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Abstract
Radially symmetric patterns are observed in pin-to-plane DC plasma systems where a liquid
solution is used as a planar resistive anode. The size and structure of these patterns depends on
the plasma current and salt concentration of the liquid anode. We propose that these patterns
initiate due to the reaction and diffusion of electrons in the anode sheath, where electron impact
ionization serves as an autocatalytic reaction. The resulting system of reaction-diffusion
equations is amenable to Turing stability analysis, which we use to theoretically predict the
transition from a uniform plasma to a ring-shaped pattern state. Expressing the stability criteria in
terms of plasma current and solution salt concentration, we derive a theoretical phase boundary
for the onset of pattern formation, which is in excellent agreement with experimental results.

Keywords: anode sheath, pattern formation, plasma-liquid interactions, anode spots

1. Introduction

A series of recent papers have shown remarkable images of
radially symmetric patterns in DC discharges where the anode
is a liquid (typically water) [1–6]. Interestingly, these patterns
appear on an unbound, planar liquid surface, and the size of
the features is largely independent of the system’s geometric
size, which is a common feature of Turing patterns [7, 8].
These liquid anode patterns are often considered a subset of
the broader phenomenon of ‘anode spots’, which form when
the space charge field reaches a critical value and begins to
drive electron impact ionization in the anode sheath [9]. This
effect has been demonstrated experimentally, theoretically,
and in numerical simulations [10, 11]. The nonlinear coupling
between the electric field and electron transport equation
makes the mathematical analysis difficult, and additional
nonlinearities arise when considering energy transport and
temperature gradients in the anode sheath [13]. For liquid
anodes, one must also consider the complex interactions
between the plasma and liquid phase, which are not well
understood [14]. Overall, the physical processes responsible

for pattern formation on a plasma-liquid interface remain
unclear.

Self-organized patterns also often appear in other types of
low-temperature plasma, such as AC dielectric barrier dis-
charges [12, 15–18] and DC glow discharges, usually with
resistive electrodes [19–23]. A variety of reaction-drift-dif-
fusion models coupled to electrostatics have successfully
reproduced some of the observed features, such as temporal
oscillations [24], striations [25, 26], radially symmetric pat-
terns [27–29], and hexagonal lattices [12, 30]. However, most
of these models are highly nonlinear and must be solved
numerically. Thus, comparisons with experimental results are
typically qualitative in nature, and it is often unclear what
physical processes are essential for pattern formation.

As for the mechanism responsible for the patterns, it is
widely believed that they arise from space charge accumu-
lation near an electrode surface, while the specific geometric
structure of a pattern depends on complex feedback
mechanisms. For example, joule heating increases the gas
temperature, which changes the density and the rate of
ionization and diffusion. This type of thermal feedback
mechanism typically results in hexagonal patterns [31]. Space
charge created by ionization also changes the local electric
field, resulting in a variety of different structures. In all the
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complex processes and models that have been proposed,
electron impact ionization and diffusion always appear as
fundamental underlying processes. Thus, it has been postu-
lated that the initial transition to a patterned state is due to a
Turing reaction-diffusion instability, where electron impact
ionization serves as an ‘autocatalytic’ reaction [32, 33].

In this work, we develop a simple theoretical model to
predict the conditions for the onset of patterns on a liquid
anode surface. Our model only considers the reaction and
diffusion of electrons and ions and the basic electrostatics of
the anode sheath, and it accurately predicts the phase
boundary in terms of observable system parameters. The
model is based on a Turing reaction-diffusion mechanism,
where free electrons in the plasma phase serve as ‘activators’
with electron impact ionization being the autocatalytic reac-
tion. The rate of ionization depends on the interfacial elec-
trostatics of the anode sheath. Importantly, we posit that the
radial space charge field Er drives electron impact ionization,
creating an avalanche running parallel to the liquid surface,
as illustrated in figure 1. The radial space charge field Er in the
anode sheath increases with the plasma radius rp, and the
plasma radius is determined by the current and salt con-
centration of the liquid anode. Increasing the plasma current
causes the anode sheath to expand radially outward, which
causes the radial space charge field Er to increase. At
approximately 10 mA, the reduced electric field Er/p reaches
a critical value of approximately 100 Td, and electron impact
ionization forms a ring pattern around the plasma boundary,
which we confirm experimentally.

