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NUMERICAL APPROXIMATION OF DIFFUSIVE CAPTURE
RATES BY PLANAR AND SPHERICAL SURFACES
WITH ABSORBING PORES*

ANDREW J. BERNOFF! AND ALAN E. LINDSAY*

Abstract. In 1977 Berg and Purcell published a landmark paper entitled Physics of Chemore-
ception, which examined how a bacterium can sense a chemical attractant in the fluid surrounding
it [H. C. Berg and E. M. Purcell, Biophys J, 20 (1977), pp. 193-219]. At small scales the attrac-
tant molecules move by Brownian motion and diffusive processes dominate. This example is the
archetype of diffusive signaling problems where an agent moves via a random walk until it either
strikes or eludes a target. Berg and Purcell modeled the target as a sphere with a set of small circular
targets (pores) that can capture a diffusing agent. They argued that, in the limit of small radii and
wide spacing, each pore could be modeled independently as a circular pore on an infinite plane. Using
a known exact solution, they showed the capture rate to be proportional to the combined perimeter
of the pores. In this paper we study how to improve this approximation by including interpore
competition effects and verify this result numerically for a finite collection of pores on a plane or
a sphere. Asymptotically we have found the corrections to the Berg—Purcell formula that account
for the enhancement of capture due to the curvature of the spherical target and the inhibition of
capture due to the spatial interaction of the pores. Numerically we develop a spectral boundary ele-
ment method for the exterior mixed Neumann—Dirichlet boundary value problem. Our formulation
reduces the problem to a linear integral equation, specifically a Neumann to Dirichlet map, which
is supported only on the individual pores. The difficulty is that both the kernel and the flux are
singular, a notorious obstacle in such problems. A judicious choice of singular boundary elements
allows us to resolve the flux singularity at the edge of the pore. In biological systems there can be
thousands of receptors whose radii are 0.1% the radius of the cell. Our numerics can now resolve
this realistic limit with an accuracy of roughly one part in 108.
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1. Introduction. Cells are calculating machines which must infer information
about chemical concentrations in their environment and make decisions based on
these measurements. For example, T-cell receptors on the cell membrane must trig-
ger an immune response when foreign bodies are encountered [32, 37, 48]. In their
seminal paper [8], Berg and Purcell studied the fundamental biophysical limits on
chemical sensing at microscopic scales and demonstrated that cells could have nearly
optimal sensing performance, provided their receptors were numerous and distributed
over their exterior membrane. While this leading order theory elucidates the under-
lying principles of chemoreception, it does not account for the reduction in sensing
performance from interpore competition. A longstanding problem is to resolve this
limitation and describe how the number and detailed spatial arrangement of receptors
dictate the ability of the cell to sense its surroundings through diffusive contact.
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(a) Plane with finite cluster of absorbing pores. (b) Sphere with absorbing surface

pores.

Fi1G. 1. Schematic diagram of the planar and spherical absorption geometries with absorbing
surface pores.

The mathematical formulation for this problem draws from the theory of electro-
statics [23, 43] and is governed by Laplace’s equation with a mixed configuration of
Neumann and Dirichlet conditions corresponding to reflecting and absorbing portions
of the target. For geometries akin to those in Figure 1, the probability, v(x), that a
particle originating at x = (z,y, ) in an exterior domain {2 avoids absorption at the
target set I', on the surface 0 satisfies (cf. [26, 34])

(1.1a) Av =0, x € ()

(1.1b) v =0, x € ['y; Opv =0, xel,;
C 1

(1.1c) vix)=1—-—+0 <> ) |x| — co.
O\ P |

Here the surface 02 contains an absorbing domain, I',, which is typically the union
of N nonoverlapping pores, ', = U;-Vle‘j. The remainder of the surface I',, = 9Q\ T,
is reflecting. In the far field the probability approaches unity as almost all particles
will escape capture. The parameter C, known as the capacitance, is determined
uniquely by (1.1). An alternative interpretation of v(x) is that it is the equilibrium
concentration observed in ) for a diffusing species when a target is immersed in a
uniform concentration that is unity in the far field. If the particles have diffusivity
D, the flux into the domain is defined as

J=D Opv dS,
o0
which we will show below is proportional to the capacitance.

In the present work, we consider two specific scenarios in which a finite cluster
of traps are arranged on an infinite plane (Case I) and where the traps are arranged
on the surface of a sphere (Case II) as shown in Figure 1. For both cases we will
define the pores as the set of points on the surface 02 within a distance ea; of some
center point x; and seek to understand how the number and spatial arrangement of
traps affects the total flux J of particles to the target. The parameter ¢ is a common
scale factor associated with each pore and ensures that pores with distinct centers are
nonoverlapping as ¢ — 0. In Case I, the domain €2 is the half-space z > 0 and the
absorbing target set is given explicitly as
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N
(1.2) T, = Urj, Fj:{<x7y70) | (m_xj)2+<y_yj>2<€2a?}’

where T'; has center x; = (x;,y;,0).

In Case II, the domain Q is the exterior of the unit sphere, |x| > 1. We use
spherical coordinates (p,6,¢) on the sphere p = 1 with the pore I'; centered at
x; = (sinfj; cos ¢;,sinf; sin ¢, cos ;). The absorbing target set is given explicitly in
spherical coordinates as

(1.3)

N
I, = U I, T;={(1,6,¢)|2[1—sin6 sinf; cos(¢ — ¢;) — cosf cosb;] < aza?} .
j=1
The divergence theorem now allows us to relate the flux of the species into the
pores to the far-field behavior. For the planar case, integration over a large hemisphere
yields the flux J, as

(1.4) J,=D | 8,vdS =2xDC,
N

while in the spherical case, integration over a large sphere yields

(1.5) Jo=D [ 8,vdS=4xDC.
oN

Before stating the main results of this paper, we review some key results associated
with these classical problems. The seminal study of Berg and Purcell [8] analyzed a
spherical target of radius Ry (Case II) partially covered by localized absorbing recep-
tors. From a flux based analysis, they postulated that N nonoverlapping receptors of
common radius a would give rise to a capacitance Cy;, and associated flux Jyp,

NCLR()

1. =4rD = —
( 6) pr 7 Cbp, Obp NCL+7TR0

A key insight from (1.6) is that when the pores are well separated on the sphere
(which implies Na < Ry), the flux is proportional to the perimeter of the absorbing
set Iy, J &~ 4DNa. Therefore, for fixed absorbing area (which could be a small
fraction of the total surface area), a distributed and fragmented absorbing set (with
a large perimeter) can have a capture rate that approaches that of an all absorbing
target (J = 4wRoD). The expression (1.6) was derived through physical reasoning
and interpolates between these two limits. The result (1.6) does not, however, inform
on how the particular spatial arrangement of pores contributes to the capture rate.
The microscopic patterning or clustering of receptor sites on membrane surfaces is
frequently observed experimentally and is known to play a key biophysical role in
many systems [12, 32, 36, 37]; this is a particularly curious observation for, as we
show below, clustering reduces the capture rate.

