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Abstract This paper considers the problem of stiction in electrostatic-elastic deflections whereby
elastic surfaces adhere to one another after coming into physical contact under attracting Coulomb
interactions. This phenomenon is studied in a family of recently derived models which account for
forces which become important when the elastic surfaces are in close proximity. The presence of
bistability in these models results in hysteresis, or non reversibility, which accounts for the difficulty
in achieving separation after an initial contact event. We use singular perturbation techniques to derive
explicit formula for the critical parameters over which bistability occurs and discuss new operational
modes which arise when bistability is present.

Keywords Singular perturbation techniques · nano-technology · stiction · Van der Waals forces ·
Casimir forces · higher order partial differential equations.

1 Introduction

Micro electromechanical Systems (MEMS) combine moving elastic component with electrostatic forces
on miniature scales to perform a variety of tasks in engineering applications. When the attracting elec-
trostatic forces are large enough, the elastic components of the device may come into physical contact
- an event known as touchdown or snap-through. This outcome may be undesirable or essential in
normal operation, depending on the particular application. In either scenario, it is desirable that the
device is able to revert to a base state after touchdown. However, after initial contact, the elastic sur-
faces may adhere to one another thus complicating the return to a separated state. This phenomenon,
also known as stiction, is due to Casimir, capillary and Van der Waals forces which become prominent
on very small separation scales and is a major problem in the fabrication and operation of MEMS (cf.
[1–3]).

Canonical mathematical models (cf. [4–7]) of MEMS do not shed light on the problem of stiction
as they capture contact events as finite time singularities of the governing equations, thus providing
no information on subsequent configurations of the device. A recently introduced model (cf. [8]) is a
first attempt to mathematically investigate these post-touchdown states by including a thin insulating
layer which prevents physical contact between the deflecting surface and the substrate (cf. Fig. 1).
These models are partial differential equations whose solutions represent the deflection of an elastic
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surface under Coulomb forcing. If the deflecting surface is represented as a one-dimensional flexible
elastic beam on Ω = [−1, 1], then the non-dimensional deflection u(x, t) was shown (cf. [8]) to satisfy
the fourth order partial differential equation

ut = −uxxxx −
λ

(1 + u)2
+

λεm−2

(1 + u)m
, x ∈ (−1, 1); u(±1) = ux(±1) = 0, (1.1)

where λ ≥ 0 is a bifurcation parameter which depends on the voltage applied to the system. In terms
of physical quantities, the two dimensionless parameters in (1.1) are given by (cf. [8])

λ =
ε0L

4V 2

2dEI
, ε =

dσ0

hσ1
,

where L, d and h are the characteristic length scales of the device, the gap spacing and the insulating
layer (cf. Fig. 1). The parameter ε is determined in terms the geometrical ratio d/h and the ratio σ0/σ1

of dielectric constants in the insulating layer and the gap. The parameter V is the potential difference
between the deflecting surface and the substrate, ε0 is the permittivity of free space and EI is the
flexural rigidity of the deflecting plate. The present work focuses on understanding the bifurcation
structure, and in particular the bi-stable properties, of one dimensional equilibrium solutions to (1.1).
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Fig. 1 Schematic diagram of the regularized MEMS device. Reproduced from [8].

The regularizing term εm−2(1 + u)−m for m > 2 can account for a variety of physical effects which
come into play when u ≈ −1 and play a role in stiction. For example m = 4 accounts for the Casimir
force, a quantum effect which manifests itself on macroscopic scales [9, 10]. The case m = 3 models
Van der Waals forces [9, 11, 12]. The particular force that dominates when the spacing is small depends
on the particular geometry of the device and application. Casimir forces scale as FCas ∝ d−4 while
Van der Waals forces scale like FV dW ∝ d−3 where d is the dimensional gap spacing (cf. Fig. 1). In
certain scenarios, both forces may be of equal importance and the inclusion of two regularizing terms
would be justified [3, 13]. Regularizing potentials of this form have also been extensively utilized in
studies of the de-wetting process of thin films on solid substrates [14–17].

In canonical models of MEMS for which ε = 0, touchdown occurs when λ exceeds a threshold λ∗

and u → −1 in a finite time T . Since this event is crucial to the operation of MEMS, many studies
have focussed on analyzing the local structure of solutions to (1.1) in this regime and estimation of
parameters T and λ∗ (cf. [4, 6, 7, 18, 19]). However, the manifestation of touchdown as a singularity of
(1.1) is a serious limitation of the canonical model as no information is provided regarding subsequent
configurations of the system.