2. Experimental system

As shown in figure 1, discharges were formed in air by sus-
pending a sharpened tungsten welding electrode (0.125 inch
diameter) a distance of 3 mm above a sodium perchlorate
(NaClO4) solution. The gap distance was measured using a
digital microscope (Dino-Lite USB Microscope) and set using
a micrometer. A grounded piece of platinum (Pt) foil was
submerged in the solution to serve as a counter electrode. The
discharge was ignited by applying −3 kV DC (Power Designs
INC., Model 1570) through a 50 kΩ ballast resistor to the
cathode. The current I was measured using a digital multi-
meter (Amprobe AM-510) connected to the Pt foil counter
electrode, and it was varied by adjusting the applied voltage.
Plasma images were acquired using a Canon EOS Rebel T3i
digital camera using exposure times of 1 or 5 ms, as noted
below.

Sodium perchlorate solutions were prepared by dissol-
ving an appropriate amount of NaClO4 salt (NaClO4, ACS
reagent, �98.0%, Sigma Aldrich) into de-ionized water to
make batch solutions with concentrations of 8, 64, and
512 mM, which were further diluted to the desired con-
centrations. Aliquots of 80 ml of solution were poured into a
150 ml glass petri dish for all experiments.

3. Theoretical model

As patterns are confined to the anode sheath just above the
liquid surface [4], we begin by considering the reaction and
diffusion of free electrons e−(g) and positive ions A+

(g) in humid
air (either nitrogen ( )

+N g2 or water vapor H2O
+
(g)), where the

radial electric field Er drives electrons impact ionization

( )( ) ( ) ( ) ( )+  +- - +e A 2e A . 1g g g g

Electrons are lost by recombination

( )( ) ( ) ( )+ - +e A A , 2g g g

and dissociative electron attachment with water

( )( ) ( ) ( ) ( )+  +- -e H O H OH . 3g 2 g g g

In the language of Turing reaction-diffusion instabilities,
reaction (1) serves as the autocatalytic reaction process with
electrons as the activator, while reactions (2) and (3) are
inhibitory processes that dissipate energy.

We consider the basic geometry shown in the inset of
figure 1. To demonstrate that self-organized patterns are due
to Turing’s mechanism, we will neglect drift and assume the
concentration of electrons ne and ions ni are governed by
solely reaction-diffusion processes. The coupled reaction-
diffusion equations in cylindrical coordinates are

( )am b g
¶
¶

-  = - -
n

t
D n E n n n n 4e

e e e r e e i e
2

and

( )am b
¶
¶

-  = -
n

t
D n E n n n , 5i

i i e r e e i
2

Figure 1. Schematic of the liquid anode DC glow discharge system
used in this work. The inset on the bottom shows a close-up
illustrating the electrostatics of the plasma-liquid interface. We
postulate that an electron avalanche propagates radially outward,
running parallel to the liquid surface.
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where De and Di are diffusion coefficients, μe is the electron
mobility, α is the Townsend coefficient for reaction (1), and β
and γ are the rate constants for reactions (2) and (3),
respectively. Equations (4) and (5) are subject to periodic
boundary conditions in the azimuthal direction. We will also
impose that the concentrations go to zero at the radial
boundary of the plasma r=rp. Additionally, recent simula-
tion results from Bienek et al showed that patterns are con-
fined to the anode sheath [28]. Accordingly, we impose a
third Dirichlet boundary condition in the z-direction, where
the concentration of both species goes to zero at the sheath
boundaries, such that n(z=0)=n(z=h)=0, where h is
the vertical height of the anode sheath. The sheath height is
small, h∼10 μm [1, 34], so the patterns are essentially
confined to a very thin region above the liquid surface and
appear as 2D patterns ‘on the liquid surface’.

The radial electric field Er determines the rate that elec-
trons and ions are created, and it will be the bifurcation
parameter that determines when patterns emerge. In previous
work, we showed that an electrostatic double-layer forms at
the plasma-liquid interface, where positive aqueous salt ions
are drawn toward the surface, creating a region of positive
space charge in the liquid phase that balances an equal and
opposite amount of negative space charge in the plasma
anode sheath region [35]. A similar structure was found in
simulations by Gopalakrishnan et al, where ne ? ni in the
anode sheath [34]. Thus, as a base case, we assume a uniform
electron concentration ne =n0 and ion depletion with a
concentration ni =0, such that the anode sheath is a uniform
disk of negative space charge with height z=h and radius
r=rp, as shown in the inset of figure 1. Within a uniform
cylinder of charge, the radial electric field Er increases line-
arly with r, and the average radial field is

⎛
⎝⎜

⎞
⎠⎟ ( )

e
»E

qn
r

4
, 6r p

0

0

where q is the charge of the electron and ε0 is the permittivity
of free space.