Evaluating the impact of clustering on the capture rate is challenging on account
of several factors. Exact solutions to (1.1) are unfortunately not available beyond
the most rudimentary scenarios. Numerical studies of (1.1) are also challenging due
to the heterogeneous array of mixed Neumann and Dirichlet boundary conditions.
Such problems are notorious in potential theory due to a flux discontinuity along
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the perimeters of the absorbing pores [16, 23, 43]. Brownian particle simulations
[3, 5, 6, 7, 12] are a widely used and flexible approach to sampling the flux J which
avoid the challenges of resolving the discontinuous potential; however, these methods
are slow to converge, offer relatively crude accuracies, and have difficulties dealing with
the infinite computational domains and the small pore sizes inherent in biologically
realistic applications.

A complementary approach to tackling the complications of the heterogeneous
boundary conditions is to seek a homogenized or effective medium theory. At a large
distance from a target surface with an array of pores, the solutions of (1.1) are largely
independent to variations in lateral directions. Therefore, the complex configuration
of mixed Neumann and Dirichlet conditions can be replaced by a uniform Robin
boundary condition 9,v + kv = 0 on the target surface [6, 7, 29, 41, 48]. Here « is
sometimes referred to as the leakage parameter as it governs the flux leaking through
the boundary. These theories estimate the dependence of the leakage parameter on
the absorbing area fraction, o, of the surface. The first boundary homogenization [41]
was for a sphere (akin to Figure 1(b)) based on the Berg—Purcell formula (1.6) and
specified

4D
(1.7) K= Kpp = 0.
It can be derived by specifying that the total flux to the target of the homogenized
and full problems (1.1) are equivalent. Our recent work [26] reviews the history of
homogenization for the sphere and extends this result to incorporate the arrangement
and interaction of the pores.

Other studies have considered periodic arrays of traps on a plane bounding a
half-space [6, 7, 29]. They have proposed the functional form

ag (6% — 0'2
4D f(o0), flo) = u

Ta N (1-0)?

(18) Kbe =

and used particle simulations to estimate the values of the free parameters o and [
for clusters of absorbing pores in square and hexagonal lattices, respectively.

Finite clusters of pores (as depicted in Figure 1(a)) have been considered by a
set of recent studies [3, 4, 5] which propose that the cluster be replaced by a single
circular pore on which the Robin boundary condition applies. The leakage parameter
is again estimated by the formula (1.8), where o is replaced by the effective pore
density within the occupied cluster sites.

The contribution of this work is twofold. First, we present matched asymptotics
formulae for the capacitance of finite sets of pores on a half-space in the biologically
relevant limit of large separation; these calculations nicely mirror the analogous results
previously obtained for a sphere in [26]. Second, we present a spectral boundary
element method that is capable of verifying these formulas for both the plane and the
sphere to a high accuracy. In section 2, we derive by matched asymptotic expansions,
the following asymptotic expression for the flux J, = 2rDC in the planar case. When
all the pores have common radius €, we find that

(1.9)

J,=4eDN |1 — — o(e?
p € Z\x —Xk| WQZZ\XJ—XICHXZ—XA—F (e”)

i#k i£]
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The analogous result for the unit sphere, obtained in [26], gives the limiting form of
Js =47 DC as

(1.10a)

€ e [3 2 9
Js =4eDN 1—;log25+; g—Nggsﬂx]—xk\) + O(e“loge)|, e—0,

where the spherical pore competition kernel g;(p) is given by

1 1 "
1.10b () ==+-log( ), o<u<2
(1.10b) () ==+ 5108 () "

The importance of the asymptotic formulas (1.9) and (1.10) is that they give a first
principles account of how the spatial configuration of surface pores affects the capture
rate of the target. The leading order term 4e DN, which appears in (1.9) and (1.10),
is the classic Berg—Purcell term (1.6). It informs on how the perimeter of the pore set
influences absorption. The subsequent terms give corrections due to interpore com-
petition and, in the spherical case, logarithmic terms which account for the curvature
of the target.

The rest of the paper is organized as follows. In section 2, we use a matched
asymptotic expansion analysis to obtain expression (1.9), the flux of diffusing parti-
cles to N well-separated absorbing pores arranged on a plane. In section 3 we derive a
spectral boundary element method for the efficient numerical solution of (1.1) which
incorporates the known form of the flux singularity and allows for rapid and accurate
evaluation of J. In section 4, we use this method to explore the capture rate of a vari-
ety of target sets 2 ranging up to thousands of pores. Finally, in section 5, we discuss
the implications of the present work and highlight avenues for future investigations.

2. Asymptotic analysis of the planar pore capture problem. In this sec-
tion we detail a singular perturbation analysis which yields an approximation for the
capacitance of a plane with absorbing circular pores (1.9). One of the first steps is to

rephrase the solution of (1.1) as v(x) = —Cpu(x), where u(x) satisfies the associated
problem
(2.1a) Au =0, x € ()
(2.1b) u =0, x €I, Opu =0, xel,;
1 1 1
(2.1c) ux)=——+-—+0 () ) |x| — 0.
Cp x| [x|?

In the analysis of this section, the domain €2 and its boundary 0X) are defined as
Q:{(I,y,z)ERS‘Z>O}, aQ:{(fE,y,Z)ER3|Z:0},

and 02 = T', UT,. The formulations (1.1) and (2.1) differ in their normalization.
In (1.1), lim|y|—oo v(x) = 1 which uniquely determines the capacitance C, from the
strength of the monopole as x| — co. In (2.1), the strength of the monopole in the far
field is normalized to unity, implying that faQ OnudS = —2m. For the normalization
condition (2.1c), the capacitance is determined from limy| o u(x) = —=C; '

Exact solutions to (2.1) have been developed in the simple cases where the ab-
sorbing set ', is one [43] or two nonoverlapping absorbing pores [38, 44]. However,
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these methods rely heavily on exploiting symmetries of the set I', and cannot be easily
generalized for larger N. The alternative approach taken here is based of a matched
asymptotic analysis [13, 14, 15, 26, 27] in which we assume the presence of N nonover-
lapping and well-separated pores centered at x; = (zk, yi, 0) with radii eay, as ¢ — 0.
The parameters ay allow the pores to have variable radii. A key constituent in the
solution of (2.1) is knowledge of the Green’s function G),(x,x¢), where xo = (0, Yo, 0)
satisfying

(2.2a) AG,=0, xe 0nGp = —0(x—x¢), x€N

The solution of this problem is twice the free space Green’s function of the Laplacian
and given by

1

27|x — X!

