anisotropic framework was developed in
[31] and extended in [55]. To build q(x, v) we assume that a distribution of preferred directions q̃(x, θ) is
given for every spatial position x, where θ ∈ Sn−1 is a unit vector. We impose

q̃(x, θ) ≥ 0, and

∫
Sn−1

q̃(x, θ)dθ = 1

and assume q(x, v) is proportional to q̃(x, v̂), where v̂ = v/∥v∥ denotes the corresponding unit vector. Since
q̃ is a probability distribution on Sn−1, and q a probability distribution on the set of velocities V , we need
to normalize appropriately leading to

(5) q(x, v) =
q̃(x, v̂)

ω
, with ω ≡

∫
V

q̃(x, v̂)dv =

{
1
n (σ

n
2 − σn

1 ) for σ1 < σ2;

σn−1 for σ1 = σ2 = σ.

We refer to the rescaled quantity q(x, v) as the directional distribution of the underlying environment,
although the true directional distribution is q̃(x, v̂). For this choice of turning kernel, equation (2) simplifies
to

Lφ(v) = µ(x)(q(x, v)φ̂− φ(v)), with φ̂ ≡
∫
V

φ(v′)dv′.

To summarize, the anisotropic transport equation has the form

(6) pt + v · ∇p = µ(x)(q(x, v)p̂− p) with p̂ ≡
∫
V

p(t, x, v′)dv′.

For the following analysis it is useful to consider two statistical quantities, the expectation Eq(x) and
the variance-covariance matrix Vq(x) of q(x, v) on V :

(7) Eq(x) =

∫
V

vq(x, v)dv, Vq(x) =

∫
V

(v − Eq(x))(v − Eq(x))
T q(x, v)dv.

We now discuss a few cases of directional distributions q(x, v) by assuming constant particle speed σ, i.e.
V = σSn−1. The extension to V = [σ1, σ2]×Sn−1 is straightforward, but it introduces some extra parameters
that need to be carried through the integrals. The different cases are

Uniform distribution: The simplest case arises if there is no directional bias at all. This, of course, is also
the most fundamental type of motion in diffusive transport. We write

q̃(x, θ) =
1

|Sn−1|
, q(x, v) =

1

ω|Sn−1|
.

leading to

Eq(x) = 0, Vq(x) =
σ2

ωn
I,

where I denotes the identity matrix. Note that this case falls under the isotropic diffusive case as well.

Strict alignment: This case is most useful when the underlying medium favors motion along a given
direction γ(x) ∈ Sn−1, as for example along a fiber, tissue, microtubule or track. One can write

q̃(x, θ) = δ(γ(x)− θ), q(x, v) =
1

ω
δ(γ(x)− v̂),
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so that
Eq(x) = σγ(x), Vq(x) = 0.

Von-Mises distribution: The von-Mises distribution is the analog of the normal distribution on the unit
sphere Sn−1. Strictly speaking, it is called von-Mises distribution only on S1. In higher dimensions it is
called the Fisher distribution. In two-dimensions the von-Mises distribution is [35]

(8) q̃(x, θ) =
1

2πI0(k(x))
ek(x)γ(x)·θ,

where k(x) ≥ 0 is a measure of concentration of the distribution, γ(x) ∈ S1 is a given preferred direction,
and I0(k(x)) is the modified Bessel function of first kind of order 0. As k(x) → 0 the von-Mises distribution
becomes uniform (as in 2.3.1) whereas for k(x) → ∞ it becomes singular (as in 2.3.2). The expectation and
variance of the two-dimensional von-Mises distribution are [35]

Eq(x) = σ
I1(k(x))

I0(k(x))
γ(x),(9a)

Vq(x) = σ2

[
1

2

(
1− I2(k(x))

I0(k(x))

)
I2 +

(
I2(k(x))

I0(k(x))
−
(
I1(k(x))

I0(k(x))

)2
)
γ(x)γ(x)T

]
,(9b)

where I0, I1, I2 denote the modified Bessel functions of first kind of order 0,1 and 2, respectively.

Bimodal von-Mises distribution: In many cases q is symmetric, for example when guided motion along a
two-dimensional fiber or a track has the same probability along each direction. In this case q(x,−v) = q(x, v)
and the bimodal von-Mises distribution can be written as the average of two single direction terms

(10) q̃(x, θ) =
1

4πI0(k(x))

(
ek(x)γ(x)·θ + e−k(x)γ(x)·θ

)
,

with expectation and variance

Eq(x) = 0 ,(11a)

Vq(x) = σ2

[
1

2

(
1− I2(k(x))

I0(k(x))

)
I2 +

I2(k(x))

I0(k(x))
γ(x)γ(x)T

]
.(11b)

Note that instead of using a dyadic product γγT some authors prefer to use a tensor product γ⊗ γ. We
use the two interchangeably in this paper.

2.1 Backward Transport Equation The Kolmogorov backward transport equation is the founda-
tion from which the mean first passage time equation is derived. For clarity we distinguish initial location
and velocity (x, v) from terminal location and velocity (x̄, v̄). Thus p(x̄, v̄, t|x, v), denotes the probability
density of a random walker starting at location x ∈ Ω ⊂ Rn with initial velocity v ∈ V to be at location x̄
with velocity v̄ ∈ V at time t ≥ 0. Let us rewrite the forward equation

(12) pt + v · ∇x̄p = −µ p+ µ

∫
V

K(x̄, v̄, v̄′)p(x̄, v̄′, t|x, v)dv̄′,

where the gradient subscript allows to distinguish between the spatial derivative with respect to the current
location (∇x̄) and the derivative with respect to the starting location (∇ without index). The model (12)
can be seen as a forward equation of the stochastic process of a velocity jump process [51]. To derive the
corresponding Kolmogorov backward equation, we consider the formal adjoint. We write (12) as

pt(x̄, v̄, t|x, v) = Ap(x̄, v̄, t|x, v).

The operator A acts on functions φ(x̄, v̄) of the variables (x̄, v̄) in Ω× V and is defined as

Aφ(x̄, v̄) = −v̄ · ∇x̄φ(x̄, v̄)− µφ(x̄, v̄) + µ

∫
V

K(x̄, v̄, v̄′)φ(x̄, v̄′)dv̄′.
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To proceed, we utilize the Chapman-Kolmogorov equation [69] under the assumption of time translational
invariance. Since we assumed that the turning kernelK(x, v, v′) and the turning rate µ are time independent,
the assumption of time translational invariance is satisfied. We thus write

(13) p(x̄, v̄, t|x, v) =
∫
Ω

∫
V

p(x̄, v̄, τ |x′, v′)p(x′, v′, t− τ |x, v)dv′dx′,

for any τ ≥ 0. Taking the time derivative on both sides we find

pt(x̄, v̄, t|x, v) =

∫
Ω

∫
V

p(x̄, v̄, τ |x1, v1)Ap(x′, v′, t− τ |x, v)dv′dx′

=

∫
V

∫
Ω

A∗p(x̄, v̄, τ |x′, v′)p(x′, v′, t− τ |x, v)dx′dv′,

where the operator A∗ is the adjoint of A and acts on functions of the variables (x′, v′) in Ω × V . Notice
that if we let τ → t then limτ→t p(x

′, v′, t− τ |x, v) = p(x′, v′, 0|x, v) = δ(x′ − x)δ(v′ − v) leading to

(14) pt(x̄, v̄, t|x, v) = A∗p(x̄, v̄, t|x, v),

where the adjoint A∗ acts on functions of the (x, v) variables in Ω × V . This is the Kolmogorov backward
equation. To find A∗ explicitly, given A on Ω×V , we consider two functions ϕ(x, v), ψ(x, v) that satisfy the
Dirichlet boundary condition

(15) ϕ(x, v) = ψ(x, v) = 0, on (x, v) ∈ ∂Ω× V.

