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ADAPTIVE SOLUTION TO TWO-DIMENSIONAL PARTIAL
DIFFERENTIAL EQUATIONS IN CURVED DOMAINS USING
THE MONGE-AMPERE EQUATION*

KELSEY L. DIPIETROT AND ALAN E. LINDSAYT

Abstract. We present a finite difference method for mesh generation and adaptation with
application to the solution of partial differential equations in curved domains. For mesh generation,
we construct a mapping F between a fixed rectangular domain ¢ and a curved physical domain
Qp using a finite difference approximation of the fully nonlinear Monge-Ampére equation solved
with a damped Newton’s method. Paired with grid adaptation, this method gives a finite difference
approximation for curved geometries that distributes mesh points toward localized interior features
such as sharp interfaces using a solution dependent monitor function. The method dynamically
resolves fine scale PDE behavior on stationary and evolving curved domains while retaining the
simplicity of performing all computations on a static rectangular grid with a fixed number of mesh
points and connectivity. We display the efficacy of the methods on a variety of linear and nonlinear
PDE examples on convex and select nonconvex curved domains.
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1. Introduction. We present a finite difference method for mesh generation and
adaptation with application to the solution of partial differential equations (PDEs) on
curved domains. The method utilizes the Monge—-Ampére equation to create a map-
ping from a static computational domain to a curved, dynamically adapted physical
domain (cf. Figure 1). All computations for the PDE are performed on a static, uni-
form rectangular grid, allowing for simple finite difference discretization. The method
produces grids that conform to convex and select nonconvex, static, and evolving
curved domains that can dynamically adapt to resolve fine scale interior structures.

The numerical solution of PDEs on general domains is a common problem in a
variety of physical and biological problems. In a large class of such problems, the
solution may exhibit fine scale behavior to which the numerical method must adapt
in order to ensure that accuracy is maintained. A vast range of approaches have
been developed in the finite difference, finite volume, and finite element spaces. The
methodologies developed herein focus on using finite difference methods capable of
performing r-adaptive mesh refinement, so we briefly discuss previous finite difference
approaches on curved domains.

Standard finite difference methods use rectangular grids with a fixed number
of mesh nodes where neighboring points define the Taylor series approximations for
the derivatives at each grid point. Because of the natural grid structure in finite
differences, additional methods are required to handle curved boundaries. One of
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(a) Rectangular computational mesh Q¢ of dimen- (b) Adapted physical grid on a
sion 60 x 60. non-convex domain Qp.

Fic. 1. Ezample of a mesh generated from the methods in this paper: mapping a rectangular
computational grid (left) to an adapted grid in a curved domain (right).

the first methods to address curved domains was the finite difference time domain
method [43], which uses a staircase approximation to interpolate the solution onto
the boundary. The approach has been widely used but is limited in its application to
a specific set of PDEs and loses accuracy for more complex problems and domains.
These limitations led to a number of improvements for treating a wider class of PDEs
on curved domains, most of which are classified into two methods: unstructured grids
and body fitted curvilinear coordinate grids.

In the unstructured grid case, the domain is covered by an irregular distribution
of points. For each central node, nearby nodes are selected as the supporting nodes to
build a stencil approximation for the derivatives [5, 6, 35]. This method offers a mesh-
less, unstructured approach to treating curved boundaries with Dirichlet, Neumann,
or mixed boundary conditions. However, it comes at the cost of irregular grid spacing
that requires unique Taylor series expansions for each derivative at each central node,
making computational aspects more tedious.

The need for computational efficiency and simplicity has motivated the develop-
ment and use of curvilinear coordinate systems and elliptic grid generation of meshes
on curved domains [1, 20, 25, 39]. Each of the methods differs in the mechanisms
that create the mapping, but the overall principle is the same: take a uniform com-
putational mesh and use a coordinate transformation to generate a global curvilinear
coordinate system conforming to the boundary. The Monge-Ampére equation is an
example of an elliptic grid generation approach, where equidistribution and optimal
transport constraints determine a unique two-dimensional coordinate transformation
for convex domains.

The aforementioned approaches focus on generating appropriate static meshes
given a domain. If the PDE system has shocks, singularities, or other fine scale
behaviors, an adapted mesh may be necessary to avoid losing solution accuracy. A
recent h-adaptive solution to this problem [37] used a quadtree approach to create
adaptive grids on curved domains, though care must be taken to avoid instabilities
from dangling nodes that arise from the addition and removal of mesh points.

There has been burgeoning recent interest in using r-adaptive methods in which a
fixed number of mesh points are dynamically redistributed to increase mesh density
in areas of high solution interest [10, 12, 13]. These methods, initially developed for
one-dimensional problems with shocks or singularities [27, 28, 38], have since been de-
veloped to solve a variety of higher dimensional problems [14, 16, 28], with applications
including the Burgers equation, semilinear blow-up [10], numerical weather prediction
[8], porous media flow [36], and fourth order singularity and interface problems [19].
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A common feature of the aforementioned examples, based primarily on optimally
transported maps, is that they were limited to logically rectangular domains.

This work provides a bridge between mesh generation and moving mesh adapta-
tion for PDEs on curved domains using optimally transported maps and finite dif-
ference discretization. We solve a Monge—Ampére equation with suitable transport
boundary conditions to generate meshes on curved domains. The result of this paper
is a simple numerical method using finite difference approximations on logically rect-
angular grids to solve a general class of PDE problems in a wide range of geometries.
The method dynamically increases mesh density to maintain solution accuracy in
regions where the PDE has fine scale solution features.

The paper is organized as follows. We begin by introducing the Monge—Ampére
approach for mesh generation in convex and nonconvex domains. We detail the
discretization for the Monge—Ampére equations in the fully nonlinear case and the
parabolic regularization case. Next, we give the coordinate transformation and dis-
cretization of the underlying PDE in the computational coordinates and discuss the
implementation of generalized boundary conditions. Finally, we demonstrate the
effectiveness and flexibility of these methods on a variety of linear and nonlinear
PDEs on curved and time dependent domains. In Appendix A, we include a minimal
code for this method to demonstrate the ease of implementation.

2. The Monge—Ampére equation. For mesh generation and adaptation, we
create a coordinate transformation F' from a fixed, uniform computational domain
Q¢ to the physical domain Qp (see Figure 1),

(1) FZQC%QP.

This map is accompanied by an optimal transport boundary condition that maps the
boundary of the computational domain to the boundary of the physical domain such
that F' : 0Q¢c — 0Qp. While there are a variety of ways to create the mapping F,
such as variational methods [26, 28], we utilize equidistribution and optimal transport
techniques to generate two-dimensional meshes for solving PDEs.