(2.2b) G5 %) =

This Green’s function will form the backbone of the solution to the outer problem. The
inner solution necessitates examining the Green’s function (2.2b) in the vicinity of x;
through the stretched coordinates y = e~!(x — x;) for which G,(x;x;) = (2mely|)~*.
This motivates an expansion beginning at order e ! for the solution of (2.1),

U
=24 uy + eug + 2ug + 0(53).

(2.3) u=—

This implies that each of the problems for u; for j = 0,1,2,... satisfies
(2.4) Au; =0, x€Q, Opu; =0, x€ 0N\ {x1,...,xn},

together with the fact that u; is bounded in the far field. The solutions of (2.4) are
superpositions of uniform constants, surface Green’s functions (2.2) centered at each
of the pores, or gradients of the Green’s functions at each pore (essentially a multipole
expansion) which appear at higher orders in the perturbation expansion. The local
conditions on u; as x — x; are determined from a local solution w(y) in terms of the
variable y = e~ !(x — x;), where y = (s1,$2,7) is a local coordinate system in the
vicinity of the jth pore. This local problem is expanded in a form similar to (2.3),

wo
(2.5) w= % +wy; + ews ; + 2ws j + O(e),

where in the vicinity of the jth pore, each subproblem wy ; satisfies a single pore
equation

(263‘) (88181 + a3282 + 8?777)wk,j = Oa n> 07 (817 52) € R2;
(2.6b)
wi; =0, n=0, s%+s§<a§; Oqwi,; =0, n=0, s%—&—s%za?.

Each of these problems has an exact solution of form
(2.7) Wk,j = W, (00) (1 —we) ,

where wy, ;(00) is the constant far-field solution and w, is the solution to the electrified
disk problem

(2.8a) (Osy81 + Osps5 + ann)wc =0, n>0, (s1,52)€ R2§

(2.8b) w, =1, n=20, s%+s§<a?; Oqywe=0, n=0, S%+S%Za?.
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The exact solution to problem (2.8) is (cf. p. 38 of [17])

(2.8¢)

w, = — sin
T

|
VS
=8
N—
h
Il

1 1 1
3| VIst+ st ral e ot + )t - af e
In terms of the capacitance ¢; = 2a; /7 of the jth pore, the far-field behavior

(2.84)
1 w22 (1 3n? 2ay
chck<p+ 24’“ <p3_p5)+)’ as p=/st+s2+n?— oo; o=,

is obtained. Since p ~ |x—x;|, the far-field behavior (2.8d) together with (2.7) implies
that as x — x;, the matching condition with (2.3) yields

wo,;  wo,;(0) (1__ €6\ _ wo;(00)  wo,;(0)¢;
|

€ € X — Xl € |x — x|

Ug

This condition implies that ug = wo j(co) for all j = 1,..., N so that ug is a constant.
It also provides a local singularity condition on u; so that it solves the problem

(2.9a) Au; =0, xe€ Opur =0, x€ I\ {x1,...,xn},
—UpCj .

(2.9b) up(x) ~ ———— - X — Xj; j=1,...,N.
[x — x| !

In terms of the Green’s function G,(x;x) satisfying (2.2), the general solution of
s (2.9)

(2.10) = —2muyg Zc] (x;%5) + x1,

where x; is a constant to be found. In the summation component of (2.10), each term
contributes a monopole to the far field through the limiting behavior G)p(x;x;) ~
(27|x|)~! as |x| — oo. The normalization condition (2.1c) specifies that the combined
contribution should be unity, therefore

-1 _ 1
(211) UOZFE7 C:NZCJ‘.

We now proceed to the next order in € to calculate the constant term x;. The first
step is to find the far-field constant ws ;j(00) of (2.7) near the jth hole. This comes
from the local behavior of (2.10) as x — x;,

(2.12a) up(x) ~ + B + x1, X — X, j=1...,N,

[x — ;]
where the constants B; are given by

N

2.12b B; =-2 G(
( ) Wuozck (x5 Xk) UOZ‘inxk
kséj k#ﬂ
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This yields that wy ;(c0) = B, + x1 so that wy ; = (Bj + x1)(1 — w.) and provides a
local singularity condition on us so that this problem now satisfies

(2.13a) Aus =0, x€9Q, Opus =0, x €I\ {x1,...,XN},
—¢:(B:
(2.13b) uz(x)~w7 x x5 j=1,...,N.
j

In terms of the Green’s function G,(x;xg) satisfying (2.2), the general solution of is
(2.13) is

N
(2.14) uz(x) = —QWch(Bj + x1)Gp(x:%5) + X2,
j=1
where y2 is a constant. The normalization condition (2.1c) was satisfied exactly by
the equation for wy, therefore (2.14) must make no contribution to the monopole as
|x| = oo. This requires the solvability condition Zjvzl ¢j(Bj + x1) = 0 which fixes
the value of y; to be

N N cic
jCk
i) =~} DD

=
[]=
Q2

2

Q

(2.15) x1=wuo ZC]B = —27u

j=1 Jj=1

One more application of this process is relatively simple and yields the next correction
term x2. The local behavior of (2.14) as x — x; is given by

—c;(Bj +x1)
Ix — x;]

(216&) ’LLQ(X)N +Dj+X27 )(4)Xj7 j:L...,N,

with the constants D; given by
N
(2.16b) Dj = =21 cx(Br + x1)Gp(X;; Xp).
—
k#%
This yields that wg,j(oo) = D]' + X2 So that wWe ; = (Dj + XQ)(l — ’LUC) and SO ug
satisfies

(2.17a) Aus =0, xe; Opus =0, x €I\ {x1,...,Xn};

—¢;(Dj + x2) n

(2.17b) uz(x) ~ — %]

-, X — Xj; j=1...,N.

)

Again, uz does not contribute a monopole as |x| — 00, so the condition Z;V:;L c;(D;+
x1) = 0 must be imposed, which yields that

X2 —UQZCJD = ZWUOZZCkC] x1 + Bj)Gp(xxk;x5)

i=1k=1
N N

(2.18) — 2muyg ZZ ek BiGp(xi;%5).
j=1k=1

k#j
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At this point, we recall that the goal is to determine the constant term lim|y| o u(x) =
—C ! in the far field expansion (2.1c). From the expansion (2.3), we have that

-1 € g2
— {1+Xl+ X2 +(9(53)].
Cp E U Uuo

Rearranging this expression for the capacitance C), and simplifying yields

2

£242 2
(2.19) C, = [1 _&a + €X1 €7X2 + 0(53)] )
UO Uo Ug Ug

Now using the expression for ug in (2.11), x1 in (2.15) and x2 in (2.18) yields that

CjCk 3 XX CiCjCk 4
—— 4 E E E + O(e%).
% — x| ; Ix;j — xkl|x; — %

] =

N
(2.20) Cp=eNe—e>)
j=1

S

27

Eabad

The formula (2.20) is valid for pores of differing capacitances. Specializing to circular
pore shapes, for which we recall from (2.8d) that ¢, = 2ax/m, the final simplified
expression for C), is obtained,

(2.21)

N
2N6a a;ag a;a;ap _ 1
Cp = = J + Ot a=— a
p Z |x] Xk| Z |X] Xk||XJ_XL| ( )7 szz:l J
17’5J

The corresponding flux J, = 2rDC),, determined from (1.4), is then given by

(2.22)

;= X

B a;a 4¢? a;a;aj
J, = 4DNea |1 — g ’ G
P = Nﬂ'az|x N7r2aj;|xj—xk||xj—xi| +0E)

The result (1.9) follows from setting a; =1 in (2.22) for j =1,... N.