Equation (15) implies that particles are absorbed on the boundary of Ω. In principle, the exit boundary may
be any positive measure subset of ∂Ω, for example, one may want to study the exit from a given region of
the boundary or stipulate that certain portions are reflecting. For simplicity, we assume the exit boundary
coincides with ∂Ω. In the next section, we will define the “survival probability” that a particle remains in
Ω at time t and we will use A∗ to study its dynamics. As particles cannot survive at the exit boundary, the
survival probability must be zero on ∂Ω. Thus, since obeying Dirichlet boundary conditions is a requirement
for the survival probability, we impose that A∗ also acts on functions that obey (15). In this way, the survival
probability is naturally part of the functional domain of A∗. We can now calculate

∫
Ω

∫
V

ϕAψ dv dx = −
∫
Ω

∫
V

ϕ(x, v)(v · ∇x)ψ(x, v) dv dx

+

∫
Ω

∫
V

ϕ(x, v)

(
−µψ(x, v) + µ

∫
V

K(x, v, v′)ψ(x, v′)dv′
)
dv dx

=

∫
V

∫
Ω

ψ(x, v)(v · ∇x)ϕ(x, v)dx dv − µ

∫
V

∫
Ω

ϕ(x, v)ψ(x, v)dx dv

+µ

∫
V

∫
Ω

(∫
V

K(x, v, v′)ϕ(x, v)dv′
)
ψ(x, v′) dx dv.

The last identity follows from integration by parts and from the Dirichlet boundary condition ϕ(x, v) =
ψ(x, v) = 0 for x ∈ ∂Ω. If we now denote the adjoint integral kernel as

K∗(x, v, v′) = K(x, v′, v),

then A∗, the adjoint operator of A, is given by

A∗ϕ(x, v) = (v · ∇)ϕ(x, v)− µϕ(x, v) + µ

∫
V

K∗(x, v, v′)ϕ(x, v′)dv′.

The Kolmogorov backward equation in explicit form becomes

(16) pt − v · ∇p = −µ p+ µ

∫
V

K∗(x, v, v′)p(x̄, v̄, t|x, v′)dv′,
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This equation was previously derived by Stroock [67]. We can write (16) to mirror (1) by introducing the
turning operator L∗

(17) pt(t, x, v)− v · ∇p(t, x, v) = L∗p(t, x, v),

where L∗ = A∗ − (v · ∇) is given by

(18) L∗φ(t, x, v) = −µφ(t, x, v) + µ

∫
V

K∗(x, v, v′)φ(t, x, v′)dv′.

It is straightforward to show that L∗ is the formal adjoint of L defined in (2).

2.2 The Survival Probability To derive an expression for the mean first passage time of the trans-
port process we first introduce the survival probability s(x, v, t). This quantity is defined as the probability
that having started from an initial position x ∈ Ω with velocity v ∈ V the final position x̄ and velocity v̄ at
time t remain in the same domain Ω× V . We thus assume p(x̄, v̄, t = 0|x, v) = δ(x̄− x)δ(v̄ − v) with x ∈ Ω
and v ∈ V and define

(19) s(x, v, t) =

∫
V

∫
Ω

p(x̄, v̄, t|x, v) dx̄ dv̄ ∀(x, v) ∈ Ω× V.

In principle the domain for the forward and backward equations can be different, as one can study the exit
time from a subset of the domain on which the forward equation is valid. Here, for simplicity we assume
they are the same and utilize absorbing boundary conditions on Ω. Thus, we set s(x, v, t) = 0 for any x ∈ ∂Ω
to indicate that a random walker starting at the boundary of Ω does not survive at any time. Furthermore,
the initial condition p(x̄, v̄, t = 0|x, v) = δ(x̄ − x)δ(v̄ − v) implies that s(x, v, t = 0) = 1 for all x ∈ Ω. We
also define the probability flux j(x, v, t) as

(20) j(x, v, t) =

∫
V

∫
Ω

v p(x̄, v̄, t|x, v) dx̄ dv̄ = vs(x, v, t).

We now integrate the backward equation (16) over the final position x̄ ∈ Ω and v̄ ∈ V to find a transport
equation for s(x, v, t),

st − v · ∇s = −µs+ µ

∫
V

K∗(x, v, v′)s(x, v′, t)dv′.(21)

Given the above definitions of s(x, v, t) and j(x, v, t) we note that one is most often concerned with the
survival probability, and the mean first passage time, of reaching the boundary ∂Ω regardless of the velocity.
Hence we introduce the marginal survival probability S(x, t) defined as

(22) S(x, t) =
1

|V |

∫
V

s(x, v, t) dv ,

where |V | =
∫
V
dv. The corresponding flux is

(23) J(x, t) =
1

|V |

∫
V

j(x, v, t) dv.

Note that S(x, t) remains a probability and S(x, t = 0) = 1. The flux J(x, t) still carries units of a velocity.
For later use we collect the initial conditions here:

(24) p(x̄, v̄, 0|x, v) = δ(x̄− x)δ(v̄ − v), s(x, v, 0) = 1, S(x, 0) = 1.

To study the dynamics of S and J we must specify the properties of the turning kernel K(x, v, v′) and of its
adjoint K∗(x, v, v′); we do so in the two cases below for diffusive and anisotropic transport.
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2.2.1 The mean first passage time The quantity of interest in our analysis is Θ(x, v), the expected
survival time before leaving Ω given the random walker started at position x with velocity v. Thus, through
Θ(x, v) we keep the initial velocity explicit in the definition of the MFPT. As s(x, v, t) denotes the survival
probability, then 1−s(x, v, t) denotes the probability of exit, which has the density −st(x, v, t). We calculate
via integration by parts that

(25) Θ(x, v) := −
∫ ∞

0

tst(x, v, t)dt =

∫ ∞

0

s(x, v, t)dt.

We can directly integrate the backward equation (21) over time and impose that particles start at
position x with velocity v, and that none of them survive forever,

s(x, v, 0) = 1, lim
t→∞

s(x, v, t) = 0,

to obtain an integro-differential equation for the expected survival time Θ(x, v). We find

(26) −1 = v · ∇Θ(x, v)− µΘ(x, v) + µ

∫
V

K∗(x, v, v′)Θ(x, v′)dv′ = A∗Θ(x, v)

This equation will become useful later. Here, we continue our analysis of the survival probability S(x, t) and
its flux J(x, t) for several special cases.

2.2.2 Higher moments Here we give a brief description of how to derive recursive expressions for
the moments Θm(x, v) of the survival probability s(x, v, t) for m ≥ 1. For m ≥ 0, the m-moment is defined
as

(27) Θm(x, v) := −
∫ ∞

0

tmst(x, v, t)dt = m

∫ ∞

0

tm−1s(x, v, t)dt,

where the last equality was obtained using integration by parts and the assumption that s(x, v, t) decays
fast enough at infinity

lim
t→∞

tm−1s(x, v, t) = 0.

Then Θ0(x, v) = 1 denotes the total probability and the first moment Θ1(x, v) = Θ(x, v) is the mean first
passage time as defined in (25). To find the higher moments for m ≥ 2, we follow a process similar to that
leading to (26). First, we multiply the backward equation (21) by tm−1 and then integrate over t ∈ (0,∞).
Using the same initial conditions as above, we find that

(28) −mΘm−1(x, v) = v · ∇Θm(x, v)− µΘm(x, v) + µ

∫
V

K∗(x, v, v′)Θm(x, v′)dv′ = A∗Θm(x, v).

Upon setting m = 1 in (28) we recover the expression for the expected survival time Θ(x, v) shown in (26).

3 MFPT for Isotropic Diffusive Transport We now write the equation for the mean first passage
time under the isotropic diffusive transport regime as discussed above. In addition to (3) we assume symmetry
and particle conservation of the turning kernel K

(29) K(x, v, v′) = K(x, v,−v′), and

∫
V

K(x, v, v′)dv′ = 1.

For the adjoint operator this implies

(30) K∗(x, v, v′) = K∗(x,−v, v′), and

∫
V

K∗(x, v, v′)dv = 1.

