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Abstract

Interface dynamics of post contact states in regularized models of electrostatic-elastic in-
teractions are analyzed. A canonical setting for our investigations is the field of Micro-
Electromechanical Systems (MEMS) in which flexible elastic structures may come into phys-
ical contact due to applied Coulomb forces. We study the dynamic features of a recently
derived regularized model (A.E. Lindsay et al, Regularized Model of Post-Touchdown Con-
figurations in Electrostatic MEMS: Equilibrium Analysis, Physica D, 2014), which describes
the system past the quenching singularity associated with touchdown, that is after the com-
ponents of the device have come together. We build on our previous investigations of steady-
state solutions by describing how the system relaxes towards these equilibria. This is accom-
plished by deriving a reduced dynamical system that governs the evolution of the contact
set, thereby providing a detailed description of the intermediary dynamics associated with
this bistable system. The analysis yields important practical information on the timescales
of equilibration.

Keywords: Singular perturbation techniques, nano-technology, interface dynamics,
Mechanical bi-stability.

1. Introduction

The combination of Coulomb interactions and elastic forces is responsible for complex dynam-
ics and intricate equilibrium structures observed in many physical systems. In the applied
science fields of microelectromechanical systems and self-assembly, these forces are delicately
balanced to engineer a variety of miniaturized technologies. In situations where electrostatic
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forces overwhelm restorative elastic forces, an event known as pull-in may occur where charged
electrical structures come into physical contact resulting in a divergence of the local electric
potential. In canonical mathematical models of this phenomenon, pull-in is manifested by
a quenching finite time singularity and a corresponding loss of solution existence [26]. This
highlights a deficiency in many current models in that they provide no information on the
potential configurations of the system after this critical event.
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Figure 1: Schematic diagram of a MEMS capacitor with insulating layer of thickness h. The height
of the structure and the length of the plate are not to scale; typically d� L. Reproduced from [31].

A simple setting to explore this scenario arises in capacitor type MEMS devices where an
elastic membrane is held fixed along its boundary above an inelastic substrate. When an
electric potential V is applied between these plates, the upper elastic surface deflects down-
wards towards the substrate (cf. Fig. 1). If V is large enough, the deflecting top plate will
touch down on the substrate. In a preliminary attempt to characterize the dynamics of the
system after initial contact between the elastic surface and the substrate, regularizing terms
were derived in [31]. These results augment commonly studied models in the literature [15]
and account for a variety of physical effects that take place when the gap spacing shrinks to
zero. As described in [31], the new model for the dimensionless deflection u(x, t) of the upper
membrane reads

∂u

∂t
= −β∆2u+ ∆u− λ

(1 + u)2
+

λεm−2

(1 + u)m
, x ∈ Ω; u = ∂nu = 0, x ∈ ∂Ω,

for bounded regions Ω ⊂ Rn with n = 1, 2 and m > 2. In the above equation, the parameter
β describes the relative strength of flexural to tensile properties of the plate. This model is
subsequently considered in two separate cases; the second order problem,

∂u

∂t
= ∆u− λ

(1 + u)2
+

λεm−2

(1 + u)m
, x ∈ Ω; u = 0, x ∈ ∂Ω, (1.1a)

and its fourth order (bi-Laplacian) counterpart

∂u

∂t
= −∆2u− λ

(1 + u)2
+

λεm−2

(1 + u)m
, x ∈ Ω; u = ∂nu = 0, x ∈ ∂Ω. (1.1b)

These two cases represent the limits of small and large β in (1.1) respectively. The nonnegative
parameter λ reflects the relative importance of electrostatic and elastic forces on the system.
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The regularizing term φm(u; ε) = εm−2(1 + u)−m was derived in [31] to mimic the presence
of a small insulating layer on top of the substrate which physically prevents a short circuit
at touchdown. This term can also account for a variety of physical effects which take place
when u ≈ −1. For example m = 4 accounts for the Casimir effect while m = 3 models Van
der Waals forces [1, 8, 21].

In the canonical ε = 0 case, the second order formulation (1.1a) models the deformable
surface as a membrane and has been featured more heavily in mathematical studies of MEMS
[3, 4, 12, 13, 26, 15, 7, 18, 17], while the fourth order equation (1.1b), prevalent in engineering
studies of MEMS as a beam description, gives much better quantitative agreement with
experiments [36, 2]. The fourth order system (1.1b) has recently attracted more mathematical
attention as it exhibits many interesting oscillatory solution behaviors and presents significant
analytical challenge due to the absence of a maximum principle [23, 29, 28, 14, 9, 33].

In contrast to the standard ε = 0 equations, it was shown in [31] that the new models (1.1) are
globally well-posed and for suitable initial data satisfy u(x, t) > −1 for all t > 0. Moreover,
the variational structure associated with equations (1.1) implies that their solutions will
evolve to an energy minimizing equilibrium state as t → ∞ if possible. As a consequence,
the bifurcation diagrams of solutions to (1.1) established in [31] and displayed in Fig. 2
show a new branch of equilibrium solutions (top branch of solid curves) not present in the
ε = 0 case (dashed curve). It has large L2 norm and appears at the fold point λ = λ∗(ε)
for small, positive values of ε. These minimizing solutions were explicitly constructed in
[31] by means of a detailed singular perturbation analysis which required systematic use of
logarithmic switchback terms. Our analysis revealed that the new solution branch present for
ε > 0, consists of a uniform central region where the membrane and substrate are in contact,
coupled to a sharp transition layer at the boundary. The detailed scaling properties of these
solutions and expressions for the extent of the contact region were established in the limit
ε→ 0.

A notable conclusion of the analysis presented in [31] is therefore that the regularized problems
(1.1) are bistable over a range of ε values of the form 0 ≤ ε ≤ εc. Bistability - the presence
of two stable equilibrium states - allows for extended functionality in MEMS and is thus of
great interest to practitioners [19, 20]. For example, the device may transition from a small
norm state to a large norm state over a fixed range of λ, therefore exhibiting robust switching
behavior. Bistability can also confer significant power saving advantages to MEMS as the
device can now be idled or operated near the second fold point λ∗, which occurs at a much
lower value of λ and consequently lower voltage V .

This paper builds on the equilibrium analysis of [31] by providing detailed quantitative de-
scriptions of the intermediary dynamics linking the initial contact event with the new equilib-
rium states of equations (1.1). As many mathematical tools are geared towards understanding
behavior of systems close to their equilibria, a major strength of this work is that we obtain
detailed descriptions of the dynamics in regimes far-from-equilibrium, and particularly for
non-radially symmetric settings in two spatial dimensions.

In the one dimensional setting, the typical solution behavior considered in the present work is
displayed in the numerical simulations of Fig. 3. After initial contact at one or more points,
sharp interfaces form and propagate, thereafter partitioning the domain into regions of two
types - a contact set where the substrate and the membrane remain together and two or more
regions where they are apart. As the extent of the contact set increases, the fronts separating
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Figure 2: Bifurcation diagrams showing equilibrium solutions of (1.1) in one dimension for m = 4.
Left panel: Laplacian case; right panel: bi-Laplacian case. In each of the above, solution curves
are plotted for ε < εc, ε ≈ εc and ε > εc to highlight the threshold of bistability. When ε = 0, only
two branches of solutions exist (dashed curves). Reproduced from [31].

regions of different type either coalesce or eventually become pinned near the boundary.

