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Abstract

In canonical models of Micro-Electro Mechanical Systems (MEMS), an event called touch-
down whereby the electrical components of the device come into contact, is characterized
by a blow up in the governing equations and a non-physical divergence of the electric field.
In the present work, we propose novel regularized governing equations whose solutions re-
main finite at touchdown and exhibit additional dynamics beyond this initial event before
eventually relaxing to new stable equilibria. We employ techniques from variational calculus,
dynamical systems and singular perturbation theory to obtain a detailed understanding of
the properties and equilibrium solutions of the regularized family of equations.

Keywords: Singular perturbation techniques, Nano-technology, Regularization, Blow up,
Higher order partial differential equations.

1. Introduction and statement of main results.

Micro-Electro Mechanical Systems (MEMS) are a large collection of miniaturized integrated
circuits and moving mechanical components that can be fabricated together to perform a
multitude of tasks. MEMS practitioners aim to manipulate the interaction between electro-
static forces and elastic surfaces to design a variety of complex devices with applications in
drug-delivery [1, 45], micro pumps [23], optics [8], micro-scale actuators [46]. In such interac-
tions, the elastic structures of the MEMS device may be overwhelmed if the magnitude of the
electrostatic forces acting on them exceeds a critical threshold. Such a failure is manifested
by an instability, known as the pull-in instability.

Email addresses: a.lindsay@nd.edu (A. E. Lindsay), lega@math.arizona.edu (J. Lega),
kglasner@math.arizona.edu (K. B. Glasner)

Preprint submitted to Elsevier May 14, 2014



In a capacitor type MEMS device, an elastic membrane is held fixed along its boundary
above a rigid substrate. When an electric potential V is applied between these surfaces,
the upper elastic surface deflects downwards towards the substrate. If V is small enough,
the deflection will reach an equilibrium, however, if V exceeds the pull-in voltage V ∗, no
equilibrium configuration is attainable and the top plate will touch down on the substrate.
Figure 1 contains a schematic representation of the device.

Touchdown is a very rapid event whereby large quantities of energy are focused on small
spatial regions of the MEMS device over short time scales. Consequently this process develops
large forces at specific areas which can either be useful to the operation of the device or be
destructive. In many mathematical models of MEMS, touchdown is described by finite time
quenching, e.g. blow-up of solution derivative and energy. Accordingly, many important
operational aspects of MEMS, such as the time and location of touchdown, can be investigated
by studying this quenching event.

However, a loss of existence to model solutions results in no information regarding configu-
rations of MEMS after a primary touchdown event. This paper presents an initial attempt
to describe behavior of MEMS after touchdown. To this end, we derive the second order
equation

ut = ∆u− λ

(1 + u)2
+

λεm−2

(1 + u)m
, x ∈ Ω; u = 0, x ∈ ∂Ω, (1.1a)

which models the dimensionless deflection u(x, t) as that of a membrane, and the fourth order
problem

ut = −∆2u− λ

(1 + u)2
+

λεm−2

(1 + u)m
, x ∈ Ω; u = ∂nu = 0, x ∈ ∂Ω, (1.1b)

which is a beam description of the deflecting surface. The modeling literature on MEMS
has involved second (cf. [15, 16, 19, 25, 43, 7]) and fourth order (cf. [38, 34, 33, 17, 29])
descriptions of the elastic nature of the deflecting surface and so we aim to investigate the
effects of regularization on both. In both cases, Ω is a bounded region of Rn and λ ∝ V 2 is a
parameter quantifying the relative importance of electrostatic to elastic forces. The physically
relevant dimensions are n = 1, 2. The small parameter ε in (1.1) mimics the effect of a small
insulating layer placed on top of the substrate to prevent a short circuit of the device as the
gap spacing 1 + u, u < 0, locally shrinks to zero. The regularizing term λεm−2(1 + u)−m for
m > 2 can also account for a variety of physical effects which become important when u ≈ −1.
For example m = 4 accounts for the Casimir effect (with sign of regularizing term reversed)
while m = 3 models Van der Waals forces [2, 20]. A recent mathematical study has analyzed
the existence and stability of equilibria to (1.1a) in the case m = 4 [28]. Similar quenching
events and their regularizations have been investigated in studies of thin film dynamics on
solid substrates [3, 4, 6].

For the case ε = 0, equations (1.1) reduce to canonical models originally introduced by Pelesko
(cf. [42, 43]), the salient properties of which are now well known. Of particular importance
amongst the many results, is the existence of a pull-in voltage λ∗ such that if λ < λ∗, then
u(x, t) approaches a unique and stable equilibrium as t→∞, while for λ > λ∗ no equilibrium
solutions are possible and u(x, t) reaches −1 in some finite time, tc [14, 19, 11]. In the 1D
setting, the equilibrium structure consists of one stable and one unstable branch that meet
at λ∗ (cf. dashed curve of Fig. 4). In the case where λ > λ∗, there have been many studies
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Figure 1: Schematic diagram of a MEMS capacitor with insulating layer of thick-
ness h.

centered on describing the local properties of the device near touchdown. For example, in
the second order equation,

ut = ∆u− λ

(1 + u)2
, x ∈ Ω, (1.2)

a detailed analysis [19, 13, 3, 18] of solutions near touchdown reveals the local behavior

u→ −1 + [3λ(tc − t)]1/3
(

1− 1

2| log(tc − t)|
+

(x− xc)2

4(tc − t)| log(tc − t)|
+ · · ·

)
, (1.3)

in the vicinity of the touchdown point xc, for t→ t−c . Detailed scaling laws for tc in the limits
λ→∞ and λ− λ∗ → 0+ have also been established in [15, 16]. In the fourth order problem,

ut = −∆2u− λ

(1 + u)2
, x ∈ Ω, (1.4)

less is known about equilibrium configurations and about the dynamics of touchdown when
equilibrium solutions do not exist. In the special cases where Ω is the unit strip [−1, 1]
or the unit disc {x ∈ R2 | |x| ≤ 1}, the existence of the pull-in voltage λ∗ was shown
in [39, 22]. It was shown in [29] that there are at least two radially symmetric solutions
for each λ < λ∗. Similar results were obtained in [17] for the case where pinned boundary
conditions u = ∆u = 0 were used. For λ > λ∗ and for Ω the unit strip [−1, 1] or the unit
disc {x ∈ R2 | |x| ≤ 1}, it was shown in [34] that the device touches down in finite time tc.
A detailed numerical and asymptotic study established the local behavior

u(x, t)→ −1 + (tc − t)1/3v(y), y =
x− xc

(tc − t)
1
4

λ1/4, t→ t−c , (1.5)

where v(y) is a self-similar profile satisfying an associated ordinary differential equation. In
addition to the local behavior of solutions as t → t−c , the fourth order problems (1.4) have
additional interesting dynamical features whereby touchdown can occur simultaneously at
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multiple points of the domain. In one dimension [34], the singularities can form at two distinct
points separated about the origin. In two dimensions [38], the multiplicity of singularities
can be greater with the exact quenching set depending delicately on the geometry of the
boundary and the parameter λ. This multiple singularity phenomenon is ubiquitous in semi-
linear parabolic fourth order equations with positive sources [37].

The rich dynamical behavior associated with the touchdown event raises the interesting ques-
tion of how one can make sense of solutions to (1.2) and (1.4), and understand the behavior
of MEMS after touchdown. The finite time singularities exhibited by (1.2) and (1.4) result
in the gap spacing 1 + u becoming arbitrarily small as t→ t−c for λ sufficiently large. Conse-
quently, a physically unreasonable situation occurs - the electric field generated between the
plates becomes arbitrarily large as t → t−c . The focus of this paper is first to regularize the
singularity in the electric field at touchdown, thereby rendering it large but finite thereafter,
and second to describe the post-touchdown equilibrium configurations of the resulting model.
We obtain suitable regularized equations in Section 2 and analyze their properties in Section
3. First, we show in Section 3.1 that the regularized equations are globally well-posed. The
variational nature of these equations then leads us to consider equilibrium solutions. Nu-
merical simulations shown in Section 3.2 indicate that the regularized equations we propose
undergo additional dynamics beyond the initial touchdown event (see for instance Fig. 3)
and converge towards a new branch of equilibrium solutions. We show the corresponding
bifurcation diagrams in Section 3.3 and explain how the new branch of solutions appears in
Section 3.4. We then describe the properties of post-touchdown equilibrium configurations in
terms of matched asymptotic expansions in Section 4. We summarize our results in Section
5 and discuss implications of the present work, in particular regarding the bistable nature of
the proposed regularized equations.