We use assumption (30) and integrate equation (21) for the survival probability s(x, v, t) over velocity space
to obtain a conservation law

St −∇ · J = 0.(31)
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We also multiply the backward equation (21) by v, integrate over velocity space, and divide by the volume
|V | to obtain

Jt −
1

|V |

∫
V

v(v · ∇)s dv = −µJ +
µ

|V |

∫
V

∫
V

v K∗(x, v, v′)s(x, v′, t) dv′ dv.(32)

Since assumption (30) on the symmetry of K implies that∫
V

vK∗(x, v, v′)dv = 0,

the last integral vanishes. Finally, using tensor notation for a dyadic product of two vectors we write

(33) Jt −
1

|V |
∇ ·
∫
V

v ⊗ v s(x, v, t) dv = −µJ.

Equations (31) and (33) do not not lead to a closed system of equations for S and J . We will discuss
the closure problem in more detail later. For now, we identify the complement of S(x, t), the function
F (x, t) = 1− S(x, t), as the exit probability from Ω. Its density is given by

f(x, t) = Ft(x, t) = −St(x, t).

The expected survival time T (x) before exiting Ω given the random walker started at the initial position
x ∈ Ω can be now alcomputed through integration by parts as

T (x) ≡
∫ ∞

0

tf(x, t)dt =

∫ ∞

0

S(x, t)dt.

We refer to T (x) as the mean first passage time. Integrating (31) for the dynamics of S, and (32) for the
dynamics of J , both over time, and using the initial conditions (24), we obtain the following

−1 = ∇ ·
∫
Jdt(34a)

0 =
1

|V |
∇ ·
∫
V

∫ ∞

0

v ⊗ v s(x, v, t) dt dv − µ

∫
Jdt.(34b)

In the above calculation, we have assumed that p(x̄, v̄, t→ ∞|x, v) = 0 since all particles eventually exit the
domain and are “captured” by the boundary due to the Dirichlet boundary condition. In addition, we have
applied that

∫
V
vdv = 0 due to the symmetry of the V domain. We can now take the divergence of (34b)

and substitute the resulting expression in (34a) to obtain

(35) −1 =
1

µ|V |
∇ ⊗∇ :

∫
V

∫ ∞

0

v ⊗ v s(x, v, t) dt dv.

Here, we have used the colon notation : to denote the tensor convolution of two vectors a and b as

a⊗ a : b⊗ b =

n∑
i,j=1

aiajbibj .

We like to obtain an equation for the exit time Θ(s, v), defined in (25). Integrating (25) over V we obtain

T (x) =
1

|V |

∫
V

Θ(x, v)dv.

Using equation (35) we find the MFPT equation for the case of isotropic diffusive transport

(36) −1 =
1

µ|V |
∇ ⊗∇ :

∫
V

v ⊗ vΘ(x, v)dv.
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3.1 Example: We assume constant speed so that V = σSn−1 and rotational symmetry in the initial
velocity dependence of s(x, v, t) = s(x, t) so that∫

V

v ⊗ v s(x, v, t)dv =
σ2

n
I
∫
V

s(x, t)dv,

where I denotes the identity matrix. Substituting this expression in (36) and noting that ∇⊗∇ : I = ∆, we
find

(37) −1 =
σ2

nµ
∆T (x).

This equation has the well known form of a MFPT for a diffusion process in an n-dimensional system with

diffusion constant Dn = σ2

nµ . This coefficient also agrees with the parabolic limit of the transport equation,

as carried out in several papers, for example [33].

4 MFPT for Anisotropic Transport We now derive the equation for the mean first passage time
under anisotropic transport, where directional cues from the environment bias particle movement along one
or more select directions. For simplicity, in addition to (3) we also assume that K(x, v, v′) = q(x, v) is
independent of the incoming velocity v′ and that q(x, v) is symmetric in v. We summarize the properties of
K(x, v, v′) and q(x, v) below

K(x, v, v′) = q(x, v), i.e. K∗(x, v, v′) = q(x, v′),(38a)

q ≥ 0, q ∈ L2(V ),

∫
V

q(x, v)dv = 1, q(x,−v) = q(x, v).(38b)

This choice of K(x, v, v′) does not satisfy the conditions listed in (30), since∫
V

K∗(x, v, v′)dv = q(x, v′)|V |,

and the right hand side equals 1 if and only if q(x, v′) = 1
|V | . Hence, the results shown in Section 3 for

diffusive transport apply only to the simple case of a uniform turning kernel but are not valid for a general,
non uniform q(x, v). To find an expression for the MFPT under anisotropic transport we start with the
backward equation (21) for the survival probability s(x, v, t) adapting it to the case at hand and write

st − v · ∇s = −µs+ µ

∫
V

q(x, v′)s(x, v′, t)dv′.(39)

We now multiply equation (39) by q(x, v) and integrate over the velocity domain to obtain∫
V

q(x, v)st(x, v, t)dv −
∫
V

vq(x, v) · ∇s(x, v, t)dv

= −µ
∫
V

q(x, v)s(x, v, t)dv + µ

∫
V

∫
V

q(x, v)q(x, v′)s(x, v′, t)dv′dv = 0.

The last identity is derived from the property that q(x, v) integrates to unity in velocity space. To simplify
the notation we introduce the following two quantities

n(x, t) =

∫
V

q(x, v)s(x, v, t)dv and w(x, t) =

∫
V

vq(x, v) · ∇s(x, v, t)dv,

which leads to

(40) nt − w = 0.

We now derive a differential equation for w, including dependencies only where explicitly needed

wt =

∫
V

vq · ∇st dv =

∫
V

vq · ∇
(
v · ∇s− µs+ µ

∫
V

q(x, v′)s(x, v′, t)dv′
)
dv

=

∫
V

q (v ⊗ v : ∇⊗∇) s dv − µ

∫
V

vq · ∇s dv + µ

∫
V

vq(x, v)dv · ∇
∫
V

q(x, v′)s(x, v′, t) dv′.
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Since
∫
V
vq(x, v)dv = 0 by the symmetry assumption in (38b), the last term vanishes yielding

(41) wt =

∫
V

q(x, v)(v ⊗ v : ∇⊗∇)s(x, v, t)dv − µw.

We now integrate (40) and (41) over time and obtain boundary terms. Since no particle survives forever,
i.e. s(x, v, t → ∞) = 0, we can write n(x,∞) = w(x,∞) = 0. Moreover, the initial condition s(x, v, 0) = 1
yields n(x, 0) = 1 and w(x, 0) = 0. Using these identities we find

−1 =

∫ ∞

0

w(x, t)dt

0 =

∫
V

∫ ∞

0

q(x, v)(v ⊗ v : ∇⊗∇)s(x, v, t)dt dv − µ

∫ ∞

0

w(x, t)dt,

which combine to yield

−1 =
1

µ

∫
V

∫ ∞

0

q(x, v)(v ⊗ v : ∇⊗∇)s(x, v, t)dv dt.

We can rewrite this expression by invoking Θ(x, v), the MFPT where both the initial condition and velocity
are specified, to finally obtain the MFPT equation for anisotropic transport:

(42) −1 =
1

µ

∫
V

q(x, v)(v ⊗ v : ∇⊗∇)Θ(x, v)dv.

There is an alternative way to derive the above equation (42) directly from (26). The calculations are
essentially the same as performed above, but they are carried out in a different order. Still, we find it useful
to sketch this derivation here to keep record of the intermediate steps:

We still set K(x, v, v′) = q(x, v) and assume (38a) and (38b) to obtain from (26) that

(43) −1 = v · ∇Θ(x, v)− µΘ(x, v) + µ

∫
V

q(x, v′)Θ(x, v′)dv′.

We multiply (43) by q(x, v) and integrate over V to find

(44) −1 =

∫
V

q(x, v)v · ∇Θ(x, v) dv.

Then we take the spatial gradient of (43) to get

(45) 0 = v · ∇ ⊗∇Θ(x, v)− µ∇Θ(x, v) + µ∇
∫
V

q(x, v′)Θ(x, v′)dv′.