In §2, we analyze this dynamical process with a series of detailed singular perturbation
calculations of (1.1) in the limit as ε → 0. This analysis leads to reduced ODEs that show
the motion of the interfaces to be driven by the local jump in the electric potential between
the contact and non-contact regions. An additional analysis then describes how the spreading
touchdown region slows down as it approaches the boundary of the system and settles to one
of the equilibrium states described in [31] (cf. Fig. 3(c)). The calculations are non-trivial
on account of a multiple sub-scaling structure present in the vicinity of the interface which
must be resolved for each sub-scaling before the corresponding solutions in each region can
be matched together. This complexity is akin to the triple deck phenomenon seen in high
Reynold’s number flow past streamlined bodies [30] and in the dynamics of water droplets
on thin films [10, 11].
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Figure 3: Solutions of (1.1a) in one-dimension with ε = 0.05, λ = 20, and m = 4. The left panel
shows two initial touchdown events at x = ±0.35. The center panel shows the growing of the
contact regions and the right panel shows the equilibrium state reached after the interior fronts
have merged and the outermost fronts are pinned at the boundary.
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In two spatial dimensions, the situation is more delicate as the interface between the touch-
down and non-touchdown regions of the device is not point like, but often consists of closed
curves in the domain. In this case, we derive in §3 geometric evolution laws that describe how
the motion of the interface is governed by a combination of the jump in the electric potential
encountered in the one-dimensional case, and of the local curvature of the interface. In the
fourth order case (1.1b), we observe and analytically characterize non-monotone behavior in
the form of an oscillatory interface profile (cf. Fig. 4) where the amplitude of the overshoot
is modulated by the curvature of the interface. From a qualitative point of view however,
the structure of two-dimensional solutions along vertical cross-sections is similar to what is
observed in one space dimension.

Figure 4: Evolution of solution to (1.1b) with an initially elliptic interface. Parameter values are
ε = 0.05, λ = 8× 104, and m = 4.

Numerical simulations of the full equations (1.1) confirm the validity of our reduced analytical
descriptions. In one spatial dimension, we implement the r-adaptive moving mesh method
MOVCOL4 (cf. [35]) to accurately track and resolve interfaces appearing in (1.1). In the
two dimensional setting, we use a finite element method (cf. Appendix A of [29]) to simulate
(1.1) and the level set method [34] to evolve the reduced geometric evolution laws which arise
from the asymptotic reductions.

2. Interface dynamics in one dimension.

In this section, the evolution of the contact points denoting the extent of the spreading
touchdown region, are analyzed. Assuming a symmetric solution about the origin with initial
contact at x = 0, we can expect two interfaces at x = ±xc(t). There are two cases which
require separate attention. The first is when the interfaces are far from the boundary and
±(1 − xc) = O(1). Second, when the interfaces begin to interact with the boundary and
±(1−xc)� 1. In the former case, the structure of the solutions is displayed in Fig. 5. In the
later case, the moving contact point is pinned by the interaction with the boundaries x = ±1.

The analysis is complicated by the fact that the boundary layer ahead of the propagating
interface has several sub-scales in which the solution must be resolved. The structure of the
various internal layers, labeled I, II, III, IV are shown in Fig. 5. The parameters p, q, and r
represent the timescale of interface motion εp, as well as the extent of the two intermediate
regions: εq for region II and εr for region III. The scaling parameters which complete the
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Figure 5: Schematic diagram of typical one dimensional far-from-equilibrium solutions of (1.1)
following a single point touchdown event. The solution consists of several layers to be resolved on
a timescale τ = t/εp. The values of the scaling parameters p, q, r are determined in the matched
asymptotic analysis, and provided in (2.1) for the separate cases of (1.1a) and (1.1b).

description of theses layers are found through the asymptotic analysis to be

(Laplacian) : p = 1
2 , q = 1

2 , r = 3
2 ;

(Bi-Laplacian) : p = 3
4 , q = 1

4 , r = 3
4 .

(2.1)

The structure near the boundary, in particular the shelf observed in Figures 3 and 4, or the
almost linear behavior shown in Region I of Fig. 5, is described by the leading order of the
outer solution, u0. Although the outer solution evolves over time as seen in Figs. 3 and 4, the
speed of the interface is estimated over shorter time scales. As a consequence, the dynamics
of the interface, dxc/dt, only depends on the value of the outer solution at the contact point,
xc(t), as will be seen from Equations (2.12b) and (2.33). In order to illustrate the validity
of the asymptotic expansions discussed in this section, we will select initial conditions such
that the slowly evolving (relative to the speed of the interface) solution u0 may be estimated
analytically. However, the expressions for dxc/dt given in (2.12b) and (2.33) are established
locally and therefore also apply to more general situations, and in particular when the solution
on [−1, 1] is not symmetric – assuming of course that an expression for u0(x) is available.

Below, we consider problems (1.1a) and (1.1b) separately, since the second order problem is
often discussed in the applied mathematics literature, whereas the fourth-order problem is
more of interest to engineers.

2.1. Laplacian Case

The cases where ±(1 − xc) = O(1) and ±(1 − xc) � 1 are treated separately in the two
following subsections. In both cases, we take the definition that the moving contact point
lies at the maximum of curvature, ie. for any contact point xc(t), we have that uxx(xc(t)) =
maxx∈Ω uxx(x).

2.1.1. Case: ±(1− xc) = O(1)

ut = uxx −
λ

(1 + u)2
+

λεm−2

(1 + u)m
, u ≥ −1, u(±1) = 0; (2.2)

where xc(0) = O(1) and τ = t/εp. We now go through the steps of constructing a solution
to (2.2) in the limit as ε → 0. Region IV has extent −xc < x < xc and here the solution is
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essentially uniform in value with u= − 1 + ε+O(ε). In the vicinity of xc(τ), the solution is
composed of two boundary layers (cf. Region II and Region III in Fig. 5). For the innermost
layer, Region III, the variables

y =
x− xc(τ)

ε3/2
, u = −1 + ε v(y, t) (2.3)

are introduced. Solutions of the resulting equations are sought via the expansion v ∼ v0(y) +

ε
3
2
−pv1(y) + · · · and the equations for v0 are

v0yy =
λ

v2
0

− λ

vm0
, y ∈ R; v0(0) =

(m
2

) 1
m−2

, (2.4a)

v0 = 1+O(e
√
λ(m−2)y) y → −∞; v0 = α y − λ

α2
log y + a1 +O

( log y

y

)
, y →∞;

(2.4b)

where the condition at y = 0 in (2.4a) specifies that the profile is centered at the maximum
curvature of v0, ie. v0(0) = maxy∈R v0yy. This eliminates the translation invariance of
v0(y) and uniquely defines the interface location. In other words, the condition of maximum
curvature at the contact point is imposed at order zero and not enforced at higher orders.
The far field behavior (2.4b) is determined by a dominant balance analysis. At the following
order the problem for v1 satisfies

v1yy +

[
2λ

v3
0

− mλ

vm+1
0

]
v1 = −v0y ẋc, y ∈ R; v1 = O(y2e

√
λ(m−2)y), y → −∞; (2.4c)

v1 = − αẋc
2

y2 +
2λẋc
α2

y log y − 7λẋc
2α2

y +O(1), y →∞. (2.4d)

where the far behavior (2.4d) is obtained from a particular solution to (2.4c) of form v1p =
v0y

∫ y
g(s)ds where g(y) satisfies an associated first order equation. In the above equations,

the overdot represents differentiation with respect to the fast variable τ and the parameter α
is determined by multiplying (2.4a) by v0y followed by integration over R to yield the fixed
value

α =

√
2λ(m− 2)

m− 1
. (2.5)

The far field behavior generated by the solution of the system (2.4) is

u ∼ −1 + ε

[
αy − λ

α2
log y + a1 + · · ·

+ ε
3
2
−p
(
− α ẋc

2
y2 +

2λẋc
α2

y log y − 7λẋc
2α2

y + · · ·
)]
, y →∞. (2.6)

If we attempt to match (2.6) to the outer solution by returning to variables (2.3) for which
y = O(ε−3/2), we find the expansion is not well ordered. This indicates the presence of
an intermediate layer (cf. Region II of Fig. 5) which matches with the solution valid when
x = O(1). This intermediate asymptotic region corresponds to y = O(ε−1) and u = O(1)
and its analysis is facilitated by introducing the variables

z =
x− xc(τ)

ε1/2
, u(x, t) = w(z, t), (2.7)
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which leads to the equation

εwt − ε
1
2
−p wz ẋc = wzz − ελ

[
1

(1 + w)2
− εm−2

(1 + w)m

]
, z > 0. (2.8)

The natural balance of terms dictates that p = 1/2 and the far field behavior of (2.6) implies
that w(z) has local behavior

w(z) ∼− 1 + α z − ẋcα

2
z2 + · · ·+ ε log ε

[
λ

α2
− 2λẋc

α2
z + · · ·

]
+ ε

(
a1 −

7λẋc
2α2

z − λ

α2
log z +

2λẋc
α2

z log z + · · ·
)
, (2.9)

as z → 0. This local behavior motivates the expansion

w(z) ∼ w0 + ε log εw1 + εw2 + · · · , ẋc ∼ ẋ0 + ε log ε ẋ1 + ε ẋ2 + · · · ,

and consequently a sequence of problems for w0, w1 and w2 can be formulated:

w0zz + ẋ0w0z = 0, z > 0; w0(0) = −1, w0z(0) = α; (2.10a)

w1zz + ẋ0w1z = −w0zẋ1, z > 0; w1(0) =
λ

α2
, w1z(0) = −2λẋ0

α2
; (2.10b)

w2zz + ẋ0w2z =
λ

(1 + w0)2
− w0zẋ2, z > 0; w2 = a1 −

7λẋ0

2α2
z +O(log z), z → 0.

