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Abstract. We study the mean capture time of an unbiased random walker by multiple absorbing mobile traps in bounded domains of one and

two spatial dimensions. In one dimension, we consider multiple traps undergoing prescribed oscillatory motion on an interval with reflecting or

absorbing boundary conditions. We develop trap co-operation strategies which optimize the mean capture time. We find that as the frequency of

oscillation passes through certain fixed values, the optimal trap strategy alternates between oscillating exactly in phase and exactly out-of-phase

with neighboring traps. We also demonstrate a scenario in which the optimal configuration is neither in phase nor antiphase. In two dimensions,

we consider two small traps rotating with the same angular velocity ω inside a unit disk, and characterize the optimal positions (radii of rotation

and relative phase) of the two traps as a function of ω and trap radius ε ≪ 1. We identify several distinguished regimes in ω where the optimal

configuration can be distinctly characterized. In particular, in the ω ∼ O(1) regime, the optimal configuration jumps from one in which two traps

rotate antipodal and along the same radius to one where the two traps rotate on the same side of the disk but at different radii. In addition, we

demonstrate an algebraic approach to obtaining optimal configurations of N rotating traps as ω → ∞.
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1 Introduction

We study the problem for the mean first passage time (MFPT) of a randomly diffusing particle to multiple absorbing

mobile traps which undertake a prescribed motion in bounded regions of one and two spatial dimensions. Random

motion is a ubiquitous transport mechanism in many biological, physical and chemical systems. Often, a significant

event is triggered when a dispersing particle reaches a particular site, or meets another particle. Consequently, many

important processes may be formulated as an MFPT problem for the expected time taken for a particle to hit a trap.

One dimensional examples arise in finance, where an investor sells a stock when it reaches a certain threshold, and in

sequential analysis and goodness of fit tests in statistics [11].

In two and three dimensions, a special case known as a narrow escape or narrow capture problem (see, e.g., [2, 8, 21,

23, 26–28]) arises when the size of the trap is small in comparison to that of the search domain. For example, intra-

cellular processes require proteins to diffuse in the cytoplasm until they reach the nucleus where they are transported

to the interior through nuclear pore complexes distributed on its surface [13, 14, 16, 22]. The cell nucleus is modeled

as a small interior trap as its volume is small in comparison to that of the whole cell. Conversely, when ions diffuse

in search of an open ion channel located on the cell membrane [6, 18, 23, 26], the traps may be modeled as small

absorbing portions of an otherwise reflective boundary. The search for antigen presenting molecules in lymph node

tissue by T cells may be modeled as a three dimensional narrow escape problem with interior traps [12] in which

MFPT yields insight into immune system recognition. The applications of narrow escape problems are numerous, and

we refer to [7, 19, 20] for detailed reviews.

Existing mathematical treatments of these examples predominantly assume that traps occupy a fixed location over

time. However, in many applications traps are known to be mobile. In the example of intra-cellular transport, the

cell nucleus is in motion before and after mitosis [29]; therefore proteins must diffuse to mobile targets in order to

complete their processes. In one dimension, a scenario lending to mobile targets is that of fixation times in population

genetics (see [31] and references therein). In this work, we investigate mean survival times of random walkers in the

presence of multiple traps undergoing prescribed motion along a constrained path. In particular, we study the question

of how multiple mobile searchers should cooperate in order to most quickly locate a diffusing target. We cite as a

typical scenario the search of a lost person by a team of rescuers.

MFPT problems involving mobile traps have been gaining attention for their various applications and also because

there is not yet a systematic methodology for their analysis as exists for stationary traps. A recent review on MFPT

problems in bounded domains [3] cited the generalization to mobile traps as an interesting extension. Many works in

this new direction have focused on one dimensional problems, where the mobile trap undergoes either random motion

or advances in one direction linearly in time [4, 5, 10, 15, 17, 30].

An overarching question is whether a mobile trap is more or less effective than a stationary one. In [33], it was shown
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that a single trap undergoing sinusoidal motion in a bounded one-dimensional interval is more effective only when

the frequency exceeds a certain threshold. This criticality can be heuristically understood from a balance between

two competing factors that contribute to the MFPT. First, the placement of the absorbing trap at the center of the one-

dimensional interval results in a lower MFPT. Second, trap mobility allows a trap to explore its space more effectively

and so improves its trapping ability. Therefore, a mobile trap is superior to a stationary one only when it moves quickly

enough to overcome the detrimental effects of moving away from optimal spatial locations.

A similar two dimensional result was established in [32] for a single trap rotating inside the unit disk. The presence of

two variables of motion (frequency and radius of rotation) poses a simple optimization problem: for a given frequency,

what is the radius of rotation that would minimize average mean first passage times? In this setting, a similar criticality

is observed where the trap must rotate sufficiently quickly to offset the detrimental effect of moving off the origin - the

optimal spatial location for the unit disk [21].

In the present work, we analyze MFPT problems in bounded one and two dimensional regions with multiple mobile

traps with prescribed trajectories and emphasize the optimization of average (or global) MFPT with respect to the

relative motion between the traps. In §2, we consider a diffusing particle on a one-dimensional interval with reflecting

or absorbing end points and absorbing internal traps with small amplitude oscillations at common frequency ω and

centered on fixed points with separation ℓ. A schematic of the one dimensional two trap problem is displayed in

Fig. 1.1(a). The linearity of the governing equations allows for trivial extension of the present work to trap trajecto-

ries with multiple frequency components. However, we focus herein on trajectories described by a single frequency

component as the resulting motion minimizes the MFPT under a fixed kinetic energy constraint.
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(a) Schematic of 1D problem.
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(b) Schematic of 2D problem.

Figure 1.1: (a) A schematic of the 1D problem with two traps. Two traps oscillate in time at the same frequency tracing out the

paths indicated by the curves. Their relative phase is arbitrary. (b) A schematic of the 2D problem with two traps. In the reference

frame rotating clockwise at frequency ω, the first trap is placed on the horizontal axis (without loss of generality) at a distance r1
from the origin. The second trap is phase shifted counterclockwise by angle θ2 and is a distance r2 from the origin. Both traps have

common radius ε.

We show in the one dimensional setup of Fig. 1.1(a) that the mean capture time of the particle averaged uniformly

over all starting locations (often referred to as global MFPT) is minimized when the two traps oscillate either exactly

in phase or exactly antiphase, depending on the sign a certain quantity χ(ωℓ2), where

χ(z) =

[

cosh
√

z
2 sin

√

z
2 + sinh

√

z
2 cos

√

z
2

cos
√
2z − cosh

√
2z

]

,

the trap separation as ε → 0 is ℓ, and the common frequency is ω. The oscillatory nature of χ(z) means that the

optimal strategy alternates as the frequency of the trap’s motion increases. In §2.1, these results are extended to

N traps oscillating about fixed points xj with small amplitude ε and common frequency ω. We determine that the

globally optimal cooperation strategy corresponds to neighboring traps oscillating either exactly in phase or exactly

out-of-phase depending on the sign of χ(ωℓ2j) where ℓj = xj+1 − xj . We also illustrate a scenario in which the
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optimizing strategy does not necessarily correspond to being exactly in or out-of-phase with adjacent traps.

In §3, we consider N small traps of radius 0 < ε ≪ 1 rotating clockwise with common frequency ω at distances

rj from the center of a unit disk with j = 1, . . . , N (schematic in Fig. 1.1(b)). We use a matched asymptotics

approach (e.g., [21, 23, 32]) to compute the global MFPT of a randomly diffusing particle. Our formulation allows

for arbitrary phase differences between the traps. For N = 2, we perform a numerical optimization of the global

MFPT with respect to the two radii of rotation in addition to the relative phase. The results of optimization show

that as ω increases past a critical O(1) frequency, the optimal configuration of the traps switches from rotating at the

same radius but π-radians out of phase to rotating at different radii but exactly in phase. We also show that in the

regime O(1) ≪ ω ≪ O(ε−1), the optimal radii of N traps divides the unit disk into N annuli of equal area (with

the outermost radius approaching the boundary). We also derive an analogous result in the regime ω ≫ O(ε−1). We

further use a hybrid numeric-asymptotic method [9, 32] to interpolate between these two regimes, showing that the

transition between the regimes is smooth. In §4, we draw conclusions and list open avenues for further work. For

a related problem involving optimizing the fundamental Neumann eigenvalue on a two-dimensional domain with N
small Dirichlet holes, see [21] and the references therein.

2 Multiple Traps in 1D

In this section we consider the MFPT problem in a bounded one dimensional interval with reflecting stationary end-

points, and two mobile internal traps undergoing prescribed oscillatory motion with period 2π/ω. The main idea in

the formulation of these moving domain problems is to project the trap motion in a new direction, orthogonal to the

walker’s spatial motion, and coupled to an advection term in that direction (cf. Fig. 2.1).

x = x1(t)

x = x1(t)

x = x2(t)

x = x2(t)
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Figure 2.1: Schematic of transforming the moving 1D problem to a static 2D problem.