Multiplying (45) by vq(x, v) and integration over V yields:

(46)

∫
V

q(x, v)v · ∇Θ(x, v) =
1

µ

∫
V

q(x, v) (v ⊗ v : ∇⊗∇)Θ(x, v)dv,

where we used the symmetry of q such that
∫
vqdv = 0. Finally, we use (46) in (44) to obtain the main

result (42).

Equation (42) is an interesting anisotropic integro-differential equation for the mean first exit time
Θ(x, v) when starting at (x, v). In this general setting, we cannot derive a simple equation for the mean exit
time T (x), since the initial velocity cannot be neglected. Also, we cannot simply integrate (42) over velocity
space, since the velocity and derivative terms are mixed. This issue is similar to a moment closure problem,
which is well known and well studied in the theory of transport equations [15, 30]. In order to proceed we
must find an approximation for the q(x, v)-weighted second moment of Θ(x, v). One way to accomplish this
is to consider parabolic scaling, which leads to an equation for T (x) alone. We do this in the next section.
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5 Parabolic Scaling for Anisotropic Transport Parabolic scaling is a well known technique to
study transport processes on macroscopic time and space scales. While the scaling of the forward equation
is standard, the corresponding scaling for the backward equation is a new result to the best of the authors’
knowledge. Here, for consistency, we present both cases, forward and backward. For simplicity we assume
that K(x, v, v′) = q(x, v) = q(x,−v) is a symmetric, anisotropic directional distribution that does not
depend on the incoming velocity v′ and whose properties are listed in (38b). We now collect some functional
analytical properties of K(x, v, v′) = q(x, v). First, for the forward transport equation in (1) we write the
turning operator L defined via the integral representation (2) as a mapping on L2(V ) so that for a test
function φ(x, v)

Lφ(x, v) = −µφ(x, v) + µq(x, v)φ̂(x), φ̂(x) =

∫
V

φ(x, v′)dv′.

Similarly, for the backward Kolmogorov equation in (17) the turning operator L∗ can be written as

L∗φ(x, v) = −µφ(x, v) + µ

∫
V

q(x, v′)φ(x, v′)dv′.

To perform the parabolic scaling we need to find the null spaces (kernel) and the pseudo-inverses of the L,L∗

operators on the complement of their null spaces. We collect these properties in the following Lemmas.

Lemma 1. The kernels of the operators L and L∗ are the one-dimensional spaces spanned by the functions
q(x, v) and 1, respectively.

kerL = ⟨q(x, v)⟩, kerL∗ = ⟨1⟩.

Proof. To find the kernel of L we seek functions ϕ(x, v) that satisfy Lϕ = 0. This condition is

−µϕ(x, v) + µq(x, v)ϕ̂(x) = 0, ϕ̂(x) ≡
∫
V

ϕ(x, v)dv.

To solve the above equations consistently, ϕ(x, v) must be proportional to q(x, v). To find the kernel of the
adjoint L∗ we must instead solve L∗ϕ = 0, or

−µϕ(x, v) + µ

∫
V

q(x, v′)ϕ(x, v′)dv′ = 0,

implying that ϕ(x, v) is uniform in v, i.e. ϕ(x, v) = ϕ(x).

Note that elements in ⟨1⟩⊥ carry no mass since

0 = (ψ, 1) =

∫
V

ψ(v)dv for all ψ ∈ ⟨1⟩⊥.

Lemma 2. For the L operator consider the inverse of the generating function q(x, v) as a weight in
L2(V ) and restrict L to the domain of functions that are L2(V ) when weighted by q−1, which we denote by
L2
q−1(V ). A similar construct for L∗ using the corresponding generating function 1 does not alter the domain

of L∗. Then, the pseudo-inverse operators acting on

L : L2
q−1(V ) 7→ L2

q−1(V ), L∗ : L2(V ) 7→ L2(V )

are, respectively, the multiplication operators(
L|⟨q⟩⊥

)−1
= − 1

µ
,

(
L∗|⟨1⟩⊥

)−1
= − 1

µ
.

Proof. To find L−1 the pseudo-inverse of L on (kerL)⊥, the orthogonal complement of kerL, we consider
a given ϕ ∈ kerL⊥ and find ψ ∈ kerL⊥ that solves Lψ = ϕ, so that ψ = L−1ϕ. The equation Lψ = ϕ reads

(47) −µψ(x, v) + µq(x, v)ψ̂(x) = ϕ(x, v).
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The assumption that ψ ∈ ⟨q⟩⊥ in L2
q−1(V ) implies that

0 = (ψ, q)q−1 =

∫
V

ψ(x, v)q(x, v)
dv

q(x, v)
= ψ̂(x)

where (ψ, q)q−1 denotes the inner product of ψ(x, v) and q(x, v) in V space using q(x, v)−1 as a weight
function. Hence (47) is solved as

ψ(x, v) = − 1

µ
ϕ(x, v).

Similarly, for L∗ we consider ϕ ∈ kerL∗⊥ and find ψ ∈ kerL∗⊥ that solves L∗ψ = ϕ. We find

(48) −µψ(x, v) + µ

∫
V

q(x, v′)ψ(x, v′)dv′ = ϕ(x, v).

We integrate this equation over V and use the fact that ϕ, ψ ∈ ⟨1⟩⊥ to find

0 + µ|V |
∫
V

q(x, v′)ψ(x, v′)dv′ = 0.

Hence equation (48) is solved as

ψ(x, v) = − 1

µ
ϕ(x, v).

implying that
(
L|⟨q⟩⊥

)−1
= −1/µ.

We use these results in the next section where we derive expressions for the mean first passage time
through parabolic scaling in the case of anisotropic transport whereK(x, v, v′) = q(x, v) and under symmetry
conditions q(x, v) = q(x,−v).

5.1 Parabolic Scaling of the Forward Transport Equation As mentioned above, parabolic
scaling of the forward transport equation is well established in the literature [7, 34]. In the anisotropic case
the forward transport equation (6) for p(x, v, t) reads

(49) pt + v · ∇p = Lp.

We now introduce a small parameter ε > 0 and rescale macroscopic time and space through the parabolic
scaling variables τ and ξ defined as

(50) τ = ε2t, ξ = εx.

The forward transport equation now becomes

(51) ε2pτ + εv · ∇ξp = Lp,

where p(ξ, v, τ) is expressed in terms of the rescaled quantities. Note that L contains no derivatives so the
formal expression for Lp in (51) is unaffected by the scaling procedure. We now expand (51) in powers of ε

(52) p(ξ, v, τ) = p0(ξ, v, τ) + εp1(ξ, v, τ) + ε2p2(ξ, v, τ) + · · ·

where the functions p0, p1, p2, . . . are to be determined by comparing orders of ε in (51). Results are as
follows

ε0 : Collecting the zeroth-order in ε terms in (51) leads to

0 = Lp0.

Hence, p0 ∈ kerL by Lemma 1 and

(53) p0(ξ, v, τ) = p̂0(ξ, τ)q(ξ, v), p̂0(ξ, τ) =

∫
V

p0(ξ, v, τ)dv.
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ε1 : Collecting the first-order in ε terms in (51) leads to

v · ∇ξp0 = Lp1.

This equation can be solved if the left hand side is in the orthogonal complement of the kernel of L
in L2

q−1(V ). A direct calculation yields

(v · ∇ξp0, q)q−1 ≡
∫
V

v · ∇ξp̂0(ξ, τ)q(ξ, v)
dv

q(ξ, v)
= ∇ξ ·

∫
V

vq(ξ, v)dv p̂0(ξ, τ) = 0,

where (v · ∇ξp0, q)q−1 denotes the inner product of the two arguments in V space using q−1 as a
weight function. The last identity comes from the symmetry condition q(x, v) = q(x,−v), which
implies q(ξ, v) = q(ξ,−v) and thus

∫
V
vq(ξ, v)dv = 0. Then, according to Lemma 2

(54) p1(ξ, v, τ) = − 1

µ
v · ∇ξ (p̂0(ξ, τ)q(ξ, v)) .