(2.10c)

The exact solution of equations (2.10) is

w0(z) = −1 +
α

ẋ0

[
1− e−ẋ0 z

]
, (2.11a)

w1(z) =
−1

α2ẋ2
0

[
λẋ2

0 + α3ẋ1 − e−ẋ0z
(

2λẋ2
0 + α3ẋ1(1 + zẋ0)

)]
, (2.11b)

w2(z) =
λ

α2

[
e−ẋ0z

(
3− log[eẋ0z − 1]2 + log ẋ2

0 +
α3ẋ2

λẋ2
0

(1 + ẋ0z)
)]

(2.11c)

− α

ẋ2
0

[
ẋ2 −

ẋ2
0

α

(
a1 −

3λ

α2
− λ

α2
log ẋ0

)]
+

λ

α2

[
ẋ0z + log(1− e−ẋ0z)

]
.

As z →∞, the limiting behavior of w(z) ∼ w0 + ε log ε w1 + εw2 + · · · has form

w(z) ∼ −1 +
α

ẋ0
− ε log ε

(λẋ2
0 + α3ẋ1

α2ẋ2
0

)
− ε
( α
ẋ2

0

[
ẋ2 −

ẋ2
0

α

(
a1 −

3λ

α2
− λ

α2
log ẋ0

)]
− λẋ0

α2
z
)
.

Matching to the outer solution value u0(xc) gives the leading order velocity

ẋ0 =
α

1 + u0(xc)
, where α =

√
2λ(m− 2)

m− 1
. (2.12a)
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Since we do not expect terms in ε log ε in the outer solution, we also obtain an expression for
the first order correction ẋ1. Moreover, if the constant (in x) component of the outer solution
is independent of ε (or if m > 3), then matching gives the expansion for the interface velocity

ẋc ∼ ẋ0 −
ẋ2

0λ

α3
ε log ε+

ẋ2
0

α

(
a1 −

3λ

α2
− λ

α2
log ẋ0

)
ε+ · · · .

In returning to the original time variable t = τ/ε1/2 and applying (2.12a), the position of
the interface xc is thus expected to follow the three term asymptotic ordinary differential
equation

dxc
dt
∼ α

ε
1
2 [1 + u0(xc)]

−λ
α

ε
1
2 log ε

[1 + u0(xc)]2
+

ε
1
2

[1 + u0(xc)]2

[
αa1 −

3λ

α
− λ

α
log

α

[1 + u0(xc)]

]
.

(2.12b)

The evolution law (2.12b), driven by the jump in the electric potential over the boundary
layer, does not have the capacity to arrest the motion of the interface as it nears the boundary.
This behavior is expected from the variational nature of the governing equation (1.1a), the
analysis of [31] and observed in numerical simulations of its solution (cf. Fig. 3(c)). This
motivates a separate analysis valid in the regime where the interface nears the boundary
points x = ±1.

2.1.2. Case 2: ±(1− xc)� 1

The analysis of the preceding section was based on the layer structure displayed in Fig. 5.
It is reasonable to expect that the pinning region should occur once the extent of Region I
has been depleted by the motion of the interface, and Region II comes into contact with the
boundary, ie. when ±(1− xc) = O(ε1/2). Therefore we consider the sub interval xc < x < 1
where xc = 1− ε1/2x̄c(τ) and seek to solve the problem

ut = uxx −
λ

(1 + u)2
+

λεm−2

(1 + u)m
, u ≥ −1, u(1) = 0; (2.13a)

u(1− ε1/2x̄c(τ)) = −1+O(ε), ux(1− ε1/2x̄c(τ)) = O(ε), (2.13b)

in the limit as ε→ 0. It is convenient to work with the rescaled variables

u(x, t) = w(z, t), z =
x− (1− ε1/2x̄c(τ))

ε1/2x̄c(τ)
, τ =

t

ε
, (2.14)

which transform (2.13) to

ε x̄2
c wt + ˙̄xc x̄c [1− z] wz = wzz − λ x̄2

c ε

[
1

(1 + w)2
− εm−2

(1 + w)m

]
, 0 < z < 1; (2.15a)

w(1) = 0, w(0) = −1+O(ε). (2.15b)

A leading order solution w = w0 + O(1) is now constructed where w0 satisfies

˙̄xc x̄c [1− z] w0z = w0zz, 0 < z < 1; w0(1) = 0, w0(0) = −1, (2.16a)
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and admits the representation

w0(z) = −1 +

∫ z

0
exp

[
˙̄xc x̄c(s− s2/2)

]
ds∫ 1

0
exp

[
˙̄xc x̄c(s− s2/2)

]
ds

, 0 < z < 1. (2.16b)

This integral formulation generates the local behavior

w0(z) = −1 + z

(∫ 1

0
exp

[
˙̄xc x̄c(s− s2/2)

]
ds

)−1

+O(z2), z → 0+. (2.17)

Note that w′0(0) 6= 0 and therefore the zero gradient at the contact point condition must be
enforced in a boundary layer centered at z = 0. To analyze this boundary layer, the variables

w(z) = −1 + ε v(y, t), z = ε y (2.18)

are employed. Seeking a leading order solution v ∼ v0(y) + · · · , we have that v0(y) satisfies

v0yy = λx̄2
c

[
1

v2
0

− 1

vm0

]
, −∞ < y <∞; (2.19a)

v0 = α x̄c y +O(log y), y →∞; α =

√
2λ(m− 2)

m− 1
(2.19b)

v0 = 1 +O(e
√
λ(m−2)y) y → −∞. (2.19c)

The matching condition between the far field behaviors (2.19b) and the local condition (2.17)
gives

α x̄c

∫ 1

0
exp

[
˙̄xc x̄c(s− s2/2)

]
ds = 1. (2.20)

This expression is a nonlinear, implicit differential equation of type f(x̄c, ˙̄xc) = 0 for the
evolution of the contact line. The dynamics of this system (cf. Fig. 6(a)) are characterized
by the behavior x̄c → 1/α as τ →∞ and so in terms of the original variables (2.14), the two
equilibrium contact points are

x±c (ε) ∼ ±
(

1− ε1/2

α

)
, where α =

√
2λ(m− 2)

m− 1
. (2.21)

The above is in agreement with [31], which gives a formula for x±c (ε) to order ε3/2, the
first terms of which are given by (2.21). The equilibrium of the dynamical system (2.20)
therefore provides a good leading order prediction of the pinned state, while the more detailed
asymptotic analysis of [31] yields improved accuracy over a larger range of values for ε. The
squared L2 norm of the corresponding equilibrium solutions is∫ 1

−1
u2 dx = 2

[∫ 1−ε1/2x̄c

0
u2 dx+

∫ 1

1−ε1/2x̄c
u2 dx+O(ε3/2)

]

= 2

[
(−1 + ε)2(1− ε1/2x̄c) + ε1/2x̄c

∫ 1

0
w2

0 dz +O(ε3/2 log ε)

]
.
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Note that when ˙̄xc = 0, w0(z) = −1 + z and ‖u(x; ε)‖22 has leading order behavior

‖u‖22 = 2

[
(−1 + ε)2

(
1− ε1/2

α

)
+

1

3

ε1/2

α
+O(ε3/2 log ε)

]
= 2

[
1− 2ε1/2

3α
− 2ε+O(ε3/2 log ε)

]
,

(2.22)
where α is given in (2.21). As expected, the above formula matches expression (4.11) of [31].