The regularized model (1.1) with suitable initial data is globally well posed for ε > 0 [8]. This key
property follows because (1.1) arises from the L2 gradient flow of the energy functional

E(u) =
∫ 1

0

(

1

2
|uxx|2 −

λ

(1 + u)
+

λεm−2

(m− 1)(1 + u)m−1

)

dx.
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which is dissipative (dE/dt ≤ 0) and bounded from below. The possibilities for the limiting behavior of
dynamic solutions to (1.1) as t → ∞ are therefore related to the multiplicity and stability of solutions
to the steady state problem

−uxxxx =
λ

(1 + u)2
− λεm−2

(1 + u)m
, x ∈ (−1, 1); u(±1) = ux(±1) = 0. (1.2)

In the present work, the focus is on studying solution multiplicity of (1.2) as the parameters ε and m
vary.

The numerically obtained bifurcation diagrams of (1.2), displayed in Fig. 2, show that there are two
remarkable departures from the ε = 0 case. First, there is a new maximal solution branch representing
post-touchdown (contact) steady states. This branch of equilibria is characterized (cf. [8] for derivation
and validation) by the following asymptotic parameterization in terms its squared L2 norm

‖u(x; ε)‖22 = 2

[

1− 22

35

(

18ε(m− 1)

λ(m− 2)

)
1

4

+O(ε
3

4 )

]

, (1.3)

in the limit as ε → 0. Second, it is clear that the multiplicity of equilibrium solutions to (1.2) can be
quite different depending on the value of the parameter ε. More precisely, the bifurcation diagrams
suggest the existence of a critical value εc such that for ε ≥ εc, equation (1.2) has a unique solution
for each λ. In the case where 0 < ε < εc, the bifurcation diagrams have two saddle node bifurcation
points λ∗(ε) and λ∗(ε). Correspondingly, for λ∗ < λ < λ∗, equation (1.2) admits three solutions, while
for λ > λ∗ and λ < λ∗, there is a unique solution.
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Fig. 2 Left Panel: Bifurcation curves for equilibrium solutions of (1.2) for m = 4. The
three solid curves plotted correspond to ε < εc, ε ≈ εc and ε > εc highlight the threshold
of bistability. The dashed curve is the solution set associated with the ε = 0 problem.
Right Panel: Stable (solid lines) and unstable (dashed line) solution profiles of (1.2) for
λ = 4 and ε = 0.05. The upper profile represents a separated state, while the lower profile
represents a contact state of the device. Multiple minima in the contacted state arise from
a non-monotone boundary layer profile in the vicinity of the contact points (cf. [8]).

The potential for bistability over the range of values 0 < ε < εc has several practical implications for
the construction of MEMS (cf. [20–22]). Robust switching behavior can be generated from bistable
systems, specifically the system can transition between stable large and small norm solutions over the
parameter window λ ∈ (λ∗(ε), λ

∗(ε)). Additionally, Fig. 2 also reveals the presence of hysteresis, or
non-reversibility, in (1.1) for ε < εc and therefore captures the stiction phenomenon. For λ > λ∗, the
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device is in a stable state with surfaces in contact. To unstick the device however, λ must be decreased
below the second fold point λ∗ where λ∗ < λ∗. For a detailed study of the transient dynamics between
stable states of (1.1), see [23].

The important practical problem addressed in this work is the quantification of the key thresholds
εc, λ

∗(ε) and λ∗(ε) in (1.2) for m > 2. The approach undertaken is a detailed asymptotic analysis of
equations (1.2) in the limit as ε → 0+, the result of which is explicit formulas for the fold points λ∗(ε)
and λ∗(ε) for m > 2. A heuristic approximation of the critical parameter εc can then be obtained
from the condition

λ∗(εc) = λ∗(εc). (1.4)

In engineering studies of MEMS, mathematical models typically feature fourth order terms such as
(1.2) as these descriptions give good quantitative agreement with experiments. On the other hand,
mathematical studies of MEMS are largely focussed on second order equations which describe the
deflecting surface as a tensioned membrane and rely on maximum principles for their analysis. The
present work is focussed solely on the fourth order model for two main reasons. First, the explicit
formulas developed in the present work are useful to MEMS practitioners who seek to exploit bistability
in the operation of these devices. Second, while the Laplacian counterpart of (1.2) (with ∂nu|∂Ω = 0
omitted) also exhibits the bistability structure observed in Fig. 2, its analysis is better suited to a
phase plane approach (cf. Sec. 3.4 of [8]). A dynamical systems approach does not naturally extend
to the fourth order problem and so we adopt a singular perturbation analysis of (1.2) as ε → 0. For
recent mathematical studies on the existence of solutions to the second order counterpart of (1.1) in
the case m = 4, see [24, 25].