ε2 : Collecting the second-order in ε terms in (51) leads to

p0τ + v · ∇ξp1 = Lp2.

We integrate this equation over V and use (53) and (54) to find∫
V

p̂0τ (ξ, τ)q(ξ, v) dv +

∫
V

v · ∇ξ

(
− 1

µ
v · ∇ξ(p̂0(ξ, τ)q(ξ, v))

)
dv = 0,

which we can write using tensor notation as

p̂0τ =
1

µ
∇ξ ⊗∇ξ :

[
p̂0(τ, ξ)

∫
V

v ⊗ vq(ξ, v)dv

]
.

Finally, the parabolic limit of the forward transport equation can be written through the introduction
of a diffusion tensor D(ξ) as follows

(55) p̂0τ (ξ, τ) = ∇ξ ⊗∇ξ : [D(ξ)p̂0(ξ, τ)] , with D(ξ) =
1

µ

∫
V

v ⊗ vq(ξ, v)dv.

Equation (55) is a well studied anisotropic diffusion equation [64]. The mean first passage time τ(ξ)
to the boundary of the spatial domain can be obtained by introducing the survival probability as
shown in Section 2.2 and following the same procedures here described. We do this below.

5.2 Parabolic Scaling of the Backward Kolmogorov Equation Under anisotropic, symmetric
transport, the backward Kolmogorov equation for the survival probability s(x, v, t) in (39) can be written as

st − v · ∇s = L∗s.

Similarly to the forward case, we rescale space and time as in (50) to obtain

(56) ε2sτ − εv · ∇ξs = L∗s.

We can now expand s(ξ, v, τ) in powers of ε so that

s(ξ, v, τ) = s0(ξ, v, τ) + εs1(ξ, v, τ) + ε2s2(ξ, v, τ) + · · ·

and compare orders of ε as follows

ε0 : Collecting the zeroth-order in ε terms in (56) leads to

0 = L∗s0.

Hence, s0 ∈ kerL∗ by Lemma 1 and is independent of v:



Mean first passage times for transport equations 15

(57) s0(ξ, v, τ) = s0(ξ, τ).

ε1 : Collecting the first-order in ε terms in (56) leads to

−v · ∇ξs0 = L∗s1.

We check the solvability condition on ⟨1⟩⊥:

(v · ∇ξs0, 1) = ∇ξ ·
∫
V

vdv s0(ξ, τ) = 0.

The last identity arises from the assumption of symmetry in the velocity space V so that if v ∈ V
then also −v ∈ V . Lemma 2 implies

(58) s1(ξ, v, τ) =
1

µ
v · ∇ξs0(ξ, τ).

ε2 : Collecting the second-order in ε terms in (56) leads to

s0τ − v · ∇ξs1 = L∗s2 = −µs2 + µ

∫
V

q(ξ, v′)s2(ξ, v
′, τ)dv′.

We multiply this equation by q(ξ, v), integrate over V , and express s1 through (58) to find

s0τ −
∫
V

q(ξ, v)v · ∇ξ

(
1

µ
v · ∇ξs0(ξ, τ)

)
dv =

−µ
∫
V

q(ξ, v)s2(ξ, v, t)dv + µ

∫
V

q(ξ, v)dv

∫
V

q(ξ, v′)s2(ξ, v
′τ)dv′ = 0,

where we use the condition
∫
V
q(x, v)dv = 1 which also implies

∫
V
q(ξ, v)dv = 1. The above identity

can be rewritten as

s0τ =
1

µ

∫
V

q(ξ, v)v ⊗ vdv : ∇ξ ⊗∇ξs0.

Finally, utilizing the same diffusion tensor as in (55) we write

s0τ = D(ξ) : ∇ξ ⊗∇ξs0,

which is the parabolic limit of the backward equation (39). If we integrate this equation over time
from 0 to ∞, and use the fact that s0(ξ, 0) = 1 then we obtain the MFPT equation for τ(ξ)

(59) −1 = D(ξ) : ∇ξ ⊗∇ξτ(ξ),

Shifting back to the original spatio-temporal coordinates (x, t), and using T (x) = ε2τ(εx), we find an
expression for the mean first passage time T (x) that is independent of the velocity v

(60) −1 = D(x) : ∇⊗∇T (x), D(x) =
1

µ

∫
V

v ⊗ v q(x, v)dv.

Note that if Θ is independent of v, this equation follows directly from (42).

6 Applications To illustrate our results we consider several examples of anisotropic oriented move-
ment in two-dimensional regions. We begin with the bimodal von-Mises distribution introduced in (10) with
n = 2 to express the orientation biases of the random walker. Since in this case V = σSn−1 = σS1, and
ω = σn−1 = σ from (5), we write

(61) q(x, v) =
q̃(x, θ)

σ
=

1

4πσI0(k(x))

(
ek(x)γ(x)·θ + e−k(x)γ(x)·θ)

)
=

cosh(k(x)γ(x) · θ)
2πσI0(k(x))

,

where k(x) ≥ 0 is a measure of concentration and the unit vector γ(x) defines the preferred orientation at
location x ∈ Ω. The bimodal von-Mises distribution includes both directions ±γ(x) to allow for symmetric
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movement along the preferred orientation. The functions Ij(k(x)) are modified Bessel functions of the first
kind of order j ≥ 0. Note that if k(x) = 0 then q(x, v) becomes the uniform distribution on a circle
q(x, v) = 1/(2πσ) and that if we let k(x) → ∞ the distribution displays two δ-singularities, one at θ = γ(x)
and one at θ = −γ(x).

In this scenario, where particles move at fixed speed σ and assuming the turning kernel biases motion
along a preferred orientation γ(x) that does not depend on incoming velocity, we assume that we are close
to the parabolic limit, Θ(x, v) = T (x), and use (60). The diffusion tensor D(x) that appears in (60) can be
calculated using (11) leading to [35]

(62) D(x) =
σ2

2µ

(
1− I2(k(x))

I0(k(x))

)
I+

σ2

µ

I2(k(x))

I0(k(x))
γ(x)γT (x).

In the following examples, we show solutions of (60) using various choices for the domain Ω and the fields
γ(x) and k(x) in (62).

6.1 MFPT for Anisotropic Transport on a circular domain Bica et al [7] studied anisotropic
transport on a two-dimensional disk where the bimodal von-Mises distribution was used to describe biological
particles moving in radially symmetric environments. Applications include intra-cellular transport along
microtubules, cancer cell migration along collagen fibres, or animals aggregating near watering holes. Here we
similarly assume a two-dimensional circular domain Ω with radius R0, and employ planar polar coordinates
(r, φ). We now need to specify k(x), γ(x). For most of this section we let the parameter of concentration be
uniform, k(x) = k ≥ 0, however we keep general k(x) in our analytical derivations. We also assume that the
preferred orientation γ(x) is either radial, i.e. as if along the spokes of a bicycle wheel, or circular, along the
direction perpendicular to the radial direction, following concentric circles inside the disk. If we now write
the radial unit vector as x̂ = x/||x|| = (cosφ, sinφ) and its orthogonal as x̂⊥ = (− sinφ, cosφ), then γ(x)
can be represented as

(63) γ(x) =

{
x̂ for radial orientation,

x̂⊥ for circular orientation.

These two choices can be combined into a common notation by introducing the anisotropy indicator α(x) as
follows [7]

(64a) D(x) =
σ2

µ

{
1
2 (1− α(x))I+ α(x)x̂x̂T x ̸= 0
1
2 I x = 0.

where α(x) for general k(x) is given by

(64b) α(x) =
I2(k(x))

I0(k(x))
×

{
+1 for radial orientation,

−1 for circular orientation.