2. Regularized governing equations.

In this section we develop a new model for the operation of a MEMS device with a small
insulating layer resting on the substrate, whose purpose is to physically prevent the occurrence
of a short circuit. Based on this principle, the model features an obstacle type regularization
of touchdown, in the form of a perturbed electrostatic potential with a repulsive term that
mimics the obstacle.

In dimensional form, the model requires that the vertical (i.e. parallel to the z-direction)
deflection u(x, y, t) of a plate occupying a region Ω ⊂ R2 with boundary ∂Ω, satisfies [42]

ρ h0
∂2u

∂t2
+ a

∂u

∂t
+ EI ∆2

⊥u− T ∆⊥u = −ε0
2
|∇φ|2z=u x ∈ Ω; (2.1a)

∇ · (σ∇φ) = 0 − (d+ h) ≤ z ≤ u(x, y, t), (2.1b)

where ⊥ indicates differentiation with respect to the x and y directions, and the permittivity
σ satisfies

σ =

{
σ0, −d ≤ z ≤ u(x, y, t)

σ1, −(d+ h) ≤ z ≤ −d
. (2.1c)

In equations (2.1), ρ, h0, EI, and T are the density per unit length, thickness, flexural rigidity
and tensile load of the plate. The term utt is the acceleration of the beam while ut, ∆2

⊥u,

4



∆⊥u and |∇φ|2z=u represent forces on the beam due to damping, bending, stretching, and the
electric field. The parameter a represents the strength of damping forces on the system, ε0 is
the permittivity of free space and d is the undeflected gap spacing. As shown in Figure 1, a
thin insulating layer of thickness h and permittivity σ1 is attached to the ground plate. The
electric potential φ, satisfying equation (2.1b), is zero on the ground plate and at voltage V
on the deflecting membrane so that

φ(−(d+ h)) = 0, φ(u) = V. (2.1d)

The problem is now reduced by recasting equations (2.1) in the dimensionless variables

x′ =
x

L
y′ =

y

L
z′ =

z

d
, u′ =

u

d
, φ′ =

φ

V
, σ′ =

σ

σ0

and assuming a small aspect ratio configuration, so that δ ≡ d/L � 1, where L is a char-
acteristic linear dimension of the domain Ω. Concentrating first on the potential equation
(2.1b), the non-dimensional equation for φ′ satisfies

∇′ · (σ′∇′φ′) = 0, −(1 + h/d) ≤ z′ ≤ u′(x′, y′, t); (2.2a)

σ′ =

 1, −1 ≤ z′ ≤ u′(x′, y′, t);
σ1

σ0
, −(1 + h/d) ≤ z′ ≤ −1

(2.2b)

φ′(−(1 + h/d)) = 0, φ′(u′) = 1. (2.2c)

In non-dimensional coordinates, we have that

∇′ ≡
(

1

L

∂

∂x′
,

1

L

∂

∂y′
,

1

d

∂

∂z′

)
and therefore problem (2.2) reduces to

∂2φ
′
+

∂z′2
+ δ2

(
∂2φ

′
+

∂x′2
+
∂2φ

′
+

∂y′2

)
= 0, −1 ≤ z′ ≤ u′; (2.3a)

∂2φ
′
−

∂z′2
+ δ2

(
∂2φ

′
−

∂x′2
+
∂2φ

′
−

∂y′2

)
= 0, −1− h

d
≤ z′ ≤ −1; (2.3b)

φ
′
+(u′) = 1, φ

′
+(−1) = φ

′
−(−1),

∂

∂z′
φ

′
+(−1) =

σ1

σ0

∂

∂z′
φ

′
−(−1), φ

′
−(−1− d/h) = 0.

(2.3c)

In the limit where the small aspect ratio δ → 0, the leading order solution to (2.3) is

φ′ =



1 +
z′ − u′

(1 + u′) +
dσ0

hσ1

−1 ≤ z′ ≤ u′;

z′ + 1 +
d

h
σ1

σ0
(1 + u′) +

d

h

−1− h

d
≤ z′ ≤ −1

(2.4)
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The explicit solution (2.4) which arises in this small aspect ratio limit affords a significant
reduction in the complexity of the governing equations. If the limit δ → 0 is not exercised,
the system for the potential (2.3) and the non-dimensionalized form of (2.1a) constitute a
free boundary problem for the deflection u(x, y, t) of the device. With the exclusion of the
insulating layer introduced here in (2.1c), the qualitative properties of dynamic and steady
solutions of this free boundary problem have been studied in [30, 9, 10, 27, 31, 32]. These
studies have established the well-posedness theory for the system of evolution equations (2.1),
the existence of a pull in voltage and also the convergence of equilibrium solutions of the free
boundary problem to those of the small aspect ratio limit as δ → 0. Accordingly, there is
good reason to believe that the small aspect ratio approximation is justified. In light of the
significant simplifications it affords, we proceed by calculating from (2.4) that the forcing on
the surface z′ = u′(x′, y′) is given by

ε0
2
|∇φ|2 = V 2 ε0

2d2

[(
∂φ′

∂z′

)2

+O(δ2)

]
= V 2 ε0

2d2

1(
1 + u′ +

dσ0

hσ1

)2
. (2.5)

After selecting the time scale t = (L2a/T )t′ in (2.1) and substituting the reduced term arrived
at in (2.5), the equation

Q2 ∂
2u′

∂t′2
+
∂u′

∂t′
+ β∆

′2
⊥u
′ − ∆

′
⊥u
′ = − λ

(1 + u′ + ε)2
(2.6a)

is obtained, where the dimensionless groups are

β =
EI

L2T
, Q =

√
Tρh0

aL
, ε =

dσ0

hσ1
, λ =

ε0L
2V 2

2d3T
. (2.6b)

The focus of our attention is further restricted to the case of small quality factor, Q, for
which the Q2utt term in (2.6) is considered negligible. This approximation, called the viscous
damping limit [42], assumes that inertial effects are negligible compared to those of damping.
The consequences of retaining a small Q > 0 in (2.6a) have recently been studied in [12, 21].
All quantities are now dimensionless and all derivatives are in the x, y directions so the ′ and
⊥ notations can be dropped. In summary, the dynamics of a MEMS device in the presence
of an insulating layer is thus modeled by the following obstacle problem

ut = −β∆2u+ ∆u− dψε
du

, ψε(u) = − λ

1 + u+ ε
, x ∈ Ω; (2.7a)

u ≥ −1, x ∈ Ω; (2.7b)

with boundary and initial values

u = 0, ∂nu = 0, on ∂Ω; u = 0, t = 0. (2.7c)

The combination of the ε term in the Coulomb nonlinearity of (2.7a) and the obstacle con-
straint (2.7b), act to prevent blow up at touchdown.
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2.1. Variational nature of the obstacle problem and a regularization

Obstacle problems like (2.7) often arise in mechanics when constraints are present [26]. From
a variational point of view, constraints are typically encoded by assigning infinite energy to
the set of disallowed configurations. Our model could be written formally as the L2-gradient
flow of the energy functional E : H2(Ω)→ R ∪ {+∞} given by

E =

∫
Ω

(
β

2
(∆u)2 +

1

2
|∇u|2 + ψ(u; ε)

)
dx dy, (2.8)

where

ψ(u; ε) =

−
λ

1 + u+ ε
u ≥ −1,

+∞ u < −1,
(2.9)

is an extension of ψε in (2.7a) to u ∈ R.

For practical purposes, it is often useful to work with a regularized version of the obstacle
problem which has smooth solutions (e.g. [41, 44]). This typically involves, in essence,
replacing an energy functional like (2.8) with one which is smooth but otherwise mimics the
penalization associated with the obstacle.

For our problem, we will replace the potential (2.9) with one which has the same qualitative
structure. Specifically, the new potential φε will behave like ψ in the following ways:

1. For fixed values of u > −1, φε(u) ∼ ψ(u; ε) as ε→ 0.

2. limu→−1+ φε(u) = +∞
3. The value of ψ which occurs at the obstacle value u = −1 is the same as the minimum

of φε(u).