The equidistribution principle [17] takes a time dependent, scalar monitor function
M (x,t) as a surrogate for the solution error at x € Qp and seeks to distribute it evenly
over the domain. This implies that mesh density is increased where M (x,t) is large,
which corresponds to areas of high interest in the PDE solution. The equidistribution
principle for a reference set D C Q¢ and its image F'(D) C Qp is

) % J. 000
/QC dg M (x,t)dx

Qp

Since the set D C Q¢ is arbitrary, condition (2) implies that

M(x,t)dx
3) M(x, )| (x)] = 0(t) = =2

hote

where |J(x)| is the determinant of the Jacobian of the transformation F'. The equidis-
tribution principle generates a unique mesh in one dimension, but not in higher
dimensions. To obtain a unique mesh, the cost function



A1334 KELSEY L. DIPIETRO AND ALAN E. LINDSAY

(4) I= /Q F(&.t) — e

can be imposed so that the mesh is as close to uniform as possible while satisfying
the equidistribution principle (3).

The mapping F : Q¢ — Qp with the optimal transport condition (4) and equidis-
tribution principle (3) is unique and well posed, assuming a strictly convex target
domain (for nonconvex domains, regularity is not guaranteed) [7]. Furthermore,
the solution may be represented as the gradient of a scalar, convex mesh poten-
tial x = VP = (P, P,). It follows from (3) that P will satisfy the Monge-Ampére
equation with an associated optimal transport boundary condition given as

(5a) M(x,t)|[H(P)|=6(t),  &§€Qc;
(5b) VP=x, x€d0p, &€,

where |H(P)| = Pee Py — Pgn is the determinant of the Hessian of P. When applied
to moving mesh adaptation, the monitor function M (x,t) is dependent on the PDE
solution and chosen to highlight regions of fine scale behavior. This allows the mesh to
change to rapidly varying components in the PDE, without specifying mesh densities.
The system (5) is closely related to the classic optimal transport problem of
minimizing the cost (under (4)) of transferring two densities f(£), g(VP) from Q¢ to
Qp. This problem is well known to satisfy the nonlinear Monge—Ampére equation

() 1) = L

£e€Qe.

In the remaining sections we detail the numerical treatment of systems (5) and (6)
with particular application to mesh generation and the numerical solution of PDEs.

3. Optimal transport boundary conditions. One of the most challenging
aspects of solving the Monge-Ampére equation is finding a suitable approximation
for the transport boundary condition (5b). The system (5) is well posed for convex
domains [41, 42]; however, direct numerical simulation can give rise to instabilities.
In scenarios where the mapping is between logical rectangles [10, 12, 19], simple non-
homogeneous Neumann boundary conditions can be applied to resolve this issue. For
example, when Q¢ = Qp = [£,&,] X [, 7], the relevant conditions are

(7) Pele—g =&, Pele=e,= & Pylo=n,=m, Py ln=n,= s

The boundary conditions (7) fix the mesh points to the boundary while allowing them
to move freely along it.

In previous work extending optimally transported maps to curved domains, the
Monge-Ampére equation was used to generate a grid by manually mapping each of
the four sides of Q¢ to the parameterized physical domain Q2p, as opposed to creating
a single mapping from a set of discrete points [21].

To create an automatic boundary mapping from a discrete representation of the
curved target domain, the transport boundary condition is approximated with the
Hamilton—Jacobi type equation [4, 22, 23]

(8) U(VP) =0, €&e€dQc.

The choice of the Hamiltonian function ¥ depends on whether the geometry of the
target set (2p is convex or nonconvex.
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3.1. Signed distance. One potential choice for the boundary condition is the
signed distance function given by

) = {—l—dist(x,aﬂp), x & Op:

9
( ) —diSt(X,@QP), x € Qp,

which satisfies ¥(VP) = 0 at the boundary points 9 p, making it an approximate
solution for the transport boundary condition. To implement this condition at the
discrete level, the signed distance function is calculated in terms of the convex hyper-
planes of the target domain. In terms of the unit normals ng of Q¢, an equivalent
form of the boundary condition (9) is (cf. [4, Lemma 2.1])

(10a) U(VP)=sup {VP-n—T"(n) |n-ng >0} =0,
Inll=1

(10b) U*(n) = sup {xo-n},
X0€INp

where U*(n) is the Legendre-Fenchel transform. The Lengendre-Fenchel transform
gives a simple representation for the target domain by a discrete set of points. The
condition (10a) specifies the normal derivative of P, thereby fixing mesh points to lie
on the boundary but allowing them to move freely along it. An important feature of
the Legendre—Fenchel transform is that it always returns the convex hull for a given
domain [40].

3.2. L, projection formulation. As discussed previously, the Legendre—
Fenchel transform imposes convexity given any target domain. To extend the method
to nonconvex domains, we use an Lo distance projection for boundary mappings.
The Ly projection boundary condition replaces the signed distance function by an Lo
minimization function, which essentially “pushes” the mesh points onto the boundary
0Qp. To solve the minimization problem, we follow the work of Froese [22] and for-
mulate a series of subproblems P*) for k = 0,1,2, ... from a point & on the boundary
of the computational domain to a set of points x(*) on the boundary of the physical
domain such that VP®*) : ¢ — x(®) The iterations are initialized with P©), the
solution obtained by solving the Monge—-Ampére equation using the signed distance
formulation which corresponds to the convex hull of Qp. The Lo projection of VP )
onto 0Qp is

(11) Proj(VP®) = argmin|x — VP®) |2,
o0 p x€o0p

Letting ng be the unit normal vectors of the computational domain )¢, we define

(12) ¢") = Proj(VPY) - ng.

The problem solved for the next iterate P*+1 ig

f(€
(132) [H(PET)] = g(VP((k)Jrl)) £ PR (), € € Qe
(13b) U(VPHFD) = vPFFD e — M) =0, €€ aQc.

The subproblems (13) are each solved by Newton’s method. After convergence, the
boundary condition (13b) is updated and the process is repeated until the difference
between iterates | PF+1) —PHR)|| o ) is below a defined threshold (in practice 1078).
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4. Discretization. The main goal of generating and adapting meshes on curved
domains is to use them to accurately solve an underlying PDE posed on a curved
domain. This entails discretizing two PDEs, the mesh equation and the underlying
PDE. First, we detail the discretization of the Monge—Ampére equation and then turn
our attention to discretizing the underlying PDE through the optimally transported
map.