For a random walk with Brownian dynamics in the x direction and deterministic transport in the positive t direction,

the equation satisfied by the MFPT u(x, t) of a particle initially at (x, t) is derived by first considering discrete jumps

of size ∆x in the time interval (t, t+∆t). This yields that,

u(x, t) = ∆t+
1

2

[

u(x+∆x, t+∆t) + u(x−∆x, t+∆t)
]

. (2.1)

In the limit ∆x → 0 and ∆t → 0 with D = ∆x2/(2∆t) fixed, equation (2.1) reduces to the partial differential

equation [5, 25, 33]

ut +Duxx + 1 = 0; 0 < x < 1; 0 < t <
2π

ω
; u(x, 0) = u

(

x,
2π

ω

)

, 0 < x < 1; (2.2a)

for the MFPT u(x, t), starting from (x, t). This approach is readily applicable to non-stationary boundaries with a

variety of boundary conditions. In what follows, we consider the boundary conditions

ux(0, t) = ux(1, t) = 0, (2.2b)

u(x1 + εf1(t)) = u(x2 + εf2(t)) = 0, (2.2c)

so that the domain exterior is reflecting and there are two absorbing interior traps. For convenience, the diffusivity will
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be normalized to one for the remainder of the treatment. Each mode in the dynamics of a trap can be considered in

isolation due to the linearity of (2.1), so the two absorbing traps (2.2c) are assumed to undergo motion with a common

frequency ω, but with a phase shift according to their cooperation strategy,

f1(t) = sinωt, f2(t) = sinω(t− φ), φ ∈
(

0,
2π

ω

)

. (2.2d)
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Figure 2.2: The in phase (left panel φ = 0) and out of phase (right panel ωφ = π) cooperation

strategies for two mobile traps. Plotted for x1 = 0.3, x2 = 0.7 and ε = 0.1.

In Fig. 2.2, the two extremal cooperation strategies are displayed with φ = 0 and φ = π/ω indicating in and out of

phase cooperation strategies respectively. The main goal is to understand how the relative motion of the traps affects

the mean time to capture. In particular, for which values of φ is the MFPT optimized? To study this we calculate the

global MFPT

τ(ω;φ) =
ω

2π

∫ 2π
ω

0

∫ 1

x=0

u(x, t) dxdt , (2.3)

which gives a measure of the trapping effectiveness of the configuration. From this quantity, optimizing configurations

of φ and ω can be determined. In the limit ε → 0, (2.2) admits a regular expansion of form

u(x, t) = u0(x) + εu1(x, t) + ε2u2(x, t) +O(ε3) , (2.4a)

with ux(0, t) = ux(1, t) = 0. Expanding around the trapping boundaries supplements the equations with the internal

conditions

u0(xj) = 0, u1(xj) = −u′
0(xj)f1, u2(xj) = −u′′

0(xj)

2
f2
1 − u′

1(xj)f1, j = 1, 2. (2.4b)

This subdivides the interval Ω = [0, 1] into three distinct regions

R1(t) = (0, x1 + εf1(t)), R2(t) = (x1 + εf1(t), x2 + εf2(t)), R3(t) = (x2 + εf2(t), 1) . (2.4c)

In the analysis that follows, the regular expansion (2.4a) is substituted into equation (2.2) and terms gathered at each

order of ε. This generates a sequence of reduced problems for u0, u1, u2, . . . for which explicit solutions satisfying

boundary conditions (2.4b) are obtained. From these solutions, the global MFPT arising from a uniform distribution of

initial locations can be obtained by explicit integration of τ defined in (2.3). Once this explicit expression for τ(φ, ω)
is obtained, the role of trap motion can be studied explicitly and cooperation strategies determined.
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Order ε0: At the leading order of the expansion, the problem u0(x, t) satisfies

u0t + u0xx + 1 = 0, −1 < x < 1; u0x(0) = u0x(1) = 0, u(xj) = 0, j = 1, 2 , (2.5)

which corresponds to the stationary solution in the absence of trap motion. The solution is t independent and given by

u0(x) =
1

2











−x2 + x2
1, x ∈ R1(t);

−x2 + (x1 + x2)x− x0x1, x ∈ R2(t);

(x2 − x)(x2 + x− 2), x ∈ R3(t).

(2.6)

Order ε1: In region R1, the boundary conditions on the correction term u1(x, t) are u1x(0) = 0 together with

u1(x1) = −u′
0(x1)f1 =

x1

2i

(

eω
2
+t − eω

2
−t
)

, (2.7)

which gives rise to a correction equation featuring homogeneous solutions of

φxx + φt = 0, φ(x, 0) = φ
(

x,
2π

ω

)

. (2.8a)

The general solution of (2.8a) which matches the boundary conditions (2.7) is

φ(x, t;ω) = eω
2
−t [A1 coshω+x+B1 sinhω+x] + eω

2
+t [A2 coshω−x+B2 sinhω−x] , ω± =

√
±iω, (2.8b)

for constants A1, A2, B1, B2. It is convenient to work with a complex form of the solution until the final result, at

which point the real form is obtained. Fitting the relevant boundary conditions for u1(xj) at j = 1, 2, gives the

solutions in each region to be

u1 =
x1

2i

(

eω
2
+t coshω−x

coshω−x1
− eω

2
−t coshω+x

coshω+x1

)

, x ∈ R1; (2.9a)

u1 =
ℓ

4i

(

eω
2
+t

sinhω−ℓ

[

sinhω−(x− x2) +

eω
2
−φ sinhω−(x − x1)

]

− eω
2
−t

sinhω+ℓ

[

sinhω+(x− x2) +

eω
2
+φ sinhω+(x− x1)

])

, x ∈ R2;(2.9b)

u1 =
x2 − 1

2i

(

eω
2
+t coshω−(x− 1)

coshω−(x2 − 1)
eω

2
−φ − eω

2
−t coshω+(x− 1)

coshω+(x2 − 1)
eω

2
+φ

)

, x ∈ R3 , (2.9c)

where ℓ = x2 − x1. As u1(x, t) has zero mean over t ∈ (0, 2πω ), it does not make a direct contribution to τ in (2.3).

However, u1x(xj) for j = 1, 2 contributes to τ through the boundary conditions on u2(xj) given in (2.4b).

Order ε2: Taking the general form u1x(xj) = aje
ω2

−t + bje
ω2

+t where aj and bj are coefficients taken from (2.9), the

boundary conditions on u2(xj) from (2.4b) are

u2(xj) = −u′′
0(xj)

2
f2
1 − u′

1(xj)f1 =
1

2
− aj

2i
+

bj
2i

+O(e2ω
2
±t) .

The general solution is therefore of form u2(x, t) = u2h(x) + u2p(x, t), where u2p(x, t) is the periodic component

with zero mean over t ∈ (0, 2πω ) and makes no contribution to the value of τ . Therefore only u2h(x) is required in

each of the sub regions. As u2h satisfies a homogeneous Neumann condition in regions R1,R3, its value is constant
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in those regions while in R2, Dirichlet conditions are applied at either end of the region resulting in a linear u2h:

u2h =
1

2
− x1

4
(ω+ tanhω+x1 + ω− tanhω−x1) , x ∈ R1, (2.10a)

u2h =
(x− x1)

4

[

ω+

sinhω+ℓ
− ω−

sinhω−ℓ

]

sinωφ

+
1

4
− ℓ

8

[

ω+

sinhω+ℓ

(

coshω+ℓ

+ eiωφ

)

+
ω−

sinhω−ℓ

(

coshω−ℓ

+ e−iωφ

)]

, x ∈ R2, (2.10b)

u2h =
1

2
− 1− x2

4
(ω+ tanhω+(1− x2) + ω− tanhω−(1− x2)) , x ∈ R3 . (2.10c)

The value of τ is calculated by integration in each subregion with application of Leibniz’s rule. This gives

τ =
ω

2π

∫ 2π
ω

0

[∫

R1

u dx+

∫

R2

u dx+

∫

R3

u dx

]

dt = τ0 + ε2τ2 + · · · , (2.11)

where, after much algebra and simplification of complex valued expressions, the final result

τ0 =
x2
1

3
+

(1− x2)
3

3
+

ℓ3

12
; (2.12a)

τ2 = −
√
2ωx2

1

4

(

sin
√
2ωx1 + sinh

√
2ωx1

cos
√
2ωx1 + sinh

√
2ωx1

)

−
√
2ω(1− x2)

2

4

(

sin
√
2ω(1 − x2) + sinh

√
2ω(1 − x2)

cos
√
2ω(1− x2) + sinh

√
2ω(1− x2)

)

+
ℓ

2
+

√
2ωℓ2

8

[

sin
√
2ωℓ+ sinh

√
2ωℓ

cos
√
2ωℓ− cosh

√
2ωℓ

+ 2

[

cosh
√

ω
2 ℓ sin

√

ω
2 ℓ+ sinh

√

ω
2 ℓ cos

√

ω
2 ℓ

cos
√
2ωℓ− cosh

√
2ωℓ

]

cosωφ

]