A common feature of low-temperature DC plasmas is
that the plasma expands radially outward on the anode surface
as current I is increased, such that current density j=I/πrp

2 is
constant [36], as shown in figure 3(right). Thus, the plasma
radius is a function of current I and current density j

( )
p

=r
I

j
. 7p

Work by Verreycken et al shows that this relationship
holds even for large, complex patterned states [2]. Addition-
ally, due the electrostatics at the interface where the anode
sheath is matched to the Debye layer in the liquid [35], the
current density increases with the salt concentration or ionic
strength IS of the solution as

( ) ( )
( )

( )=
- -

¥j I j
bI

bI

1 exp

erf
, 8S

S

S

where j∞ and b are fitting parameters. Shown in figure 2, the
current density for a 3 mm gap in air is plotted as a function of

ionic strength for a sodium perchlorate (NaClO4) solution
used as an anode. The current was held constant around
8.4 mA, which is less than or equal to the critical value for
significant pattern formation. At least ten photographs were
taken of the plasma for a particular ionic strength. A Gaussian
fit was applied to the radial intensity profile of the images, and
the average Gaussian radius rp was used to calculate the
current density j=I/πrp

2. (Further details on this technique
can be found in [35].) Curve fitting equation (8) to the mea-
sured data yields j∞ =2.56×104 Am−2 and
b=0.027 mM−1.

All together, equations (6)–(8) show that the average
radial electric field—which determines the rate of ionization
—depends on both the plasma current, I, and the liquid
solution ionic strength, IS. A phase diagram can therefore be
derived using linear stability analysis that will predict the
critical values of I and IS that yield a patterned state. Line-
arizing the rate of recombination about the quasi-equilibrium
case ne =n0 and ni =0, such that βneni ≈βn0ni,
equations (4) and (5) can be written in linear matrix form as

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ ( )

am g b
am b

¶
¶

-  =
- -

-t

n
n

D n
D n

E n

E n

n
n . 9e

i

e e

i i

e r

e r

e

i
2 0

0

The solution to equation (9) takes the form

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( ) ( ) ( )



å s q=
n r t
n r t

u t Y r z
,
,

exp , , , 10e

i l m n
lmn lmn lmn

, ,

where

ulmn is an eigenvector and σlmn is the temporal eigen-

value for a particular mode. Upon ignition, the plasma begins
a superposition of various modes, which either grow or
quickly decay depending on whether Re(σlmn) is positive or
negative. The modes are given by the eigenfunctions

Figure 2. The current density measured as a function of the ionic
strength of NaClO4 solution for a 3 mm gap in air with a constant
current of 8.4 mA. A sharpened 0.125 in. tungsten rod was used as a
cathode. The solid line is a curve fit using equation (8).
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(harmonics) of the cylindrical Laplacian,

( ) ( )[ ( )
( )] ( ) ( )

q k q
q

=
+

Y r z J r A m
B m k z

, , cos
sin sin , 11

lmn m ml ml

ml n

where ( )kJ rm ml is the mth Bessel function of the first kind.
Note that the plasma has a finite radius rp, which gives the
boundary condition for the density of either species
ne,i(r=rp)=0. Thus, the radial eigenvalue becomes
k = a r ,ml ml p where aml is the lth zero of the mth Bessel
function. Importantly, the plasma radius rp depends on current
I and ionic strength IS, as previously discussed.

Imposing the boundary condition ne,i(z=h)=0 ensures
the pattern disappears in the bulk plasma [28]. The axial
eigenvalue then becomes p=k n h,n where n is a positive
integer. The 2-dimensional profiles of several modes given by
equation (11) are shown in figure 2 (left), and they are
remarkably similar to experimentally observed patterns
(right).

The solution given by equation (10) is a separable pro-
duct of temporal and spatial eigenfunctions with the proper-
ties s¶ =s se et

t t and ∣ ∣ =Y k Y ,lmn lmn lmn
2 2 where

∣ ∣ k= +k k .lmn ml n
2 2 2 Substituting equations (10) into (9) and

replacing the differential operators with the scalars σlmn and
|klmn|

2 yields the matrix eigenvalue problem

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

∣ ∣
∣ ∣

( )





s

am g b
am b

=
- - -

- -

u

E D k n

E n D k
u .