A class of potentials which fulfills these criteria is

φε(u) = − λ

(1 + u)
+

λ(ζε)m−2

(m− 1)(1 + u)m−1
, λ > 0, 0 < ε < 1, (2.10)

for integer exponents m > 2, and ζ = (m− 2)/(m− 1). We set ε′ = ζε, i.e. the regularizing
parameter ε′ associated with the potential φε′(u) is a non-dimensional rescaling of the original
physical ε, defined in (2.6b). Hereafter we drop the prime notation. A schematic diagram of
the graph of φε is shown in Fig. 2.
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Figure 2: A schematic diagram of the potential (2.10). The solid line indicates the case ε = 0 while
the dashed line represents the case 0 < ε < 1. Note that the perturbed potential has the generic
features of having a local minimum at u = −1 + ε, of being repulsive when −1 < u < −1 + ε, and
attracting when u > −1 + ε.

In the preceding discussion, we have used an elastic model of the deflecting surface based on
a plate under tension, which results in a combination of Laplacian and bi-Laplacian terms
in (2.7a). Our analysis and observations indicate that when both these terms are present,
qualitative solution features such as the scaling properties of solutions as ε→ 0 (cf. §4) and
the presence of oscillatory boundary layer profiles (cf. Fig. 11), are those associated with the
bi-Laplacian only case. To effect a cleaner quantitative analysis, we therefore study equations
featuring the bi-Laplacian and Laplacian terms in isolation, rather that in combination. In the
bi-Laplacian case we can dispense with the parameter β by a different non-dimensionalization

λ =
ε0L

4V 2

2d3EI
, t =

L4a

EI
t′, (2.11)

whereas for the Laplacian case, the scaling of λ is as in (2.6b).

The culmination of the obstacle regularization and separation of the linear term therefore
leads us to study two problems, the second order equation

ut = ∆u− λ

(1 + u)2
+

λεm−2

(1 + u)m
, x ∈ Ω; u = 0, x ∈ ∂Ω, (2.12a)

and the fourth order equation

ut = −∆2u− λ

(1 + u)2
+

λεm−2

(1 + u)m
, x ∈ Ω; u = ∂nu = 0, x ∈ ∂Ω. (2.12b)

In particular, the singular limit ε→ 0 will receive special attention.
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3. Properties of the regularized equations

3.1. Well-posedness

In this section we detail the existence theory for both the Laplacian and bi-Laplacian prob-
lems, which we write as

ut = ∆u− φ′ε(u), x ∈ Ω; u = 0, x ∈ ∂Ω; (3.1a)

ut = −∆2u− φ′ε(u) x ∈ Ω; u = ∂nu = 0, x ∈ ∂Ω, (3.1b)

together with the initial condition u(x, 0) = u0(x). The spatial domain Ω ⊂ Rn is assumed
compact with a sufficiently smooth boundary. We note that the evolution equations are L2

gradient flows. In particular, if

EL(t) =

∫
Ω

(
1

2
|∇u|2 + φε(u)

)
dx dy, (3.2a)

EB(t) =

∫
Ω

(
1

2
|∆u|2 + φε(u)

)
dx dy, (3.2b)

it is easily shown that dEL/dt ≤ 0 and dEB/dt ≤ 0. The following results are proved for
a class of potentials φ which is fairly general and for which (2.10) is a subset. For both
equations we suppose

φε(u) ∈ C1, φε(u) ≥ φmin for u ∈ (−1,∞), φε(u) < φmax for u ∈ (−1 + ε,∞) . (3.3)

Additional restrictions for each equation are

φ′ε(u) < 0 if u ∈ (−1,−1 + ε), for equation (3.1a), (3.4a)

φε(u) ∼ c(ε)(1 + u)−m+1 u→ −1, for equation (3.1b). (3.4b)

for constant c(ε).

Theorem 3.1 (Global Existence - Laplacian Case). Suppose that the initial condition
satisfies u0 ∈ C0(Ω) and u0 > −1. Then the solution for (3.1a) exists for all t > 0 and
u(x, t) > min(inf u0,−1 + ε).

Proof: Let u±(t) solve the initial value problems

du±
dt

= −φ′ε(u±), u−(0) = inf u0, u+(0) = supu0. (3.5)

Conditions (3.3,3.4a) ensure that u± will exist for all t > 0 and u± > −1. Furthermore,
u− > min(inf u0,−1 + ε). Standard comparison methods for parabolic equations yield the a
priori bounds u−(t) ≤ u(x, t) ≤ u+(t). This guarantees that the solution will exist globally.

Theorem 3.2 (Global Existence - bi-Laplacian Case). Suppose that the initial condi-
tion satisfies u0 ∈ H2(Ω) ∩ C0(Ω) and u0 > −1. Then the solution u(x, t) of (3.1b) exists
for all t > 0, provided m ≥ 3 in dimension n = 1 and m > 3 in dimension n = 2.
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Proof: Following [5], it suffices to derive a priori pointwise bounds on the solution. This
guarantees that the equation is uniformly parabolic and existence follows from standard
arguments. The gradient flow structure and dEB/dt ≤ 0 implies that EB(T )−EB(0) ≤ 0 for
any T > 0, and so∫

Ω

1

2
(∆u(T ))2dx dy ≤

∫
Ω

1

2
(∆u0)2dx dy +

∫
Ω
φε(u0)dx dy −

∫
Ω
φε(u(T ))dx dy. (3.6)

Since φ(·) has a lower bound, it follows that u ∈ H2(Ω) a priori. The Sobolev imbedding
theorem then gives u ∈ C1(Ω) in dimension n = 1 and u ∈ C0,α(Ω) in dimension n = 2
where 0 < α < 1. In particular there are constants K1 and K2, depending only on the initial
condition, so that

‖u‖C1 < K1, n = 1; (3.7)

‖u‖C0,α < K2(α), n = 2. (3.8)

Now let umin = minu(T ) be the minimum attained at a point x0. Note that inequality (3.6)
implies an upper bound for

∫
Ω φε(u(T ))dx dy. In dimension n = 1 it follows that there exist

generic constants K so that

C >

∫
Ω
φε(u(T ))dx dy ≥ K(ε)

∫
Ω

(umin + 1 +K1|x− x0|)−m+1dx dy ≥ µ(umin + 1), (3.9)

where

µ(umin + 1) = K(ε)

{
− ln(umin + 1) m = 3,

(umin + 1)−m+3 m > 3.
(3.10)

In dimension n = 2 one similarly has

C > K(ε)

∫
Ω

(umin + 1 +K2|x− x0|α)−m+1dx dy ≥ µ(umin + 1), (3.11)

where

µ(umin + 1) = K(α, ε)

{
− ln(umin + 1) m = 1 + 2/α,

(umin + 1)3−m m > 1 + 2/α.
(3.12)

In both cases, this establishes, for ε > 0, the lower bound u > −1 for all t > 0.

The two preceding results capture two important features of the perturbed potential system.
First, for a wide range of potentials, equations (3.1) mimic the effect of the obstacle constraint
u > −1, established in (2.7b). This provides confidence that the perturbed potential system
qualitatively reflects the behavior of the obstacle problem (2.7). Second, in contrast to the
ε = 0 case, the system is now well-posed for all t > 0 and ε > 0 and no finite time singularity
occurs. It is therefore relevant to investigate the limiting behavior of equations (3.1) in the
limit t → ∞. This long term behavior of equations (3.1) is related to the minimizers of the
functionals given in (3.2).

3.2. Variational dynamics

The dynamics of Equations (2.12) is variational and leads to relaxation of the system towards
equilibrium solutions. For values of λ such that touchdown would not occur when ε = 0,

10



−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

x

u

(a) Initial touchdown.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

x

u

xc−xc

(b) Spreading of touchdown region.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

x

u

−xc xc

(c) Boundary pinning.

Figure 3: One-dimensional solutions of (2.12a) initialized with zero initial data and parameter
values ε = 0.01, λ = 5. The left panel shows the initial touchdown event at x = 0. The center panel
shows the spread of the touchdown region towards the boundary. Right panel: An equilibrium
state is reached after the moving front is pinned by its interaction with the boundary.

the regularization term in (2.12) remains of order εm−2 since 1 + u remains finite, and the
dynamics in the presence of regularization is therefore a regular perturbation of the dynamics
without regularization. For larger values of λ however, the non linear term is prevented from
diverging by the regularization term and the dynamics evolve towards a solution for which
most of the membrane is in near contact with the dielectric layer covering the substrate. This
is illustrated in Figure 3, in the Laplacian case, for a one-dimensional domain, Ω = [−1, 1].
As an initially flat membrane deforms under the effect of the applied electric field, it first
touches down at one point in the middle of the domain Ω. A region where u ' −1 + ε
then grows from the initial touchdown location towards the boundary of the domain. The
spreading of the contact set slows down as its periphery approaches the edge of the domain
before eventually being arrested at distances ±(1 − xc) from the x = ±1 boundary points.
Qualitatively similar behavior is observed in the bi-Laplacian case. A forthcoming paper [35]
will concentrate on quantitative descriptions of the dynamical spreading of the contact set.