2.1.3. Numerical Example
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(a) Dynamics of (2.20).
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(b) Asymptotic interface dynamics.

Figure 6: Left panel displays the dynamics associated with (2.20) and λ = 20 and m = 4. The solid
dot indicates a stable equilibrium at x̄c =

√
3/4λ. Right panel shows a comparison of the asymptotic

predictions with numerical simulations (solid line) of the main equation (2.2) for λ = 20 m = 4, and
ε = 0.005. The solid dots and circles represent leading order and three term approximations from
(2.23) respectively while the dashed line is from (2.20).

In this section, we illustrate the validity of the above analysis on a numerical example. For
verification of the reduced asymptotic dynamics, a “shelf-like” initial condition is applied
in numerical simulations of (2.2) in conjunction with parameter values λ = 10, m = 4 and
ε = 0.005. After the initial touchdown, the contact points are located by following the
maxima of the second derivative of the solution. For the particular values of λ and ε, the
outer solution u0 is spatially uniform and given approximately by the solution of the ODE

du0

dt
= − λ

(1 + u0)2
, u0(0) = 0; =⇒ u0 = −1 + (1− 3λt)1/3.

In combination with the result of (2.12b), the spreading speed of the touchdown region for
this example is given, to leading order, by

dxc
dt
∼ α

ε
1
2 (1− 3λt)

1
3

+
ε

1
2

(1− 3λt)
2
3

[
− λ

α
log ε+ αa1 −

3λ

α
− λ

α
log

α

(1− 3λt)
1
3

]
(2.23)

with α =
√

4λ/3. The parameter a1 is determined numerically from (2.4a-2.4b) and for the
example case λ = 20, we calculate a1 = −0.577. The accuracy of the leading order and three
term asymptotic reductions is demonstrated in Fig. 6(b) by plotting the predictions of the
interface velocities. In the regime where the interface xc is far from the boundary, (2.23)
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captures the front velocity well, particularly by the leading order term. The inclusion of
the higher order terms offers very minimal improvements to the accuracy of the asymptotic
reduction. In the pinning region close to the boundary, the dynamics are accurately predicted
by the implicit dynamical system (2.20).

2.2. Bi-Laplacian Problem

2.2.1. Front motion: ±(1− xc(τ)) = O(1)

In this section, we turn to the problem of constructing the moving interface solution of the
fourth order problem

ut = −uxxxx −
λ

(1 + u)2
+

λεm−2

(1 + u)m
, −1 < x < 1; u(±1) = ux(±1) = 0 (2.24)

together with the contact point condition ux(xc(τ)) = 0 where −1 < xc(τ) < 1 and τ = t/εp.
The timescale for the interface is εp where p will be determined. To construct a solution in
the vicinity of the contact point, the variables

u = −1 + εv(y), y =
x− xc(τ)

ε3/4
, τ =

t

εp
, (2.25)

are introduced into (2.24) and lead to the following problem for v(y),

−ẋc vy ε9/4−p = −vyyyy −
λ

v2
+

λ

vm
, −∞ < y <∞. (2.26)

Expanding (2.26) with v = v0 + ε9/4−pv1 + · · · gives to leading order

−v0yyyy −
λ

v2
0

+
λ

vm0
= 0, −∞ < y <∞. (2.27)

By multiplying equation (2.26) through by v0y and integrating once, a conserved quantity
can be isolated with value α2/2 fixed by the condition v0 ∼ 1 as y → −∞ so that

−v0yyyv0y +
1

2
v2

0yy +
λ

v0
− λ

(m− 1)vm−1
0

=
α2

2
(2.28)

where α2 = 2λ(m− 2)/(m− 1) is the same factor defined previously in (2.5). Consequently
a balance of terms determines the far field behavior v0 ∼ α y2/2 + · · · and v0 satisfies

−v0yyyv0y +
1

2
v2

0yy =
λ(m− 2)

(m− 1)
− λ

v0
+

λ

(m− 1)vm−1
0

, −∞ < y <∞; (2.29a)

v0 = 1 +O(e(λ(m−2))
1
4 y) y → −∞; v0 =

√
λ(m− 2)

2(m− 1)
y2 + ξy +O(log y), y →∞,

(2.29b)

and so the far field v = v0 +O(ε9/4−p) provides the behaviour

u = −1 + ε

[√
λ(m− 2)

2(m− 1)
y2 +O(ε9/4−p)

]
y →∞. (2.30)

12



y

-2 -1 0 1 2

v0(y)

0

1

2

3

4

5

6

7

8

Figure 7: The numerical solution v0(y) of the inner problem (2.29) for m = 4 and λ = 27. The
solid dot is the global minimum of v0(y) with value miny∈R v0(y) ≈ 0.9033.

The parameter ξ in (2.29b) can be fixed by removing the scale invariance of equation (2.29a)
through the normalization condition v0(0) = miny∈R v0(y). The profile v0(y) can be deter-
mined numerically by posing (2.27) as a boundary value problem on a finite interval [−L,L]

for L large but finite. To approximate the far field condition v0(y) = 1+O(exp[(λ(m−2))
1
4 y])

as y → −∞, the boundary conditions v0(−L) = 1, v0y(−L) = v0yy(−L) = 0 are applied. To
enforce the condition that v0yyy = O(y−3) as y → ∞ we set v0yyy(L) = 0. The system is
then solved by the MATLAB routine bvp4c for L = 25. A portion of the profile v0(y) with
the global minimum centered at y = 0 is shown in Fig. 7.

As in the second order problem, an attempt to match the far field behavior (2.30) through
the original coordinates (2.25) fails because expression (2.30) is O(ε−1/2) when y = O(ε−3/4).
This breakdown in the ordering of the expansion indicates the presence of an intermediate
scaling when y = O(ε−1/2) or x − xc = O(ε1/4). Consequently, the intermediate scaling
quantities

u(x) = w(z), z =
x− xc
ε1/4

, y =
z

ε1/2
,

are introduced which transforms (2.24) to the problem for w(z),

ẋcwz ε
3/4−p = wzzzz + ε

[
λ

(1 + w)2
− εm−2λ

(1 + w)m

]
, z > 0; (2.31a)

w ∼ −1 +

√
λ(m− 2)

2(m− 1)
z2 + · · · , z → 0+. (2.31b)

The value for p = 3/4 is assumed and so the expansion w = w0 + · · · gives the leading order
problem

ẋcw0z = w0zzzz, z > 0; w0 ∼ −1 +

√
λ(m− 2)

2(m− 1)
z2 + · · · , z → 0+, (2.32a)

whose solution is

w0(z) = −1 +
2

ẋ
2/3
c

√
λ(m− 2)

2(m− 1)

[
1− 2√

3
e−ẋ

1/3
c

z
2 cos

(√
3

2
ẋ1/3
c z − π

6

)]
. (2.32b)
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In the limit as z →∞, (2.32b) provides the condition

u0(xc) = −1 +
2

ẋ
2/3
c

√
λ(m− 2)

2(m− 1)
=⇒ ẋ2/3

c =
2

1 + u0(xc)

√
λ(m− 2)

2(m− 1)
, (2.33)

where u0(x) is the leading order term of the outer solution.

