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Abstract. An essential ability of many cell types is to detect stimuli in the form of shallow chemical gradients. Such
cues may indicate the direction that new growth should occur, or the location of a mate. Amplification of these faint signals is
due to intra-cellular mechanisms while the cue itself is generated by the noisy arrival of signaling molecules to surface bound
membrane receptors. We employ a new hybrid numerical-asymptotic technique coupling matched asymptotic analysis and
numerical inverse Laplace transform to rapidly and accurately solve the parabolic exterior problem describing the dynamic
diffusive fluxes to receptors. We observe that equilibration occurs on long timescales, potentially limiting the usefulness
of steady state quantities for localization at practical biological timescales. We demonstrate that directional information is
encoded primarily in early arrivals to the receptors, while equilibrium quantities inform on source distance. We develop a
new homogenization result showing that complex receptor configurations can be replaced by a uniform effective condition. In
the extreme scenario where the cell adopts the angular direction of the first impact, we show this estimate to be surprisingly
accurate.

1. Introduction. In a variety of cell types, the ability to locate external stimuli is essential to normal
function. Some important examples include eukaryotic gradient-directed cell migration (chemotaxis) [36,
57, 27], directional growth (chemotropism) in neurons [22], yeast [25, 24] and airinemes in zebrafish [43]. A
unifying feature of these systems is that they must infer the spatial location of the external source through
the noisy arrivals of diffusing particles to membrane receptors. Many authors have sought to understand
how complex downstream machinery, activated by noisy receptor input, enables cells to accomplish this feat
of triangulation so robustly [50, 56, 53, 46, 19, 20, 3, 52, 30]. In the present work, we focus on the most
upstream component of this mechanism, the dynamics of the signal to the receptors.

Fig. 1. Planar diffusion from a source x0 to receptors arranged on a disk representing a cell. The non-overlapping
receptors have centers {xk}Nk=1 and spatial extent {εℓk}Nk=1. Source inference is the task of recovering x0 ∈ R2 \ Ω from the
statistics of particles incident to the receptors.

Signaling molecules undergoing planar diffusive transport will eventually arrive at a receptor (cf. Fig. 1)
and the distribution of arrivals across the set of receptors, known as the splitting probabilities [29], encodes
information on the source location. In the scenario of planar diffusion, or three dimension diffusion to a
spherical cell with surface receptors, Dobramysl and Holcman [17, 18] demonstrated that a unique source
location can be inferred from the splitting probabilities, provided the number of receptors is at least N = 3.
Biological receptor numbers vary considerably between systems with examples including N ≈ 104 in budding
yeast [25] and N ≈ 104 − 105 in lymphocytes [44]. In [33] a maximum likelihood estimation (MLE) method
was developed which enables robust source inference from splitting probabilities for large receptor numbers
N . Interestingly, clustered receptor configurations can exhibit improved source inference over homogeneous
arrangements.
While these works indicate plausible approaches to infer the direction and possibly the distance of signaling
sources, mechanisms for their implementation at a cellular level are challenging to account for due to several
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factors. First, both the splitting probabilities and the derived MLE are a global quantities - their use in source
detection implies that a cell has knowledge of its geometry, the spatial configuration of its receptors, together
with an ability to store and integrate signals. Second, as we shall demonstrate, the two-dimensional splitting
probabilities in the small receptor limit are all equal and independent of the source location. Finally, in the
scenario of an unbounded domain, the mean arrival time for an individual signaling molecule to arrive at a
receptor is infinite [47], suggesting equilibration to the splitting probabilities may occur on a long timescale.
The timescale of this equilibration may or may not be matched by those observed biologically. We note that
in contrast to the bounded domain scenario, the time scale for equilibration in the unbounded domain case
does not reduce to evaluation of the principal eigenvalue [28]. Furthermore, an equilibrium state may not
be applicable if the source location is mobile or its signal dynamic in nature [51, 48, 41, 24].
In this paper, we suggest that much more information can be gleaned by considering the dynamic problem
and that source directionality is most easily inferred from short time receptor arrivals.
The mathematical formulation for the splitting probabilities draws from the conceptual framework of Berg
and Purcell [6]. For a cell represented by Ω ⊂ R2, the splitting probabilities {ϕk(x)}Nk=1 encode the likelihood
that a particle originating at x ∈ R2 \ Ω reaches the kth receptor ∂Ωk before any others. This satisfies the
exterior Laplace mixed boundary value problem

∆ϕk = 0, x ∈ R2 \ Ω; ϕk bounded as |x| → ∞;(1a)