12

lmn lmn

e r e lmn

e r i lmn
lmn

2
0

0
2

Note that the off diagonal terms have opposite sign, as
one would expect for Turing patterns [7, 8]. For convenience,
we will denote the matrix on the right-hand side of
equation (12) as A.

A given mode Ylmn becomes stable when the real part of
its associated temporal eigenvalue Re(σlmn)=0. Equiva-
lently, the Re(σlmn)=0 when the trace of the matrix in
equation (12) is zero and its determinant is positive, or
tr(A)=0 and det(A)>0. As De ? Di [36], we can neglect
the Di term and it can be shown that ( ) ∣ ∣A g» + D kdet e lmn

2

is always positive, and the criteria for stability becomes

∣ ∣ ( )am g b- - - =E D k n 0. 13e r e lmn
2

0

Classically, the Townsend ionization coefficient α is
related to the average electric field via [36].

⎛
⎝⎜

⎞
⎠⎟ ( )a =

-
Ap

Bp

E
exp , 14

r

where p is the gas pressure and A and B are gas-dependent
parameters determined either from experiment or by solving the
Boltzmann equation with the appropriate cross sections. For
this work, the parameters γ=108 s−1, A=1600 torr−1 m−1

and B=36 600Vm−1 torr−1 were determined using the
BOLSIG+Boltzmann solver [37] using cross sections from the
Morgan database [38] for an admixture of 20% water, 64%
nitrogen, and 16% oxygen, which corresponds to saturated water
vapor in air above a liquid anode surface at approximately 60 °C
[39]. A similar approach was used to determine the ionization
parameters for krypton in [23].

Combining equations (6)–(8) and (14) and the eigenva-
lues k = a rml ml p and p=k n h,n then substituting into the
criterion for stability, equation (13), yields an implicit rela-
tionship between ionic strength IS and plasma current I, which

Figure 3. Shown on the left are the cylindrical harmonics given by
equation (11) where knz=π/2. Shown on the right are photographs of
patterns near the surface of an 8 mM NaClO4 liquid anode solution in
ambient air with a gap distance of 3 mm. Photographs were taken using
an exposure time of 1 ms and have been contrast enhanced for clarity.
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defines the phase boundary between patterned states,
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For a given ionic strength IS, as the current I is increased,
the first structured mode that satisfies equation (15) is the
l=2, m=0 ring mode with a02 =5.52. As the current is
increased further, larger values of aml are required to satisfy
equation (15), meaning that more complex, higher-order
modes emerge. This is consistent with the experimental
photos in figure 3 as well as those shown in [1–6]. In the next
section, we will show that the phase boundary for the first ring
mode predicted by equation (15) is consistent with our
experimental observations.

4. Phase diagram and experimental validation

The implicit dispersion expression in equation (15) leads to a
phase diagram identifying which values of Is and I yield
patterns. Shown in figure 5, a numeric root-finder was used to
calculate the theoretical phase boundary (solid line) between
spatially uniform modes and the l=2, m=0 ring modes.
(Values used for the various plasma parameters are listed in
table 1.) To validate the theory, the phase diagram was
experimentally measured by photographing a liquid anode
DC glow discharge in laboratory air for a wide variety of Is
and I conditions. For a given solution ionic strength IS, the
plasma current I was increased from 4 to 30 mA, and static
photographs were analyzed in Matlab to determine if a ring
structure was present. If the radial image intensity profile
across the center of the plasma was clearly convex, it was
deemed a ring pattern. (An example of the image analysis
technique for IS =256 mM is shown in figure 4.) As shown
in figure 5, conditions where either a uniform mode (closed
circles) or a ring mode (open circles) were experimentally
observed are in excellent agreement with the theoretical phase
boundary predicted by equation (15).

Table 1. Parameters used in equation (15) to calculate the theoretical
phase boundary in figure 4. The electron mobility is related to
diffusivity via the Einstein relation μe = qDe/kTe, where Te is the
electron temperature and kB is the Boltzmann constant.