The structure of the paper is as follows. In Sec. 2, the dependence of the principal fold point λ∗ of
(1.2) on ε and m is analyzed in the limit as ε → 0. Through a regular perturbation analysis, the
formula

λ∗(ε) = λ0 + ε2(m−2)λ1 +O(ε4(m−2)),

is established in Principal Result 1 and values of λ0 and λ1 calculated for a range of m.

In Sec. 3, we calculate the secondary saddle node bifurcation point λ∗(ε) in the limit λ∗(ε) → 0 as
ε → 0. This fold point is not present in the case ε = 0 and its location requires a detailed singular
perturbation calculation with systematic use of logarithmic switchback terms. These terms are well
known in the asymptotic analysis of high Reynold’s number flow problems [26–29] and in other singular
perturbation problems related to MEMS [19, 30]. In Principal Result 2, we obtain the expansion

λ∗(ε) ∼ ε
3

2λ0 + ε2λ1 + · · ·

where λ0 and λ1 are determined in terms of m. Combining Principal Results 1 and 2 gives an asymp-
totic prediction (cf. (3.29)) for the bistable parameter range λ∗ < λ < λ∗ of equation (1.2). For
example, in the case m = 4, we find that range to be

61.4586 ε
3

2 − 41.8124 ε2 < λ < 4.3809 + 9.9713 ε2. (1.5)

By numerically solving for the value of ε at which this bistable range shrinks to a point, an estimate
can be formulated for the critical εc (cf. Sec. 3.1 and Principal Result 3). In the case m = 4 for
example, we obtain an asymptotic estimate of εc ≈ 0.2468 which compares well (≈ 10%) with the
numerical estimate εc ≈ 0.2724. In Sec. 4 we discuss avenues for future investigation.

2 Asymptotics of the fold point of the minimal branch

In this section, we calculate the effect of the perturbed potential on the location of the fold point
λ∗(ε), located at the end of the minimal solution branch of the equilibrium problem (1.2). The solution
set (λ(ε), u(x; ε)) of (1.2) can be computed numerically by first specifying the squared L2 norm of
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solutions, then formulating the MATLAB boundary value problem solver bvp4c to obtain λ as a
constant parameter.
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Fig. 3 Bifurcation diagrams of equilibrium solutions of (1.2). Left panel, m = 4 and
ε = 0.1, 0.05, 0.01. Right panel: ε = 0.1 and m = 3, 4, 5.

The fold point λ∗(ε) is calculated by means of a regular expansion of (1.2), developed in the limit as
ε → 0. See also [31–33] for more background on this approach. This approach will not work for the
secondary saddle-node bifurcation λ∗(ε) which is not present in the ε = 0 case. This second threshold
indicates the onset of the large norm solution branch and is located at the end of the unstable branch
of equilibria emanating from the first saddle-node.

Let us assume a parameterization of the minimal solution branch in terms of the squared L2 norm
α = ‖u(x; ε)‖22, of equilibrium solutions. A two term expansion of the solution, valid for u away from
−1, is given by

u = u0(x;α) + εm−2u1(x;α) +O(ε2(m−2)), λ = λ0(α) + εm−2λ1(α) +O(ε2(m−2)). (2.1)

The location of the principal fold point is expanded in a regular fashion as

α∗(ε) = α∗

0 + εm−2α∗

1 + · · ·

where the αj are determined by the condition that dλ/dα = 0 independent of ε. The principal fold
(λ∗, α∗), then admits the two term expansion

λ∗(ε) = λ(α∗) = λ0(α
∗

0) + εm−2λ1(α
∗

0) +O(ε2(m−2)). (2.2)

To complete the two term expansion (2.2), the quantity λ1(α
∗

0) is now determined by applying the
expansion (2.1) to equation (1.2) and arriving at the problems

−u0xxxx =
λ0

(1 + u0)2
, −1 < x < 1; u0(±1) = u0x(±1) = 0. (2.3a)

Lu1 =
λ1

(1 + u0)2
− λ0

(1 + u0)m
, −1 < x < 1; u1(±1) = u1x(±1) = 0. (2.3b)

where L is the linearized operator

Lφ = −φxxxx +
2λ0

(1 + u0)3
φ.
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m 3 4 5 6 7 8

λ1(α∗
0
) 6.5715 9.9690 15.2703 23.5847 36.6840 57.4034

Table 1 Numerical values of correction term λ1(α∗
0
) in the asymptotic expansion of the

saddle-node fold point (λ∗, α∗) for m = 3, 4, . . . , 8.