This dynamics is markedly different from the ε = 0 case, for which no equilibrium solutions
exist above a given threshold λ > λ∗. As we will see below, this is due to the appearance
of a new maximal branch of equilibrium solutions when ε 6= 0. Here we define the maximal
solution as the one attaining the greatest L2 norm for any particular λ.

3.3. One-dimensional equilibrium solutions and bifurcation diagrams

One-dimensional equilibrium solutions satisfy the second order elliptic equation

uxx =
λ

(1 + u)2
− λεm−2

(1 + u)m
, x ∈ (−1, 1); u(±1) = 0, (3.13a)

and its fourth order equivalent

−uxxxx =
λ

(1 + u)2
− λεm−2

(1 + u)m
, x ∈ (−1, 1); u(±1) = u′(±1) = 0. (3.13b)

Figure 4 shows bifurcation diagrams obtained by numerically solving the relevant boundary
value problem at fixed values of ‖u‖22. Starting from ‖u‖22 = 0, and λ = 0, a continuation
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method is employed to trace out each solution branch of the bifurcation diagram by identifying
a value of λ and a solution u(x) for each incremental value of the L2 norm of the solution.
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(a) Laplacian bifurcation diagram
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(b) Bi-Laplacian bifurcation diagram

Figure 4: Numerically obtained bifurcation diagrams showing equilibrium solutions of (2.12) for
m = 4. Left panel: Laplacian case; right panel: bi-Laplacian case. In each of the above, solution
curves are plotted for ε < εc, ε ≈ εc and ε > εc to highlight the threshold of bistability. When
ε = 0, only two branches of solutions exist (dashed curves).

The bifurcation diagrams shown in Fig. 4 exhibit two remarkable deviations from the standard
ε = 0 bifurcation diagram, displayed as a dashed curve on both panels. The first is that for
λ arbitrarily close to 0 and ε finite, equations (2.12) appear to have a unique equilibrium
solution - the minimal solution branch. Secondly, there exists a parameter range where the
system exhibits bistability, and thus also possesses a stable maximal branch of equilibrium
solutions. More precisely, there is a critical value εc such that for ε < εc, equations (2.12)
are bistable over a parameter range 0 < λ∗(ε) < λ < λ∗(ε) while for ε ≥ εc, a unique solution
is present for each λ, including for large values of λ. As ε → 0, the bistable region extends
towards smaller values of λ, that is λ∗(ε)→ 0, as is further discussed below and in §4.3.

3.4. Existence of a new branch of equilibrium solutions

To understand the existence of the saddle-node bifurcation at λ = λ∗(ε) when ε 6= 0, we
consider the dynamical system describing equilibrium solutions of Equation (2.12a), with
and without regularization. Equilibrium solutions of (2.12a) satisfy (3.13a), which in terms
of the rescaled independent variable y =

√
λx reads

uyy =
1

(1 + u)2
− εm−2

(1 + u)m
, y ∈ [−

√
λ,
√
λ], u(±

√
λ) = 0.

The above ordinary differential equation is equivalent to the first-order system
uy = w

wy =
1

(1 + u)2
− εm−2

(1 + u)m

. (3.14)

When ε = 0, this system has a line of singularities at u = −1. When ε 6= 0, this line
still persists, but trajectories originating near u = 0 cannot get close to u = −1, due to
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the presence of a saddle point at u = −1 + ε, w = 0 (see Figure 5). We are interested in
trajectories that connect the vertical line u = 0 to itself. Amongst these, those of half-length√
λ, if any, correspond to equilibrium solutions of (3.13a). Note that system (3.14) is left

invariant by the transformation y → −y, w → −w, and that the equilibrium solutions we are
looking for are therefore symmetric with respect to the w = 0 axis. One can parameterize
each trajectory that connects u = 0 to itself by the w-coordinate of the point where the
trajectory meets the line u = 0 in the upper half-plane, or equivalently by the u-coordinate
of the point where the trajectory crosses the horizontal axis. We will denote the former by
w0 and the latter by u0 ≡ −1 + α, with 0 < α ≤ 1. Since distinct trajectories do not cross,
w0 is a decreasing function of α with α ∈ (0, 1] for ε = 0 and α ∈ (ε, 1] for ε 6= 0.

−1 0 0.5
u

−2

−1

0

1

2

w

u−1+α = 
0

w0

−1 0 0.5
u

−2

−1

0

1

2

w

u−1+α = 
0

−1+ε

w0

Figure 5: Phase portraits for the time-independent system in the Laplacian case.
Left: no regularization, ε = 0. Right: in the presence of regularization, with
m = 4, and ε = 0.1. (Trajectories obtained with PPLANE)

A trajectory that connects the point (u = −1 + α,w = 0) to the point (u = 0, w = w0) has
an equation of the form

1

2
w2 = − 1

1 + u
+

εm−2

(m− 1)(1 + u)m−1
+ C, C =

1

α
− εm−2

(m− 1)αm−1
,

and its length lε(α) is given by

lε(α) =

∫ l(α)

0
dy =

∫ 0

−1+α

du

w

=

∫ 0

−1+α

[(
1

α
− 1

1 + u

)
+

εm−2

m− 1

(
1

(1 + u)m−1
− 1

αm−1

)]−1/2

du. (3.15)

When ε = 0, the above integral can easily be evaluated as

l0(α) =

[√
α

2

(√
(1 + u)(1 + u− α) + α ln

(√
1 + u+

√
1 + u− α

))]0

−1+α

=

√
α

2

(√
1− α+ α ln

(
1 +
√

1− α
)
− α ln

(√
α
))
.

As shown in Fig. 6, for α ∈ (0, 1], the graph of the above function is concave down with
l0(1) = 0 and limα→0+ l0(α) = 0. It has a maximum at α∗(0) ' 0.612. As a consequence,
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for values of λ such that
√
λ < l0(α∗(0)), there are two branches of solutions that satisfy

the boundary conditions. These two branches meet at a saddle-node bifurcation when λ =
λ∗(0) = l0(α∗(0))2 ' 0.35. This value of λ agrees very well with the numerically obtained
value of the turning point for the bifurcation diagram of Figure 4 with ε = 0 (dashed curve
in left panel).

Figure 6: Graph of the function lε(α) in the harmonic case in the absence of
regularization (ε = 0, solid curve) and in the presence of regularization (for
ε = 0.1 with m = 4, dashed curve). The vertical line at α = ε = 0.1 indicates
where lε(α) diverges when ε 6= 0.

For ε 6= 0, the change of variable v =
u+ 1− α

α
leads to

lε(α) =
α3/2

√
2

∫ −1+1/α

0

[
v

v + 1
+

εm−2

(m− 1)αm−2

1− (1 + v)m−1

(1 + v)m−1

]−1/2

dv

=
α3/2

√
2

∫ −1+1/α

0

(
v

v + 1

)−1/2 [
1 +

εm−2

(m− 1)αm−2

1− (1 + v)m−1

v(1 + v)m−2

]−1/2

dv

The above integral may be expanded in powers of ε near α = O(1). Since

1 ≤ (1 + v)m−1 − 1

v(1 + v)m−2
≤ m− 1 for v ≥ 0,

the integral appearing in the k-th term of the expansion is finite, and we therefore obtain a
regular asymptotic expansion of lε(α) in powers of ε. For α near α∗, this expansion may be
used to describe how the location of the saddle node bifurcation that occurs at λ = λ∗(0)
when ε = 0 is modified for small values of ε. We indeed obtain

λ∗(ε) = lε(α∗(ε))2

= λ∗(0) + εm−2 [α∗(0)]−m+7/2

m− 1

√
λ∗(0)

2

∫ −1+1/α

0

(
v

v + 1

)−1/2 (1 + v)m−1 − 1

v(1 + v)m−2
dv

+ O
(
ε2(m−2)

)
,

where α∗(ε) is the value of α at which lε(α) reaches its local maximum. For m = 4, the above
reads λ∗(ε) ' 0.350004 + 0.794451ε2 + O

(
ε4
)
, which is in agreement with the expansion of

λ∗(ε) briefly mentioned in Section 4, and derived in [36].