. (2.12b)

is obtained. Before proceeding to study the local extrema of τ , we first remark that τ0 and τ2 each contain three distinct

contributions from each of the three intervals. In τ0 and τ2, the first two terms are contributions from the intervals

R1(t) and R3(t) respectively, while the final terms are contributions associated with R2(t). The local extrema of

τ = τ(φ) are ωφ = 0, π and correspond to the two traps being exactly in or out phase with each other. The nature of

these critical points is determined by

d2τ

dφ2
= −ε2

√
2ω

5
2 ℓ2

4
χ(ωℓ2) cosωφ, χ(z) =

[

cosh
√

z
2 sin

√

z
2 + sinh

√

z
2 cos

√

z
2

cos
√
2z − cosh

√
2z

]

, (2.13)

Therefore, the MFPT is minimized by the traps moving in phase (φ = 0) when χ(ωℓ2) < 0 and by out of phase

(φ = π/ω) when χ(ωℓ2) > 0. The graph of χ(z) in Fig. 2.3 indicates that its sign changes over certain intervals of

z = ωℓ2. Applying a large argument approximation to χ(zk) = 0 implies that these thresholds behave asymptotically

like

zk ∼ π2

8
(−1 + 4k)2, k = 1, 2, 3, . . . , (2.14)

which agrees closely with values obtained from numerical solution of χ(zk) = 0 given in Table 2.1. Therefore, the

optimal alignment strategy of the traps alternates as the quantity ωℓ2 increases. In the fast trap motion limit ω → ∞,

the trap cooperation strategy is of diminished importantance since χ(ωℓ2) → 0 as ω → ∞. In the next section, we

extend the analysis to an array of absorbing mobile traps in a bounded 1D interval.

2.1 N traps in 1D

The analysis of the previous section can easily be extended to accommodate N traps undergoing motion with relative

phases to one another. The 1D domain (x1, xN ) is expressed as union of N − 1 intervals ∪N−1
j=1 Rj(t) where

Rj(t) = (xj + εfj(t), xj+1 + εfj+1(t)), fj(t) = sinω(t− φj), ℓj = xj+1 − xj .
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Figure 2.3: Plot of χ(z) from (2.13) with first three roots indicated. The MFPT is minimized by traps

moving in phase when χ(ωℓ2) < 0 and out of phase when χ(ωℓ2) < 0.

z1 z2 z3

Approximate 11.1033 60.4513 149.2778
Numerical 11.1866 60.4517 149.2778

Table 2.1: Approximate (2.14) and numerical values for the critical z = ωℓ2 over which the optimal cooperation strategy changes.

In this case we stipulate that all traps, including the end points, are absorbing so that

u(xj + εfj(t), t) = 0, j = 1, . . .N. (2.15)

We assume the cooperation phases φj are free variables over which to optimize. The process for obtaining the regular

expansion solution of (2.1) with trapping conditions (2.15) as ε → 0 is identical to that of Sec.2. In particular, the

solution over each interval Rj can be solved in terms of the phase difference between the boundary points xj , xj+1.

As such, the contributions to the MFPT τ from each individual cell are exactly analogous to the contribution of the

central region R2 in (2.12). Therefore, the same process yields that as ε → 0,

τ =
N−1
∑

j=1

ℓ3j
12

+ε2
N−1
∑

j=1

[

ℓj
2

+

√
2ωℓ2j
8

(

sin
√
2ωℓj + sinh

√
2ωℓj

cos
√
2ωℓj − cosh

√
2ωℓj

+ 2χ(ωℓ2j) cosω(φj+1 − φj)

)]

+O(ε2), (2.16)

where ℓj = xj+1 − xj . In Fig. 2.4 we display a numerical comparison of this formula for N = 2 with the MFPT

obtained from full numerical simulation of (2.2) and observe close agreement. Additionally, we numerically observe

the optimal cooperation strategy switching over when ωℓ2 = z1 ≈ 11.1866 as determined from the roots of χ(z) in

(2.13).

When the intervals have common length, ℓj = ℓ for j = 1, . . . , N − 1, the conclusions are the same as the two trap

case, i.e. the MFPT is minimized by moving in phase with the neighboring trap if χ(ωℓ2) < 0 and out of phase

with neighboring traps if χ(ωℓ2) > 0. For non uniform spacing, finding the lowest MFPT is reduces to minimizing

f(s1, . . . , sn) =
∑n

j=1 aj cos sj for sj ∈ (0, 2π). The global minimum of this function is −∑n
j=1 |aj | which is

attained when sj = 0 if aj < 0 and sj = π if aj > 0. Consequently, the co-operation strategy of N traps which

minimizes the MFPT (2.16) up to O(ε2) is

φj+1 − φj =







0 if χ(ωℓ2j) < 0;

π

ω
if χ(ωℓ2j) > 0,

(2.17)
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with a corresponding minimum MFPT τmin

τmin =

N−1
∑

j=1

ℓ3j
12

+ ε2
N−1
∑

j=1

[

ℓj
2

+

√
2ωℓ2j
8

(

sin
√
2ωℓj + sinh

√
2ωℓj

cos
√
2ωℓj − cosh

√
2ωℓj

− 2|χ(ωℓ2j)|
)]

+ O(ε2). (2.18)

as ε → 0. Similarly, the global MFPT τ is maximized by adopting the opposite phase cooperation strategy to (2.17).

(a) Numerical solution of (2.2) over two periods with two in phase

mobile absorbing boundary traps. Parameters ℓ = 1, ω = 1, ε = 0.2
and φ = 0.

(b) Numerical solution of (2.2) over two periods with two out of phase

mobile absorbing boundary traps. Parameters ℓ = 1, ω = 1, ε = 0.2
and φ = π/ω.

ωφ
0 π 2π

τ

0.080

0.085

0.090

0.095

0.100

0.105

(c) τ against ωφ for N = 2, ω = 1, ε = 0.2 and ℓ = 1,

(ωℓ2 = 1). Asymptotic (solid) and numerical solutions (circles).

0 π 2π

ωφ

2.240

2.241

2.242

2.243

2.244

2.245

τ

(d) τ against ωφ for N = 2, ω = 2, ε = 0.1, and ℓ = 3
(ωℓ2 = 18). Asymptotic (solid) and numerical solutions (circles).

Figure 2.4: Panels (a,b): Numerical solutions of (2.1) for two in phase (top left) and out of phase

(top right) traps. Panels (c,d): Agreement of numerical simulations and asymptotic theory as the phase

difference between the two traps varies. When ωℓ2 = 1, the MFPT is minimized at φ = 0 (bottom left)

and for ωℓ2 = 18, a out-of phase strategy ωφ = π minimizes the MFPT (bottom right).

2.2 Adaptation to neighboring traps

As a demonstration of this theory in which the optimal strategy is not exactly in phase or out of phase, we suppose a

fixed configuration of traps is present with common frequency ω and individual phases. We then insert an additional

trap of frequency ω at location xk with phase φk. The contribution to the MFPT τ which depends only on the phase



First passage time to multiple mobile traps 9

0.0 0.2 0.4 0.6 0.8 1.0

s

0

π/2

π

3π/2

2π

ωφ−

s

ω =50

ω =5

(a) The phase ωφs minimizing the MFPT for a trap inserted at

location s for ω = 5, 50.

(b) The full landscape I(s, ωφ) for ω = 50.

Figure 2.5: Optimization of the MFPT by adapting to the phase of neighboring traps. Left Panel: For a

trap inserted at fixed location s ∈ (0, 1) between two traps located at x = 0, 1 and phases φ = 0, π/4ω,

the minimizing phase ωφ−
s is plotted as a function of s for ω = 5 and ω = 50. Curves obtained from

solution of (2.21). Right panel: For the case ω = 50, the full landscape I = I(s, ωφ), defined in (2.19),

is shown for ε = 0.2 with the minimizing phase overlaid (black curve). The two global minima are

indicated with open white circles at (s, ωφ) ≈ (0.2750, 5.2255) and (s, ωφ) ≈ (0.7250, 1.8551).

φk of the additional trap is

Ik =
ε2√
8ω

[zk cosω(φk+1 − φk) + zk−1 cosω(φk − φk−1)] , zk = ωℓ2k χ(ωℓ
2
k) , (2.19)

where xk+1 and xk−1 are the locations of the traps adjacent to the inserted one. Assuming φk−1 and φk+1 are fixed,

the local extrema of this interaction function are the two solutions φ±
k ∈ (0, 2π/ω) of the equation

tanωφ±
k =

zk sinωφk+1 + zk−1 sinωφk−1

zk cosωφk+1 + zk−1 cosωφk−1
. (2.20)

Therefore, the optimal interaction strategies are not simply in or out of phase with the adjacent traps, but determined

by a weighted average of their phases. The nature of each local extrema follows from the sign of

d2Ik
d2φk

(φ±
k ) = −ω2Ik(φ±

k ) = −ε2ω
3
2

√
8

secωφ±
k

[

zk cosωφk+1 + zk−1 cosωφk−1

]

.