The location of the principal fold point of (2.3a) is (α∗

0, λ0(α
∗

0)) and satisfies λ0α(α
∗

0) = 0. The co-
ordinates of this principal fold point can be accurately located by Newton-Raphson iterations and has
the numerical value

(α∗

0, λ0(α
∗

0)) = (0.1256, 4.3809). (2.4)

To calculate the quantity λ1(α
∗

0), equation (2.3b) is differentiated with respect to α to reveal that at
α = α∗

0, λ0α = 0 and consequently there is a nontrivial solution satisfying Lu0α = 0. This provides a
solvability condition of (2.3b) at α = α∗

0 which fixes the correction term

λ1(α
∗

0) = λ0(α
∗

0)

∫ 1

−1

u0α

(1 + u0)m
dx
∣

∣

∣

α=α∗

0

∫ 1

−1

u0α

(1 + u0)2
dx
∣

∣

∣

α=α∗

0

= λ0(α0)
I1
I2

(2.5)

in terms of the two integrals I1 and I2 give rise to the two term expansion. These integrals are easily
evaluated numerical by first noticing that

I1 = − ∂

∂α

[

∫ 1

−1

dx

(m− 1)(1 + u0)m−1

]

α=α∗

0

, I2 = − ∂

∂α

[

∫ 1

−1

dx

(1 + u0)

]

α=α∗

0

.

The values of the correction λ1(α
∗

0) are given in Table. 1 for several m.

Principal Result 1 In the limit as ε → 0, the principal fold points λ∗ of the equilibrium problems
(1.2) admits the two term expansion

λ∗(ε) = λ0(α
∗

0) + εm−2λ1(α
∗

0) +O(ε2(m−2)), (2.6)

where (λ0(α
∗

0), α
∗

0) and λ1(α
∗

0) represent the principal fold point of the unperturbed problem and its
correction respectively. The numerical value of (λ0(α

∗

0), α
∗

0) is given in (2.4) while λ1(α
∗

0) is given by
(2.5).

As an example of Principal Result 1 in the case m = 4, the fold point λ∗ has the expansion

λ∗ = λ0(α
∗

0) + λ1(α
∗

0) ε
2 +O(ε4)

= 4.3809 + 9.9690 ε2 +O(ε4).
(2.7)

In Fig. 4, the agreement between the expansion (2.7) and the full numerical calculation of the fold
point is plotted.

3 Asymptotics of the secondary fold point

In this section, we construct the solutions to the steady state deflection problem (1.2) in the vicinity of
the second saddle node bifurcation point λ∗. This second fold point is located at the end of the unstable
branch emanating from the principal fold point. In contrast to the regular expansions developed in
section Sec. 2, a singular perturbation will be required as the fold point (λ∗, α∗) is not present in the
ε = 0 case. The calculation of this secondary bifurcation point allows us to estimate that equations
(1.2) are bistable on the range

λ∗(ε) < λ < λ∗(ε). (3.1)
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Fig. 4 A comparison of the asymptotic (dashed) and numerical (solid) predictions for
the principal fold point of (2.7) in the case m = 4.

In addition, the system is predicted to lose bi-stability for ε > εc where εc is defined implicitly by
λ∗(εc) = λ∗(εc). The calculation of λ∗(ε) requires systematic use of switchback terms to obtain a well
ordered expansion in the limit as ε → 0+.