4.1. Discretization: Monge—Ampére for grid generation. Recalling the
fully nonlinear Monge—Ampére equation for grid generation

_ _f& .
(14b) U(VP) =0, €ecdo,

where Q¢ is a fixed rectangular computational mesh. The term P(&y) in (14a) is
required to obtain a unique solution and remove the translation invariance resulting
from the Neumann boundary condition. The problem is formulated as a nonlinear
equation discretized using finite differences, where the Monge—Ampére is solved on the
interior of the domain and the Hamilton—Jacobi equation is solved on the boundary.
A family of wide stencil monotone schemes have been proposed in [4, 22], which guar-
antee convergence to a weak viscosity solution. In the present work, we implemented
both the standard and monotone finite difference schemes and found they gave similar
results for the examples considered. For brevity, we only describe the implementation
of the standard second order scheme which is used for all the examples. The N¢ x N,
rectangular computational grid for Q¢ = [&,&,] X [, m:] is defined by

&G =& )
(15) Ag_Nf—l’ AW—Nn_l
We define P; ; = P(&;,n;) and set
(16) MA[P] = 1(P) - TE _ pgy)
9(VP)

The gradient VP = (P, P,;) and the determinant of the Hessian term |H(P)| =
Pee Py — P£2n are approximated to second order by the stencils

P —Pi1; P11 — P
Py, =l 1T Pl =—2— Wi~
[ 5] 2J 2AE [ 77] N 2A77
Piy1; 2P + P Pijr1—2P i+ P
(17)  [Pecliyj = NG ;o [Pliy = SAn? :

(Pey]is = Piy1jv1—Pig1j-1— P11+ P11
Enli,g 4A§A’I] :

For the boundary condition ¥(VP) = 0 in (14b), an upwinding scheme is adopted
that requires only the interior points of the domain. The formulation varies depending
on whether the signed distance (convex target set) or projection function (nonconvex
target set) are used. To discretize the signed distance function (10), we first define a
discrete set of Nx normal vectors of the disk

( 2mj 27§

—,sin — j=1,...,Nx.
COSNX’SmNX>’ j yoos Nx
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For convex domains, we observe that Nx = (N¢ + N,;) provides good representation,
while for nonconvex domains more points may be required. At each boundary point
& € 0Q¢, we discretize (10a) as

(19a) U, = max  {max(n,0)D; P(§;) + min(ni, O)Dg’P(&‘i)

n=(n1,n2)€A;
+ max(ny, 0)D, P(&;) + min(ny, 0)D; P(&;) — ¥*(n)},

(19b) U*(n) = sup {xo-n},
X0EONp

where from (10a), A; = {||n|| =1 | n-ng(&;) > 0} is the set of admissible directions at
&. In (19a), D,f are the standard second order forward and backward finite difference
matrices applied in the respective directions k = {&, n}. For the projection formulation
(20a), we discretize at each point &; € Q¢ by

(20a) ¥; = max(ny, O)DgP({i) + min(nq, O)’D;P(Si) + max(ns, O)D;P(&)

+ min(na, 0)D; P(&;) — lggoj(VP(k)) ‘neg(&),  (n1,ng) = ng(&),

(20b) Proj(VP®) = argmin|x — VP®) |2,
oQp x€oQp

For nonconvex target domains, it is possible for two (or more) points to be mapped to
the same point on the boundary 0Q2p resulting in mesh tangling. To avoid tangling
and obtain better convergence of the projection function formulation, more target
points Nx are added and the density of points in the target domain 2p may be
clustered near high curvature areas of 9€p.

After discretizing the system (14), we use a relaxed Newton’s method [2] to solve
the resulting system of nonlinear equations for P to obtain the final mesh x = VP.
An essential component of the success and efficiency of this approach is specification
of the Jacobian of the system (14) which is given by

0G oG
(21a) VMA[P] = (Dy,P)Dec + (Dec P)Dyy — 2(Den P)Deyy — %DS - aiypn — Lo,
(21b)  V¥(P) = max(n1,0)D; + min(n, O)Dg‘ + max(nz,0)D, + min(ng, O)D;r,

where Dy, for k = {&,n, nm, £, En} are the standard second order central finite difference
matrices associated to (17) and G(€,x) = f(£)/g(x) is the right-hand-side density
term from the Monge—-Ampére equation (14). The term 1, is a zero matrix except for
a column of ones in the index corresponding to the location of £&;. When discretizing
the signed distance formulation (19), the normals (n1,n2) taken in (21b) correspond
to the direction in A; at which the maximum is taken. For discretization of the
projection formulation (20a), the normals correspond to those of the computational
domain.

4.2. Discretization: Parabolic Monge—Ampére for mesh adaptation.
Once an initial mesh x = VP has been determined from the solution of (14), it
can be dynamically adapted to the solution of an associated PDE system through a
solution dependent monitor function M(x,t). For a slowly varying M (x,t), it was
shown in [10] that the parabolic Monge-Ampére (PMA) will evolve to equi-distribute
the given monitor function. The PMA equation is the solution Q(&,t) of
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(22a) (I —7A¢)Q: = (H(Q)M(x,1)%, €€Qc, t>0;

(22b) Q€:P§7 Ezglag’m Qn:Pn7 ="Mt

Here |H(Q)| = QeeQuy —ng Ae = 6525—&-83,], and 7 and «y are user defined parameters
controlling the meshing timescale and smoothing, respectively—in practice the default
values are 7 = v = 0.1. In (22b), P(£) is the solution of (14) and acts as fixed
Neumann boundary conditions for the PMA. The right-hand side of (22a) is raised
to the power of 1/2 so that the system remains globally well posed [10].

The determinant of the Hessian |H(Q)| is discretized by fourth order central
differences with appropriate stencils for boundary and boundary adjacent points that
invoke boundary conditions (22b). The full stencils are in Appendix A of [19].

The monitor function M (x,t) is chosen on a case by case basis so that mesh
density increases where the PDE solution has fine scale behavior. For problems with
sharp interfaces or moving fronts, arc-length or curvature based monitor functions
are commonly chosen [8, 10]. In the case of finite time blow-up, monitor functions
are constructed to inherit the natural scaling of the problem [11]. In cases where the
monitor function uses derivatives of the solution, they are discretized using standard
central finite difference stencils.

Once the monitor function has been chosen, additional steps are taken to ensure
optimal quality of the mesh. An integral average,

(23) M(x,t) = M(x,t) + « M(x',t)dx’,
Qp

is applied which ensures that all of the mesh points do not rush to the high interest
areas [3]. The scalar parameter « controls the proportion of mesh points where the
monitor function is high, leaving the remaining points to the rest of the mesh. The
case of a =1 corresponds to a 50 : 50 mesh.