2.2.2. Pinning Region: ±(1− xc)� 1

In this regime, the intermediate region interacts with the boundary and acts to pin the
moving front. To facilitate the analysis of this process, the rescaling xc = ±(1− ε1/4x̄c) and
the stretched variables

u(x, t) = w(z, t), z =
x− (1− ε1/4 x̄c(τ))

ε1/4 x̄c(τ)
, τ =

t

ε
, (2.34)

are employed. A leading order solution w = w0 + O(1) is sought where w0(z) satisfies

˙̄xc x̄
3
c (1− z)w0z = −w0zzzz, 0 < z < 1;

w0(1) = 0, w0z(1) = 0, w0(0) = −1, w0z(0) = 0.
(2.35a)

While equation (2.35a) does not have a convenient closed form solution, we can proceed by
observing the local behavior

w0(z) ∼ −1 + χ(x̄c, ˙̄xc) z
2/2 + · · · z → 0; χ(x̄c, ˙̄xc) = w0zz(0), (2.35b)

where the quantity χ(x̄c, ˙̄xc) will be matched to a local solution near the interface. In the
vicinity of z = 0, a local solution of form w = −1 + εv(y), z = ε1/2 y is developed. At leading
order the problem for v(y), with growth as y →∞ prescribed by (2.35b), is

−vyyyy =
λ x̄4

c

v2
− λ x̄4

c

vm
, ∞ < y <∞; (2.36a)

v = 1 +O(e(λ(m−2))
1
4 x̄cy), y → −∞; v = χ(x̄c, ˙̄xc)

y2

2
+O(log y), y →∞. (2.36b)

The standard solvability techniques now give the condition

χ2(x̄c, ˙̄xc) =
2λ(m− 2) x̄4

c

m− 1
, (2.37)

which constitutes an implicit ODE for x̄c(τ). If initial conditions are specified, w0zz(0) =
χ(x̄c, ˙̄xc) can be evaluated numerically, and (2.37) leads to relationship between x̄c and ˙̄xc.
For the example discussed in §2.2.3, a graph of ˙̄xc as a function of x̄c is shown in Fig. 9
for λ = 4 × 105 and m = 4. As ˙̄xc → 0, χ(x̄c, ˙̄xc) → 6 which in turn gives the dynamics
x̄c → (18(m − 1)/λ(m − 2))1/4 as τ → ∞. A leading order prediction for the two contact
points is thus given to be

x±c (ε) = ±
(

1−
[18ε(m− 1)

λ(m− 2)

] 1
4

)
. (2.38)
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The equilibrium solutions attained after the moving front pins at the boundary, can also be
characterized by their squared L2 norm. The calculation follows steps similar to those leading
to (2.22), and results in

‖u(x; ε)‖22 = 2

[
1− 22

35

(
18(m− 1)

λ(m− 2)

)1/4

ε1/4 +O(ε3/4)

]
. (2.39)

The results (2.38) and (2.39) agree to leading order with the more detailed analysis of [31].

2.2.3. Numerical Example

In this section a carefully chosen example is constructed to demonstrate the qualitative and
quantitative efficacy of the previous asymptotic descriptions. An issue for quantitative com-
parisons with the velocity (2.33), is that one needs information on the outer solution u0(xc).
To arrive at a closed form expression for u0(xc), one may consider a scenario whereby the
computational domain is sufficiently large to allow for a touchdown region, originating at
x = 0, to evolve without interaction with the boundary. In such a scenario, the solution
profile away from the boundary and the interface xc would be largely governed by the ODE
problem

du0

dt
= − λ

(1 + u0)2
, u0(0) = 0; =⇒ u0 = −1 + (1− 3λt)1/3. (2.40)

A “sufficiently large” computational domain, as discussed in the previous paragraph, may
comprise something like Ω = [−L,L] for L ≈ 25. For reasons of convenience, our numerical
simulations are performed on the interval Ω = [−1, 1], and consequently the rescaling gen-
erates a large effective λ value which scales λ ∝ L4. Indeed, our simulations are run with
λ = 4 × 105 which, as seen in Fig. 3(b), generates a “shelf-like” uniform interior solution
corresponding to u0 given by (2.40). A combination of the uniform interior solution (2.40)
and the asymptotic velocity (2.33) gives the explicit interface velocity

dxc
dt
∼ 1√

1− 3λt

[
λ(m− 2)

ε(m− 1)

] 3
4

+ · · · (2.41)

The combination of large and small numerical parameters, in conjunction with the presence
of multiple sharp interfaces, renders accurate numerical simulation of (2.24) a non-trivial
exercise. To resolve the large gradients in the system effectively, we have implemented the
r-adaptive scheme MOVCOL4 [35] which seeks to allocate mesh points based on equidistri-
bution of a monitor function over each computational subinterval. The method solves an
associated moving mesh PDE (MMPDE) together with the underlying equation (2.24) whose
discretization results in a large system of stiff ODEs. The solution is estimated between the
mesh points using a seventh order polynomial interpolation. More details of the method are
given in the Appendix of [28].
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Figure 8: Solution profiles for equation (2.24) with parameter values m = 4, λ = 4 × 105 and
ε = 0.005. Profiles correspond, from left to right, to solutions at increasing times. The crosses
displayed below the solution curve indicate the mesh points of the discretization and are observed
to aggregate around the interface and track it as it evolves.

The numerical simulations of (2.24) are initialized with the “inverted top-hat” initial con-
dition seen in Fig. 8(a), which generates a localized touchdown event around x = 0 shortly
after initialization. The initial mesh, indicated by the crosses below the profile, is congre-
gated around the initial interface. In the dynamical spreading of the touchdown region which
follows, the multiple layers of the solution develop as seen in Fig. 8(b) and their locations are
tracked by the computational mesh.

The oscillatory features of the solution in Region II (cf. Fig. 5), as predicted by the explicit
solution (2.32b) in that layer, are particularly apparent in Fig. 8(b). These oscillatory features
illustrate the fact that the fourth order equation (2.24) does not preserve the sign of its initial
data, in contrast to the second order equation (2.2). As the interface nears the boundary, it
decelerates and its motion is eventually arrested. From §2.2.2, we have the prediction that
dxc/dt = −ε−3/4 ˙̄xc where ˙̄xc satisfies the implicit ODE (2.37) whose dynamics is displayed
in Fig. 9(a). In Fig. 9(b), the interface velocities predicted by the two asymptotic analyses
are shown to agree very well with the numerical simulations.

The structure of the new stable equilibria attained in Fig. 8(c) has been analyzed with
significant detail in [31]. As in the Laplacian case, the analysis of the pinning regime in
§2.2.2 captures the leading order properties of this branch of solutions.

3. Dynamics of contact set boundary in two dimensions

In this section, we investigate the dynamical evolution of the touchdown region in a bounded
two dimensional region Ω. More specifically, we consider a closed a curve Γ(x, t; ε) = 0 for
which Γ− = {x ∈ Ω | Γ < 0} represents the region where touchdown has already occurred,
ie. where u ' −1 + ε. On the other hand, Γ+ = {x ∈ Ω | Γ > 0} represents the region
where the two surfaces are not yet in contact. In order to give a description of the interface
evolution, it is helpful to utilize a fitted orthogonal system ρ, s, where ρ is the signed distance
from the boundary Γ = 0, while on Γ the coordinate s denotes arc-length along the interface.
In this coordinate system (cf. [5]), the Laplacian operator and the time derivative have the
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Figure 9: Left panel shows the numerically obtained dynamics ˙̄xc versus x̄c associated with (2.37) for
λ = 4×105 and m = 4. The solid dot indicates the stable equilibrium x̄c = (27/λ)1/4 ≈ 0.0906. The
right panel shows a comparison of the interface velocity from full numerical simulations (solid line)
of (2.24), shown in Fig. 8. The dotted line corresponds to the asymptotic velocity (2.41), derived
assuming that ±(1 − xc) = O(1), while the dashed line corresponds to the velocity derived when
±(1−xc)� 1. The asymptotic prediction for the equilibrium contact point xc = 1−ε1/4x̄c ≈ 0.9759
is seen to be quite accurate.
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Figure 10: Boundary Layer structure in the arc length tangent coordinate system (3.1).