In the vicinity of λ∗ we stipulate that u(0) = −1 + εα where α = O(1) and obtain the parameterized
bifurcation curve (λ(α; ε), ‖u(α; ε)‖2) in the limit where ε → 0+. We assume that λ(ε) → 0 as ε → 0+,
so that in terms of some ν(ε) ≪ 1,

λ(ε) ∼ ν(ε)λ0 + · · · . (3.2)

Since uε is even in x, we restrict (1.2) to 0 < x < 1 and impose the symmetry conditions ux(0) =
uxxx(0) = 0. In the outer region for 0 < x < 1, we expand the solution as

u(x; ε) ∼ u0(x) + ν(ε)u1(x) + · · · . (3.3)

From (3.3) and (1.2), we obtain on 0 < x < 1 that

u0xxxx = 0 , 0 < x < 1 ; u0(1) = u0x(1) = 0 , (3.4a)

u1xxxx = − λ0

(1 + u0)2
, 0 < x < 1 ; u1(1) = u1x(1) = 0 . (3.4b)

For (3.4a), we impose the point constraints u0(0) = −1 and u0x(0) = 0 in order to match to an inner
solution below. This determines u0(x) as

u0(x) = −1 + 3x2 − 2x3 . (3.5)

Since u0xxx(0) 6= 0, u0 does not satisfy the symmetry condition uxxx(0) = 0. Thus, we need an inner
layer near x = 0.

Upon substituting (3.5) into (3.4b), we obtain for x ≪ 1 that

u1xxxx = − λ0

(3x2 − 2x3)2
= − λ0

9x4

(

1− 2x

3

)

−2

= − λ0

9x4

(

1 +
4x

3
+

12x2

9
+ · · ·

)

.

Then, by integrating this limiting relation, we obtain the local behavior

u1 ∼ λ0

54
log x− 2λ0

27
x log x+ c1 + b1x+O(x2 log x) , as x → 0 , (3.6)

in terms of constants c1 and b1 to be fixed. The determination of these constants then specifies the
homogeneous component of the solution to u1. From (3.3), (3.5), and (3.6), we obtain that

u(x; ε) ∼ −1 + 3x2 − 2x3 + ν

(

λ0

54
log x− 2λ0

27
x log x+ c1 + b1x+O(x2 log x)

)

+ · · · , as x → 0 .

(3.7)
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By introducing the inner variable y = x/γ, we have to leading order from (3.7) that u ∼ −1+3γ2y2+· · ·
as x → 0. Since u = −1+O(ε) in the inner region, this motivates the scaling γ = ε

1

2 and the definition
of local variables y and w(y) where

y =
x

ε
1

2

, u = −1 + εw(y) . (3.8)

Next, we balance the cubic term −2x3 in (3.7) with the O(ν) term in (3.7) to get ν = ε
3

2 . Then, we

substitute (3.8) and λ(ε) ∼ ε
3

2 λ0 into (1.2), to obtain that w(y) satisfies

−wyyyy = λ0ε
1

2

[

1

w2
− 1

wm

]

, y > 0 ; w(0) = α , wy(0) = wyyy(0) = 0 . (3.9)

To determine the correct expansions for the inner and outer solutions, we write the local behavior of
the outer expansion in (3.7) in terms of the inner variable x = ε

1

2 y, with ν = ε
3

2 , to get

u(x; ε) = −1 + 3εy2 +
(

ε
3

2 log ε
) λ0

108
+ ε

3

2

(

−2y3 +
λ0

54
log y + c1

)

+
(

−ε2 log ε
) λ0

27
y

+ ε2
[

−2λ0

27
y log y + b1y

]

+O(ε
5

2 log ε) . (3.10)

The terms of order O(ε
3

2 log ε) and order O(ε2 log ε) must be accounted for with switchback terms in
the outer expansion. In addition, the O(ε) term in (3.10), enables us to conclude that (3.9) should
admit the expansion w ∼ w0 + o(1), where w0 satisfies

w0yyyy = 0 , y > 0 ; w0(0) = α , w0y(0) = w0yyy(0) = 0 ; w0 ∼ 3y2 as y → ∞ . (3.11a)

This problem has the exact solution

w0 = 3y2 + α . (3.11b)

The constant term in (3.11b) then generates the unmatched term ε in the outer region, which can only
be removed by introducing a second switchback term into the outer expansion. This suggests that
λ(ε), and the outer expansion for u(x; ε), must have the form

u(x; ε) = u0 + εu 1

2

+
(

ε
3

2 log ε
)

u 3

2

+ ε
3

2u1 + · · · , λ(ε) = ε
3

2λ0 + ε2λ1 + · · · . (3.12)

Upon substituting (3.12) into (1.2), and collecting similar terms in ε, we obtain that u 1