To minimize errors from rapidly varying components of the monitor function, we
apply the following fourth order smoothing filter four times during each iteration:

2
(24) Mij; = Mij+ — (M5 + Miyj+ M;j1 + M; 1)

16
1

+ 16

4.3. Discretization in physical coordinates. Here we describe how the phys-

ical quantities Vxu = (ug, uy) and Ayt = Uyy + Uy, are discretized in computational

coordinates for a mesh x = VP which is obtained from the solution of (14). Using

the computational coordinates & = (£, 7n) and the physical coordinates x = (z,y), we
have the relationship

- (b= (5 ) (i)

From (z,y) = (P, P,), the derivatives in computational variables are

(Mi1j41 + Miz1 -1 + Miya j—1 + Mi—q,j41).

(26a) U = J(Pyyug — Pentty),
(26D) uy = J(=Peyue + Pecuy),
(26¢) Ugw = J Py (T (Poyug — Pﬁnun))g — J Py (J(Pyyug — P&nun))n )

(26d) Uyy = J Pen (J(=Penug + Pecuy)) + J Pec (J(=Pequg + Pecuy)), -
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The Laplacian Ayu can be written in the compact form
(27a) Axu = JV¢ - [JAVeul,
where A is the symmetric 2 x 2 matrix with entries

(27b) Ay = PZ + P Az = Aio = —Pey(Pee + Pyy)s Asy = Pé, + P

nm
In the above equations, J = |H(P)|~! is the reciprocal of the determinant of the
Hessian. The form of (27) reveals that this method allows for the solution of PDEs
on curved regions with adapted meshes at the cost of solving a related nonconstant
coeflicient problem on a fixed rectangular grid. We now discuss some of the small
additional implementation details involved in this trade-off. Two of the appropriate
stencils for the discretization of (27) are

Ay luelivy j— A jlueliog
[(Aug)eliy = —== ) ]Ag = =

(282) _ (A A+ A ) (Wi —wiy) = (Aig + Aicr ) (uig — ui )
I ’

Ai, '+1[u ]1 i+1 — Ai,'71[u }z i—1
[(Aug)yliy = === A7 e

A (i1 — w1 g1) — Aijo1(Uig1 -1 — Wim15-1)
4AEAD ’

(28b)

The expressions for (Auy), and (Au,)¢ are similar.

4.3.1. Boundary conditions on the PDE. An important capability for any
method of this type is the ability to implement a variety of boundary conditions for the
governing equations. The case of Dirichlet conditions is easily handled by applying
a logical mask and padding the vector of unknowns with the appropriate known
boundary values. It is similarly straightforward to implement periodic boundary
conditions in computational space. The generalized Neumann boundary condition,

(29) VxU - Ny + Ku = g, x € Qp,

where k, g are given, requires more careful treatment. We give details for the left side
of the domain and the other three sides follow a similar pattern. The normal vectors
n, of Qp mapped from the left boundary of Q¢ are

(30) ny = —n T = 1 = _Pm]1 P£7} i
(27 +yn)z (25 +yp)2 (A11)z (An)2

The boundary condition (29) is transformed from physical space to computational
space by calculating the normal derivative (ug,u,) - nx via (26) to obtain

J
31 2 (Apue+ A +ru=g,
(31) (Au)i( 1ug + Apuy) + Ku =g

where Aj1, A2 are defined in (27b). We recall from (26) that the Lapalcian is

;e 0
(32) Au=1T5 (J(Allug + Algun)) + Ja—n(J(Algug + Agzu,,)), £ € 900,
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where the two terms represent the normal and tangential components on the boundary,
respectively. For the second term (tangential to left boundary), we substitute ug from
the Neumman boundary condition (31) given by

A

(33) (hu—g)—

u = =1
* T J(An)?

into (J(A12ue + Azau,)), and discretize at noncorner points using staggered central
differences (e.g., (28a)). For the first term in (32), corresponding to the normal
component of the Laplacian on the left boundary, we use a one-sided approximation
that invokes omly internal points. The condition (31) implies that given the flux
F = J(Ajue + Arouy) and C = (An)%, we have

./_'.17]' = Cl,j [Iﬁlu - g]l,j'
The component of (32) corresponding to the normal flux is approximated by

—3.7:17j + 4]:2,]' — ]:37]'
2AE

(34) [JFel1j = Ju +0(AE%).

In the discretization of F5; and F3; in (34), a higher order approximation of the
terms u¢ and u, must be used to retain second order accuracy near the boundary due
to differentiation of discontinuous truncation errors at near boundary points. For the
four corner points, the one-sided approximation (34) is used for both terms in (32).

4.4. Pairing of PDE to evolving mesh. From an initial mesh and initial
condition for the PDE, there are two main approaches to pairing the subsequent
mesh and PDE dynamics—evolving them in a simultaneous or an alternating fashion.
Here we discuss the merits and some implementation details of each approach.

4.4.1. Alternating solution approach. In scenarios where the PDE is evolv-
ing on a slow timescale or is very stiff, it may not be necessary to update the mesh at
each time step. In such a scenario, it is efficient to only update the mesh at discrete
time points with interpolation of the current solution onto the updated mesh. The
PDE is in effect solved on a sequence of static meshes. A minimal working example of
solving the heat equation on a moving curved domain using the alternating method
is given in Appendix A.

4.4.2. Simultaneous solution approach. An advantage of using the PMA
equation is that it is straightforward to couple the dynamics of the mesh and the
PDE into one monolithic system. For the example of a simple reaction diffusion
equation u; = Axu + f(u,x,t), this gives rise to the coupled system

(35a) us — Vxu - VQir = Axu + f(u,x,t), €€ Qc, t>0;
(35b) T(I = 7A¢)Qu = (|H(Q)|M(x,1))?, €€Qc, t>0,

that may be solved simultaneously in time. In practice this system is solved by back
substitution by first inverting (35b) with an FFT and homogeneous Neumann condi-
tions invoked on @);. To avoid numerical instabilities associated with the Lagragian
term [15, 30, 31], Vxu - VQ; is discretized by a second order upwinding scheme. The
full stencils are found in Appendix C of [19]. This simultaneous approach avoids the
need for interpolation since the mesh and PDE continually evolve together and is well
suited to explicit time integration.
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5. Examples. In this section we give a variety of examples on static and evolv-
ing geometries to demonstrate the versatility of the method. In the first example,
we verify the expected convergence properties of the method and confirm second
order convergence at interior points and first order convergence at boundary adjacent
points, in particular at corner adjacent points. The reduction in accuracy at near
boundary points arises in the solution of the Monge-Ampére system (14), which is
then reflected in the PDE solution through the transformations (26). Similar first
order error structure has been observed in related studies [4, 22]. To clarify the im-
plementation details for this method, we have included in Appendix A a minimal
working example for the solution of the diffusion equation moving curved domain
with forward Euler integration.