As a check on the validity of (2.22), we compare to an exact solution in the N = 2
case for two unit discs separated by d = |x; — x2|. A separable solution of (1.1) in
bipolar coordinates [38, 44] determined that

(2.23)

Jo_spf1o 2 4 _202+7) 16347 41204 707 + 37%)
- nd  w2d? 3m3d3 3rdds 157505
+0(d™% as d— oo.

We remark that (2.23) is a corrected version of equation (28) in [44] which amends a
small algebraic error carried from their previous equation (27).

By setting ea; = 1 in (2.22) for j = 1,..., N, the first three terms of (2.23) and
(2.22) are in agreement. The leading order term of (2.22) is the classic Berg—Purcell
result (1.6) while the higher order terms give corrections due to pair and triplet pore
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interactions, respectively. This analysis can be extended to obtain further corrections
to the expansion for the flux as part of a multipole expansion of solutions to (2.1).
The first step toward determining these higher order terms would be to expand (2.3)
near each pore up to the gradient term. These additional terms would then be matched
to a high order expansion near each pore that would include information on individual
pores shapes through their dipole moments.

In the following section, we develop a numerical method which enables precise
validation of the flux expressions (2.22) and (2.23). This method confirms that the
asymptotic formula (2.22) accurately predicts the flux, provided the pores are small
and well separated.

3. A boundary spectral method for the capture problem. In this section
we outline a numerical spectral boundary element method for the exterior mixed
Neumann-Dirichlet boundary value problems (1.1). Our formulation will highlight the
similarities between the numerical solutions to the planar and the spherical problems.

In our numerical method, it is convenient to solve a problem which decays as
|x| — oo and so we consider the equivalent capture problem for u(x) = 1 — v(x),
where v(x) satisfies (1.1) and u(x) solves

(3.1) Au=0, x€; u=1, xel,, Opu=0, xel,,

where I', is a set of absorbing circular pores and I', is the reflecting complement of
T', on the boundary 0€2. We complete the problem by specifying that the solution
of u(x) decays to zero in the far field. In this formulation, the capacitance C of the
target is specified by the flux J over I', and satisfies

(3.2) J:/ OudS — 2rC" Planar Capture,
. B Ia " - )4rC Spherical Capture,

which, together with the decay condition, determines the far-field behavior

(3.3) ux) = Z 40 <1> N,

| |x|?

We formulate the numerical problem as a linear integral equation, specifically a Neu-
mann to Dirichlet map [21, 46] on the set of pores, 'y, relating the known surface
potential, u|gq = p(x), equal to unity in ', to the surface flux, d,uloq = ¢(x), which
is unknown on I', and vanishes on I',.. Fortunately, the exact solution to the Neumann
problem is known in terms of the surface Green’s functions [17, 23, 30, 43]

u(x) = /eaQ G(x;y) q(y) dS, x €.

We simplify this by first noting that the surface flux, ¢(x), is nonzero only on the
pores, Iy, and second by restricting our interest to the surface where u(x) = p(x).
This yields the linear integral equation

(3.4) p(x) = Alg(x)] = — / g(x—ylaly)dS, xeoq,
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where the kernel of the integral operator is defined by the Green’s function restricted
to the surface

Cy) = g(x—yl)  forxyeoQ,

2
where
1
(3.5) g(p) = gp(p) = " (Planar Capture),
(3.6) (1) = () 1+11(“> (Spherical Capture)
: =gs(p)=—+=log | —— erical Capture
9() = gs() = -+ g log { 57— p p

as defined in (2.2) and (1.10b), respectively. We are interested in the specific case
when the surface potential p(x) =1 for x € I',.

We solve this problem pseudospectrally by a judicious choice of basis of functions
for the surface potential, p(x), and the surface flux, ¢(x), within the pores T',. We
are guided by the known exact solution [17, 43] for a single absorbing circular pore on
a half-plane (2.8). At this point we will simplify the calculation by assuming that the
N pores, I';, that constitute I'g = U;-Vzll"j have a common radius «. For the planar

problem the N pores are discs of radius « centered at points {xi,...,xy} on the
plane z = 0.
For the spherical problem, the N pores are centered at points {xy,...,xy} and

each subtends an angle v. The boundary of each pore is the set of points on the sphere
which are a distance o = 2sin(v/2) from its center. On the surface near each pore,
we introduce a local spherical coordinate system (6, @) with the polar axis aligned
with the pore’s center. We observe that if we make a change of variables

§p =2sinby/2,  tp = ¢y,
the kth pore occupies a disc in (&, tx) space,
Qp = {(&k,tr) |0< & <, 0 <ty <27}, where « = 2sin(v/2),
and the spherical area element can be rewritten as
dS = sin(0y) dby, doy = ExdEy, diy,

which is identical to the area element for planar polar coordinates.

We will now choose a basis for the surface potential p(x) on each pore. If we define
a Cartesian coordinate system (X,Y") = (£ cos(t),£sin(t)) for a given pore, a natural
basis would be polynomials in (X, Y") of degree less than or equal to M. An orthonor-
mal basis for these polynomials on the unit disc (expressed in polar coordinates) is
Zernike polynomials [31], defined by

Py, ; (&) sin(jt), ji>0,
Zm i (&,t) =13 Pno(8), j=0, m=0,1,..., M, j=—m,—m+2,...,m—2,m.

Pm \]|(£) COS(jt)7 J <0,
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FiG. 2. The first 10 Zernike polynomials on the unit disc.