If we set k(x) = k then α(x) = α is also uniform, and since I2(k) ≤ I0(k) for all k ≥ 0 it is also true that
α ∈ (−1, 1). Note that the uniform distribution that arises from setting k(x) = 0 in (61) corresponds to
α(x) = 0 due to (64b) and the properties of the Bessel functions. The limit k(x) → ∞, which leads to a
singularity along ±γ(x) as discussed above, results in α(x) → 1 for radial orientation and α(x) → −1 for
circular orientation. This implies that motion is singularly biased along the radial direction for α→ 1− and
along the tangential direction for α→ −1+. Finally, in (64a) I is the identity matrix and the tensor product
x̂x̂T is given by

x̂x̂T =

(
cos2 φ sinφ cosφ

sinφ cosφ sin2 φ

)
.

We can now solve the anisotropic mean first passage time equation (60). Given the radial symmetry, we use
the notation Tα(r) to indicate the MFPT for the random walker starting at r under the anisotropy indicator
α. A direct calculation of (60) and (64) assuming α(x) = α(r) is only radially dependent, yields

(65)
1 + α(r)

2r

(
rT ′

α(r)
)′

− α(r)

r
T ′
α(r) = − 1

2D
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(a) Exit from inner circle. (b) Exit from inner or outer circle.

Fig. 2. The MFPT (65) for D = 0.5 on an annulus with domain ρ < r < R0, inner circle radius ρ = 0.5, outer circle
radius R0 = 3 and several values of α ∈ (−1, 1). Panel (a): Particles exit the annulus only through the inner circle; the
corresponding boundary conditions under which to solve (67) are Tα(ρ) = T ′

α(R0) = 0. Note that Tα(r) increases with α for
given r > ρ and Tα(r > ρ) → ∞ as α → −1+ as shown in (72c). Under purely circular motion particles move tangentially
and cannot decrease their distance from the origin, hence they will never exit the annulus. Panel (b): Particles may exit
the annulus through both the inner and outer circles; the corresponding boundary conditions under which to solve (67) are
Tα(ρ) = Tα(R0) = 0. In the limit α → −1+ the solution Tα(r) displays a discontinuity at r = ρ as particles located at r → ρ+

will be able to exit the annulus only through the outer circle at r = R0. Particle simulations (black squares) based on N = 104

independent stochastic simulations of (1) with µ = 104, σ =
√
µ agree with theoretical predictions. Specialized numerical

algorithms are needed to simulate the exit from the inner circle as α → −1+ since Tα ≫ 1. Indeed, we note the difference in
the scale of the vertical axes between the two panels. All quantities are in arbitrary units.

where the diffusion constant D = σ2/(2µ) is consistent with the n = 2 diffusivity introduced in (37). Note
that the case α = 0 corresponds to the standard diffusion process in two-dimensions. The general solution
of (65) is

(66) Tα(r) = − r2

4D
+H1 +H2

∫ r

exp

[
−
∫ η 1

s

1− α(s)

1 + α(s)
ds

]
dη,

where H1, H2 are constants that depend on the chosen boundary conditions. For uniform α(s) = α, (65)
reduces to

(67) Tα(r) = − r2

4D
+H1 +H2r

2α
1+α .

Below, we solve for H1, H2 in given geometric scenarios and for fixed α ∈ (−1, 1). Note that since (67)
contains two unknowns, two conditions are necessary to identify them.

6.1.1 Exit from a disk: In this scenario we assume the random walker can exit the disk only through
the boundary at r = R0. This implies that the mean first exit time at r = R0 must be zero. We also impose
smoothness at the origin so that all derivatives at r = 0 be zero. Thus, we solve (67) in the domain
0 < r < R0 with boundary conditions

(68) T ′
α(0) = 0, Tα(R0) = 0,

to obtain the solution

(69) Tα(r) =
1

4D

(
R2

0 − r2
)
.

Remarkably, (69) is independent of α. Thus, the two-dimensional MFPT to reach the boundary of a disk
for a particle moving under the von-Mises jump distribution (61) with a uniform concentration parameter
k(x) = k has the same form as in the case of a random, diffusive process.
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6.1.2 Exit from the inner circle of an annulus: We now consider motion constrained to an
annular region so that ρ < r < R0 for all trajectories. As shown below, the effects of anisotropy can be more
pronounced here compared to motion in a disk. We specifically assume that the random walker can only
exit the annulus via the inner circle at r = ρ and impose reflecting (Neumann) boundary conditions at the
outer circle at r = R0. Thus we solve (67) in the domain ρ < r < R0 with boundary conditions

(70) Tα(ρ) = 0, T ′
α(R0) = 0.

The general solution of (65) under uniform α is

(71) Tα(r) =
1

4D
(ρ2 − r2) +

1

2βD
R

β
α
0 (rβ − ρβ), with β ≡ 2α

1 + α
.

We then derive the limits for the MFPT corresponding to motion that is purely radial (α → 1−), isotropic
(α→ 0), or purely circular (α→ −1+)

lim
α→1−

Tα(r) =
1

4D
(ρ2 − r2) +

R0

2D
(r − ρ),(72a)

lim
α→0

Tα(r) =
1

4D
(ρ2 − r2) +

R2
0

2D
log
( r
ρ

)
,(72b)

lim
α→−1+

Tα(r) =

{
+∞ r > ρ;

0 r = ρ.
(72c)

Since the function r − ρ − R0 log(r/ρ) is a negative, decreasing function of r for ρ < r < R0 the MFPT in
the purely radial case (α → 1− in (72a)) is less than in the isotropic case (α → 0 in (72b)). This implies
that exiting the annulus from its inner circle is faster if the motion is constrained along the radial direction
rather than being isotropic. Also note that under purely circular motion (α → −1+ in (72c)) the MFPT
Tα(r > ρ) = +∞ for any starting position r. Since the preferred motion is along the tangent direction, a
particle that started at r > ρ can never randomly turn to smaller values of r to reach the only exit boundary
at r = ρ. Hence, it will remain trapped in the annulus for infinite time.

6.1.3 Exit from the outer circle of an annulus: We now consider the opposite scenario where
the random walker can only exit the annulus via the outer circle at r = R0 and impose reflecting (Neumann)
boundary conditions at the inner circle at r = ρ. Thus we solve (67) in the domain ρ < r < R0 with
boundary conditions

(73) T ′
α(ρ) = 0, Tα(R0) = 0.

The general solution of (65) under uniform α is given by replacing ρ and R0 in (71)

(74) Tα(r) =
1

4D
(R2

0 − r2) +
1

2βD
ρ

β
α (rβ −Rβ

0 ), with β ≡ 2α

1 + α
.

The limits for the MFPT corresponding to motion that is purely radial (α → 1−), isotropic (α → 0), or
purely circular (α→ −1+) are

lim
α→1−

Tα(r) =
1

4D
(R2

0 − r2) +
ρ

2D
(r −R0),(75a)

lim
α→0

Tα(r) =
1

4D
(R2

0 − r2) +
ρ2

2D
log
( r

R0

)
,(75b)

lim
α→−1+

Tα(r) =
1

4D
(R2

0 − r2).(75c)

In this case, the function r −R0 − ρ log(r/R0) is a negative, increasing function of r for ρ < r < R0 so that
the MFPT in the purely radial case (α→ 1− in (75a)) is still less than in the isotropic case (α→ 0 in (75b)).
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Thus, exiting the annulus from its outer circle is faster if particle motion is constrained along the radial
direction rather than being isotropic. Since r < R0, comparing (75c) to (75a) and (75b) shows that purely
circular motion yields the longest MFPT to exiting the annulus. Furthermore for α→ −1+ the MFPT does
not depend on ρ since the motion is purely tangential and, as discussed above, a particle starting at r > ρ
will always randomly increase its distance from origin.

Upon comparing (72a) and (75a), one can show that under purely radial motion, the MFPT to exit the
annulus from the outer or inner circle is the same if trajectories start at r = rc = (ρ + R0)/2, the exact
midpoint. For r > rc the MFPT is shortest if exiting from the outer circle, for r < rc the MFPT is shortest
if exiting from the inner circle.

6.1.4 Exit from the inner or outer circle of an annulus: Finally, we solve (67) in the case where
a particle can exit the annulus from both inner and outer circles using the following boundary conditions

Tα(ρ) = Tα(R0) = 0.