As an example, consider two mobile traps centered at x = 0, 1 with fixed phases ωφ = 0, π
4 respectively and common

frequencyω. An additional mobile trap is centered at location 0 < s < 1 with phase φs and frequencyω. From (2.20),

the optimizing values of φs satisfy

tanωφ±
s =

(1 − s)2χ(ω(1− s)2) sin π
4

(1− s)2χ(ω(1− s)2) cos π
4 + s2χ(ωs2)

. (2.21)

In Fig. 2.5, we display the solution of (2.21) for values of ω = 5 and ω = 50. The optimal adaptation strategy is

observed to depend quite sensitively on the frequency ω and the spatial placement of the trap.

3 N traps on a unit disk

In this section, we seek optimal cooperation strategies for two small identical mobile traps in a bounded two-dimensional

domain. In particular, we consider the scenario in which the two mobile traps perform a search for a particle diffus-
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ing inside the reflective unit disk Ω by rotating around the center of the disk at a constant angular frequency ω. We

first derive the two-dimensional analog of the one-dimensional MFPT problem (2.2) with a single mobile absorbing

trap undergoing 2π/ω-periodic motion. We let Ω be any arbitrary bounded two-dimensional domain over which the

search is conducted. The set of points occupied by the trap are denoted Ωtrap(z) ⊂ Ω, which indicates the shape and

location of the trap at time z while satisfying the periodicity condition Ωtrap(z) = Ωtrap(z + 2π/ω). The particle

location x = (x, y) at time z thus takes on the values x ∈ Ω \ Ωtrap(z). The particle is absorbed at time z when

x ∈ ∂Ωtrap(z). See the left panel in Fig. 3.1. In this way, the particle undergoes a random walk in the x directions

with a deterministic drift in the z direction. For a particle located at x at time z, its MFPT u(x, z) is then an average

of the MFPT associated with all the locations it can possibly occupy at time z + ∆z plus the ∆z time it takes to get

there. That is

u(x, y, z) =
1

4
[u(x+∆x, y, z +∆z) + u(x−∆x, y, z +∆z)

+u(x, y +∆y, z +∆z) + u(x, y −∆y, z +∆z)] + ∆z ; u = 0 , x ∈ Ωtrap(z) . (3.1)

Expanding for small ∆x, ∆y, and∆z, and taking the usual limit ∆x = ∆y → 0 and∆z → 0 with∆z ∼ ∆x2 = ∆y2,

we obtain the three-dimensional boundary value problem for the MFPT u(x, z)

∆xu+ uz + 1 = 0 , x = (x, y) ∈ Ω \ Ωtrap(z) , z ∈ [0, 2π/ω) , (3.2a)

u = 0 , x ∈ ∂Ωtrap(z) , ∂nu = 0 , x ∈ ∂Ω , z ∈ [0, 2π/ω) , (3.2b)

u(x, 0) = u(x, 2π/ω) , x ∈ Ω \ Ωtrap(0) . (3.2c)

In (3.2), ∆x ≡ ∂2/∂x2+∂2/∂y2, and we have assumed periodicity of the trap’s motion Ωtrap(z+2π/ω) = Ωtrap(z).
The motion of the random particle is therefore diffusive in the x–y plane with a deterministic drift in the positive z
direction. The quantity u(x, z) gives the mean time to capture of a random particle starting from location x by

a mobile trap beginning its periodic motion with configuration Ωtrap(z). The schematic of this three-dimensional

problem is shown in the right panel of Fig. 3.1. We remark that the derivation generalizes easily to N mobile traps

each undergoing 2π/ω-periodic motion. Analysis of (3.2) is in general very difficult. We therefore consider the special

case in which the N traps rotate at the same frequency about the center of a unit disk. With this rotational symmetry,

the geometry of the corresponding PDE remains two dimensional. A detailed derivation of the PDE for a single

rotating trap is given in [32], which we generalize here for N rotating traps. In the frame of N traps each rotating

clockwise about the center of the disk with common frequency ω, we obtain the mixed Neumann-Dirichlet boundary

value problem

∆u+ ωuθ + 1 = 0 , x ∈ Ω \ ∪N
j=1Ωεj ; (3.3a)

u = 0 , x ∈ ∂Ωa = ∪N
j=1∂Ωεj , j = 1, . . . , N ; ∂nu = 0 , x ∈ ∂∂Ω , (3.3b)

where uθ is the derivative of u with respect to the angular coordinate θ. In (3.3), ∆ denotes the Laplacian with respect

to the polar coordinates (r, θ), ∂Ωa the union of the absorbing boundaries of N small traps separated by O(1) distance,

∂Ω the reflective outer boundary of the disk, and u(x) the nondimensional mean first passage time of a random walker

starting from location x to one of the traps. The j-th trap Ωεj = xj + εΩ0j is centered at location xj , where Ω0j is

the O(1) geometry of the trap and ε is its “radius”. The schematic and a typical solution (computed using the finite

element software FlexPDE [1]) are shown in Figs. 1.1(b) and 3.2, respectively.

Assuming a uniform distribution of starting locations, the average MFPT (or sometimes referred to as global MFPT)

is the quantity

ū =
1

|Ω|

∫

Ω

u(x) dΩ , (3.4)

where |Ω| is the size of the domain. Below, we calculate ū in terms of the trap locations xj . We then optimize ū with

respect to the locations. To reduce the number of parameters in the optimization problem, we assume that all traps are

circular and share a common radius ε; i.e., Ω0j are disks of unit radius for each j = 1, . . . , N .
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periodic

periodic

x

y

z

x

y

Figure 3.1: Schematic of transforming the moving 2D problem to a static 3D problem. In the 2D

schematic on the left, Ω(z1) and Ω(z2) show the location and size of the trap at times z = z1
and z = z2, respectively. In the 3D schematic on the right, the motion of the random particle

is diffusive in the x–y plane with a deterministic drift in the positive z direction. The quantity

u(x, z) gives the mean time to capture of a random particle starting at location x by a mobile trap

beginning its periodic motion with configuration Ωtrap(z).

Figure 3.2: A typical 2-trap solution with ε = 0.1, ω = 30, r1 = 0.3, r2 = 0.7, and θ2 = 3π/4. Blue (red) regions indicate small

(large) values of u. Notice that the MFPT is lower in front of the rotating traps than it is behind. Computed using the finite element

software FlexPDE.

3.1 The regime ω ∼ O(1)

In the regimeω ∼ O(1), we adopt the method of matched asymptotic expansions [21, 23] to calculate ū as a function of

the relative locationsxj ofN traps. In the inner region near the j-th trap, we let y = |x−xj |/ε and u(xj+εy) = Uj(y)
to obtain the leading order inner problem

∆Uj = 0 , y ∈ R
2 \ Ω0j , Uj ∼ Sj log |y| − Sj log dj as |y| → ∞ . (3.5)

In (3.5), dj is the referred to as the logarithmic capacitance of the j-th trap, which depends on the geometry Ω0j . A

list of numerical and analytic values of d for different shapes are given in [24]. For the case we consider, where Ω0j is
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the unit disk, dj = 1 so that Uj = Sj log |y| is the exact solution of (3.5). The quantity Sj , the strength of trap j, is to

be determined from a system of linear equations obtained by matching inner and outer solutions. In terms of the outer

variables, we calculate the matching condition

u ∼ Sj log |x− xj | − Sj log ε as x → xj . (3.6)

Since u is logarithmic near each trap, we may express u as a sum of Neumann Green’s functions G(x,x0) satisfying

∆G+ ωGθ =
1

|Ω| − δ(x− x0) , x ∈ Ω; (3.7a)

∂nG = 0, x ∈ ∂Ω ,

∫

Ω

GdΩ = 0 , (3.7b)

G ∼ − 1

2π
log |x− x0|+R(x0,x0) as x → x0 . (3.7c)

Then in the limit ε → 0, we write

u = −2π
N
∑

j=1

SjG(x,xj) + ū . (3.8)

In (3.7c), R(x0,x0) is the regular part of G as x → x0, referred to as the self-interaction term. By the integral

condition in (3.7b), which uniquely specifies G, ū in (3.8) is the uniform average of u in (3.4) that we seek to optimize.

To obtain the N +1 equations for S1, . . . , SN and ū, we first compare (3.8) with (3.7) to (3.3) to obtain the solvability

condition

N
∑

j=1

Sj =
1

2
. (3.9)

The other N equations come from applying the matching condition (3.6) at the N trap locations xj . Letting x → xi

in (3.8) and using the limiting behavior of G near xi, we calculate

−2πSi

[

− 1

2π
log |x− xi|+Rii

]

− 2π

N
∑

j 6=i

GijSj + ū = Si log |x− xi|+
Si

ν
, i = 1, . . . , N, (3.10)

where Rii ≡ R(xi,xi), Gij ≡ G(xi,xj), and ν ≡ −1/ log ε ≪ 1. The logarithmic terms in (3.10) match by

construction. To write (3.10) in matrix form, we define

s ≡







S1

...