2

satisfies

u 1

2
xxxx = 0 , 0 < x < 1 ; u 1

2

(0) = α , u 1

2
x(0) = b 1

2

, u 1

2

(1) = u 1

2
x(1) = 0 , (3.13a)

where b 1

2

is a constant to be found. The condition u 1

2

(0) = α accounts for the constant term in w0.
The solution is

u 1

2

(x) = α+ b 1

2

x+
(

−3− 2b 1

2

)

x2 +
(

b 1

2

+ 2
)

x3 . (3.13b)

Similarly, u 3

2

(x) satisfies u 3

2
xxxx = 0. To eliminate the O(ε

3

2 log ε) and O(ε2 log ε) terms in (3.10), we
let u 3

2

satisfy

u 3

2
xxxx = 0 , 0 < x < 1 ; u 3

2

(0) = − λ0

108
, u 3

2
x(0) =

λ0

27
, u 3

2

(1) = u 3

2
x(1) = 0 . (3.14a)

The solution for u 3

2

is

u 3

2

= λ0

(

− 1

108
+

x

27
− 5x2

108
+

x3

54

)

. (3.14b)
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We then substitute (3.5), (3.6), (3.13b), (3.14b), for u0, u1, u 1

2

, and u 3

2

respectively, into the outer

expansion (3.12), and write the resulting expression in terms of the inner variable x = ε
1

2 y. This yields
the following behavior for u(x; ε) as y → ∞:

u(x; ε) ∼ −1 + ε
(

3y2 + α
)

+ ε
3

2

(

−2y3 +
λ0

54
log y + b 1

2

y + c1

)

+ ε2
(

−(3 + 2b 1

2

)y2 − 2λ0

27
y log y + b1y + · · ·

)

.
(3.15)

As u = −1 + εw(y) in the inner region, behavior (3.15) suggests the inner solution be expanded as

w = w0 + ε
1

2w1 + εw2 + · · · . (3.16)

Upon substituting (3.16) and (3.12) for λ(ε) into (3.9), we obtain that w0 satisfies (3.11), and that
w1, w2 solve

w1yyyy = − λ0

w2
0

+
λ0

wm
0

, y > 0 ; w1(0) = w1y(0) = w1yyy(0) = 0 , (3.17a)

w1 ∼ −2y3 +
λ0

54
log y + b 1

2

y + c1 + · · · , as y → ∞ , (3.17b)

w2yyyy =

[

2λ0

w3
0

− mλ0

wm+1
0

]

w1 −
λ1

w2
0

+
λ1

wm
0

, y > 0 ; w2(0) = w2y(0) = w2yyy(0) = 0 , (3.18a)

w2 ∼ −(3 + 2b 1

2

)y2 − 2λ0

27
y log y + b1y + · · · , as y → ∞ . (3.18b)

The solution to these problems determine λ0, λ1, b 1

2

and c1 as is now shown. The value of λ0 is first

calculated by integrating (3.17a) over (0,∞) to give

12 = λ0

[
∫

∞

0

dy

(α+ 3y2)2
−
∫

∞

0

dy

(α+ 3y2)m

]

= λ0

√

α

3

[

π

4α2
+

1

αm

∫ π

2

0

[cosu]2(m−1)du

]

=
λ0√
3

[

π

4α
3

2

−
√
π

2αm−
1

2

Γ (m− 1
2 )

Γ (m)

]

[

y =
√

α/3 tanu
]

.

which leads to the expression for λ0

λ0 = 12
√
3

[

π

4α
3

2

−
√
π

2αm−
1

2

Γ (m− 1
2 )

Γ (m)

]−1

, m > 2. (3.19)

Here Γ (z) =
∫

∞

0 xz−1e−xdx. The correction term λ1 is calculated from (3.18) by integrating (3.18a)
over 0 < y < ∞, and then applying w2yyy → 0 as y → ∞, with w0 = α+ 3y2. This yields that

λ1 =
λ2
0

12

∫

∞

0

[

2

(α+ 3y2)3
− m

(α+ 3y2)m+1

]

w1 dy. (3.20)

This integral can be explicitly evaluated by solving for the exact solution w1(y) of (3.17). The first
step is to calculate w1yy(0) and then formulate (3.17) as an initial value ODE problem for w1. To do
so, we multiply (3.17a) by w0y, integrate over 0 < y < R, then pass to the limit as R → ∞, to obtain

lim
R→∞

∫ R

0

w0yw1yyyy dy = lim
R→∞

(w0yw1yyy − w0yyw1yy)
∣

∣

∣

R

0
+ lim

R→∞

∫ R

0

w1yyw0yyy dy = 6w1yy(0).