We find

(76) Tα(r) = − 1

4D
r2 +

1

4D

(
Rβ

0ρ
2 −R2

0ρ
β

Rβ
0 − ρβ

)
+
rβ

4D

(
R2

0 − ρ2

Rβ
0 − ρβ

)
, β =

2α

1 + α
.

As done above, we highlight the limiting cases of purely radial (α → 1−), isotropic (α = 0), and purely
circular (α→ −1+) motion to find

lim
α→1−

Tα(r) =
1

4D
(ρ− r)(r −R0),(77a)

lim
α→0

Tα(r) =
1

4D

(R2
0 − ρ2) log r − (r2 − ρ2) logR0 + (r2 −R2

0) log ρ

logR0 − log ρ
,(77b)

lim
α→−1+

Tα(r) =

{ 1

4D
(R2

0 − r2) r > ρ;

0 r = ρ.
(77c)

By comparing (77a) with (72a) and (75a), one can show that under purely radial motion the MFPT to exit
the annulus from either the inner or outer circle is always less compared to when exit is allowed from only
one of the two boundaries. Note the discontinuity in (77c): under purely circular motion particles starting
at r > ρ can exit the annulus through the outer circle so we recover the same result as in (75c).

6.2 MFPT for anisotropic transport with linear features. As discussed previously, anisotropic
transport is often facilitated by the presence of linear structures in the environment. For example, roads
and seismic lines modulate animal movement in ecological landscapes while intra-cellular transport occurs
along actin filaments or microtubules. Multiple segments (of roads, or filaments) carry random relative
orientations and occasionally intersect. As such, we study the MFPT in the presence of one or several
preferential orientations. For concreteness, we use a square domain Ω and assume that particles can exit the
domain through any of its edges. We thus solve (60) with absorbing (Dirichlet) boundary conditions. To
model the presence of linear features we introduce a bimodal von-Mises distribution constructed using (61)
and a tessellation process. For each point x we find the Euclidean distance d(x) to the closest linear feature
and evaluate the anisotropic distribution in (61) by setting k(x), α(x) as follows

(78) k(x) =

{
k0, d(x) < d0

0, otherwise
, α(x) =

I2(k(x))

I0(k(x))
.

The directional field γ(x) = (cosφ, sinφ) is taken as the slope of the nearest line to point x. These choices
imply that once a particle is at a distance greater than a cutoff value d0 from any linear feature, i.e. for
d(x) ≥ d0, movement is an isotropic random walk since in this case k(x) = α(x) = 0. Once the particle
is closer to a linear feature, for d(x) < d0, movement is biased towards a bidirectional random walk along
the ±γ(x) directions corresponding to the specific linear feature as per (61). The larger the value of k0,
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Fig. 3. Top row: The MFPT to the boundary of the domain Ω = [−1, 1]2 in the presence of one or multiple linear segments
orienting particle motion. Results are obtained by numerically solving (60) for T (x) in the domain Ω = [−1, 1]2 under the
bimodal von-Mises distribution (61) modulated by the linear structures shown in the inset as described in (78). The cutoff
distance d0 for particles to move along the linear structures is set at d0 = 0.02 and the corresponding measure of concentration
is k0 = 25. The anisotropy profiles from left to right are a vertical line, a slant line, 3 parallel vertical lines and 10 randomly
intersecting lines. Bottom row: The difference between the MFPT under anisotropic transport and the MFPT for a random
walker in the same two-dimensional domain. The scenario of 10 randomly intersecting segments in the right-most panels yields
the smallest difference between the two MFPTs. All quantities are in arbitrary units.

the larger the bias along ±γ(x). Note that setting α(x) positive in (78) corresponds to radial orientation in
(64b) and that k0 → ∞ yields α(x : d(x) < d0) → 1. The contour plots shown in the top row of Fig. 3 are
the numerical solutions of (60) and (78) using linear segments given by a vertical line, a slant line, 3 parallel
vertical lines and 10 randomly intersecting lines as shown in the inset and using k0 = 25 and d0 = 0.02
which correspond to α(x : d(x) < d0) = 0.922. For these parameters the effective motion is a combination of
isotropic two-dimensional (d(x) ≥ d0) and quasi one-dimensional random walks (d(x) < d0). The modulation
of the MFPT due to the simple linear features is clearly distinguishable in all four scenarios shown in Fig. 3.
We also numerically evaluate the MFPT in the same square geometry but under isotropic diffusion, which
corresponds to setting d0 → 0 in (78), and show the difference between the two MFPTs in the bottom row
of Fig. 3. The right-most panels in Fig. 3 with 10 randomly oriented linear features yield an MFPT that is
closest to an isotropic random walker.

6.3 MFPT on an ecological landscape Finally, we consider an actual ecological landscape with
linear features to specifically model animal movement using the results and methods of Section 6.2. McKenzie
et al. [47, 48] have previously used the anisotropic model (60) and fitted it to oriented movement of red foxes
in Minnesota in the presence of prey and a den site [47], and to wolf movement data in forest areas of
the Canadian Rocky Mountains, where forests are disturbed by seismic lines [48]. They find that preferred
movement of wolves along seismic lines increases the encounter rate of predator and prey, thereby reducing
prey density.

Here we revisit this case as an illustration and use an aerial image that was not used in [48]. Fig. 4(a)
shows a landscape of intersecting roads and seismic lines in the boreal forest of Western Canada. In [34, 35]
the forward transport equation (6) was solved on the rectangular domain of this image. Here we use the
same image to evaluate the MFPT to the boundary of the domain. The image was first digitized and
thresholded such that landscape features are represented by a boolean variable. The binarized image is then
processed into two fields, γ(x) and d(x), representing the direction of, and distance to, the closest linear
feature for each x ∈ Ω, where Ω is the rectangular domain of the image. The resulting linear features and
their associated directions are shown in Fig. 4(b). The directional field is incorporated into the bimodal
Von-Mises distribution (61) so that motion near linear features is biased along the two directions ±γ(x). In
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(a) Forest image. (b) Linear features with orienta-
tion.

(c) Normalized MFPT T (x)/Tmax.

Fig. 4. Calculation of the MFPT on an ecological landscape. Panel (a): Aerial snapshot of the boreal forest in Western
Canada. Panel (b): A digitized and thresholded version of the same image highlighting roads and seismic lines with bidirectional
information. Panel (c): Contour plot of the MFPT as derived from (60), (62) and (78) using the method described in Section
6.2. Also shown are three single trajectories from particle simulations of (1), each initialized at the origin with parameters
µ = 104, σ = 104 and bimodal von-Mises turning kernel (61). Particle trajectories remain closely anchored to the linear
segments before eventual absorption at different edges of ∂Ω. All quantities are in arbitrary units.

Case Reference Assumptions

General assumption (3) K ≥ 0, K ∈ L2(V × V ),
∫
V K(x, v, v′)dv = 1.

Diffusive case (3) + (29) K(x, v, v′) = K(x, v,−v′),
∫
V K(x, v, v′)dv′ = 1.

Anisotropic case (3) + (38) K(x, v, v′) = q(x, v), q(x,−v) = q(x, v).

Parabolic scaling (3) + (38) τ = ε2t, ξ = εx.

+ (50,52) p(ξ, v, τ) = p0(ξ, v, τ) + εp1(ξ, v, τ) + ε2p2(ξ, v, τ) + · · ·

Table 1
Summary of the basic assumptions for the various cases studied in this manuscript.

the blank space of Fig. 4(b), where directional information is not shown, the diffusion is isotropic.
Similarly to what done in Section 6.2, the MFPT equation (60) is solved on the image’s rectangular

domain with k(x) given in (78) and the direction field shown in Fig. 4(b). We allow the random walker to
exit the domain through any of the edges of the image and apply absorbing (Dirichlet) boundary conditions
on ∂Ω. The contour plot of the resulting numerical solution of (60) is shown in Fig. 4(c). We observe a
similar phenomenon to that observed in Fig. 3 where the superposition of linear features with different angles
yields an apparently isotropic MFPT. Fig. 4(c) also displays three single trajectories obtained from stochastic
simulations of (1) which shows strong alignment on the linear features. Hence, the occupation density of
particles is strongly localized on the anisotropic features, while the MFPT is modulated to by these features
to a much lesser degree. This, of course, is because the MFPT is the average of the mean first passage time
derived from all possible trajectories.