5.1. Benchmark problem: Modified Stefan problem on circle with pre-
scribed boundary motion. To confirm the expected convergence patterns of the
method for time dependent PDEs, we solve the following modified Stefan problem
posed on an expanding disk domain with Dirichlet boundary conditions (cf. [24]),

(36a) % —Ayu = f(x,t), 0<|x|| <p(t), t>0
dp  Ou B )
(36) BTkl =p0), >0,
(36¢) u(x,t) =0, |Ix[| =p(t), u(x,0)= Jo(rolx[]), p(0)= 1.

Here Jy(2) is the zeroth order Bessel function of the first kind and rg is its smallest
positive root. The remaining functions in (36) are defined as

BRI, (ol fa((0) - )
s = SR () ot =em (PG,
2J4(ro)

5(0) = LB (Bi(e) — rdtet), o= DU,

To

where Ei(z) is the exponential integral. This problem has the exact solution

(37) u(x, ) = B(t) Ty (U'('j)”) )

from which we calculate the absolute error
(38) E(t) = lun(x,t) — u(x, )|,

based on a numerical solution uy(x,t) of (36) from an N x N computational mesh.

The initial mesh is generated by solving (14) with uniform density f(&)/g(x) =1
on the computational mesh Q¢ = [—1,1]? and the prescribed boundary motion (37).
The discretized system is solved using a fourth order Runge-Kutta time stepping
scheme with the alternating approach in section 4.4.1. In Table 1, we show the
convergence rates for the absolute error (38) for interior points and corner adjacent
points. We observe that in the neighborhood of points surrounding the corners, the
accuracy of the method decreases to first order.

5.2. Example: Blow-up on an elliptical domain. To illustrate the effec-
tiveness of our methods for mesh adaptation, we solve a classical semilinear blow-up



A1342 KELSEY L. DIPIETRO AND ALAN E. LINDSAY

TABLE 1
Absolute interior and corner adjacent errors E(T) as defined in (38) for problem (36). Solution
evaluated at time T = 0.005 with convergence rates given in parentheses.

Mesh size (N x N) Interior error Corner adjacent error
N= 40 3.79x107° () 3.66 x 1073 ()
N= 60 1.64 x 107° (2.0)  2.66 x 1073 (0.8)
N= 80 9.14 x 1078 (2.0) 2.07 x 1073 (0.9)
N =100 5.79 x 1076 (2.0) 1.69 x 1073 (0.9)
N =120 3.98 x 1076 (2.0) 1.42 x 1073 (0.9)

problem on the ellipse Qp = {(c0s6,0.75sin6) | 0 < 6§ < 27}. The full problem
statement is

(39a) w=Au+ud, xeQp, t>0;
(39Db) u(x,t) =0, x€Np, t>0
(39¢) u(x,0) = 15 e xeQp.

For this example, the monitor function must be chosen such that the mesh inherits the
dynamic length scale of (39a). Assuming a small length scale L(t), near singularity
the mesh has the scaling @ ~ L(¢)S(&,t). The PMA (22a) will be scale independent
near the singularity under the condition (cf. [11]) that

1dL\?
M~ =—] .
(z%)
In the case of power law blow-up profiles, the length scale has the form L(t) = (t.—t)%,
where t. is the singularity time. This dictates that M should scale like

1

M~ —
(te —1)?

to ensure that the PMA is independent of length scale near the singularity. The
invariance of the governing equation (39a) under the scaling

(40) t — A, X — A2x, u— A2y

motivates the choice M(x,t) = u* so that the mesh inherits the scale invariance of
(39) near the singularity. This choice of M (x,t) combined with the integral averaging
(23) clusters mesh points at the singularity while maintaining the known self-similar
scaling structure associated with the blow-up profile of the PDE [11]. In addition, we
use an adaptive time step determined by the Sundman transformation [9, 13],

dt

(41) = glw).

For a fixed dT', (41) dynamically adapts the time step dt so as not to overshoot the
singularity time ¢.. Incorporating the scalings of (40), we set g(u) = (||[ul|Le(0p)) 2

The nonlinear Monge—Ampére equation (14) is solved with a uniform density and
signed distance boundary condition to generate an initial uniform mesh on the ellipse.
The PMA (22a) is paired to the PDE (39) using a Lagrangian coupling term to give a

monolithic system, where the adaptive time step (41) is incorporated as an additional



FINITE DIFFERENCE METHODS FOR CURVED DOMAINS

equation. The monolithic system of equations is solved explicitly using RK4 time
stepping. As seen in Figure 2, we observe good regularity and retention of scaling
behavior of the mesh near blow-up. Once again, we have the added benefit of being
able to resolve the singularity to approximately [ul|p(q,) = 10° while using a fixed
number of mesh points and standard finite difference stencils on a fixed, uniform,

rectangular domain.
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Fic. 2. Solution and corresponding meshes for solving the semilinear blow-up problem (39) on
an ellipse. Mesh resolves well near the singularity point and shows good regularity when zoomed in

near the singularity.
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5.3. Example: Sharp interfaces in a regularized model of microelec-
tromechanical systems deflections. To show the ability of the adaptive method
to handle propagating interfaces, we test it on a capacitor structure model from micro-
electromechanical systems (MEMS). The full model, including derivation, posttouch-
down interface dynamics, and analysis of equilibrium configurations, can be found
in [32, 33, 34]. The system considered is the parabolic, semilinear PDE

1 g2
492 = Ayu— A — Q t ;
(42a) Uy U 0702 (rut)’ x € Qp, > 0;

(42b)  wu(x,t) =0, xe€IQp;

(42¢)  u(x,0) = 0.5(1 — ¢)(tanh[40(z” + (y + 0.8)> — 0.1(0.6)*)] — 1), x € Qp.

In (42), the parameter 0 < ¢ < 1 reflects the extent of an insulating layer placed
between two elastic plates. The positive parameter A\ quantifies the relative impor-
tance between the electric and electrostatic forces of the system. The behavior of the
system (42) is characterized by a dynamic sharp interface which propagates outward
from the center of the domain until eventually it is pinned at the boundary. In this
example, we take {)p as the nonconvex limacon region whose boundary is given by

(x,y) =7r(0)(cosB,sinf), 6 e (0,2m), r(0) = 1.3+ 0.9cosd.