Parameter Value

Electron number density, n0 2.5×1018 m−3 [34]
Electron diffusivity, De 0.2 m2 s−1 [37, 38]
Electron temperature, Te 1 eV [37, 38]
Electron mobility, μe 0.2 m2 V−1 s−1 [37, 38]
Anode sheath length, h 40 μm [1, 34]
Pressure, p 750 torr
Ionization parameter, A 1600 torr−1 m−1 [37, 38]
Ionization parameter, B 36 600 V m−1 torr−1 [37, 38]
Recombination rate const., β 10−13 m3 s−1 [36]
Electron attachment rate, γ 108 s−1 [37, 38]

Figure 4. (Left) Radial intensity profiles, corresponding to the
images on the right, are used to determine if a ring structure is
present. The top two images have a clearly convex structure in the
center, so they are deemed to contain a ring structure. (Right) Images
of the anode sheath region at various currents for a liquid ionic
strength of IS =256 mM.

Figure 5. Measured phase diagram shows which control parameters
yield ring patterns. The theoretical phase boundary is given by
equation (15) with current density calculated using equation (8) and
other parameters listed in table 1. Photographs were taken using an
exposure time of 5 ms for the data shown here.
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Turing patterns also feature an intrinsic wavelength that
is not dictated by any boundary conditions, but rather by the
reaction diffusion processes. Importantly, the size of rings and
spots observed in this work and in [1–6] is independent of
system dimensions, such as the gap distance and cathode
diameter. In our model, the transition to a ring mode essen-
tially occurs when the intrinsic wavelength matches the radial
size of the plasma. The intrinsic wavelength or critical
wavenumber can be determined by solving equation (13),
yielding

∣ ∣ ( )
am g b

=
- -

k
E n

D
. 16lmn

e r

e

0

For I=10 mA and IS =8 mM, the critical wavenumber
is |k|∼105 m−1, which corresponds to a wavelength
∼100 μm. Again, this is approximately the size of the
experimentally observed structures shown in figure 3 as well
as those in [1–6], showing strong agreement between the
theory and experimental observations.

5. Discussion and conclusions

Together, the theory and data show that simple patterns
observed on a plasma-liquid interface are initiated by a simple
reaction-diffusion mechanism with electron impact ionization
serving as an autocatalytic reaction. The rate of ionization
depends on the radial electric field in the anode sheath, which
is dictated by the liquid ionic strength Is and plasma current I.
The analytically predicted phase diagram for the onset of
patterns matches experimental observations well, and the
model qualitatively predicts other observed features, such as
the intrinsic wavelength and the shapes of higher-order modes
at higher currents.

While our linear model accurately predicts the phase
diagram for pattern onset, it is only valid for small mode
amplitudes. At low currents, all pattern modes have a negative
growth rate Re(σlmn) and quickly decay to zero. As the current
is increased, the growth rate of a particular mode Re(σlmn)
becomes positive. With a positive growth rate, electron and ion
concentrations increase until the non-linearity of reaction (2)
becomes significant, which likely results in unique temporal
oscillations. References [1–6] report oscillations and rotations
of the patterns at frequencies near 100 to 1,000 Hz. Our linear
analysis predicts similar oscillations, but the calculated fre-
quencies are much greater, Im(σlmn)∼106 Hz, because it does
not include the non-linearity of reaction (2).

Furthermore, our assumption of a uniform disk of space
charge with ne =n0 and ni =0 and an average electric field
clearly fails at higher plasma currents where the system
progresses from the first ring-like mode to higher-order pat-
terns. As a result, our simple model is unable to predict the
observed progression of modes shown in figure 3. In our
theory, every value of aml has a corresponding plasma current
I and ionic strength IS that will satisfy equation (15). How-
ever, many of these modes are not observed experimentally.

For example, the observed pattern state shown in figure 3
abruptly transitions from the l=5, m=0 mode to a much
higher-order mode with m≈16 as the current is increased.
Recent simulations by Bieniek et al have shown that the spots
in higher-order modes are regions of increased ion density
with net positive space charge [28]. These spots serve as
‘mini-cathodes’ that locally attract electrons—an effect that is
certainly not captured when we assume a uniform disk of
negative space charge. There can be additional nonlinearities
due to local gas heating in the individual spots [REFs]. The
nonlinear feedback between ionization and the local electric
field and gas density ultimately determines the structure of the
higher-order modes after the system has transitioned to a
patterned state. However, the initial transition can be accu-
rately predicted by a simple reaction-diffusion model, as we
have shown in this work.
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