representation

∆u ≡ ∂2u

∂ρ2
− κ

1− κρ
∂u

∂ρ
+

1

1− κρ
∂

∂s

(
1

1− κρ
∂u

∂s

)
, (3.1a)

du

dt
≡ ∂u

∂t
+ ρt

∂u

∂ρ
+ st

∂u

∂s
, (3.1b)

where κ(s) is the curvature along Γ. As in the one-dimensional case, we treat the Laplacian
and bi-Laplacian cases separately.
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3.1. Laplacian Case

Here we begin by analyzing the equation

∂t u+ ρt∂ρu+ st ∂su =
∂2u

∂ρ2
− κ

1− κρ
∂u

∂ρ
+

1

1− κρ
∂

∂s

(
1

1− κρ
∂u

∂s

)
− λ

(1 + u)2
+

λεm−2

(1 + u)m
,

(3.2)
by first considering the local problem in the vicinity of the interface Γ(t; ε) = 0. After
balancing arguments akin to those performed for the 1D problem, one finds that the scales
of the boundary layers and fast time scale of the interface are unchanged from that of the 1D
problem. Hence the analysis begins by considering the equation in the corner layer with the
variables

y =
ρ(τ, s; ε)

ε3/2
, u = −1 + ε v(ρ, s, t; ε), τ = ε1/2t, (3.3)

which transforms (3.2) to

εvyρ̇ = vyy − κε3/2vy −
λ

v2
+

λ

vm
+O(ε3), −∞ < y <∞; (3.4a)

vyy(0) = max
y∈R

vyy, (3.4b)

where an overdot represents differentiation with respect to τ . The second condition (3.4b)
uniquely locates the interface at the maximum of the second derivative of the solution, ie. at
the point of maximum curvature along the profile. As in the one-dimensional case, we will
only enforce this contition at leading order. The quantities ρ̇ and v in Equation (3.4) are
further expanded as

ρ̇ = ρ̇0 + ε1/2ρ̇1 + O(ε1/2), v = v0 + εv1 + ε3/2v2 + O(ε1/2) (3.5)

and terms gathered at various orders. The leading order cross sectional interface profile v0 is
that of the 1D problem (2.4) and satisfies

v0zz =
λ

v2
0

− λ

vm0
, −∞ < y <∞; v0(0) =

(m
2

) 1
m−2

; (3.6a)

v0 = 1 +O(e
√
λ(m−2)y), y → −∞; v0 = α y +O(log y), y →∞, (3.6b)

where the constant α is determined to be

α =

√
2λ(m− 2)

m− 1

by multiplying (3.6a) by v0z and integrating over R. The normalization condition on v0(0)
appearing in (3.6a) replaces condition (3.4b) by noting that v0 > 1 from maximum principle
considerations and that f(s) = s2− s−m attains its global maximum at s = (m/2)1/(m−2) for
s > 1. At the following order, the correction term v1 is

v1zz +

(
2λ

v3
0

− mλ

vm0

)
v1 = ρ̇0v0z, −∞ < y <∞; (3.7a)

v1 = O(y2e
√
λ(m−2)y), y → −∞; v1 =

αρ̇0

2
y2 +O(y log y), y →∞, (3.7b)
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while for v2,

v2zz +

(
2λ

v3
0

− mλ

vm0

)
v2 = −(ρ̇1 + κ)v0z, −∞ < y <∞; (3.8a)

v2 = O(y2e
√
λ(m−2)y), y → −∞; v2 =− α(ρ̇1 + κ)

2
y2 +O(y log y), y →∞. (3.8b)

In both cases, the quadratic far field behavior results from a balance between the second
derivative term and the forcing term. In the far field, the expansion generated is

u ∼− 1 + ε
[
v0 + εv1 + ε3/2v2 + · · ·

]
∼− 1 + ε

[
αy − εαρ̇0

2
y2 − ε3/2α(ρ̇1 + κ)

2
y2 + · · ·

]
, y →∞. (3.9)

As with the 1D analysis, the presence of an intermediate layer is indicated by the fact that
the expansion is no longer asymptotic when written in terms of the outer variable y defined in
(3.3). This happens when y = O(ε−1), at which point one needs to introduce the intermediate
variables

z =
ρ(τ, s; ε)

ε1/2
, u = w(z, s, τ ; ε), t = ε1/2τ . (3.10)

The governing equation (3.2) then becomes

−ρ̇wz = wzz + ε1/2κwz +O(ε), (3.11)

while the local behaviour described in (3.9) indicates that

w =− 1 + αz − αρ̇0

2
z2 − ε1/2α(ρ̇1 + κ)

2
z2 +O(ε). (3.12)

In conjunction with the expansion (3.6) for ρ̇, we now expand (3.11) with

ρ̇ = ρ̇0 + ε1/2ρ̇1 + O(ε1/2), w = w0 + ε1/2w1 + O(ε1/2), (3.13)

and arrive at equations for w0, and w1

w0zz + ρ̇0w0z = 0, z > 0; w0 =− 1 + αz +O(z2), z → 0+;

w1zz + ρ̇0w1z = −w0z(κ+ ρ̇1), z > 0; w1 =− α(ρ̇1 + κ)

2
z2 +O(z3), z → 0+.

The specified local behaviour as z → 0+ has arisen from condition (3.12). The explicit
solution of this system is

w0 = −1 +
α

ρ̇0

(
1− e−zρ̇0

)
, w1 = α(ρ̇1 + κ)

[
ze−zρ̇0

ρ̇0
− 1

ρ̇2
0

(
1− e−zρ̇0

)]
. (3.14)

In the limit as z →∞, and under the assumption that ρ̇0 > 0, we have that

u(xc) = w = −1 +
α

ρ̇0
− ε1/2α(ρ̇1 + κ)

ρ̇2
0

+ O(ε1/2). (3.15)

Solving (3.15) asymptotically gives ρ̇1 = −κ and so in terms of the original time variable
t = ε1/2τ , the interface motion is predicted to obey the geometric motion

ρt =
α

ε1/2(1 + u0(xc))
− κ+ O(1). (3.16)
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3.2. Bi-Laplacian Case

The fourth order case proceeds along similar lines and for brevity only partial details are
given, along with the final interface motion law. The boundary layer scalings corresponding
to Fig. 10 are given by r = 3/2, q = 1/4. In the region centered on the interface, we seek a
solution in variables

u = −1 + εv(y, s, t), y =
ρ(x, τ, s)

ε3/4
, τ =

t

ε3/4
, (3.17)

in which ∆2u becomes ε−2(vyyyy − 2κ ε3/4vyyy + O(ε3/2)). Substituting into (1.1b), the
equation for v satisfies

−vyyyy + 2κ ε3/4vyyy − λ
[

1

v2
− 1

vm

]
= O(ε3/2), −∞ < y <∞. (3.18)

Seeking an expansion v ∼ v0 + ε3/4v1 + · · · yields equations for v0 and v1

−v0yyyy =
λ

v2
0

− λ

vm0
, −∞ < y <∞; (3.19a)

v0 = 1 +O(e(λ(m−2))
1
4 y), y → −∞; v0 = αy2 + ξy +

λ

6α2
log y +O(1), y →∞,

(3.19b)

−v1yyyy +

[
2λ

v3
0

− mλ

vm+1
0

]
v1 = −2κv0yyy, −∞ < y <∞; (3.19c)

v1 = O(y4e(λ(m−2))
1
4 y), y → −∞, v1 = c1y

3 + c2y log y +O(y), y →∞, (3.19d)

where α =
√
λ(m− 2)/(2(m− 1)) is the constant previously obtained in the one dimensional

case (2.29). In the far field behavior (3.19d), equations can be formulated for the constants
c1, c2, . . ., however, the system is not closed until supplemented by an additional condition
from matching to an intermediate layer. In this intermediate layer, the variables

u(x, t) = w(z, s, t), z =
ρ(x, τ, s)

ε1/4
, τ =

t

ε3/4
, (3.20)

are employed which, coupled with the far field behaviors of (3.19), results in the following
system for w(z) accurate to O(ε1/2),

wzzzz + ρ̇wz − 2κε1/4wzzz = O(ε1/2), 0 < z <∞; (3.21a)

w =− 1 + αz2 + ε1/4(c1z
3 + · · · ) +O(ε1/2), z → 0+. (3.21b)