7 Conclusions Kinetic transport equations form a large class of models that are used in many appli-
cations from physics, engineering, material sciences. Here we focus on biological applications, which include
a wide variety species and spatio-temporal scales such as E. coli run and tumble movement [53], brain tumor
invasion [68], sea turtle orientation [58], DNA repair mechanisms [26], and many more.

As it turns out, the general transport equation (1) is too general to derive a meaningful mean first
passage time equation. Hence, we focused on three cases: the diffusive, anisotropic, and parabolic limit
cases, all of which are relevant to biology. Each of these cases translates into a set of assumptions on the
model parameters and in particular on the integral kernel K(x, v, v′). We summarize these assumptions in
Table 1 for accessible comparison. The diffusive and anisotropic cases are not disjoint, since, for example,
the constant kernel K(x, v, v′) = |V |−1 is contained in both.
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In our analysis we find two types of MFPT equations. For the diffusive and anisotropic cases we find
an integro-PDE for the MFPT Θ(x, v), (36) and (42), respectively. The expected exit time Θ(x, v) depends
on the initial location x and the initial velocity v, and the explicit dependence on v makes this equation
so interesting. A systematic study of equations of the type (36) and (42) has not been done yet. In the
parabolic scaling case, the v-dependence disappears, and we obtain the anisotropic MFPT equation (60)
for T (x). This model fits within the classical theory of MFPT equations, as, for example, illustrated in
[62, 64, 69, 70], and much is known about its properties and its solutions.

Solutions to MFPT equations depend, of course, on the domain Ω and the boundary conditions on ∂Ω.
For the parabolic limit case (60), boundary conditions can be included in a standard way, using T (x) = 0
on the absorbing part of the boundary and n̂ · D(x)∇T (x) = 0 on the no-flux part of the boundary, where
n̂ denotes an outward normal vector on the boundary. The domain can be connected or disconnected,
it can have holes and other special shapes, and the literature on various domains is vast (for example
[19, 29, 38, 60, 62]).

For the diffusive or the anisotropic case, however, boundary conditions need to include the velocity v. A
reasonable choice to describe absorbing boundaries is to assume that a random walker on the boundary ∂Ω
that starts in an outward direction, is lost immediately. In mathematical terms, for any x ∈ ∂Ω such that
n̂(x) denotes the unit outward normal vector, we have

(79) Θ(x, v) = 0 for all v ∈ V : v · n̂ > 0.

On the reflecting parts of the boundary various conditions can be stipulated. They often take the form of
an integral relation [65]. Given x ∈ ∂Ω, for each v ∈ V with v · n̂(x) ≤ 0, we define

(80) Θ(x, v) =

∫
{v′·n̂>0}

I(x, v, v′)Θ(x, v′)dv′,

with an appropriate integral kernel I. Combining the MFPT equations (36) and (42) with these type of
boundary conditions (79) and (80) provides a formidable mathematical and numerical challenge. It will
require substantial new ideas to develop theories for existence, uniqueness, boundedness etc. We hope our
work stimulates further research in this direction.

It should be noted that the MFPT equations derived here have no drift term, i.e. no first order term.
This is by design, since we assume symmetry of the underlying kernels, K(x, v, v′) = K(x, v,−v′) and
q(x, v) = q(x,−v), see Table 1 above. These symmetry conditions ensure that certain integrals in our
derivation are zero. If these conditions are relaxed, those integrals stay, and we expect them to lead to drift
terms in the end result. We did not work out the details here, since our focus was on developing the overall
framework to derive the MFPT equation for transport equations. By relaxing the above assumptions, more
general models can be derived.

The bimodal von-Mises distribution is an excellent non-trivial example to study the models developed
here. It obeys the conditions listed above and allowed us to analytically solve (60) for several movement types
and geometries, including radial and circular motion on a disk and on an annulus. We also found numerical
solutions for a specific preferred orientation (or orientations) as provided by the underlying environment.
Finally, we compared the MFPTs in these various settings to the isotropic case and discussed under what
conditions anisotropy yields longer or shorter MFPTs to the boundary of given domains. Our work provides
a framework to quantify important timescales associated to biological or animal movement processes without
resolving the entire forward process.

There are many avenues for future work arising from this study. Our examples of MFPT calculation in
sections 6.2 and 6.3 suggest that the presence of multiple linear anisotropic features produces a superposition
that is independent of individual heterogeneities. Hence, we hypothesize that a homogenization limit can
be obtained to reflect an effective description of diffusion processes in crowded domains. Our principal
consideration of the bimodal von-Mises produces unbiased one-dimensional diffusion along linear features. It
is natural to extend the formulations obtained herein towards more general classes of distributions including
single modal von-Mises and multi- modal distributions such as Kent and Bingham distributions in two-
dimensions or higher. These may be more difficult to evaluate as, for example, the symmetry condition
q(x, v) = q(x,−v) does not hold for the single modal von-Mises distribution in (8). Other avenues of
exploration include deeper investigations of ecological scenarios, for example, by studying how the MFPT
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changes upon allowing animals to exit only from select portions of the boundary, modifying the parameter
k0 or allowing it to have different values along different segments for the purpose of optimally steering herds
of animals to given locations, where, for example, foraging conditions are more suitable. The variance in the
MFPT plays an important role in the context of ecological diffusion problems [38], hence extensions of this
work to the derivation of higher order moments would be valuable. An even more ambitious objective would
be to derive the probability density −st(x, v, t) from which all moments could be generated.
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Appendix A. Discretization of the anisotropic MFPT equation. Our numerical simulation of
(42) with diffusivity tensor (64a) is based on finite difference simulation in Matlab. We write the following
for x = (x1, x2) and ∇ = (∂x1 , ∂x2)

(81) D(x) : ∇⊗∇T = D11∂
2
x1x1

T + 2D12∂
2
x1x2

T +D22∂
2
x2x2

T = −1, D(x) =
(
D11 D12

D12 D22

)
.

In the formulation above, the tensor coefficients D11, D12 and D22 are spatially varying functions defined in

(64). A mesh for the rectangular domain Ω = (a, b) × (c, d) is formed at points x
(j)
1 = a + (j − 1)∆x1 for

j = 1, . . . , N1 and x
(k)
2 = c+ (k − 1)∆x2 with k = 1, . . . , N2, such that

b− a

N1 − 1
= ∆x1,

d− c

N2 − 1
= ∆x2.

We define T (j,k) = T (x
(j)
1 , x

(k)
2 ) and utilize the standard finite difference approximations

∂2x1x1
T (j,k) =

T (j+1,k) − 2T (j,k) + T (j−1,k)

∆x21
, ∂2x2x2

T (j,k) =
T (j,k+1) − 2T (j,k) + T (j,k−1)

∆x22
,(82a)

∂2x1x2
T (j,k) =

T (j+1,k+1) − T (j+1,k−1) − T (j−1,k+1) + T (j−1,k−1)

4∆x1∆x2
.(82b)

Hence, combining the discretizations (82) with the equation (81), we arrive at the discrete linear system

D
(j,k)
11

T (j+1,k) − 2T (j,k) + T (j−1,k)

∆x21
+D

(j,k)
12

T (j+1,k+1) − T (j+1,k−1) − T (j−1,k+1) + T (j−1,k−1)

2∆x1∆x2

+ D
(j,k)
22

T (j,k+1) − 2T (j,k) + T (j,k−1)

∆x22
= −1.

In our simulation, we apply the Dirichlet boundary so that T (j,k) = 0 for any j ∈ {1, N1} and any k ∈ {1, N2}.
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