SN






, e ≡







1
...

1






, E ≡ ee

t , G ≡













R11 G12 · · · G1N

G21
. . .

. . .
...

...
. . .

. . . GN−1,N

GN1 · · · GN,N−1 RNN













, (3.11)

where t denotes the transpose, and G in (3.11) is the Green’s interaction matrix, which encodes information on the

locations of the N traps. In contrast to the Green’s matrix in [21], G is not symmetric due to the symmetry-breaking

rotation of the traps. We rewrite (3.9) and (3.10) in the form

2πGs+ 1

ν
Is = ūe , e

t
s =

1

2
, (3.12)

where I is the N ×N identity matrix. Multiplying both sides of (3.12) by e
t and solving for ū, we obtain the solution

for ū and the strengths of the traps S1, . . . , SN

ū =
1

N

[

2πetGs+ 1

2ν

]

, s =
1

2νN

[

2π

(

I − 1

N
E
)

G +
1

ν
I
]−1

e . (3.13)
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We observe in (3.13) that Sj = (2N)−1 to leading order in ν−1 for all j, and ū = (2νN)−1. That is, all traps share

a common strength to leading order, and ū increases logarithmically as ε → 0. The effect of trap locations on ū is

therefore a smaller O(1) correction.

To construct the Green’s interaction matrix (3.11) in the case ω 6= 0, we adopt a Fourier series approach where we let

x = (r cos θ, r sin θ). The Neumann Green’s function satisfying (3.7) is then given by [32]

G(x,x0;ω) = G(r, θ, r0, θ0;ω) = R0(r, r0) +
∑

m>0

eim(θ−θ0)Rm(r, r0) + c.c. , (3.14a)

where the coefficients R0 and Rm are given by

R0(r, r0) =
r2

4π
+

1

8π
[2r20 − 3]− 1

2π

{

log r0 , 0 < r < r0

log r , r0 < r < 1
, (3.14b)

Rm(r, r0;ω) =
1

2π















[

−K ′
m(cm)

I ′m(cm)
Im(cmr0) +Km(cmr0)

]

Im(cmr) , 0 < r < r0

[

−K ′
m(cm)

I ′m(cm)
Im(cmr) +Km(cmr)

]

Im(cmr0) , r0 < r < 1

, cm ≡ −i
√
imω ,

(3.14c)

where Km(z) and Im(z) are modified Bessel functions of the first and second kind. The regular part of G is obtained

by using the definition in (3.7c) and expressing log |x− x0| in terms of its Fourier series. This calculation yields

R(x0;x0) =
r20
2π

− 3

8π
+
∑

m>0

(

Rm(r0, r0)−
1

4πm

)

+ c.c. . (3.14d)

In (3.14), c.c. refers to the complex conjugate of the term involving the summation. In the case where ω, ε are fixed

and N = 2, we compare in Fig. 3.3 the asymptotic result (3.13) for ū to full numerical solutions of (3.3) obtained

using FlexPDE. In Fig. 3.3(a), we let the polar coordinates of the first trap be (r1, θ1) = (0.4, 0), with the second

located at various locations on the ring r2 = 0.8. In Fig. 3.3(b), we fix the angle of the second trap at θ2 = π, and

vary r2 between 0 and 1. In both figures, we observe excellent agreement between the asymptotic formula (3.13) and

numerical results.

0 1 2 3 4 5 6
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

θ2

ū

(a) ū versus θ2

0 0.2 0.4 0.6 0.8 1
0.85

0.9

0.95

1

1.05

r2

ū

(b) ū versus r2

Figure 3.3: Comparison of the asymptotic formula for ū (3.13) (solid curve) versus numerical results obtained from a finite elements

solution of (3.3) (circles) with parameter values ω = 5 and ε = 0.01. In both figures, the first trap is located at (r1, θ1) = (0.4, 0)
while the location of the second (r2, θ2) is varied. In (a), r2 = 0.8 while θ2 is varied. In (b), θ2 = π while r2 is varied.

Using MATLAB’s global optimization algorithm GlobalSearch with fmincon(), we optimize ū in (3.13) over
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Figure 3.4: Optimal radii of rotation (a) along with relative phase and minimum ū (b) obtained from optimizing (3.13) for a range

of ω using MATLAB’s global optimization algorithm GlobalSearch with fmincon() (solid). Here, ε = 1 × 10−4. Open

circles indicate optimal results obtained from an exhaustive search over the entire (discretized) parameter space (r1, r2, θ2). For

ω . 14, the optimal configuration consists of two traps rotating π-phase apart at the same radius. For 14 . ω . 160, the optimal

configuration has the traps rotating exactly in phase but on two different rings. The dashed lines in (a) represent the limiting

behavior in the subregime O(1) ≪ ω ≪ O(ε−1). In (b), we observe that for ω & 160, the phase difference becomes nonzero

while the traps remain on two different rings. With the dashed line on the right axis, we plot by how much the average MFPT

increases (as a fraction of the optimal value) when θ2 is chosen to be π (π − 0.1 when ω . 14) radians from its optimizing value.

The inset plots the suboptimality on a log-log scale, showing that it decreases rapidly as ω becomes large. The favorably similar

results of the exhaustive search have been excluded in (b) to avoid clutter.

r1, r2, and θ2, where, without loss of generality, we set the angular location of one of the traps at θ1 = 0. The results

are shown in solid curves in Fig. 3.4. With open circles in Fig. 3.4(a), we indicate optimal results obtained from an

exhaustive search over the entire (discretized) paramter space (r1, r2, θ2). The corresponding results for θ2 have been

omitted in Fig. 3.4(b) to avoid clutter. For ω . 14, the optimal configuration consists of two traps rotating π-phase

apart at equal radius. For 14 . ω . 160, the optimal configuration has the traps rotating exactly in phase (θ2 = 0) but

on two well-separated different rings. This “bifurcation” is analogous to that found in [32] for one rotating trap, where

the optimal radius of rotation is nonzero only when ω & 3. The key difference, however, is that since a zero radius of

rotation implies that the trap remains stationary, rotation in the one trap case can be detrimental to search times when

ω is small. That is, one observes a decrease in the optimal MFPT only when ω & 3. In contrast, we observe for this

two trap configuration that the optimal MFPT is a decreasing function of ω for any ω (not shown). For ω & 160, the

optimal phase difference again becomes nonzero, but the two traps remain on different rings.

With the dashed line in Fig. 3.4(b), we plot by how much the average MFPT increases (as a fraction of its optimal

value) when the relative phase is chosen to be π (π− 0.1 when ω . 14) radians from its optimal value. The inset plots

the suboptimality on a log-log scale, showing that it decreases rapidly as ω becomes large, as expected. We remark

that the leading order value of ū as given by (3.4) is ū ∼ (2πνN)−1, while its dependence on r1, r2, and the phase

θ2 appears at O(1). As such, the fraction by which a suboptimal MFPT exceeds the optimal value is of order O(ν).
However, since ν = −1/ log ε can be rather large even when ε is small, the improvement of choosing an optimal over

suboptimal configuration can be nontrivial. For example, with ε = 1 × 10−4 in Fig. 3.4(b), choosing a suboptimal

phase increased the MFPT by ∼ 11% when ω = 10.

We note that, in the small ω → 0 limit of Fig. 3.4(a), the result is the same as that obtained from optimizing ū with the

Neumann Green’s function and its regular part (3.14) replaced by their ω = 0 variants [21]. For large ω, the optimal

radii approach r1 = 1/
√
2 and r2 = 1, represented by the dashed lines. In this limit, the accuracy of the truncated sum

of (3.14d) is diminished due to numerical under- and overflow. In §3.2, we adopt a different approach for calculating

ū in this particular large ω regime that does not involve a infinite sum. We use it to demonstrate the result suggested

by the dashed lines in Fig. 3.4(a), and extend it to N traps.
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3.2 The sub-regime O(1) ≪ ω ≪ O(ε−1)

In §3.1, optimal configurations could only be found through numerical optimization of a function involving a truncated

series. It is thus very difficult to understand how the optimal radii of rotation behave in the limit of large ω. Here,

we use a leading order expression for the Neumann Green’s function to calculate a closed form expression for the

objective function ū. This simplified result allows the limiting behavior of the optimal radii shown in Fig. 3.4(a) to be

calculated explicitly. We note that this is not a distinguished regime, as it is contained within the ω ∼ O(1) regime.