For the parameters e = 0.05 and A = 10, we simulate (42) with the arc-length monitor
function M(x,t) = /1 +u2 +uZ and set a = 0.75 in the Mackenzie regularization

(23). The discretized mesh and PDE system is integrated simultaneously with the
Lagrangian coupling term and using RK4 time integration until the steady state
configuration is reached. Figure 3 gives snapshots of the solution and the mesh.
In Figure 3 we see the mesh conforming to the nonconvex limacon shape and also
dynamically tracking the movement of the interface as its perimeter increases over
time. In addition, mesh density is decreased in the region behind the interface where
less resolution is required.

5.4. Example: Heat equation on a splitting domain. As a more challeng-
ing example, we solve the heat equation with a constant source term and homogeneous
Dirichlet boundary conditions on an evolving domain which undergoes a split. The
PDE considered is

(43&) Ut :AXU+1, XEQP, t > 0;
(43b) u(x,t) =0, x€90p, t>0;
(43¢) u(x,0) =5 (e—((”a_%s)u(%)z) 4 e—((zg_%sm(ﬁ)z)) . xep.

The domain starts as a single convex domain that evolves into a connected non-
convex domain given by (z,y) = (r.(0) cos8,r.(0)sin ), until it pinches off into two
convex dynamic domains (z1,y1) = (—2¢(t) + rq,(0,t) cos 0,74, (0,t) sin0), (x2,y2) =
(xc(t) + 74,(0,t) cosB,1q,(0,t)sinf) moving in opposite directions with prescribed
boundary motion.
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=V1-wvsin?0, ve (05092, 6c(0,2n),

= 0.5+ 0.05(0.15sin(46) + 0.15 cos(30 — 48nt)), 0 € (0,27),

(43d) re(60
(43e) ra,(0,t

(43f) rd,(0,t) = 0.5+ 0.05(0.15sin(46) + 0.1 cos(260 — 367t)), 6 € (0,2m).

The function z.(t) is the center of the convex shapes after the split and chosen to move
the two domains slowly apart. The target domain is updated and remeshed every
100 time steps. In the numerical solution of this problem, we adopt the alternating
approach in section 4.4.1 with an RK4 scheme. In the regime before the split, the fixed
time step is dt = 577, which changes to dt = 5° after splitting. A smaller time step is
required in the nonconvex regime as the mesh is highly refined near the splitting point.

The simulations are initialized with the single rectangular computational domain

Q¢ = [-2,2] x [-1,1]. When the connected domain splits into two, each half of
the computational domain becomes responsible for one of the target domains, i.e.,
Qc, =[-2,0] x [-1,1], Q¢, = [0,2] x [-1,1]. This example illustrates the ability of

the method to handle a variety of domains, ranging from convex and simply connected
to nonconvex to convex and disconnected, with all computations performed on a fixed
rectangular grid. In Figures 4 and 5, we show the mesh and the PDE solution before
and after the split, respectively.

For the mesh to properly resolve the nonconvex target boundary close to splitting,
as seen in Figure 4, additional density is required near high curvature sections. This
is accomplished by increasing the physical domain density function g(VP) in (14)
which is described by a Gaussian centered around the high curvature section near the
splitting point.

5.5. Example: Spot splitting in the singularly perturbed Schnakenburg
reaction diffusion system. To illustrate the application of the Neumann boundary
conditions derived in section 4.3.1, we consider the singularly perturbed Schnakenburg
reaction diffusion system on the unit disk Qp = {x € R? : ||x| < 1},

(44a) v=e?Agv—v+uv? in Qp, O,v=0 on 0Qp;

2
(44b) 52ut:Axu—i—A—1f€L2 in Qp, Oou=0 on O0Np.

The singularly perturbed limit ¢ < 1 of the Schnakenburg system (44) gives rise to
a wide range of complex localized spike dynamics [29]. The particular parameters
A = 8.8, ¢ = 0.03, lie in the spot splitting regime where a localized spot undergoes
slow motion before dividing into two smaller spots.

In this example, we initialize the simulation with initial conditions (vg,ug) corre-
sponding to a single spot, determined from a radially symmetric quasi-steady state
profile found by asymptotic reduction in the limit £ — 0 [29]. For the chosen param-
eters values, the resulting problem is stiff and the alternating solution approach in
section 4.4.1 is taken with an implicit Crank—Nicholson integration scheme and fixed
time step dt = 0.05. At each time step, the nonlinear system is solved using a damped
Newton’s method [2]. For the mesh equation, the modified arc-length monitor func-

tion M (x,t) = \/1 +0.95(uz + u2) is chosen with 7 = 7 = 0.2 taken as the speed and

smoothing parameters in the PMA (22). The solution evolves on a slow timescale and
we minimize interpolation costs by updating the mesh each second (every 20th time
step).

In Figure 6 we see the method accurately resolving the mesh around the spot as
it transits the domain and through the bifurcation point at which the spot splits in
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Fic. 4. Heat equation with a constant source on the connected domain (43d) for set of discrete
time points. The final figure corresponds to the parameter value v = 0.92, at which point the domains
are split.
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Fi1G. 5. Heat equation with a constant source from the splitting point on the connected domain
(43d) into the moving disconnected domains for a set of discrete time points.
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A1350 KELSEY L. DIPIETRO AND ALAN E. LINDSAY

two. This example illustrates the implementation of the method in a system PDE
problem with Neumann boundary conditions.

6. Conclusion and future work. This paper has successfully developed a
method for mesh generation and adaptation on curved domains using the Monge—
Ampére equation and finite difference discretization. The methods presented in this
paper provide a connection between elliptic grid generation, optimal transport theory,
and r-adaptation methods applied to the solution of PDEs with fine scale solution
behavior. The methods have been validated on a variety of PDEs, domains, and
boundary conditions. We also provide example MATLAB code in Appendix A, which
gives implementation details of some of the methods presented in this paper.

The advantages of this method are that it can accurately and efficiently resolve
rapidly varying and fine scale PDE behavior while retaining the simplicity of perform-
ing all calculations on a fixed rectangular mesh. For convex target sets this method is
robust and the user need only specify a cloud of points that lie on the boundary of the
domain. In certain nonconvex regions we have shown that the method can be effective
too. For challenging cases in which the curvature of the boundary is large, for exam-
ple, the limiting case for the splitting domain problem in section 5.4, the mesh may
experience tangling near the boundary. This can be mitigated by using a denser set
of points to describe the boundary in that section. One avenue for future work would
investigate the ways in which the numerical method breaks down at these points and
develop more robust analysis of the limitations of the method on nonconvex domains.

The extension of optimal transport theory and the robust solution of the Monge—
Ampére equation in nonconvex regions is a challenging open problem. For the
adaptive solution of PDEs in complex domains with nonsimply connected features,
MMPDE methods based on finite element discretization are effective for complex
problems [18, 36]. Future work would also focus on creating a more robust numer-
ical method for solving the nonlinear Monge-Ampére equation with dynamic PDE
solution dependent densities in higher dimensional scenarios.