On the other hand,

−λ0 lim
R→∞

∫ R

0

w0y

w2
0

− w0y

wm
0

dy = λ0

(

1

w0
− 1

(m− 1)wm−1
0

)

∣

∣

∣

∞

y=0
= 6w1yy(0) . (3.21)



10 A. E. Lindsay

Since w0(0) = α, this yields that

w1yy(0) =
λ0[1− (m− 1)αm−2]

6(m− 1)αm−1
,

which together with the initial values w1(0) = w1y(0) = w1yyy(0) = 0, allows the initial value problem
(3.17) to be solved for w1. A closed form of w1 is available in terms of hyper geometric functions,
though for general m > 2 it is quite cumbersome. For the particular value m = 4 for example, the
solution is

w1 =
−λ0

864α
7

2

[

3
√
3 y tan−1

(

√

3

α
y

)

[

8α3 − α+ y2(8α2 − 5)
]

+ y2(24α
5

2 − 15α
1

2 )− 8α
7

2 log

(

1 +
3y2

α

)]

(3.22)

The constants b 1

2

and c1 are determined by applying the large argument expansion tan−1(y) ∼ π/2−
y−1 + (3y3)−1 for y → ∞ to (3.22) and comparing to (3.17b) to obtain for m = 4 that

c1 =
2λ0

81
− λ0

648α2
+

λ0 log
3
α

108
, b 1

2

=
2α(1− 8α2)

8α2 − 5
. (3.23)

The exact expression for w1 in (3.22) allows λ1 to be calculated by directly evaluating the integral
(3.20). In this way, the formula for the case m = 4

λ1 = 2λ2
0

[−595 + 32α2[235− 210 log 2 + 48α2(3 log 2− 4)]

41472α3(8α2 − 5)

]

, (3.24)

is found. For completeness, we remark that b1 from (3.18b) is uniquely determined by first multiplying
(3.18a) by w0 followed by integrating over (0, R) and evaluation of the limit R → ∞. The details are
omitted as the value of b1 does not contribute to the location of the saddle node λ∗ at this order.

Briefly summarizing the calculation so far, we have that in the vicinity of the saddle node bifurcation,
the solution branch has parameterization

u(0) = −1 + εα, λ ∼ ε
3

2λ0(α) + ε2λ1(α) + · · · ,

The saddle-node bifurcation point (α∗, λ∗) is located by the condition λα(α∗) = 0 to be

λ∗ = λ(α∗) = ε
3

2λ0(α∗0) + ε2λ1(α∗0) + · · ·

where the fold point is fixed by the condition λα(α∗) = 0 and α∗0 is determined by

λ0α(α∗0) = 0. (3.25)

The values of α∗0 and λ0(α∗0) are

α∗0 =

[

4(m− 1
2 )

3
√
π

Γ (m− 1
2 )

Γ (m)

]

1

m−2

, λ0(α∗0) =
48

√
3

π

(m− 1
2 )

(m− 2)
α

3

2

∗0. (3.26)

The correction term λ1(α∗0) is more difficult to express in a closed form expression for general m
as this requires solution of (3.17) followed by integration of (3.20). We therefore provide in Table 2,
closed form expressions for these higher order corrections for selected values of m.

The preceding calculations are now summarized:
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m α∗0 λ0(α∗0) λ1(α∗0)

3 5

4

75
√

15

π
−

5625

8π2

4
(

35

24

)
1

2 7

π

(

105
3

2

) 1

4 −
26411

64π2

5
(

105

64

) 1

3 27
√

35

π
−

1143

16π2

(

21
2

5

) 1

3

Table 2 Explicit expressions for terms of the asymptotic expansion of the saddle-node
fold point (λ∗, α∗) for m = 3, 4, 5.