Each Py, ;(£) is a degree m polynomial containing terms of degree j, j+2,...,m—2,m.
The first Z,, ; are
1
Zog = —
00 ﬁ)
Z 2 Ecost, Z 2 Esint
_1 = —=E&cos = —¢sin
1-1 N ) 11 Jr ,

22 92 = §§2 COS 2t7 220 = § (252 - 1) s 222 = §€2 sin 2t,
Vo Vo V
/8 /8
Z3_3 = ;53 cos3t, Z3_ 1= p (353 — 25) cost, Jz1= \/7 (353 — 2§) sint,
8
3 = \/;53 sin 3t,

and are plotted in Figure 2. There are m + 1 polynomials of degree m and a total of
(M +1)(M +2)/2 polynomials of degree M or less. If we define the inner product on
the disc of radius «, denoted by {2 here,

2w [eY
@En V= [ [ aouenedsa,
t=0 J£=0
the orthonormality condition for the Zernike polynomials on the unit disc (o = 1) is

<ij(§) t)v Zm’j' (57 t>>Q =0m m’éjj"

For discs of radius «, one can use a rescaled basis of Zernike polynomials, Z,, ;(§/a,t)
for which the orthogonality condition reads

<ij(f/01, t)’ Zm’j’ (5/(1, t)>Q = a25m m’(sjj“
We can now approximate the known surface potential on the kth disc, I'y, as a linear
combination of the Zernike polynomials up to degree M,

M m

(37) (gkutk Z Zcmj kZMJ(fk/a tk) .7 =20 — m,

m=0 £=0
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where the total number of coefficients is N(M + 1)(M + 2)/2, the number of pores
multiplied by the number of polynomials of degree M or smaller. If p(&x, tx) = 1, we
find that for each pore there is a single nonzero mode with m = j =0,

(3.8) Cmjk = VT mo 650,

for each pore Q.

We now need to find a basis to approximate the flux on each of the pores. It
is well known that the flux may be singular for mixed Neumann—Dirichlet problems
[16, 43] and this problem is not an exception. We appeal to an analogous problem,
specifically a single circular pore on a plane bounding a half-space, for insight. This
problem can also be formulated as an integral equation of the form (3.4). The kernel
in the planar case is equivalent to the most singular term in the spherical problem,
g(u) = 1/p, and an exact solution is given in (2.8). If the surface potential is of the
form of a Zernike polynomial,

ij(ﬁ/a) Sln(.jt)? .7 > 07
p(fat) :ij(é_/a7t) = Pm()(f/a), J=0;
Pm|j\(§/a)cos(jt)v j<07

an exact solution for the flux in the pore can be found of the form [43]

Qmj(g/a) Sin(jt)7 j >0
q(§,t) = T o Qmo(&/a), Jj=0;
Qm 5| (§/a) cos(jt), j <0,

where @, ; is a polynomial of degree m containing terms of degree j, j+2,...,m—2,m.
In the reflecting region exterior to the pore (£ > ), the flux vanishes identically. An
important example of this exact solution is the constant surface potential in a single
pore where for p(£,t) = \/TZyo = 1, the surface flux is

2
) 0§£<O‘,
2_52

q(&,t) =

TN/ &

which is positive and exhibits an inverse square root singularity at the edge of the
pore (which is also evident in (2.8)). The singularity is integrable and the flux can be

computed as
« 27
1= [ [ aengdcdr = a.
£=0Jt=0

which allows us to recover the backbone of the Berg—Purcell result (1.6), namely,
that the flux for a single pore (appropriately nondimensionalized) is four times the
perimeter.

This exact solution suggests that an appropriate basis for the surface flux is terms
of the form

qmj(fvt)

1 (&/a)™sin(jt), j>0;
ET_g (&/a)™, j=0; m=0,1,....M, j=—m,—m+2,...,m—2,m.
” (§/a)™ cos(jt), j<O,
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This basis captures the nature of the flux singularity on the boundary of the pore
and spans the exact solution for the single pore problem on the half-plane with a
polynomial flux function of degree M or less. Our assumption (borne out by the
asymptotics of section 2 and in [26] and our numerics) is that the corrections to the
flux due to the curvature of the surface and the pore interactions are subdominant
and can also be captured by this basis.

As such we expand the surface flux on the kth pore as a sum of these functions,

M m
(3.9) AEkte) = DD bmjrmi(Cetr),  j=20—m,
m=0 ¢=0
where the N(M+1)(M+2)/2 constants by, j , need to be determined. Substituting the
expansion for the surface potential (3.7) and the surface flux (3.9) into the governing
integral equation (3.4) yields
N M m
SO coriore Zowrir (i fer i)
k'=1m’'=0£'=0
N M m
:ZZmejkA[qmj(gkvtk)]'i_ng j/:2€/_m/a j:2€_ma
k=1m=0 ¢=0
where &) is the error incurred by having a finite approximation of order M for both
the surface flux and the surface potential. We now project both sides of the equa-
tion onto the Zernike polynomial basis for the flux functions; applying the operator

(Zmrjr (&pr [, trr ), -)q,, yields
(3.10)
1
Cm/j'k! :Am’jlk)/mjk bm] ks Am’j/k’mjk = g <Z’m’j’ (gk//a, tk’)7 A[Qm_](fk, tk)])Qk, ,

where we have divided by a?. The resulting square linear system is of size N(M +

1)(M + 2)/2 for the unknown surface flux coefficients b,, ;1 in terms of the known
surface potential coefficients ¢, 1, evaluated above in (3.8). A solution to this linear
system will minimize the L? norm of the error £y; over the collection of pores, I',.

To evaluate the coefficients A, xm ;i naively one needs to evaluate a quadruple
integral, integrating over the discs 2 and Q. However, the symmetries of the
problem simplify these evaluations immensely. First, we evaluate the surface potential
induced by gm ;(§, 1),

The function p,, ; has the same angular (t) dependence as ¢, ; and the £ dependence
is computed numerically and tabulated for each value of m and j to allow for later
interpolation. We now discuss some implementation details for the method, treating
the planar and spherical cases separately.

Case 1 (plane). Here g(p) = 1/p and the potential (3.11) induced by g, ; =
cos(jt) (£/a)™ (a2 —£2)~2 for j > 0is (for j < 0 replace cos(jit) by sin(jit) throughout)

— a 27 .
a ™ p" cos(jn) 1
Pmj(&,t) = 7/ pdpdn
160 =5 p=0Jn=0 \/a? — p? \/p? + &2 — 2pE cos(t — )
(3.12) = cos( 't)ﬂ/a LH({/ )d
. - ] 271_ =0 \/042——p2 J p p?

where the function H; (/) is defined as
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oy m cos(j7)
(3.13) i) = r=0 /B2 +1—2BcosT . p=0

The numerical evaluation of the integral H; (/) is simplified by noting that

1 1

H~6:H»<), B #0,
J( ) B J ﬂ

which restricts computations to the range 0 < g < 1. The integral (3.13) has a

logarithmic singularity at 7 = 0 as § — 1. Effective numerical evaluation of H;(f3) in

light of this singularity is aided by writing

2 2 1

cos(j7) — 1
= T+
r=0 /B2 +1—2BcosT r=0 /B2 +1—2BcosT

The first integral in (3.14) is bounded and readily approximated, while the second
term captures the logarithmic singularity and is expressed as an elliptic integral and
evaluated with the MATLAB function ellipke. Returning to the integral (3.12) for the
surface potential and setting p = a:sin s, we have that

(3.14)  H;(B) dr.

cosjt [2

(3.15) Pm (&, t) = 273 /S:O[sins]m Hj(asfns) ds.
If £ > «, then the integrand is bounded; however, for £ < « the integrand has a
logarithmic singularity at s* = sin_l(ﬁ/a). In the latter case, we split the integration
interval at s = s* so that the integrable singularity is placed on the endpoints. This
integral is then evaluated with built in MATLAB quadrature routines, notably quadgk
[40] which accommodates integrands with logarithmic boundary singularities.