Seeking an expansion of (3.21) with

w ∼ w0 + ε1/4w1 + · · · , ρ̇ ∼ ρ̇0 + ε1/4ρ̇1 + · · · (3.22)

yields the system of equations

w0zzzz + ρ̇0w0z = 0, 0 < z <∞; (3.23a)

w0(0) = −1, w0z(0) = 0, w0zz(0) = 2α, (3.23b)
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w1zzzz + ρ̇0w1z = 2κw0zzz − ρ̇1w0z, 0 < z <∞; (3.23c)

w1(0) = 0, w1z(0) = 0, w1zz(0) = 0. (3.23d)

The solution of this system at leading order is given by

w0(z) = −1 +
2α

r2

[
1− e−rz

2

[
cos

√
3

2
rz − 1√

3
sin

√
3

2
rz
]]
, (3.24)

where r = (−ρ̇0)1/3 > 0 for ρ̇0 < 0. At the following order, a lengthy expression for w1 can
be obtained by solving (3.23c) which ultimately specifies the far field behavior

w(z) = w0(z) + ε1/4w1(z) +O(ε1/2) = −1 +
2α

r2
− ε1/4 α√

3r4

[
κr2 + ρ̇1

]
+O(ε1/2), z →∞.

The matching condition that u0(xc) = u0(Γ = 0) = limz→∞w(z) yields the motion ρ̇ of the
interface. In terms of the original timescale t = ε3/4τ , we have that

ρt ∼
[

2α

ε
1
2 (1 + u0)

]3/2

− 2α

ε
1
2 (1 + u0)

κ+ · · · (3.25)

In the following section, the validity of this reduced asymptotic description is investigated on
several test cases.

3.3. Numerical Examples

In this section, we compare the above predictions against numerical simulations of the full
models (1.1a) and (1.1b). We start with a brief introduction to the method of level sets and
then turn to two specific examples.

3.3.1. Description of Level Set Methods

To simulate the geometric descriptions for the contact interfaces (3.16) and (3.25), a simple
modification of the level-set method described in [34] is implemented. In such algorithms
for simulating geometric motion, the curve of interest Γ is imbedded in the zero level set of
an associated function φ, ie. Γ = {(x, y) ∈ Ω | φ(x, y, t) = 0}. Implicit differentiation of
φ(x, y, t) = 0 with respect to t gives rise to the level set equation φt + ρt|∇φ| = 0 where ρt is
the normal velocity of Γ. For the interface motion described by ρt given in (3.31) and (3.25),
we are led to equations of form

φt + (γ1(t) + γ2(t)κ)|∇φ| = 0, (3.26)

for which we seek a stable and efficient discretization based on finite difference approxima-
tions. As discussed in [34], stability issues arising from the stiff nature of equation (3.26) can
be alleviated by isolating the dominant linear term with the identity κ|∇φ| = ∆φ − N(φ)
where

N(φ) =
φ2
xφxx + 2φxφyφxy + φ2

yφyy

φ2
x + φ2

y

. (3.27)
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This is followed by implicit integration of the linear term and explicit treatment of the
remainder, yielding the integration scheme

[1 + δt γ2(tn + δt)∆]φn+1 = [φn + δt γ2(tn)N(φn)− δt γ1(tn) |∇φn|], (3.28)

over the time interval [tn, tn + δt]. Calculations are performed on a uniform cartesian mesh
with 128 gridpoints in each direction and differential terms are discretized by the standard
centered difference formulae. The discretized linear system (3.28) is then inverted by means
of a FFT.

3.3.2. Example 1: Laplacian Case

In this example we demonstrate the predictive qualities of the asymptotic description (3.16)
for touchdown region dynamics by considering the evolution of the “star” shaped initial
interface

(x, y) = r(θ)(cos θ, sin θ), r(θ) =
√

0.1(1 + cos 5θ). (3.29)

An initial condition for the full numerical simulations of (3.16) which has a sharp transition
layer around this curve is given by u(x, y) = a[tanh[b(x2 + y2 − r(arctan(y/x)2))] − 1] for
appropriate values of a, b. As with the 1D example, an expression for the outer solution
u0(xc) is required in the formulation of (3.16). This is readily obtained by choosing λ large
enough so that u0 is essentially uniform in Ω, except for in a layer near ∂Ω, and satisfies

du0

dt
= − λ

(1 + u0)2
, u0(0) = 0; =⇒ u0 = −1 + (1− 3λt)1/3. (3.30)

For the case m = 4, this therefore leads us to consider the geometric evolution

ρt = γ1(t)− κ, γ1(t) =

√
4λ

3ε

1

(1− 3λt)1/3
. (3.31)

As can be seen from the numerical simulations of Figure 11, the above equations capture the
interface position relatively well. As time increases, the approximation (dashed curve) is first
ahead of and then behind the numerically estimated interface (solid curve), the transition
approximately occurring at t = 0.0181. We believe this is due to the short transient period
occurring between the initialization of the full simulation and settling down into the asymp-
totic regime. In this transient period, the asymptotic solution (3.31) gets a slight ‘head-start’
which is later equalized.

3.3.3. Example 2: Bi-Laplacian Case

In this example, we use the initial curve

(x, y) = r(θ)(cos θ, sin θ), r(θ) = 0.125(1 + 0.3 cos 3θ), (3.32)

to investigate the validity of the geometric motion (3.25) of the contact interface for the fourth
order problem (1.1b). The ‘shelf-like’ outer solution u0 = −1 + (1 − 3λt)1/3 from (3.30) is
again applied together with the parameter m = 4 which reduces (3.25) to

ρt ∼
[

2α

ε
1
2 (1− 3λt)1/3

]3/2

− 2α

ε
1
2 (1− 3λt)1/3

κ+ · · · ; α =

√
λ

3
. (3.33)
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Figure 11: Evolution of touchdown interface with initial profile (3.29) under parameter values
λ = 10 and ε = 0.05. The solid curve represents the interface calculated from simulations of the
full PDE (1.1a) with m = 4 on the square region Ω = [−1, 1]2, while the dashed curves represent
the prediction of the reduced asymptotic description (3.31). The final panel displays only the
equilibrium interface from the full numerical simulations.

Figure 12 displays a comparison between the the evolution of the initial curve (3.32) as
predicted by (3.33) for the parameter values λ = 2000 and ε = 0.005. In this case, the
approximation (dashed curve) remains ahead of the numerical interface. We remark that
in this example, the intermediate layer is of width ε1/4 ≈ 0.2659 and so the layer interacts
with the boundary relatively shortly after initialization. In the last time point of Fig. 12, the
interface has progressed through half of the domain, while the intermediate layer has already
reached the boundary and has begun decelerating. To achieve a good comparison over a
larger spatial extent, a smaller ε value would be desirable, however, simulating such values
brings numerical challenges due to the stiffness of the regularizing term in (1.1b).

A significant qualitative difference between the second and fourth order models (1.1), is
the oscillatory nature of the propagating interface. These oscillations are predicted by the
analytical formula for the solution in the intermediate layer (3.24) and are evident in the
numerical simulations of Fig. 12. This corresponds to the lack of positivity exhibited by
fourth order problems in general, that is initial data of a single sign will not necessarily
generate a solution with a single sign for positive time, in contrast to second order problems.

The amplitude of the overshoot in the interface varies along the interface according to its
local curvature. This phenomenon is captured by the correction term w1(z) determined by
equation (3.25).

4. Conclusions

This article is devoted to an analysis of the dynamical properties of the regularized models
(1.1a) and (1.1b) that were derived in [31]. These models describe the dynamics of a mi-
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Figure 12: Evolution of contact interface with initial profile (3.32) under parameter values λ = 2000
and ε = 0.005. In the lower three panels, the solid curve represents the interface calculated from
simulations of the full PDE (1.1b) with m = 4 on the square region Ω = [−1, 1]2, while the dashed
curves represent the prediction of the reduced asymptotic description (3.33). The upper three
panels show the full solution u = u(x, y, t) at the corresponding time points.

croelectromecanical capacitor, as its top plate deflects towards its bottom plate under the
effect of an external electric field. They also capture the post-touchdown dynamics of the
system, which take place when the top deflecting membrane is in contact with the insulating
layer that covers the bottom plate. The region where contact occurs spreads as a function of
time until it arrives within a short distance of the boundary, at which point its dynamics is
arrested.