In that sense, we consider ω as being fixed at a very large value while ε is sent to 0. In this limit, a trap rotating on

the ring of radius r0 can be thought of as being almost everywhere on that ring at once. This near-radial symmetry

was exploited in [32], where a matched asymptotics approach was employed to compute the leading order radially

symmetric solution of (3.7)

G(r, r0) =
r2 − r20
4π

− 1

2π
Θ(r − r0) log

(

r

r0

)

+ Ĥ , (3.15a)

where Θ(z) is the Heaviside step function and

Ĥ(r0) ∼ − 1

π

[

−r20
2

+
3

8
+

1

2
log r0

]

. (3.15b)

From a separately constructed inner solution, the limiting behavior of G

G(r, r0) ∼
1

2π

[

− log |x− x0| − log
(r0ω

4

)

− γ
]

+ Ĥ , as x → x0 , (3.16)

yields the leading order regular part of G

R(r0) ∼
1

2π

[

− log
(r0ω

4

)

− γ
]

+ Ĥ(r0) . (3.17)

In (3.16), γ is Euler’s constant. Recalling that s = (2N)−1
e to leading order in ν, we calculate the simplified leading

order formula for ū

ū =
1

2νN
+

π

N2

∑

ij

Gij +O(ν) , (3.18)

where Gij is the ij-th entry of the matrix G defined in (3.11). For N = 2, assuming r1 < r2, we use (3.15) to calculate

ū =
1

4ν
+

1

8

[

log

(

16

ω2

)

− 2γ − 3 + 2(r21 + r22)− 2 log r1 − 4 log r2

]

+O(ν) . (3.19)

Finding the critical points of (3.19) by solving ∂r1 ū = ∂r2 ū = 0 leads to two uncoupled equations for r1 and r2. The

result is that ū is minimized to leading order when r1 and r2 are given by

r1 ∼ 1√
2
, r2 ∼ 1 , as ω → ∞ with ω ≪ O(ε−1) . (3.20)

We make three remarks. The first is that result (3.20) is rather counterintuitive given the suboptimal nature of search

locations near boundaries. However, it was shown also in the same subregime O(1) ≪ ω ≪ O(ε−1) that a single

rotating trap is best placed asymptotically close to the boundary of the unit disk [32]. Second, in assuming radial

symmetry in constructing G in (3.16), we have lost resolution on θ2, the relative phase between the two traps. Because

the radial symmetry of u increases with increasing ω, the effect of relative phase diminishes in this regime. Lastly, the

two rings of rotation divide the unit disk into two regions of equal area. In fact, it can be easily shown using (3.18)

that the optimal radii of rotation for N traps are

rj =

√

j

N
, j = 1, . . . , N . (3.21)
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The results of [21, 32] show that a single Dirichlet ring on which u = 0 is best placed at r = 1/
√
2, which divides

the unit disk into two equal areas. In [32], this occurred in the ω → ∞ regime with ω ≫ O(ε−1) regime. The

result (3.21), showing that the equal division of area in fact occurs in the O(1) ≪ ω ≪ O(ε−1) subregime, is thus

unexpected. In Fig. 3.5, with r1 = 1/
√
2 fixed, we verify the formula (3.19) with full numerical solutions of (3.3) for

various r2. We observe that ū is minimized very near r2 = 1, consistent with (3.20). The circles (stars) are for θ2 = 0
(θ2 = π), their similarity showing that the relative phase of the traps has little effect on ū. We also remark that, in

contrast to the case of N optimally placed stationary traps, which share a few concentric rings, (3.21) shows that for

sufficiently high rotation frequencies, each trap occupies its own ring.

0 0.2 0.4 0.6 0.8 1
0.9

1

1.1

1.2

1.3

1.4

r2

ū

Figure 3.5: Comparison in the regime O(1) ≪ ω ≪ O(ε−1) of ū from (3.19) (solid) with that from full numerical solutions

of (3.3) (circles and stars). One radius of rotation is fixed at r1 = 1/
√
2, while the second (r2) is varied. We observe that ū is

minimized very near r2 = 1, consistent with (3.20). Here, ω = 500 and ε = 1× 10−4. The circles (stars) are for θ2 = 0 (θ2 = π),

showing that the relative phase of the traps has little effect on ū.

3.3 The regime ω → ∞ with ω ≫ O(ε−1)

In this regime the MFPT u is radially symmetric and satisfies

urr +
1

r
ur + 1 = 0, u(rj) = 0 and u′(0) = u′(1) = 0 , 0 ≤ r1, . . . , rN ≤ 1 . (3.22)

The solution to (3.22) can be obtained in piecewise fashion. The optimal radii are then found by optimizing
∫ 1

0 u(r)rdr
with respect to N variables r1, . . . rN .

We now show how this N−dimensional optimization problem can be reduced to a sequence of N − 1 algebraic

equations whose solution yields the optimal radii. We first define two functions: let r2 = F (r1, r3) be the optimal

ring location r2 for the MFPT problem on an annulus with Dirichlet boundary conditions on r = r1 and r3, and with

a ring trap at location r2 ∈ (r1, r3). That is, let

r2 = F (r1, r3) = minarg
r2∈(r1,r3)

∫ r3

r1

u(r)rdr , (3.23a)

where u(r) solves

urr +
1

r
ur + 1 = 0, u(r1) = u(r2) = u(r3) = 0. (3.23b)

Similarly, let r1 = G(r2) be the optimal location of the ring trap of radius r1 inside a Dirichlet disk of radius r2 :

r2 = G(r2) = minarg
r1∈(0,r2)

∫ r2

0

u(r)rdr , (3.24a)
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where u(r) solves

urr +
1

r
ur + 1 = 0, u(r1) = u(r2) = 0, u′(0) = 0. (3.24b)

The following are three key observations that allow us to “decouple” the problem.

• Observation 1: For an optimal configuration r1, . . . , rN which minimizes min
r1,...,rN

∫ 1

0 u(r)rdr of problem

(3.22), one has that r1 = G(r2), r2 = F (r1, r3), . . . , rN−1 = F (rN−2, rN ). In other words, r2 is optimal

for the MFPT with Dirichlet boundary conditions of an annulus of radii r1 and r3, and so on.

• Observation 2: If r2 = F (r1, r3) then r2
r3

= F ( r1r3 , 1) and similarly, r1 = G(r2) ⇐⇒ r1
r2

= G(1). This is

a simple consequence of the geometric invariance under the scaling of space.

• Observation 3: Let A1, . . . , AN+1 be the areas of the regions that are obtained by cutting the disk along

the radii r1, . . . , rN . Then the sum of even areas is equal to the sum of odd areas. We show below that this

condition may be written as

r21 − r22 + r23 − . . .+ (−1)Nr2N − (−1)N
1

2
= 0. (3.25)

The first two observations yield the following algorithm to compute the optimal radii of rotation r1, . . . , rN . First,

define:

zi =
ri

ri+1
, i = 1, . . . , N − 1. (3.26)

Then from Observation 2, we have that z1 satisfies z1 = G(1), while zi for i > 1 may be found sequentially by solving

z2 = F (z1z2, 1), . . . , zN−1 = F (zN−1zN , 1). Once we determine z1, . . . , zN−1, the radii r1, . . . , rN are found by

simultaneously solving (3.25) and (3.26).

Explicit solutions of (3.23) and (3.24) show, respectively, that z1 satisfies

4− z21 − 1

z21 ln (z1)
= 0 , (3.27)

while zi+1 is related to zi through

4− z2i+1 − 1

z2i+1 ln (zi+1)
=

z2i − 1

ln (zi)
, i ≥ 1. (3.28)

Note that the values of zi are universal and do not depend on N. The first seven values of zi are approximately:

k 1 2 3 4 5 6 7

zk 0.533543 0.712445 0.792159 0.837265 0.866283 0.886517 0.901433

To illustrate this method, we consider the case of N = 3 rings. Then we have

r1 = z1z2r3 , r2 = z2r3, r3 =

√

1/2

(z1z2)
2 − (z2)

2
+ 1

, (3.29)

which yields the optimal radii of rotation for the three traps r1 = 0.33679, r2 = 0.63124, r3 = 0.886022. We

observe that these radii satisfy (3.25) of Observation 3, which we show here. First, consider the following problem:

rm = minarg
rm∈(ri,ro)

∫ ro

ri

u(r)rdr , (3.30a)

where u(r) solves

urr +
1

r
ur + 1 = 0, u′(ri) = u′(ro) = 0, u(rm) = 0. (3.30b)
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For a fixed rm, u(r) is given by

u =















r2m − r2

4
+

r2i
2
ln (r/rm) , ri < r < rm;

r2m − r2

4
+

r2o
2
ln (r/rm) , rm < r < ro.

To find rm which minimizes (3.30), we compute

∂

∂rm

∫ ro

ri

u(r)rdr =

∫ ro

ri

(

∂

∂rm
u

)

rdr =
1

4rm

(

r2m − r2i
)2 − 1

4rm

(

r2m − r2o
)2

= 0 .