The final step in the formation of the linear system (3.10) requires the evaluation
of the integrals

1
(3.16) Aptjriimie = e (Zmjr (& /st ), P (S ), >

which represent the inner products of Z,,/ ;s (§x /v, txr) with py, ;(&k, tx). For the case
k = k' the integral vanishes unless j = j' and the angular portion can be evaluated
exactly in this case, reducing the problem to one dimension, and we use built-in
MATLAB quadrature routines [40]. For k& # k', we use a polar collocation grid on
the disc Qs with equally spaced and weighted points in the angular variable and a
radial grid that is equally spaced in the square of the radial distance weighted by
a 10-point Newton—-Cotes formula. This reduces each of the inner products (3.16)
to a dot product of a weighted vector on the collocation points with the function
Pm j(&k, ti) evaluated via interpolation on the collocation points. This step can be
easily parallelized over each of the matrix entries of (3.16).

CaseII (sphere). We first determine the potential induced by the flux from (3.11).
For two surface points x=(sin  cos ¢, sin  sin ¢, cos ¢) and x'=(sin 6’ cos ¢’, sin 8’ sin ¢/,
cos ¢'), the surface distance d is

(3.17) d=|x—x|=1/2—2sinfsin@ cos(¢p — ¢') — 2cosfcosf.

To reduce (3.4) from an integral over a spherical region to a circular region, the
transformations

(3.18) &€ =2sin(0/2), n = 2sin(0'/2)
are applied such that £ € [0,2], n € [0,2] and the surface distance (3.17) becomes
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(3.19) d2=€2+772—%62772—2776\/1—62/4\/1—772/4 coS T

for 7 = ¢ — ¢'. The integral (3.11) can now be evaluated as

o™ cos T <1

a~™ [¢ 1 d
m j s = it) —— —_— — 71 _—
Pm(€,t) = cos(jt) — /77_0/7_0 Jar 713 og[2+dD ndndr
(3.20) :cos(jt)cu/2 [sin ] H; (asins, £) ds,
s=0

where in the final step, the substitution 7 = a sin s was used. In this case the function
Hj is

IS B | 1
(3.21) H;(n, ¢ = %/T:O cos jT <d + ilogd— 510g(2 —l—d)) dr,

where d = d(n, &, 7) is given in (3.19). As in the planar case, the function H;(7,€) in
(3.21) has a singular integrand and must be treated with care to obtain an accurate
numerical evaluation. In the decomposition

2m
(3.22) H;(n, ¢ = L / (cosjT —1) 1 + 1logd —cosjtlog(2+d)| dr
2 =0 d 2

1 /1 1
— =+ —logd | dr,
+27T T—O(d+20g)7—
the first integral has a bounded integrand and is readily evaluated, while the second
integral has a singular integrand. The singular component arising from the 1/d term

is expressed in terms of an elliptical integral, while the integral of the term %logd
can be evaluated exactly from the identity (cf. [20])

a+vVa? — bQ]
2

/ log(a + beos z) dr = 7log , a > |b| > 0.
0

The values of H;(n,¢) are tabulated over a grid of (n,{) points for a range of j
and stored for the computation of the surface potential (3.20). For values £ > a,
the integral (3.20) is well behaved and easily evaluated. For ¢ < « an integrable
singularity is present at s* = sin~!(¢/a) which is resolved by dividing the integration
interval at s = s* so the subsequent integrals have boundary singularities which once
again can be evaluated in MATLAB [40].

The final step is to obtain the entries of the matrix A in (3.10) by calculating the
projection of the surface potential onto the Zernike modes,

(Zrrjo &k [t ), P (S k), -

To perform each integration, we first translate the k’th pore to the north pole followed
by application of the collocation method discussed in the planar case.

Once the matrix is built, we solve the linear system (3.10) using the MATLAB built-
in matrix solver which yields the unknown weights of the flux functions, by, j ;. These
weights allow us to compute the flux through each pore and in turn the total flux and
capacitance of a given configuration.
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This algorithm appears robust, although it has its limitations, some of which
we explore in the next section. Typically the quadratures are evaluated to obtain
absolute errors of 107! and relative errors of 10~8 although these numbers may be
degraded to 10719 and 107 in the immediate neighborhood of a singularity. For
the singular integrals, we move the boundary points inward by the MATLAB machine
epsilon (roughly 107%%) to avoid overflows. Increasing the number of Zernike modes
yields consistent answers with relative errors of about 10~8, which appears to be in
part due to accumulated round-off errors.

We also note heuristically that there are two reasons this algorithm converges.
First, for the biologically relevant case of pores whose separation is large compared
to their radius, an expansion with Zernike polynomials up to degree M effectively
captures an Mth order asymptotic approximation of the solution akin to the analysis
of section 2. Second, even for closely spaced pores we are minimizing the L? error
for a degree M polynomial approximation of the surface potential on the pores. We
investigate this convergence below.

4. Numerical results. In this section we detail numerical results for the planar
and spherical cases. In practice, we have run with polynomials of degree up to M = 20
for numbers of pores N < 20 and run up to N = 2001 pores for lower approxima-
tions (M < 6). The calculations take from a minute to a few hours on a standard
desktop computer. The method appears to be effective and accurate for small, widely
separated pores, which is the relevant asymptotic and biological limit. Accuracy is
degraded if pore boundaries are nearly touching (which necessitates larger values of
M to resolve).

In the following examples, we benchmark the numerical accuracy by evaluating
the relative error

J - Jnum

Jnum

(4.1) EralJ] = ’

Here Jhum is a high-accuracy estimate of the flux from the numerical method based
on a large number of modes (typically M = 20, but for the large homogenization
example 4.2.4 we use M = 6). This is used to benchmark against other fluxes J
that are obtained from asymptotic or exact expressions. To assess the convergence
properties of the numerical method, we also compare against values of J obtained
from fewer modes taken.