14



As α→ ε+, lε(α) is expected to diverge for all values of ε 6= 0, since the trajectory approaches
the fixed point at u = −1+ε, w = 0. To analyze this divergence, we set α = κε, with κ = 1+η
and η small, and obtain

lε(α) =
α3/2

√
2

∫ −1+1/α

0

(
v

v + 1

)−1/2 [
g(η) +

v p(v)

(1 + v)m−2

]−1/2

dv,

where

g(η) =
1

(1 + η)m−2

m−2∑
k=1

(
m− 2

k

)
ηk

v p(v) =
1

(1 + η)m−2

m−2∑
k=1

(
m− 2

k

)
k

k + 1
vk.

The function H(v) =
v p(v)

(1 + v)m−2
is such that H(0) = 0 and

lim
v→∞

H(v) =
1

(1 + η)m−2

m− 2

m− 1
.

Moreover, H is strictly increasing for 0 ≤ v ≤ L, with L = −1 + 1/α; a simple calculation
indeed shows that its derivative is given by

dH

dv
=

1

(1 + η)m−2

1

(1 + v)m−1

[
m− 2

2
+

m−3∑
k=1

(
m− 2

k + 1

)
vk

k + 2

]
≥ m− 2

2(1 + η)m−2
.

As a consequence, on the interval [0, L], H is bounded above by the line tangent to its graph
at the origin, and bounded below by the straight line that goes through the origin and the
point of coordinates (L,H(L)). In other words,

p(L)v

(1 + L)m−2
≤ H(v) ≤ (m− 2)v

2(1 + η)m−2
, 0 ≤ v ≤ L.

This, together with 1 ≤ v + 1 ≤ L + 1 for v ∈ [0, L], allows us to bound the term[
g(η) +

v p(v)

(1 + v)m−2

]−1/2

that appears in the expression for lε(α), and therefore bound lε(α).

Noting that ∫
dv√

v(v + s(η))
= 2 ln

(√
v +

√
v + s(η)

)
,

we obtain l<(η) ≤ lε(α) ≤ l>(η), where η =
α

ε
− 1 and

l<(η) =
ε3/2

√
m− 2

(
1 +

m+ 1

2
η +O(η2)

)
ln

(
2(1− ε)
εη

+
m− 3

2
η +O(η2)

)
l>(η) = −ε

1/2

√
2

√
m− 1

m− 2
ln(g(η)) +O ((η + ε)(ln(η) + ln(ε))) .

For ε fixed but small and η → 0, we thus have

− ε3/2

√
m− 2

ln(η) +O (η ln(η)) ≤ lε(α) ≤ −ε
1/2

√
2

√
m− 1

m− 2
ln(η) +O (η ln(η)) . (3.16)
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This indicates that the graph of lε(α) initially follows that of l0(α) as α decreases towards ε,
and then diverges likes − ln(η) = − ln(−1 + α/ε), as shown in Fig. 6. The dashed curve is a
numerical evaluation of lε(α) for ε = 0.1 and m = 4. This divergence as α→ ε+ implies the
existence of a third branch of solutions for λ ≥ λ∗(ε), where

√
λ∗(ε) is the local minimum of

lε(α). The bounds in Equation (3.16) show that
√
λ∗(ε)→ 0 as ε→ 0+. As ε increases, the

minimum of the graph of lε(α) merges with its maximum, and only one branch of solutions
exists beyond that point. This is illustrated in the numerically obtained bifurcation diagrams
shown in Fig. 4 with ε 6= 0 (solid curves in the left panel). The right panel of Fig. 4 shows
that a similar behavior is observed in the bi-Laplacian case.

3.5. Nature of the new branch of solutions

−1 −0.5 0 0.5 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

x

u
−0.6 −0.4 −0.2

−0.96

−0.95

−0.94

−0.93

x

u

x c

(a) Second order, ε = 0.05, λ = 0.63.
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(b) Fourth order, ε = 0.05, λ = 24.82.

Figure 7: Typical solutions of (3.13) on the stable upper branch for m = 4. Panels (a) and (b)
represent solutions of (3.13a) and (3.13b) respectively. In each of the two panels, the inset panels
show an enlargement of the sharp interface and touchdown region.

The newly present maximal branch of stable equilibria can be interpreted as a post touchdown
equilibrium state. These additional solutions have three characteristic features, as illustrated
in Fig. 7 for values of λ > λ∗. First, in a large central portion of the domain, the solution is
flat and takes on values near −1 + ε. Second, a sharp transition layer links the flat region to
a profile satisfying the boundary conditions. For the Laplacian problem (3.13a), this sharp
interface is monotone while in the bi-Laplacian case, the profile is non-monotone. Therefore,
in the Laplacian case the region where u ' −1+ε is spread over a finite interval while in the bi-
Laplacian case, u attains its minimum only at two discrete points. The third characteristic
feature of this branch of equilibrium solutions is the nature of the profile connecting the
boundary to the transition layer and in particular the size of the boundary layer. In what
follows, we use matched asymptotic expansions to characterize these properties in the limit
as ε→ 0.

4. Scaling properties of equilibrium solutions.

In this section, we construct 1D post-touchdown equilibrium configurations of (3.13) in the
limit as ε → 0. As seen in Fig. 7, these solutions have interfaces located at ±xc, around
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which a narrow transition layer is centered. This transition layer separates an interior region
of finite extent (−xc, xc), from a sharp boundary profile. As explained above, the deflection
profile u satisfies u(x) = −1 + O(ε) in the entire interior region, is monotonic on [0, 1] in
the Laplacian case, and has a local minimum at the discrete points ±xc in the bi-Laplacian
case. In both cases, it is necessary to calculate the extent of the interior region (−xc, xc).
From numerical simulations, it appears that xc approaches the boundary as ε → 0. In the
calculations below, we impose this condition, determine the scaling laws that ensue, and find
the equilibrium solutions in terms of matched asymptotic expansions.

4.1. Laplacian Case

We consider Equation (3.13a) in the limit ε→ 0 and look for solutions to

uxx =
λ

(1 + u)2
− εm−2λ

(1 + u)m
, x ∈ [−1, 1]; (4.1a)

u(±1) = 0, (4.1b)

that satisfy the following properties: (i) u(x) = −1 + ε + O(ε) for x ∈ [−xc, xc], (ii) u(x)
goes from its interior value of −1 + ε+ O(ε) to the value 1 in the boundary layers [−1,−xc]
and [xc, 1], and (iii) there are two transition regions, centered at ±xc. From a dynamical
system point of view, the particular trajectory we are interested in crosses the horizontal axis
w = ux = 0 of the associated phase plane near but to the right of the fixed point (−1 + ε, 0).
As the trajectory gets closer to the fixed point (−1 + ε, 0), the corresponding solution u(x)
“spends more time” near u = −1 + ε and therefore xc → 1. To make the scaling explicit,
we write xc = 1− εpx̄c for some x̄c and p to be determined. From symmetry considerations,
since Ω = [−1, 1], we need only study the equations on the interval [0, 1].

To analyze the solution in the boundary layer interval [1− εpx̄c, 1], it is convenient to use the
variables

u(x) = w(η), η =
x− xc
1− xc

=
x− (1− εpx̄c)

εpx̄c
, (4.2)

which transforms (4.1) and the boundary condition u(1− εpx̄c) = −1+O(ε) into

wηη = ε2pλc

[
1

(1 + w)2
− εm−2

(1 + w)m

]
, η ∈ [0, 1]; w(0) = −1+O(ε), w(1) = 0, (4.3a)

where we have defined
λc = λx̄2

c . (4.3b)

In light of Equation (4.4b) below, the introduction of λc should be viewed as equivalent to
expanding xc in powers of ε and ε log ε. We now develop the asymptotic expansion

w = w0 + ε2p log εw1/2 + ε2pw1 + O(ε2p) (4.4a)

λc = λ0c + ε2p log ε λ1c + ε2pλ2c + O(ε2p) (4.4b)

for solutions to (4.3a). The O(ε log ε) terms are known as logarithmic switchback terms
and have previously appeared in the asymptotic construction of singular solutions to non-
regularized MEMS problems [40]. Their necessity in obtaining a consistent expansion is
due to a logarithmic singularity in w1 and will become apparent in the process of matching
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to a local solution valid in the vicinity of η = 0. At leading order, the solution is given by
w0(η) = −1+η while the switchback term satisfies w1/2 = a1/2(η−1) where a1/2 is a constant
to be determined in the matching process. The problem for w1 is

w1ηη =
λ0c

(1 + w0)2
, 0 < η ≤ 1; w1(1) = 0, (4.5a)

and its solution reads
w1 = −λ0c log η + a1(η − 1). (4.5b)

In the transition layer near η = 0, i.e. for x ' xc, we introduce the local variables

w(η) = −1 + ενv(ξ), ξ =
x− xc
εq

, (4.6)

and set the values ν = 1 and q = 3/2. This transforms equation (4.3a) to

vξξ = ε2p−1λ

[
1

v2
− 1

vm

]
, −∞ < ξ <∞. (4.7)

To balance the left and right hand sides of (4.7) as ε→ 0, the value p = 1/2 is required. In
order to match with the far-field solutions, we need to impose

lim
ξ→−∞

v(ξ) = 1 + O(1); −1 + εv
(ηx̄c
ε

)
∼ w(η) as ξ =

ηx̄c
ε
→∞.