It follows that the minimizing rm satisfies

r2m − r2i = r2o − r2m. (3.31)

We conclude that for the problem (3.30), the optimal rm divides the annulus into two regions of equal area. Now

consider the optimal solution to (3.22). As an example of this theory, the case N = 3 is considered and the optimal

solution u(r) shown in Fig. 3.6. The solution u(r) is plotting along with the interior maximizers of u by r12 and r23
and the areas between maxima and zeros of u as shown. By the property (3.31), we have:

A1 = A21, A22 = A31, A32 = A4 . (3.32)

Moreover, we have

A2 = A21 +A22, A3 = A31 +A32, (3.33)

where A1, . . . , A4 are the areas of the regions that are obtained by cutting the disk along the radii r1, . . . , r3. It follows

from (3.32) and (3.33) that A1 +A3 = A2 +A4. This is equivalent to (3.29).

0 r1 r12 r2 r23 r3 1
0

0.005

0.01

0.015

0.02

0.025

0.03

A1 A21 A22 A31 A32 A4

Figure 3.6: Plot of the solution u(r) to (3.22) for N = 3 with traps located at the optimal radii.

In Fig. 3.7, we compare the optimal radii in this ω → ∞ with ω ≫ O(ε−1) regime (top row) against those in the

O(1) ≪ ω ≪ O(ε−1) regime (bottom row). In the top row, we observe that as N increases, the outer rings appear

to be be equally spaced. By contrast, in the bottom row, the rings locations have an explicit formula ri =
√

i/N for

i = 1, . . . , N , and tend to concentrate nearer to the boundary.

3.4 The regime ω ∼ O(ε−1)

The distinguished regime ω = ε−1ω0 with ω0 = O(1) marks the transition between the 1 ≪ ω ≪ O(ε−1) regime

of §3.2 and the ω → ∞ regime with ω ≫ O(ε−1) analyzed in §3.3. In this regime, the equation in the O(ε) j-
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Figure 3.7: Top row: optimal ring positions when ω ≫ O(ε−1). Bottom row: optimal ring positions when O(1) ≪ ω ≪ O(ε−1).
The ring locations are indicated by solid lines and the boundary r = 1 of the disk is denoted by a dashed line. In the bottom row,

the outermost ring rN coincides with the boundary.

th inner region is no longer the radially symmetric Laplace’s equation outside the unit disk. Indeed, with scaling

y = ε−1(x−xj), both the ∆u and ω∂θu terms in (3.3) become O(ε−2). Recalling that the relative phases of the traps

has little effect on ū, we assume for simplicity that they are all located on θj = 0. With u(xj+εy) = Uj0(y)+O(
√
ε),

the leading order equation in the j-th inner region then becomes

∆Uj0 +ω0rj
∂

∂y2
Uj0 = 0 , |y| > 1 , Uj0 = 0 , |y| = 1 , Uj0 ∼ uj0(ω0rj) as |y| → ∞ ; y = (y1, y2) ,

(3.34a)

where uj0(ω0rj) is a constant to be found. This inner solution and the outer solution is mediated through an interme-

diate parabolic layer with scaling r̂ =
√
ω0(r − rj)/

√
ε and θ̂ = 2π − θ, forming an O(

√
ε) layer around the ring

r = rj . In this layer, we expand u = ûj0 +O(
√
ε) so that at the leading order, we obtain the parabolic equation for

ûj0

ûj0r̂r̂ − ûj0θ̂ = 0 , ûj0(r̂, 0) = u0j +O(
√
ε) , ûj0 ∼ constant as r̂ → ±∞ , (3.34b)

where uj0 is an O(1) constant. The solution of (3.34b) is simply ûj0 = uj0 so that u in the outer region is approxi-

mately constant on the ring r = rj .

In the outer region, we expand the solution as u = u0+
√
εu1. Substituting this expansion into (3.3) with ω = ε−1ω0,

we obtain at O(ε−1) and O(ε−1/2) that u0θ = u1θ = 0. That is, the outer solution is radially symmetric to O(
√
ε).

At O(1) with u0θ = 0, we obtain the radially symmetric ODE for u0

u0rr +
1

r
u0r + 1 = 0 , u0 = u0j , r = rj , u′

0(0) = u′
0(1) = 0 , (3.34c)

where the constants u0j are to be found by matching fluxes in the outer and elliptic regions. The solution to (3.34)

was found in [32] for a single rotating trap using a hybrid numeric-asymptotic technique similar to that employed in

[9]. Here, we extend the method to the case of two traps, noting that extension to N traps follows in the same manner.

Using a hybrid asymptotic-numerical method detailed in Appendix A, we calculate that u01 and u02 are given by

u01 =
1

2

uc1(r
2
1 − r22 − 4uc2)

log r1
r2

− 2uc1 − 2uc2
, u02 =

1

2

uc2

(

2 log r1
r2

− r21 + r22 − 4uc1

)

log r1
r2

− 2uc1 − 2uc2
, r1 < r2 , (3.35)

where the constants uc1 and uc2 are obtained numerically from a canonical elliptic problem. The mean of u is then

obtained from computing the mean of the solution of (3.34c), which yields

ū =
1

8 log r1
r2

[

(r22 − r21)(r
2
2 − r21 + 4(u2 − u1)) + (4r22 + 8u2 − 3− 4 log r2) log

r1
r2

]

+O(
√
ε) , r1 < r2 .

(3.36)
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In Fig. 3.8(a), with ω0 = 10, ε = 0.001 and r2 = 0.95, we compare (3.36) (solid) with full numerical solutions of

(3.3) (circles) for a range of r1. We observe good agreement not only in the value of ū, but in where the minimum

occurs. Further confirmation of the analysis (not shown) comes from the agreement of u1 and u2 given asymptotically

by (3.35) with that obtained from numerical solutions of (3.3). In Fig. 3.8(b), we show the optimal radii of rotation

obtained from optimizing (3.36) with respect to r1 and r2.
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Figure 3.8: In (a), with ω0 = 10, ε = 0.001, and r2 = 0.95, we compare ū in (3.36) for a range of r1 (solid) against full numerical

results of (3.3) (circles). The asymptotic result (3.36) correctly predicts the location of the minimum. In (b), we show optimal radii

r1 and r2 that minimize ū. The dashed lines are the optimal radii r1 = 1/
√
2 and r2 = 1 in the limit ω0 → 0. The dotted lines

represent the limit in which ω0 → ∞, discussed in §3.3.

We recall that this regime interpolates between the results of the O(1) ≪ ω ≪ O(ε−1) subregime (ω0 → 0) and

the ω → ∞ regime with ω ≫ O(ε−1) (ω0 → ∞). Indeed, taking the latter limit in (3.34a), it is simple to see that,

since ∂y2
Uj = 0 and Uj = 0 on ∂Ω0, we must have uj = 0. This corresponds to the case in which u = 0 on

the ring r = rj , which occurs in the limit of infinitely fast trap rotation. This limit was discussed in detail in §3.3,

the two-trap result of which is represented by the dotted lines in Fig. 3.8(b). Analysis of the former limit ω0 → 0
(dashed lines in Fig. 3.8(b)) in Appendix A shows that the transition between the optimal configurations of the regimes

O(1) ≪ ω ≪ O(ε−1) and ω ∼ O(ε−1) is smooth.

We make as a final remark that to calculate the O(
√
ε) correction to (3.36), we must calculate the solution of the

O(
√
ε) outer problem

u1rr +
1

r
u1r = 0 , u1 = u1j , r = rj , u′

1(0) = u′
1(1) = 0 . (3.37)

The constants u1j in (3.37) uniquely determine u1, and may be calculated by employing a higher-order matching

between the three regions. In particular, the far-field conditions of the elliptic layer must be matched to the “initial

conditions” of the parabolic layer, while the far-field conditions of the parabolic layer must be matched to the local

gradient of u0 near r = rj . By imposing periodicity in the parabolic layer along with a higher order matching between

the parabolic and elliptic layers, a certain terminal value problem can be formulated for which a numerical solution

yields u1j . This is a lengthy analysis that we omit for brevity.

4 Discussion

We have used the techniques from [21, 32, 33] to study the MFPT in the presence of multiple mobile traps in one

and two dimensions. Very surprising and intricate behaviour is observed even in a one dimensional setting, where

we find an infinite sequence of bifurcations (two oscillating traps switch from an in-phase to antiphase configuration

infinitely many times) as the oscillation frequency ω is increased. When a trap is forced to adapt to two neighbors

whose dynamics are predetermined, its optimal strategy may be neither in-phase nor antiphase with either neighbor.

In two dimensions, the presence of multiple distinguished regimes allows for the characterization of distinct optimal

configurations. The simplest of these regimes is ω ≫ O(ε−1), in which case each rotating trap becomes a Dirichlet
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ring inside a disk. It is interesting to contrast this to the regime O(1) ≪ ω ≪ O(ε−1), for which each trap becomes a

“ring” but instead of a pure Dirichlet condition on a ring, it is more “porous”, yielding different optimal radii. For both

of these regimes, the relative phase between the two traps is insignificant to leading order, and it is an open question to

find the optimal phase. In the ω ∼ O(1) regime, we observe a bifurcation in which the optimal configuration changes

from antiphase rotation with a common radius to an in-phase rotation on well-separated rings.