Principal Result 2 In the vicinity of the secondary fold point λ∗, solutions of (1.2) admit the pa-
rameterization

u(0) = −1 + ε α, λ(ε) ∼ λ0(α) ε
3

2 + λ1(α) ε
2 + · · · (3.27a)

where λ0 and λ1 are given in (3.19) and (3.20) respectively. In the limit as ε → 0, a two term expansion
for λ∗ is given by

λ∗ ∼ λ0(α∗0)ε
3

2 + λ1(α∗0)ε
2 + · · · (3.27b)

where values of α∗0, λ0(α∗0), λ1(α∗0) are given by (3.26) and (3.20). For selected values of m, explicit
expressions for these thresholds are given in Table 2. For example, in the case m = 4, we have that

λ∗ ∼ 7

π

(

1053

2

)
1

4

ε
3

2 − 26411

64π2
ε2 + · · ·

∼ 61.4586 ε
3

2 − 41.8124 ε2 + · · · .
(3.27c)

ε

0 0.05 0.1 0.15 0.2 0.25

λ∗

0

1

2

3

4

5

6

7

8

Fig. 5 Numerical validation of Principal Result 2. Comparison of λ∗ from one term
asymptotic (dotted), two term asymptotic (dashed) and numerical (solid) approximations.

3.1 Prediction of the bistable region.

The analysis of the previous sections has focussed on accurately determining two saddle-node bifur-
cation points, λ∗(ε) and λ∗(ε). When combined, these two values predict that equations (1.2) are
bistable on the range

λ∗(ε) < λ < λ∗(ε). (3.28)
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In terms of the expressions derived in Principal Results 1 and 2 for λ∗(ε) and λ∗(ε) respectively, the
bistable region for the case m = 4 is predicted to be

61.4586 ε
3

2 − 41.8124 ε2 < λ < 4.3809 + 9.9713 ε2. (3.29)

A heuristic prediction of εc, the threshold for bi-stability can be obtained by solving the equation
λ∗(εc) = λ∗(εc) for each of the above cases. These predictions are encapsulated in the following
Principal Result

Principal Result 3 The asymptotic formulation (3.29) for the fold points λ∗(ε) and λ∗(ε) associated
with the equilibrium problems (1.2) coalesce at εc where asymptotic and numerical estimates of εc are
given by

m = 3 : εc ∼ 0.2102 (Asymptotic), εc ∼ 0.2319 (Numerical);

m = 4 : εc ∼ 0.2468 (Asymptotic), εc ∼ 0.2727 (Numerical);

m = 5 : εc ∼ 0.2646 (Asymptotic), εc ∼ 0.3039 (Numerical).

Consequently, equation (1.2) is predicted to be bistable on the range 0 < ε < εc and to admit a unique
solution for each λ ≥ 0 whenever ε ≥ εc.

In Principal Result 3, the cubic fold point (αc, λc), corresponding to the threshold of bistability in
(1.2), is located by numerical solution of the system

[

λα(αc, εc)
λαα(αc, εc)

]

=
[

0
0

]

. (3.30)

We remark that in Principal Result 3, agreement between the asymptotic and numerical results is
quite close (≈ 10%), especially given that is is derived from the heuristic condition that the bistable
range (3.29) shrinks to a point.

4 Conclusion

In this paper we have studied equilibrium states of the regularized model (1.1) which accounts for
repulsive forces which become important when the gap spacing is very small. The problem of stiction is
explained in this setting by the presence of bistability in this system when ε < εc. The main practical
contribution of this work is a framework for accurately estimating the conditions for bistability in the
system. Namely, for ε < εc the system is bistable on the parameter range λ∗ < λ < λ∗ and we have
established accurate estimates of the three key thresholds εc, λ∗ and λ∗ for m > 2.

There are many avenues of future investigation that arise from this work. It is highly desirable to
rigorously verify the bistable nature of (1.1) and establish the existence of solutions for all m > 2 and
in higher dimensional settings. A study of stiction in the more practically relevant two-dimensional
setting would reveal additional factors that contribute to stiction such as contact line energies and
dependence on device geometry.

There are significant challenges which can be anticipated to arise in such an extension. First, the
methods used (Sec. 3) to calculate λ∗ require exact expressions for the singular limiting solution,
which is essentially the Green’s function for the bi-Laplacian. Such expressions are not available in
higher dimensional settings except in the most simple situations. Progress can be made by employing
a combination of exact knowledge of the singularity structure with numerical calculation of quantities
associated with the associated regular part (cf. [30]). Second, in spatial dimension d = 2 the singularity
structure associated with the Green’s function is r2 log r. This can be expected to generate a more
complex asymptotic expansion for the fold point λ∗, featuring an infinite logarithmic series as ε →
0. Such series are common in singular perturbation problems in two dimensions and unfortunately
converge very slowly. An interesting problem would be to formulate a hybrid asymptotic numerical
method (cf. [34, 35]) to accelerate this convergence and obtain accurate estimates of the bistability
range of MEMS devices with a wide variety of geometries.
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