Since the associated dynamical system has only one fixed point at (1,0) in the (v,vξ) phase
plane, there is no trajectory that exactly meets these conditions. However, the unstable
manifold of the above fixed point satisfies the zeroth order equation and boundary conditions.
We then look for approximate solutions that solve the differential equation to a given order
in ε and also have the correct behavior as ξ → −∞, to the same order in ε. In particular, if
the O(ε) term that appears in the boundary condition is small beyond all orders in ε, we will
have v(ξ) = v0(ξ) + O(εk), for all integers k ≥ 1. The leading order problem for v0(ξ) reads

v0ξξ = λ

[
1

v2
0

− 1

vm0

]
, −∞ < ξ <∞, (4.8a)

v0(ξ)→ 1, v0ξ(ξ)→ 0, as ξ → −∞. (4.8b)

As mentioned above, its solution corresponds to the positive branch of the unstable manifold
of the fixed point (v0 = 1, v0ξ = 0) in the (v0,v0ξ) phase plane of the associated dynamical
system. The above equation may be integrated once to give

1

2
v2

0ξ = λ

[
− 1

v0
+

1

(m− 1)vm−1
0

]
+ C0, C0 = λ

m− 2

m− 1
,

where the value of C0 was obtained from the condition as ξ → −∞. From this equation, we
can infer the behavior of the unstable manifold as ξ →∞: setting v0(ξ) = αξ+β log ξ+O(1)
and equating the constant terms and the terms in 1/ξ, we find

v0(ξ) =

√
2λ(m− 2)

m− 1
ξ − m− 1

2(m− 2)
log ξ + γ +O

( log ξ

ξ

)
as ξ →∞.
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To match with the boundary layer expansion, we re-write −1 + εv0(ξ) + O(ε) in terms of
η = εξ/x̄c and obtain, after making use of

x̄c =

√
λc
λ

=

√
λ0c

λ

[
1 +

λ1c

λ0c
ε log ε+

λ2c

λ0c
ε+ O(ε)

]1/2

,

the following expansion, as ξ →∞:

−1 + εv0(ξ) ' −1 + η

√
2λ0c(m− 2)

m− 1
+ η

√
2λ0c(m− 2)

m− 1

λ1c

2λ0c
ε log ε+

m− 1

2(m− 2)
ε log ε

− m− 1

2(m− 2)
ε log η + ε

(√
2λ0c(m− 2)

m− 1

λ2c

2λ0c
η + γ − m− 1

4(m− 2)
log
(λ0c

λ

))
+O(ε).

To match with

w(η) = −1 + η + ε log ε a1/2(η − 1)− λ0cε log η + εa1(η − 1) + O(ε),

we need to impose

λ0c =
m− 1

2(m− 2)
. (4.9)

We then have

−1+εv0(ξ) ' −1+η+ε log ε
(
η
λ1c

2λ0c
+λ0c

)
−λ0cε log η+ε

( λ2c

2λ0c
η + γ − λ0c

2
log
(λ0c

λ

))
+ O(ε),

which also requires that

a1/2 = −λ0c, λ1c = −2λ2
0c, λ2c = 2a1λ0c, and a1 =

λ0c

2
log
(λ0c

λ

)
− γ.

From (4.3b), the two term expansion of x̄c is then

x̄c =

[
λ0c

λ
− 2ε log ε

λ2
0c

λ
+

2a1λ0c

λ
ε+ O(ε)

]1/2

=

√
λ0c

λ

[
1− λ0cε log ε+ a1ε+ O(ε)

]
. (4.10)

To summarize, we expect the equilibrium solution u of (3.13a) to satisfy the following
properties in the limit ε→ 0:

• u(x) = −1 + ε+O(εk), k > 2 in the interior region x ∈ [0, xc], with xc = 1− ε1/2x̄c and
x̄c given by (4.10);

• u(x) = −1 + ε v0(ξ) + O(ε) in the transition layer near xc, with ξ =
x− xc
ε3/2

.

• u(x) = −1 + η− ε log ελ0c(η− 1)− λ0cε log η+ εa1(η− 1) + O(ε) in the boundary layer

x ∈ (xc, 1], with η =
x− xc
ε1/2x̄c

and x̄c given by (4.10).
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Figure 8 shows a comparison between the above composite asymptotic expansion and a
numerical solution of the full problem, indicating very good agreement. In order to plot the
solution obtained with matched asymptotic expansions, we have assumed that the contact
point xc coincides with the maximum of the second derivative of u(x), i.e.,

xc = arg max
x∈[0,1]

u′′(x) = (x ∈ [0, 1] | u′′(x) = max
y∈Ω

u′′(y)),

and calculated numerically the value of γ in (4.10) accordingly.
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Figure 8: Composite asymptotic expansion of equilibrium solutions to (4.1) for values m = 4,
λ = 10, ε = 0.05. The solid line is the numerical solution and the dashed line is the composite
asymptotic expansion.

For comparison to the bifurcation diagrams, the squared L2 norm of the equilibrium solution
to (3.13a) is computed to be, in the limit ε→ 0,∫ 1

−1
u(x)2 dx = 2

[∫ 1−ε1/2x̄c

0
u(x)2 dx+

∫ 1

1−ε1/2x̄c
u(x)2 dx

]

= 2

[
1− 2ε+ O(ε)− 2

3
ε1/2

√
λ0c

λ
+ O(ε3/2 log ε)

]
.

If we replace λ0c by its expression given in (4.9), the above equation reads

‖u‖22 = 2

[
1− 2

3

√
m− 1

2λ(m− 2)
ε1/2 − 2ε+O(ε3/2 log ε)

]
. (4.11)

The dashed curve in the left panel of Fig. 9 shows the above quantity as a function of λ for
m = 4 and ε = 0.01, and matches the upper branch of the bifurcation diagram very well.
The right panel of Figure 9 is a numerical confirmation of the p = 1/2 scaling.
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Figure 9: Numerical verification of (4.11) and p = 1/2 for m = 4. The left panel displays the
bifurcation diagram for ε = 0.01. The solid line represents the numerically obtained branches of
solutions, while the dashed line is the asymptotic formula for the solution, as derived in (4.11). The
right panel displays a comparison of the predictions for the equilibrium contact point xc= 1−

√
εx̄c

with x̄c given by (4.10), for fixed λ = 10 and a range of ε. The dashed line is the leading order
expansion while the dotted is the three term.