While our analysis of all regimes is valid for three or more traps, the complexity of the numerical optimizations quickly

increases with the number of traps. However, we expect that some behavior observed in the two-trap scenario would

extend to the N > 2 case. For example, if three traps rotate slowly, we expect that they rotate with the same radius

separated by a 2π/3 phase, and that a similar bifurcation occurs as the rotation rate increases. On the other hand it is

unclear what the resulting phase difference (if any) will result on the other side of the bifurcation. For seven or more

traps, where the optimal stationary configuration may be a ring of six traps with one at the origin [21], the bifurcation

may be more complex.

Our analysis of the two dimensional problem was greatly simplified by the rotational symmetry. It would be very

interesting to solve (3.2) either numerically or asymptotically to understand the effects on MFPT of more general trap

motion. Within the same rotational framework, one could use (3.2) to investigate whether it is more optimal for two

traps to rotate in the same or opposite direction, and whether the result depends on rotation rate in a similar way to

what was found in §2 for one dimension.

Another open question is to determine an “optimal” path of the trap. Here, the key issue is to find the right “constraint”

on the type of admissible motion. This problem may require an energy constraint, as otherwise one can allow the trap

to travel with infinite speed on a space-filling curve. Whether an energy constraint leads to a well-posed optimization

problem, and if other or additional constraints may be more appropriate are interesting modeling question.

The question of proper constraints also arises in the analogous one-dimensional problem, where one seeks an optimal

periodic path of O(1) amplitude. The problem (2.2) for the MFPT would need to be solved numerically for an arbitrary

periodic path expressed in terms of Fourier coefficients, which would then be optimized subject to constraints. For

example, one may require a fixed energy output over one period, while also penalizing mean square displacement from

a certain fixed point.

An overarching theme of this work has been to investigate configurations that result from multiple mobile traps co-

operating to optimize a global quantity. It may be interesting to ask what happens when each trap adjusts its motion

locally in order to increase its own rate of capturing the Brownian particles, and whether this algorithm leads to any

stable configurations.
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Appendix A. Analysis of the ω ∼ O(ε−1) regime.
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We demonstrate here how to compute the quantity u0j in (3.34c). We begin by letting Uj0 = u0j(µj+1). Substituting

into (3.34a), we obtain for µj

∆µj + qj
∂µj

∂y2
= 0 , |y| > 1 , µj = −1 , |y| = 1 , µj ∼ 0 as |y| → ∞ ; qj ≡ ω0rj . (A.1)

The quantity we seek is the flux of µj on the boundary of the unit disk Ω0,

Φj ≡
∫

∂Ω0

∂µj

∂n
dS , (A.2)

where ∂/∂n denotes the outward normal derivative on Ω0. The flux may be extracted numerically as follows [9, 32].

We first consider the adjoint Green’s function satisfying

∆G̃− qj
∂G̃

∂ξ2
= δ(ξ − z) , G̃ → 0 as |ξ| → ∞ , (A.3)

which may be solved to give

G̃(ξ; z) = − 1

2π
e

qj

2
(η−z2)K0

(qj
2
|ξ − z|

)

; ξ = (ξ1, ξ2) , z = (z1, z2) . (A.4)

In polar coordinates (ξ1, ξ2) → (r̃ cos θ̃, r̃ sin θ̃) and (z1, z2) → (ρ cosφ, ρ sinφ), the solution to (A.1) can then be

expressed in terms of G̃ in (A.4) as

µj(ρ cosφ, ρ sinφ) =

∫ 2π

0

∂G̃

∂r̃

∣

∣

∣

∣

∣

r̃=1

dθ̃ +

∫ 2π

0

(

G̃
∂µj

∂r̃

)

r̃=1

dθ̃ − qj

∫ 2π

0

G̃
∣

∣

∣

r̃=1
sin θ̃ dθ̃ . (A.5)

Note that all integrals in (A.5) are over the boundary of the unit disk ∂Ω0. To extract the flux ∂µj/∂r̃|r̃=1, we impose

the boundary condition µj = −1 on ρ = 1, yielding

−
∫ 2π

0

G̃
∣

∣

∣

r̃=ρ=1

∂µj

∂r̃

∣

∣

∣

∣

r̃=1

dθ̃ =
1

2
+

∫ 2π

0

∂G̃

∂r̃
− s0G̃ sin θ̃

∣

∣

∣

∣

∣

r̃=ρ=1

dθ̃ . (A.6)

In (A.7), the 1/2 term is a result of evaluating µj on ∂Ω0 and thus integrating over only half of the delta function in

its Green’s function representation. The second term may be computed from integrating by parts the equation for the

adjoint Green’s function (A.3) over |ξ| > 1, which finally yields

∫ 2π

0

G̃
∣

∣

∣

r̃=ρ=1

∂µj

∂r̃

∣

∣

∣

∣

r̃=1

dθ̃ = −1 . (A.7)

The integral equation (A.7) may then be solved numerically for ∂µj/∂r̃|r̃=1 by expressing the latter as a Fourier series

and solving a system of equations for the coefficients.

To express Φj in terms of the flux fj of u0, we recall that u0 ∼ u0j(µj + 1) near x = xj . Substituting into (A.2), we

obtain

u0j =
fj

∫

∂Ω0

∂µj

∂n dS
= −fj

π

−π
∫

∂Ω0

∂µj

∂n dS
. (A.8)

where fj is the flux of u on the j-th trap. We rewrite (A.8) as

u0j = −fj
π
ucj , ucj ≡

−π

Φj
, (A.9)

where Φj is defined in (A.2). The quantity ucj(qj), whose dependence on qj ≡ ω0rj is through that of µj , was



24 A. E. Lindsay, J. C. Tzou, T. Kolokolnikov

computed in [32] and reproduced in Fig. A.1. To find u0j in (A.9), we require N equations for fj . We demonstrate

0 10 20 30 40

qj

0

0.5

1

1.5

2

u
cj
(q

j
)

Figure A.1: Plot of ucj versus qj ≡ ω0rj .

this for two traps. In the three distinct regions, we compute ur as

ur = − r

2
+



















0, 0 < r < r1;

c

r
, r1 < r < r2;

1
2r , r2 < r < 1,

c ≡ 1

log r1
r2

[

u01 − u02 +
1

4

(

r21 − r22
)

]

. (A.10)

The total fluxes on the rings r = r1 and r = r2 must, respectively, be f1 and f2. We calculate that

f1 = −2πc , f2 = 2πc− π . (A.11)

We remark that f1 + f2 = −π, as expected from applying the divergence theorem to (3.3). Finally, with c defined in

(A.10), we obtain u01 and u02 as given in (3.35).

To analyze the limit ω0 → 0 (dashed lines in Fig. 3.8(b)), we must look at the corresponding limit qj → 0 in (A.4)

and (A.7). From the asymptotics of modified Bessel functions, we calculate the leading order behavior of G̃ and

∂r̃G̃|r̃=ρ=1

G̃ ∼ 1

2π
[log qj + log |ξ − z| − log 4 + γ]+O(qj log qj) ,

∂G̃

∂r̃

∣

∣

∣

∣

∣

r̃=ρ=1

∼ 1

4π
+O(qj) , as qj → 0 , (A.12)

where γ is Euler’s constant. With (A.12) in (A.7), we have to leading order that

− 1

2π
[log qj − log 4 + γ]

∫ 2π

0

∂µj

∂r̃

∣

∣

∣

∣

r̃=1

dθ̃ − 1

4π

∫ 2π

0

log
[

(cos θ̃ − cosφ)2 + (sin θ̃ − sinφ)2
] ∂µj

∂r̃

∣

∣

∣

∣

r̃=1

dθ̃ = 1 .

(A.13)

Since the limit ω0 → 0 in (A.1) corresponds to µj approaching a radially symmetric solution, we assume that ∂r̃µj is

uniform on ∂Ω0. The second term in (A.13) consequently integrates to zero, leaving

∫ 2π

0

∂µj

∂r̃

∣

∣

∣

∣

r̃=1

dθ̃ ∼ − 2π

log qj − log 4 + γ
. (A.14)

Using (A.14) in (A.9), and noting that ∂n = −∂r̃, we obtain the asymptotic behavior of ucj in the limit of small qj

ucj ∼ −1

2
[log qj − log 4 + γ] . (A.15)
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With qj = ω0rj , substituting (A.15) for uc1 and uc2 into (3.36) and discarding terms of O(1/ logω0) results in

precisely (3.19). The optimal radii of rotation then, as depicted in Fig. 3.8(b), approach r1 = 1/
√
2 and r2 = 1

(dashed lines) as ω0 → 0. As such, the transition between the results of the regimes O(1) ≪ ω ≪ O(ε−1) and

ω ∼ O(ε−1) is smooth.