Appendix A. MATLAB example code. This is a minimal working MAT-
LAB code of the method for the solution of the heat equation with a source term
on a moving, curved domain. Mesh density in the target domain is increased in
the region about the origin. For simplicity of exposition, a fixed step forward Euler
time integration method is performed. For clarity of exposition, many robustness
features (e.g., damped Newton method, mesh smoothing, adaptive time stepping)
are omitted. Source code featuring some examples from this paper can be found at
https://github.com/kdipiet10/ParabolicMongeAmpere_2DMovingMesh.

function HeatEquationMovingDisk
%% Solution of heat equation on a dynamic curved domain.
%% This is a minimal working example edited for brevity.

% Square Computaional Domain [-1,1]1"2 with n x n mesh.
O.n = 40; 0.h = 2/(0.n-1); [0.x1,0.x2] = ndgrid(-1:0.h:1);
%% Indices for the boundaries.

Ib.A=find(0.x1==-1 | 0.x1== | 0.x2==-1 | 0.x2==1);
Ib.L = find(0.x1==-1); Ib.R = find(0.x1==1);
Ib.B = find(0.x2==-1); Ib.T = find(0.x2==1);

%% Finite Difference matrices for the computational.
M = make_D_matrices(0.n,0.h);


https://github.com/kdipiet10/ParabolicMongeAmpere_2DMovingMesh
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%% start and end time, timestep, PDE initial condiditon.
t=0; tfinal=5; dt=le-4; uinit=0(x,y) exp(-25*%x(x."2+y."2));
%% Represent the target set as a discrete number of points
NX=2%0.n; th=linspace(0,2*pi,NX)'; Jdiscrete target domain
r1=0(s,t) 1.25+0.2%(0.15*xsin(4*s)+0.2*cos (3*x(s-30*xpix*t)));
r2=0(s,t) 0.85*xri1(s,t);
%% Vector representation of the target domain
Y = [r1(th,t) .*cos(th) r2(th,t) .*sin(th)];
%% Initial uniform mesh for computational domain
Q = 0.5%¥(0.x1(:)."2 + 0.x2(:)."2);
%% Admissable directions for signed distance function.
int=2*pi*(1:NX)/NX; nj = [cos(int)' sin(int)']; %Eqn 18
%% Legendre fenchel transform for for signed distance
Hs = max(Y*nj')'; %Eqn 19b
%% Mesh density functions and their derivatives
k=10; 0.g=0@(x,y) 1l+k*exp(-kx*x(x."2+y."2));
0.f=0(x,y)1+0*x; 0.gx=0(x,y)-2%k"2*x.*xexp(-k*x(x."2+y."2));
0.gy=0(x,y) -2*xk~"2xy.*exp(-k*(x. 2+y."2));
%% Get initial mesh by solving MA (eqn 14) with Newton
err = 10; newton_tol = 1le-6;
while ( err > newton_tol )
[F,J]1=rhs_MA(Q,Hs,nj,Ib,M,0); Q=Q-J\F; err=norm(F);
end
%%Intial condition for the PDE
x0=M.D1XC*Q; yO0=M.D1YC*Q; uO=uinit(x0,y0); close all;
figure('units', 'normalized', 'position',[0 0 1 0.5]1);
%% Alternating solution method Sec 4.4.1
while t < tfimal
un = uO+dt*rhs_PDE(t,u0,Q,M,Ib); t=t+dt; % Euler Step
%Update the domain boundary with at new time.
Y = [r1(th,t) .*cos(th) r2(th,t) .*sin(th)];
%Remap the mesh - solve MA system with Newton method.
err = 10; Hs = max(Y*nj')';
while (err > newton_tol)
[F,J]=rhs_MA(Q,Hs,nj,Ib,M,0); Q=Q-J\F; err=norm(F);
end
xn = M.D1XC*Q; yn = M.D1YCx*Q;
%% Interpolate onto new mesh and apply Dirichlet BC.
u0=griddata(x0,y0,un,xn,yn, 'cubic'); u0(Ib.A)=0;
%% Plot the mesh and the pde solution
xx1 = reshape(xn,0.n,0.n); yyl = reshape(yn,0.n,0.n);
subplot (1,2,1), plot(xxl,yyl,'b',xxl1',yyl1','b');
subplot (1,2,2), surf(xxl,yyl,reshape(u0,0.n,0.n));
x0 = xn; yO = yn;
drawnow;
end

function dudt = rhs_PDE(t,u,Q,M,Ib)
%% The right hand side of the PDE.
% Derivatives of Q - appendix A of [19]
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Qx = M.D1XC*Q; Qy = M.D1YCxQ;

f=zeros(size(Q)); f(Ib.L)=-Qx(Ib.L); £(Ib.R)=Qx(Ib.R);
g=zeros (size(Q)); g(Ib.B)=-Qy(Ib.B); g(Ib.T)=Qy(Ib.T);
Q2xi = M.D2XXN*Q + (25/(6*M.h))x*f;

Q2eta = M.D2YYN*Q + (25/(6*M.h))*g; Q2xieta = M.D2XY4*Q;
%% Laplacian in computational coordinates, Sec 4.3.

J = Q2eta.*Q2xi-Q2xieta.”2; invJ = 1./J;

A11 = reshape(invJ.*x(Q2xieta.”2 + Q2eta.”2),M.n,M.n);
A21 = reshape(-invJ.*(Q2xieta.* (Q2xi+ Q2eta)),M.n,M.n);

A22 = reshape(invJ.*x(Q2xieta.”2 + Q2xi."2),M.n,M.n);
u = reshape(u,M.n,M.n); v = zeros(M.n,M.n);
i =2:M.n-1; ip =1 + 1; im = 1 - 1;

% d/xi (A11 d/xi) Equation (28a)
v(i,:) = v(i,:) + ((A11(ip,:) + A11(i,:)).* u(ip,:)
- (A11(@ip,:) + 2xA11(i,:) + A11(im,:)).*x u(i,:)
+ (A11(i,:) + A11(im,:)) .*u(im,:))/2;
% d/xi (A21 d/eta) Equation (28D)
v(i,i) = v(i,i) + (A21(i,ip).*(u(ip,ip)-u(im,ip))
- A21(i,im) .*(u(ip,im) -u(im,im))) /4;
% d/eta (A21 d/xi) Equation (28b)
v(i,i) = v(i,i) + (A21(ip,i) .*(u(ip,ip)-u(ip,im))
- A21(im,i) .*(u(im,ip)-u(im,im))) /4;
% d/eta (A22 d/eta) Equation (28a)
v(:,1) = v(:,i) + ((A22(:,ip) + A22(:,i)).* u(:,ip)
- (A22(:,ip) + 2xA22(:,i) + A22(:,im)).*x u(:,i)
+ (A22(:,1)+A22(:,im)) .*u(:,im))/2;
Lapu = invJ.*v(:)/(M.h"2);
%% Heat equation with a constant source term.
dudt = Lapu + 1;

function [F,J] = rhs_MA(Q,Hs,nj,Ib,M,0)

%Monge -Ampere equation and its Jacobian - section 4.1.
n = M.n; ns = n~2; Q0 = Q(ceil(ns/2));
%% Interior Points - Derivatives in eq (17).