In [31], we described the resulting equilibrium configurations in great detail, for one-dimensional
systems in the limit where the thickness of the small insulating layer (as measured by the
parameter ε) goes to zero. Here, we consider both one and two-dimensional versions of the
models, also in the limit as ε→ 0. In one space dimension, we obtain asymptotic expansions
for the speed of the contact point away and near the boundary of the system, and show that
the dynamical system describing the moving interface in the vicinity of the boundary admits
equilibrium solutions that exactly match the static solutions found in [31]. We also compare
our predictions for the dynamics away from the boundary to numerical simulations, and show
very good agreement between the two. In two space dimensions, we restrict our attention to
the dynamics away from the boundary and test our predictions against numerical simulations.
The agreement is very good, although not as strong as in the one-dimensional case. This is
to be expected since fewer terms are included in the asymptotic expansion for the speed of
the moving interface in this case.

The main result of the work presented here is an expression for the speed of the interface
delimiting the region where the top plate is in contact with the bottom insulating layer of the
capacitor. This speed depends on the local behavior of the solution near the interface and on
the leading order behavior of the outer solution evaluated at the contact point. Even though
our simulations were performed with symmetric solutions, our formulas for dxc/dt are local
and therefore do not rely on any global properties of the solution. In the Laplacian case, the
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interface velocity is approximated to order ε1/2 in (2.12) for the one-dimensional problem, and
to leading order in (3.16) for the two-dimensional problem. In two dimensions, the interface
propagates outwards at a speed equal to the speed of the one-dimensional problem corrected
by a curvature term. Similar results are obtained at leading order for the bi-Laplacian case, in
Equations (2.33) and (3.25) respectively. The multiscale nature of the propagating interface,
illustrated in Figure 5, makes the asymptotic analysis particularly intricate. As previously
mentioned, in all situations, the interfacial speed depends on the unknown value of the leading
order outer solution u0 at the contact point xc(t). In the numerical examples discussed in this
article, initial conditions were chosen to ensure that the solution profile was locally flat in the
outer region, so that u0(xc) remained close to the solution of the associated space-independent
problem. This allowed us to illustrate the validity of the asymptotic expansions without
having to rely on a numerical estimation of u0(xc). A thorough numerical investigation of
more general solution profiles could be performed and compared with the analysis presented
here, but is beyond the scope of this article.

Regarding potential extensions to this work, there has been recent attention on MEMS models
which do not apply the small aspect ratio limit and study the resulting free boundary problem
for the deflection u(x, t) [22, 23, 24, 18]. It would therefore be very interesting to study the
dynamics and potential equilibrium states which arise from effects of regularizations in these
systems. From the point of view of the stability of codimension-one fronts, we note that
a somewhat surprising outcome of the numerical simulations of Section 3 is that the two-
dimensional interface appears to be stable to transverse perturbations. This contrasts with
the instability of the touchdown curves observed in non-regularized two-dimensional models,
as for instance described in [29]. It is not clear at present whether the lack of observed
instability is genuine, or due to the fact that the interface quickly reaches the boundary in
the present simulations. Addressing this question is a difficult problem and a topic for further
investigation.

Acknowlegements

We thank F.J. Sayas for assistance with two dimensional numerical simulations of (1.1b).

References

[1] Romesh C. Batra, Maurizio Porfiri, and Davide Spinello Effects of van der Waals Force
and Thermal Stresses on Pull-in Instability of Clamped Rectangular Microplates, Sensors
2008, 8, pp. 1048–1069.

[2] R. C. Batra, M. Porfiri and D. Spinello, Review of modeling electrostatically actuated
microelectromechanical systems, Smart Mater. Struct. 16 (2007) R23–R31.

[3] N. D. Brubaker, A. E. Lindsay (2013), The onset of multi-valued solutions of a pre-
scribed mean curvature equation with singular nonlinearity, Euro. Journal of Applied
Mathematics, Vol. 25, No. 5, pp. 631–656.

[4] N. D. Brubaker, J. A. Pelesko (2011). Non-linear effects on canonical MEMS models.
European Journal of Applied Mathematics, 22, pp. 455–470.

25



[5] P. Fife, (1988) Dynamics of Internal Layers and Diffusive Interfaces, SIAM Conference
Series in Applied Mathematics.

[6] Richard R. A. Syms, Eric M. Yeatman, Victor M. Bright, George M. Whitesides, Surface
Tension-Powered Self-Assembly of Microstructures – The State-of-the-Art, Journal of
Microelectricalmechanical Systems, Vol. 12, No. 4, (2003).

[7] Flores, G., Mercado, G., Pelesko, J., and Smyth, N., Analysis of the Dynamics and
Touchdown in a Model of Electrostatic MEMS, SIAM Journal on Applied Mathematics,
(2007), 67:2, pp. 434–446.

[8] Jian-Gang Guo, Ya-Pu Zhao, Influence of van der Waals and Casimir Forces on Elec-
trostatic Torsional Actuators, Journal of Microelectromechanical systems, Vol. 13, No.
6, 2004, pp. 1027–1035.

[9] Y. Guo, Dynamical solutions of singular wave equations modeling electrostatic MEMS,
SIAM J. Appl. Dynamical Systems, 9 (2010), pp. 1135–1163.

[10] K. B. Glasner, Spreading of droplets under the influence of intermolecular forces, Physics
of fluids, 15, 1837 (2003).

[11] K. B. Glasner, T. P. Witelski, Coarsening Dynamics of Dewetting Films, Phys. Rev. E,
Vol. 67, 016302 (2003).

[12] Y. Guo, Z. Pan, M. J. Ward, Touchdown and Pull-In Voltage Behaviour of a MEMS
Device with Varying Dielectric Properties, SIAM J. Appl. Math., 66, No. 1, (2005),
pp. 309–338.

[13] Z. Guo, J. Wei, Infinitely Many Turning Points for an Elliptic Problem with a Singular
Nonlinearity, Journ. London Math. Society, 78, (2008), pp. 21–35.

[14] Z. Guo, J. Wei, On a Fourth Order Nonlinear Elliptic Equation with Negative Exponent,
SIAM J. Math. Anal., 40, No. 5, (2009), pp. 2034–2054.

[15] J. A. Pelesko, D. H. Bernstein, Modeling MEMS and NEMS, Chapman Hall and CRC
Press, (2002).

[16] W. Huang and R. D. Russell, A moving collocation method for solving time dependent
partial differential equations, Appl. Numer. Math. 20 (1996), pp. 101–116.

[17] N. I. Kavallaris, A. A. Lacey, C. V. Nikolopoulos, and D. E. Tzanetis, A hyperbolic
non-local problem modelling MEMS technology, Rocky Mountain J. Math Vol. 41, No. 2
(2011), pp. 349–630.

[18] M. Kohlmann, A new model for electrostatic MEMS with two free boundaries, Journal
of Mathematical Analysis and Applications, (2013) Vol. 408, Issue 2, pp. 513–524.

[19] S. Krylov, B. R. Ilic, S. Lulinsky, Bistability of curved microbeams actuated by fringing
electrostatic fields, Nonlinear Dyn (2011) 66: pp. 403–426.

[20] S. Krylov, B. R. Ilic, D. Schreiber, S. Seretensky, and H. Craighead, The pull-in behavior
of electrostatically actuated bistable microstructures, J. Micromech. Microeng. 18 (2008)
055026

26



[21] B. Lai, On the Partial Differential Equations of Electrostatic MEMS Devices with Effects
of Casimir Force, Annales Henri Poincaré, (2015) Vol. 16, Issue 1, pp. 239–253.
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