4.1. Planar case. In the following examples, we demonstrate the convergence
of the numerical method as the number of Zernike modes M increases and verify the
accuracy against the asymptotic formula (2.22).

4.1.1. Example: Two planar pores. In this example we take two pores of unit
radius centered at x = (+d/2,0,0) and demonstrate convergence of the numerical
method over separation distances d > 2. In the results of Figure 3, we use the
numerical solution for M = 20 modes as an exact solution in (4.1).

The key observation from this example is that relatively few (M = 6) modes are
required to accurately resolve the capture rate, provided the pore spacing is not too
small. As the pore separation decreases (d — 2%1), additional modes must be included
to accurately resolve the solution.

For two pores with centers separated by a distance d, Strieder (cf. [38, 44]) calcu-
lated a series approximation for J, from a separable solution in bipolar coordinates.
The first few terms of that series and its truncation error are



CAPTURE PROBLEMS ON THE PLANE AND THE SPHERE 283

2 ‘
——d=21
4t
E
S
s 6f
&0
2
8l
d
-10 : : :
0 5 10 15
M
(a) Two pore schematic. (b) Convergence results.

Fic. 3. Results of example in section 4.1.1. (a) Schematic of two pores with common radius
a =1 centered at (£d/2,0,0) and separated by distance d. (b) Convergence of the numerical relative
error as the number of Zernike modes M increases. When sufficient modes are included, the method
has a relative error of around 1078, Relative errors are calculated from (4.1) with respect to a “true”
solution obtained with M = 20 modes.
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(a) Two pore competition. (b) Convergence results.

F1G. 4. Results of example in section 4.1.1 for two well-separated pores. (a) The fluz Jp, to pores
with unit radius centered at (+£d/2,0,0) as given by the series (solid line) formula (4.2) and numerical
stmulations (diamonds) with M = 20 modes. At small separations d, interpore competition reduces
the flux considerably. (b) Convergence of Erel with M = 20 modes as the distance d increases.
The line (dotted red) of slope —6 confirms the accuracy of the series solution (4.2). The method
accurately resolves the fluz to one part in 108.

2 4 2(12+72)  16(3+7%)  4(120 + 7072 + 37)
4.2 =8D |1 - = — -
(4.2) Jp =8 wd + m2d? 3m3d3 3mtd4 1575d5

+0(d™%), d — oo.

As remarked after (2.23), the expression (4.2) is a corrected version of equation (28)
in [44].

In Figure 4 we show favorable comparisons between the numerical flux and the
value of the series (4.2). Figure 4(a) shows the fluxes calculated from both methods
and highlights the significant effect of interpore competition when pores are in close
proximity. In Figure 4(b), we observe the numerical method accurately resolves the
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(a) Square pattern. (b) Hexagonal pattern.

FiG. 5. Results of example in section 4.1.2. Convergence of the numerical relative error with
respect to the asymptotic approzimation (1.9) as the pore radius e — 0. The method is accurate to
relative errors of around 10~8. Red dashed lines indicate lines of slope 1, 2, and 3 corresponding to
the error of the one-, two-, and three-term asymptotic approzimations (1.9).

O(d=%) error term from the series solution (4.2). The method resolves errors to
roughly one part in 108.

4.1.2. Example: Square and hexagonal pore arrangements. We verify
the numerical method against asymptotic approximations in the limit of vanishing
pore radius for a square and a hexagonal planar pattern. In the square case the pore
centers are x = (+2,£2,0), while for the hexagonal case they are equally spaced on
a ring of radius 2. The pores have common radius € which is varied and the relative
error in the flux to the asymptotic prediction (1.9). Results in Figure 5 for M = 10
polynomials show the numerical method is accurate to relative errors of around 10~8.

4.2. Sphere case. In this section we consider the application of the numerical
method to the spherical case. In sections 4.2.1-4.2.3, the numerical solution is vali-
dated using known closed form and asymptotic solutions, in the limit of small pore
size and as the number of Zernike modes increases. Finally, in section 4.2.4 we numer-
ically validate a recently derived homogenized result which predicts the flux in terms
of surface receptor density and typical pore size. Such results are crucial for use by
experimentalists in real biological problems where the number of individual receptors
is large and precise measurement of spatial locations impractical [25, 35, 47].

4.2.1. Single pore. For the single pore case N = 1, we verify the convergence
of the spherical numerical method against the following high order asymptotic ap-
proximation for the flux:

(4.3)

3y e (n?+421 -1
JS:4D5[1+E<1og26—7)—6— el +(’)(a3log5)} as e —0.
™ 2 2 36

The formula (4.3) was derived in [26] from a separable exact solution of (1.1). The
results for the rescaled flux J;/(4¢) in the case N = 1, D = 1 are shown in Figure 6(a)
and demonstrate the validity of (4.3), even for moderately large pore radius. In Fig-
ure 6(b), the numerical results give validation of the relative errors of the asymptotic
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(a) Rescaled flux Js/(4¢) against pore radius €. (b) Relative errors &) on logarithmic scale.

Fi1G. 6. Results for example in section 4.2.1 with a single pore on the sphere. Comparison
of two- and three-term asymptotic predictions (4.3) and numerics for a single pore of radius €
calculated with M = 20 modes. Left panel: two-term (black-dotted) expansion, three-term (black-
dashed) expansion, numerics (black-solid), and the Burg—Purcell (blue dot-dashes) from (1.6). Right
panel: relative errors of asymptotic approximations for the capacitance as € — 0. Curves are the
Berg—Purcell (1.6) (solid blue), two-term (dotted), and three-term (dashed) asymptotic expansions
from (4.3). Red lines of slope 2 (upper) and 3 (lower) confirm the expected order of the error.
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(a) Antipodal pore configurations. (b) Relative error versus modes.
Fi1G. 7. Results of example in section 4.2.2 with N = 2 antipodal pores of common radius

a = g(l —d) for d = 0.15,0.25,0.5 and d = 0.75. As d — 0 and the interpore spacing decreases,
additional modes are required to maintain numerical accuracy. Relative errors are calculated with

respect to the “true” solution obtained from the spectral boundary element method evaluated with
M = 20 modes.

formula as e — 0 and reveal that round-off limits the smallest relative error obtainable
to about one part in 108. The blue curves in Figure 6 indicate the Berg—Purcell result
(1.6) which is significantly less accurate for N = 1.

4.2.2. Example: Antipodal pores. Here we consider N = 2 pores in an an-
tipodal position with common radius o = 5(1—d), where d is a separation parameter.
For values d = 0.15,0.25,0.5,0.75, we show convergence of the numerical flux as the
number of modes increases. When d = 1 and the pore boundaries are well separated,
fewer modes are necessary than for closely spaced pores (d ~ 0). Results are shown
in Figure 7.
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(a) Comparison with regular Platonic points. (b) Comparison with Fibonacci lattice points.