Qx=M.D1XC*Q; Qy=M.D1YCx*Q; Qxx=M.D2XX*Q; Qyy=M.D2YY*Q;
Qxy = M.D2XY*Q;

£f=0.£(0.x1(:),0.x2(:)); g=0.g(Qx,Qy); gx=0.gx(Qx,Qy);
gy=0.gy(Qx,Qy); Gx = -gx.xf./(g."2); Gy = -gy.*xf./(g.~2);
Z = sparse(n”2,n"2); Z(:,ceil((n"2)/2)) 1;
%% Section 4.1, Eqns 14a, 21la
F Qxx .* Qyy - Qxy."2 - Q0 - f./g;
J spdiags (Qxx ,0,ns,ns)*M.D2YY...
spdiags (Qyy,0,ns,ns)*M.D2XX...

- 2xspdiags (Qxy,0,ns,ns)*M.D2XY...

- spdiags(Gx,0,ns,ns)*M.D1XC

- spdiags(Gy,0,ns,ns)*M.D1YC - Z;
%% Hamilton Jacboi boundary condition H=0.
H = zeros(mns,1); nl = zeros(ns,1); n2 = nl;
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% Forward and backward first derivatives.
Qxm=M.D1XM*Q; Qxp=M.D1XPx*Q; Qym=M.D1YMx*Q; Qyp=M.D1YPx*Q;
% Boundary Condition - Eqn 19a
[H(Ib.A) ,iCl=max(max(nj(:,1) ,0)*Qxm(Ib.A) '+...
+min(nj(:,1) ,0)*Qxp (Ib.A) '+max(nj(:,2) ,0)*Qym(Ib.A)"'...
+min(nj(:,2) ,0)*Qyp(Ib.A) '-repmat (Hs,[1,length(Ib.A)]));
%% Jacobian - Eqn 21b
n1(Ib.A)=nj(iC,1); n2(Ib.A)=nj(iC,2);
Jb = spdiags(max(nl1,0),0,ns,ns)*M.D1XM...
+ spdiags(min(n1,0),0,ns,ns)*M.D1XP...
+ spdiags(max(n2,0) ,0,ns,ns)*M.D1YM...
+ spdiags(min(n2,0) ,0,ns,ns)*M.D1YP;
F(Ib.A) = H(Ib.A); J(Ib.A,:) = Jb(Ib.A,:);

function M = make_D_matrices(n,h)

%% Finite difference derivative matrices

e = ones(n,1); I = speye(n); M.n = n; M.h = h;
%Forward, backward and central differences for first
%derivatives.

DP = spdiags([-3%e 4%e -e],[0 1 2],n,n);

DP(n-1,n-2) = 0; DP(n-1,n-1) = -2; DP(n-1,n) = 2;
DP(n,n) = 3; DP(n,n-1)=-4; DP(n,n-2) = 1;

M.D1XP = kron(I,DP/(2*h)); M.D1YP = kron(DP/(2*h),I);

DM = spdiags([e -4xe 3xe],[-2 -1 0],n,n);
DM(1,1) = -3; DM(1,2) = 4; DM(1,3) -1;
DM(2,1) = -2; DM(2,2) = 2;

M.D1XM = kron(I,DM/(2%h)); M.D1YM

kron (DM/(2%h) ,I);

DC = spdiags([-e Oxe e],-1:1,n,n);

DC(1,1) = -3; DC(1,2) = 4; DC(1,3) -1;

DC(n,n) = 3; DC(n,n-1) = -4; DC(n,n-2) = 1;

D2 = spdiags([e -2%e e]l,-1:1,n,n)/(h"~2);

M.D2XX = kron(I,D2); M.D2YY = kron(D2,I);

M.D2XY = kron(DC/(2*h),DC/(2*h));

%% Fourth Order derivatives for mesh equation.

%% See appendix A of [19]

ND24 = spdiags([-e 16xe -30xe 16*e -e],-2:2,n,n);
ND24(1,1)=-415/6;ND24(1,2)=96;ND24(1,3)=-36;

ND24 (1,4)=32/3;ND24(1,5)=-3/2;

ND24(2,1)= 10;ND24(2,2)=-15;ND24(2,3)=-4;ND24(2,4)=14;
ND24(2,5)=-6; ND24(2,6) = 1;
ND24(n,n)=-415/6;ND24(n,n-1)=96;ND24(n,n-2)=-36;

ND24 (n,n-3)=32/3;ND24(n,n-4)=-3/2;

ND24(n-1,n) = 10; ND24(n-1,n-1) = -15; ND24(n-1,n-2) = -4;
ND24 (n-1,n-3)=14;ND24(n-1,n-4)=-6; ND24(n-1,n-5) = 1;
M.D2XXN = kron(I,ND24/(12%h~2));

M.D2YYN = kron(ND24/(12xh~2),I);

%% Fourth order differentiation matrices (for mesh).
DC4 = spdiags([e -8*e Oxe 8%e -e],-2:2,n,n);
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DC4
DC4
DC4
DC4
DC4
DC4
DC4
DC4
DC4

(1,1) = -25; DC4(1,2) = 48; DC4(1,3) = -36;

(1,4) = 16; DC4(1,5)= -3;

(2,1) = -3; DC4(2,2) = -10; DC4(2,3) = 18;

(2,4) = -6; DC4(2,5) = 1;

(n-1,n) = 3; DC4(n-1,n-1) = 10; DC4(n-1,n-2) = -18;
(n-1,n-3) = 6; DC4(n-1,n-4) = -1;

(n,n) = 25; DC4(n,n-1) = -48; DC4(n,n-2) = 36;
(n,n-3)= -16; DC4(n,n-4)= 3;

= DC4/(12%h);

M.D2XY4=kron(DC4,DC4); M.D1XC=kron(I,DC4);
M.D1YC=kron(DC4,I);

[14]

(15]

[16]
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