4.2. Bi-Laplacian Case

We now turn to 1D equilibrium profiles of (3.13b) in the limit xc → 1 as ε → 0. As in the
Laplacian case, we write xc = 1− εpx̄c where p and x̄c are parameters to be determined. For
this particular case, a balancing argument will provide the value p = 1/4. We consider the
outer solution in the interval [1− εpx̄c, 1] and employ the rescaling

u(x) = w(η), η =
x− (1− εpx̄c)

εpx̄c
, (4.12)

which results in

−wηηηη = ε4pλc

[
1

(1 + w)2
− εm−2

(1 + w)m

]
, η ∈ [0, 1]; (4.13a)

w(0) = −1, w′(0) = 0, w(1) = w′(1) = 0, (4.13b)

where in addition, the parameter λc is defined by

λc = λx̄4
c . (4.13c)

A logarithmic singularity also arises in the fourth order case, and as before, switchback terms
are required in the expansion of (4.13). In addition there is a term at O(ε1/2) which arises
from the translation invariance of the inner problem. In the end, the expansions

w = w0 + ε1/2w1/4 + ε4p log εw1/2 + ε4pw1 + O(ε4p); (4.14a)

λc = λ0c + ε1/2λ1c + ε4p log ε λ2c +O(ε4p) (4.14b)

are applied to (4.13). At leading order w0ηηηη = 0 and, with boundary conditions applied,
reduces to w0 = −1 + 3η2 − 2η3. The switchback term w1/2 solves the problem

w1/2ηηηη = 0, η ∈ (0, 1); w1/2(1) = w1/2η(1) = 0 (4.15a)
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and is given by
w1/2(η) = α1 + α2η − (3α1 + 2α2)η2 + (2α1 + α2)η3 (4.15b)

where α1 and α2 are constants to be determined by matching. The term ε1/2w1/4, not present
in the Laplacian analysis of §4.1, satisfies

w1/4ηηηη = 0, η ∈ (0, 1); w1/4(0) = w1/4(1) = w1/4η(1) = 0 (4.16a)

w1/4(η) = ξ0(η − 2η2 + η3), (4.16b)

where ξ0 is a constant to be fixed in the matching procedure. The correction term at O(ε4p)
solves

−w1ηηηη =
λ0c

(1 + w0)2
, η ∈ (0, 1); w1(1) = w1η(1) = 0 (4.17)

and includes terms in log η. The full solution is given by

w1(η) =
(

2β1 + β2 +
5

486

)
η3 −

(
3β1 + 2β2 +

5

486

)
η2 + β2η + β1

+

(
16

729
η3 − 2

27
η2 +

2

27
η − 1

54

)(
log(3− 2η)− log η

)
,

where the constants β1 and β2 are arbitrary. In the transition layer near x = xc, we define
the local variables

u(x) = −1 + ενv(ξ), ξ =
x− xc
εq

, (4.18)

and set the values ν = 1 and q = p+ 1/2. This transforms equation (3.13b) to

−vξξξξ = λε4p−1

(
1

v2
− 1

vm

)
, −∞ < ξ <∞. (4.19)

To make this equation independent of ε, we set p = 1/4. The far-field requirements are given
by

lim
ξ→−∞

v(ξ) = 1 + O(1); −1 + εv
(η x̄c
ε1/2

)
∼ w(η) as ξ =

η x̄c

ε1/2
→∞.

As in the Laplacian case, we will assume that the O(ε) term that appears in the far field
condition as ξ → −∞ is of order εk with k large, or that it is small beyond all orders in
ε, so that v approximately lies on the two-dimensional unstable manifold of the fixed point
(v = 1, vξ = 0, vξξ = 0, vξξξ = 0) of the four-dimensional phase space associated to the above
differential equation. We thus seek an expression for v that solves (4.19) to a given order in ε
and satisfies the far-field conditions to that order as well. Equation (4.19) may be integrated
once to give

−vξξξ vξ +
1

2

(
vξξ
)2

+
λ

v
− λ

(m− 1)vm−1
= C, (4.20)

where the constant of integration C = λ
m− 2

m− 1
is determined by the value of the left-hand-side

of (4.20) at the fixed point (v = 1, vξ = 0, vξξ = 0, vξξξ = 0). We set

v(ξ) = v0(ξ) + ε1/2v1(ξ) + εv2(ξ) +O(ε3/2),
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in (4.20) and solve the resulting equations at each order in half-integer powers of ε. Since the
dominant term of w(η) as η → 0 is in η2, the zeroth order solution v0(ξ) must behave like ξ2

as ξ →∞. By substituting

v0 (ξ) = b0ξ
2 + c0ξ + d0 + η0 log ξ + γ0

log ξ

ξ2
+ φ0

log ξ

ξ
+
f0

ξ
+
g0

ξ2
+O

( log ξ

ξ3

)
into the leading order equation and equating similar terms in ξ, we find

v0 (ξ) = b0ξ
2 + c0ξ + d0 +

λ

6 b0
2 log ξ +

λ2

360 b0
5

log ξ

ξ2
+

λ c0

12 b0
3

1

ξ

+
λ
(
77λ− 540 c0

2b0 + 180 δ3b0
2 + 360 b0

2d0

)
21600 b0

5

1

ξ2
+O

( log ξ

ξ3

)
,

where 2b20 = C and δ3 ≡ δ(m − 3) is equal to 1 if m = 3 and to 0 otherwise. Similar
expressions for v1 and v2 are obtained and provided in Appendix A. We can then evaluate
−1 + εv(ξ) as ξ →∞, write the resulting expression as a function of η =

√
ε ξ/x̄c, and match

with the expressions for wi(η) found for the boundary layer expansion. Note that x̄c depends
on λc (see (4.13c)), which itself depends on ε through Equation (4.14b). At lowest order, we
obtain

w0(η) = −1 + b0η
2

√
λ0c

λ
+ a1η

3
(λ0c

λ

)3/4

which must also be equal to −1 + 3η2−2η3. This fixes the values of b0 and a1 (the coefficient
of ξ3 in v1(ξ)) to

b0 = 3

√
λ

λ0c
, a1 = −2

( λ

λ0c

)3/4
.

With 2b20 = C = λ(m− 2)/(m− 1), we obtain

λ0c =
18(m− 1)

(m− 2)
. (4.21)

Matching the expression for w1/4 gives

a2 = 0, c0 = ξ0

(
λ

λ0c

)1/4

λ1c = −2

3
ξ0λ0c,

so that

λ1c = −12(m− 1)

m− 2
ξ0. (4.22)

The value of ξ0 will be numerically estimated to be ξ0 ≈ −3.77 by imposing

v0(0) = min
ξ∈R

v0(ξ). (4.23)

This condition removes the translation invariance of (4.19) and therefore uniquely specifies
the contact point. The expression for w1/2 reads

w1/2 (η) =
3

2

λ2c

λ0c
η2 +

1

27
λ0cη −

1

27
λ0cη

2 − 1

108
λ0c +O(η3)
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and gives

α1 = − λ0c

108
, α2 =

λ0c

27
, λ2c = − λ

2
0c

162
. (4.24)

The w1 term picks up the logarithmic singularity and reads

w1 (η) =

(
O(η3) +

2

27
λ0cη

2 − 2

27
λ0cη +

1

54
λ0c

)
log

(
η

4

√
λ0c

λ

)

+

(
−3

2

λ3c

λ0c
+

1

12
ξ2

0

)
η3 +

(
− 7

81
λ0c − c1

4

√
λ0c

λ
+

3

2

λ3c

λ0c

)
η2

+

(
−1

6
ξ0

2 + c1
4

√
λ0c

λ

)
η + d0,

leading to

d0 = β1 =
7

81
λ0c +

1

12
ξ0

2, β2 = −1

6
ξ0

2 +
4

√
λ0c

λ
c1,

and

λ3c = − 28

243
λ0c

2 +
1

18
λ0c ξ0

2 − 5

729
λ0c − 2/3

4

√
λ0c

λ
λ0c c1.

Combining (4.22), (4.21), and (4.13c), the two term expansions for the contact points are

xc = ±
[

1−
[

18(m− 1)

λ(m− 2)

]1/4(
ε1/4 − ξ0

6
ε3/4 − λ0c

648
ε5/4 log ε+O(ε5/4)

)]
.

where ξ0 ≈ −3.77.

To summarize, we expect the equilibrium solution u of (3.13b) to satisfy the following prop-
erties in the limit ε→ 0:

• u(x) = −1 + ε+O(εk), k > 2 in the interior region x ∈ [0, xc], with xc = 1− ε1/4x̄c;

• u(x) = −1 + ε v0(ξ) + ε3/2v1(ξ) + ε2v2(ξ) +O(ε5/2) in the transition layer near xc, with

ξ =
x− xc
ε3/4

.

• u(x) = −1 + 3η2 − 2η3 + ξ0 η (η− 1)2ε1/2 +O(ε log ε) in the boundary layer x ∈ (xc, 1],

with η =
x− xc
ε1/4x̄c

.