Fi1a. 8. Comparison of the rescaled flux Js/(4De) as predicted by the asymptotic formula (solid
lines) and full numerics (diamonds) using M = 10 modes and with pore locations given by vertices
of the regular Platonic solids (left figure) and Fibonacci spirals (right figure). The Fibonacci spiral
points (4.5) generate an odd number of equispaced points on the sphere (see Figure 9).

4.2.3. Example: Platonic solids and Fibonacci spirals. Here we verify the
numerical method against the asymptotic approximation for the flux Js; to multiple
pores of common radius € given by

(4.4a)

2

€ e (3 9
Js =4eDN 1—;10g25+; i—Nngﬂxj—ka + O(e*loge) |, e—0,

ey

where the spherical pore interaction kernel gs(u) is given by

1 %
4.4b (u) ==+ =log [ —— ), 0<pu<2.
(4.4b) gs(1) . g(2+u> 1

The agreement between the numerical method and (4.4) is demonstrated for pores
centered at the vertices of the regular Platonic solids in Figure 8(a) for N < 20. We
note that the vertices of the regular Platonic solids have many symmetries which can
potentially obscure errors in the numerical method. It is therefore highly desirable
to also benchmark the method against other distributions of spherical points. The
equidistribution of a fixed number of points on the surface of a sphere is a long
studied problem in approximation theory [1, 18, 39]. An easy to implement algorithm
which produces a very homogeneously distributed set of points is the Fibonacci lattice
[19, 45]. Starting from an integer k, this algorithm produces N = 2k + 1 points on
the sphere with the jth point given in spherical coordinates by

%,

(45) sinHj:N, ¢j— ) 5 ] gee ey

where ® = 1+ &1 = (1++/5)/2 ~ 1.618 is the golden ratio. A few typical coverings
arising from this algorithm are shown in Figure 9. The accuracy of the numerical
method with pores centered at Fibonacci vertices is demonstrated in Figure 8(b) by
comparing to the asymptotic result (4.4).
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Fi1a. 9. Homogeneous coverings of the sphere given by the Fibonacct spiral points (4.5).

In Figure 8, excellent agreement is seen in both cases for configurations up to
N = 21 pores with M = 10 Zernike modes. As the common radius € shrinks to zeros,
we have from (4.4a) that
Js
50 4De

:]\f7

which agrees with the original Berg—Purcell result (1.6) and is observed in each curve
in Figure 8.

4.2.4. Homogenization. In the cellular process of protein trafficking between
the interior of the nucleus and the cytosol through nuclear pore complexes (NPCs), the
number of individual pores is approximately N = 2000. The nuclear radius is roughly
4 microns and each NPC has an estimated radius of 25 nanometres (cf. [25, 35]). This
implies that roughly 2% of the boundary of the nucleus is covered by pores.

It is experimentally impractical to accurately measure the three-dimensional spa-
tial location for each of the thousands of NPCs for use in (4.4); however, the NPC
density is comparatively simpler to obtain [28]. In the limit ¢ — 0, N — oo, but
with the absorbing surface area fraction o = (N7e?)/(47) = (Ne?)/4 held fixed, a
homogenized flux J;, was derived in [26] where

B TE 4 o 4 g2 -t

The homogenized formula (4.6) was obtained from (4.4) assuming a uniform distri-
bution of pores [9, 10, 18, 24, 33] with a combined absorbing surface area fraction
satisfying 0 = O(—¢?loge) as € — 0. To establish the accuracy of the formula (4.6),
we simulate (1.1) with up to N = 2001 absorbing pores whose centers are the Fi-
bonacci spiral points (cf. Figure 9). In Table 1, we find in the biological scenario
highlighted above the homogenized formula (4.6) predicts the flux to the target to a
relative error of approximately 0.34%.
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TABLE 1
Percentage relative errors between the homogenized formula Jp, given in (4.6) and the boundary
element solution of (1.1) calculated with M = 6 modes for a range of pore surface area fractions o.
Pore centers given by the Fibonacci spiral points (4.5) and shown in Figure 9.

o N=51 N=101 N=201 N=501 N=1001 N = 2001
2% 1.02% 0.90% 0.76% 0.58% 0.37% 0.34%
5% 1.29% 1.07% 0.87% 0.63% 0.48% 0.34%
10% 1.42% 1.14% 0.90% 0.63% 0.47% 0.38%
20% 1.43% 1.14% 0.89% 0.62% 0.46% 0.34%

5. Discussion. This paper has been concerned with the problem of determining
the capture rate of three-dimensional diffusing particles by absorbing surface pores.
There are two main contributions. First, we have given explicit asymptotic expressions
for the capture rate of diffusing particles by a finite collection of nonoverlapping
absorbers arranged on an infinite plane. Second, we have introduced and validated a
novel spectral boundary element method which provides a rapid and highly accurate
numerical solution of this problem and the analogous problem for circular pores on a
sphere. Our numerics allow us to verify our asymptotic results for the plane and the
previous derived asymptotic formulas for the sphere [26].

The analytical expressions for the capture rates give detailed information on the
effect of clustering of receptor sites and the rate of capture of diffusing particles.
Explicit results have previously been obtained only for the simplified scenario of one or
two absorbers [38, 42, 43, 44]. Moreover, the formulas developed here are applicable to
arbitrary configurations of well-spaced pores, provided the capacitances of individual
shapes are known.

The numerical method complements widely used particle based Monte Carlo
methods. Its advantageous attributes are its high accuracy, quick runtime, and
recovery of a smooth solution to the underlying PDE (1.1). A limitation of the
method is its explicit assumption of a circular pore geometry. Using this method, we
have verified a recently derived homogenization result (4.6) for the flux of particles
to a spherical with numerous surface absorbers. In realistic biological scenarios in
which N & 2000 pores occupying roughly 2% of the surface area [25, 35], we find
(cf. Table 1) that the homogenized theory predicts the flux to within a relative error
of 0.34%.

There are many avenues of future investigation arising from this study. It would
be highly desirable to obtain a homogenized theory directly from the asymptotic
result (2.22) for pores centered at a variety of Bravais lattices [7, 22]. This has been
studied for pores arranged on square centered lattices [2, 11]. This would give a first
principle derivation of the function form (1.8) fitted in [3, 4, 5] by particle simulations.
An extension of the spectral boundary element to periodic arrays of planar absorbers
would be useful in accurately validating such homogenized theories. Finally, it is
highly desirable to extend this work to sample the full distribution of capture times
to a collection of small pores. This distribution describes the duration of a particle’s
search for a receptor and consequently sets the timescale of biophysical processes such
as immune signaling. This problem is more challenging since it requires the solution
of a parabolic equation in the exterior region, rather than the elliptic problem (1.1).
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