For comparison with the numerical bifurcation diagram, the squared L2 norm of the composite
asymptotic expansion is calculated to be

‖u‖22 = 2

[∫ 1−ε1/4x̄c

0
u(x)2 dx+

∫ 1

1−ε1/4x̄c
u(x)2 dx

]

= 2

[
(−1 + ε+O(ε))2

(
1− ε1/4x̄c

)
+ ε1/4x̄c

∫ 1

0
w2

0+2ε1/2w0w1/4 dη+O(ε3/4)

]
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To simplify this expression, we calculate that∫ 1

0
w2

0 dη =
13

35
,

∫ 1

0
w0w1/4 dη = −11ξ0

210
,

and apply the expansion

x̄c =

[
18(m− 1)

λ(m− 2)

]1/4(
1− ξ0

6
ε1/2 +O(ε log ε)

)
, (4.25)

which finally results in the value

‖u(x; ε)‖22 = 2

[
1− 22

35

(
18(m− 1)

λ(m− 2)

)1/4

ε1/4+O(ε3/4)

]
. (4.26)

This quantity is plotted (dashed curve) in the left panel of Fig. 10 as a function of λ for
m = 4, and is in good agreement with the numerically computed bifurcation diagram of
Fig. 4. As before, the right panel of Fig. 10 is a numerical confirmation of the ε-scaling (with
an exponent p = 1/4 in this case) of the width of the boundary layer.
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Figure 10: Numerical verification of asymptotic calculations for the bi-Laplacian case and m = 4. The
left panel displays the bifurcation diagram for ε = 0.005. The solid line represents the numerically
obtained branches of solutions, while the dashed line is the asymptotic formula for the maximal solution,
as derived in (4.26). The right panel displays a comparison of the one term (dashed line) and two term
(dotted line) predictions for the equilibrium contact point xc = 1− ε1/4x̄c with x̄c given by (4.25), for
fixed λ = 50 and a range of ε.

4.3. Singular asymptotics and bistability

In this section, we briefly focus on another of the remarkable departures from the standard
ε = 0 bifurcation diagram displayed by the regularized equations (3.13), namely the presence
of bi-stability for a certain range of ε. Recall that the three characteristic bifurcation diagrams
shown in Fig. 4 have the following features. For ε ∈ (0, εc), the bifurcation diagrams of (3.13)
have two fold points λ∗ and λ∗, which results in bistable behavior for λ∗ < λ < λ∗. At the
critical value ε = εc, there is a single cubic fold point, while for εc < ε, there are no fold
points and (3.13) has a unique solution for each λ.
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Figure 11: Composite asymptotic expansion of equilibrium solutions to (3.13) for values m = 4,
λ = 50, ε = 0.01. The solid line is the numerical solution and the dashed line is the composite
asymptotic expansion.
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Figure 12: Numerically obtained bifurcation diagrams of (3.13) for ε = 0.01, 0.025, 0.05, 0.1, 0.15
(from left to right) and m = 4. Left panel: Laplacian case (3.13a); right panel: bi-Laplacian case
(3.13b).

In Fig. 12, the bifurcation diagrams of (3.13) are displayed for a range of ε ∈ (0, εc) and
m = 4. In each case, the fold point λ∗(ε) is observed to depend quite sensitively on the
parameter ε, while the principal fold point λ∗(ε) exhibits smaller variations as ε increases.
In essence, the regularizing term of the governing equations generates a regular perturbation
to solutions of the ε = 0 problem whenever 1 + u = O(1), and a singular perturbation to
solutions of the ε = 0 problems whenever u + 1 ' ε. In each of the cases represented in
Fig. 12, the two fold points are empirically seen to be increasing functions of ε, with λ∗(ε)
increasing faster than λ∗(ε). We therefore expect the two fold points to eventually merge at
some critical εc, where the condition

λ∗(εc) = λ∗(εc) (4.27)

is satisfied. The bistable features of the regularized system are interesting as they give the
device the capacity to switch robustly between equilibrium states of large and small L2 norm.
The relative magnitude of the switching voltage required to transition the device between
these two states is given, for ε < εc, by the quantity λ∗(ε)− λ∗(ε).
It is therefore desirable to obtain explicit formulae for λ∗(ε) and λ∗(ε) so that the critical
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parameter εc may be estimated from the condition (4.27) and the bistable nature of the
regularized system understood. In a forthcoming paper [36], a detailed singular perturbation
analysis is employed to accurately locate these fold points. The main results are explicit
expansions of form

λ∗(ε) ∼ λ∗0 + εm−2λ∗1 +O(ε2(m−2)), (4.28a)

for the principal fold point in the Laplacian or bi-Laplacian case. The scaling of the second
fold point is quite different for the second and fourth order problems, namely

λ∗(ε) ∼ λ∗0ε+ λ∗1ε
2 log ε+ λ∗2ε

2 + · · · (Laplacian)

λ∗(ε) ∼ λ∗0ε
3/2 + λ∗1ε

2 + · · · (bi-Laplacian)
(4.28b)

In the above formulations, closed form expressions for the coefficients λ∗i and λ∗i are estab-
lished in [36].

5. Discussion

In this work we have proposed and analyzed a formulation for regularization of touchdown in
MEMS capacitors. These considerations have resulted in a new family of models whose solu-
tions remain globally bounded in time for all parameter regimes, followed by equilibration to
new steady states. Interestingly, the presence of these new stable equilibria results in bistable
behavior for a range of parameter values. This may be useful in practical applications since
bistable systems can be used to create robust switches. We have described how equilibrium
solutions depend on the parameters λ and ε in terms of bifurcation diagrams, for both the
Laplacian and the bi-Laplacian cases. Using asymptotic analysis, we have also given a com-
plete characterization of the scaling properties of the upper branch of equilibrium solutions,
which correspond to attracting post-touchdown configurations of the regularized equations.

There are several avenues of future exploration emanating from this study. The method of
regularization used in the present work is a first attempt at understanding the behavior of
MEMS after touchdown. It is natural to ask whether this bistability feature is generic to a
larger family of regularized models.

An interesting problem is the characterization of the intermediate dynamics between the
initial regularized touchdown event and the equilibration to the post touchdown states. As
is typical with such obstacle type regularizations, the equations (2.12) give rise to a free
boundary problem for the extent of the touchdown region, which is amenable to analysis. In
a forthcoming paper [35], we describe the dynamic evolution of the periphery of the growing
post-touchdown region, in both one and two spatial dimensions.
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Appendix A. Expressions for v1 and v2

We give below the expressions for v1(ξ) and v2(ξ) such that v = v0 + ε1/2v1 + εv2 +O(ε3/2)
solves (4.20) to order ε1/2 and ε respectively.

v1 (x) = a1ξ
3 +

3a1c0

2b0
ξ2 + c1ξ + d1 +

λ c0a1

2 b0
4 log (ξ) +

λ a1

b0
3 ξ log (ξ) +

λ2a1

24 b0
6

log (ξ)

ξ

+γ1
log (ξ)

ξ2
− λ

(
−36 c0

2a1b0 + 72 d0a1b0
2 − 24 c1b0

3 − 25λ a1 + 36 δ3a1b0
2
)

288 b0
6ξ

+
g1

ξ2
+O

( log (ξ)

ξ3

)
,

and

v2 (ξ) = a2ξ
3 + b2ξ

2 + c2ξ + d2 + κ2 (log (ξ))2 + η3 log (ξ) + η4 ξ log (ξ) + η5 ξ
2 log (ξ)

+φ2
log (ξ)

ξ
+ γ2

log (ξ)

ξ2
+
f2

ξ
+
g2

ξ2
+O

( log (ξ)

ξ3

)
,

where

η3 = λ

(
−18 δ3a1

2b0
2 + 16λ a1

2 + 9 a2c0b0
3 + 9 a1

2c0
2b0 − 36 a1

2b0
2d0 + 9 a1c1b0

3
)

18 b0
7 ,

η4 =
6λ c0a1

2 + 4λ a2b0
2

4 b0
5 , η5 =

3λ a1
2

2 b0
4 , κ2 =

λ2a1
2

12 b0
7 ,

b2 = −14λ a1
2 − 12 a2c0b0

3 + 9 a1
2c0

2b0 − 12 a1c1b0
3

8 b0
4 ,

φ2 = −−4λ2a2b0
2 + 7λ2c0a1

2 + 720 a1γ1b0
7

96 b0
8 ,

f2 =
λ c0

(
36 c0

2b0 + 341λ− 72 b0
2d0 − 36 δ3b0

2
)
a1

2

1152 b0
8

−
(
λ c0c1 + λ d1b0 + 60 g1b0

4 + 48 γ1b0
4
)
a1

8 b0
5

+
λ
(
−72 b0

2d0 + 25λ+ 36 c0
2b0 − 36 δ3b0

2
)
a2

288 b0
6 +

λ c2

12 b0
3 .
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