ϕk = δjk, x ∈ ∂Ωj , j = 1, . . . , N ; ∇ϕk · n = 0, x ∈ ∂Ωr.(1b)

We define ∂Ωa := ∪N
j=1∂Ωj as the portion of ∂Ω covered in receptors and ∂Ωr := ∂Ω \ ∂Ωa as the remaining

portion. Here δjk is the Kronecker delta function. As discussed above, we consider the dynamic receptor
signal described through the probability density p = p(x, t) satisfying

∂p

∂t
= D∆p, x ∈ R2 \ Ω, t > 0; p = δ(x− x0), x ∈ R2 \ Ω, t = 0;(2a)

p = 0, x ∈ ∂Ωa, t > 0; D∇p · n = 0, x ∈ ∂Ωr, t > 0.(2b)

Here D > 0 is the diffusivity of the signaling molecule. For the purposes of inferring source location, the
quantities most relevant are the individual receptor fluxes {Jk}Nk=1 and the combined receptor flux for the
cell, ρ(t), satisfying

(3) Jk(t) = −D
∫
∂Ωk

∇p · n dS, ρ(t) := −D
∫
∂Ωa

∇p · n dS =

N∑
k=1

Jk(t) .

The models (1) and (2) are well studied conceptual models of receptor activation [6, 49, 20, 12, 42]. Extensions
to this canonical system have studied to account for more intricate biological features such as receptor binding
dynamics [23], receptor diffusion [35] and receptor gating [11, 7].
In the present work, we develop solutions to (1) and (2) by means of matched asymptotic expansions in the
limit of vanishing receptor size. For the dynamic problem (2), we obtain fluxes by first applying a Laplace
transform, solving the modified Helmholtz transform equation by matched asymptotic methods, and finally
applying numerical inverse Laplace transform. Throughout the analysis of the static and dynamic problems,
we adopt the notation that the N receptors are centered at {xk}Nk=1 and occupy a segment of the boundary
with arclength {εℓk}Nk=1. The receptors are assumed to be well separated from each other and the source x0,
specifically |xj − xk| = O(1) as ε→ 0 for j ̸= k and 0 ≤, j, k,≤ N . Our analysis is valid for general cellular
geometries Ω in terms of certain Green’s functions (discussed below), however, our exposition will focus on
a circular cell of radius rcell = 1 with a source at distance |x0| = rsource (cf. Fig. 1). The applicability of this
work to a half plane scenario, which has previously been studied in source localization [17], is demonstrated
in appendix D. To corroborate results from the hybrid numerical-asymptotic approach, we employ a recently
developed Kinetic Monte Carlo (KMC) which can rapidly and accurately sample all relevant arrival statistics
[16].
To perform inference on the source location, we develop in Sec. 3 a maximum likelihood estimator (MLE)
that connects the receptor arrival counts {ck}Nk=1 to the cumulative fractional fluxes qk(x; t) through each
receptor. This approach leads to the optimization problem

(4) x̂MLE(t) = argmax
x

L(x; t), L(x; t) = −
N∑

k=1

ck log[qk(x; t)], qk(x; t) =

∫ t

0
Jk(τ)dτ∫ t

0
ρ(τ)dτ

.
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The cumulative fractional fluxes have limiting behavior ϕk(x) = limt→∞ qk(x; t) and therefore provide a
natural comparison to the splitting probabilities. We observe that short time fluxes yield a more accurate
directional estimate x̂MLE(t) on the source compared with longer time fluxes or splitting probabilities. Moti-
vated by this observation, we investigate simple recovery algorithms that utilize the directional information
content in early receptor arrivals. One such mechanism is a simple polar averaging of receptor inputs which
this provides an accurate estimate of source direction at short times. At later times, for which the signaling
molecules have diffused far from the source, the estimate is no longer reliable.
To explain the accuracy of short time estimates, we obtain in the case of equally space receptors a homog-
enization result in which the mixed boundary conditions (2b) are replaced by a uniform Robin condition
D∇p · n = κp for N ≫ 1. The obtained homogenization parameter

(5) Dκ−1 = − 2

N
log
(εN

4

)
,

results in a very accurate representation of the solution in the regime ε ≪
√
Dt ≪ 1. The homogenized

solution allows for identification of the timescale at which particle density becomes radially symmetric - the
time after which no directional information is incident to the receptors.
Finally, as a theoretical limit on the directional information of short time arrivals, we apply extreme value
theory [32, 34, 31] to obtain the arrival time ta and arrival angle θa of the first impact amongstM independent
particles released from the source. For a circular cell of radius rcell = 1 centered at the origin and source at
x0 = R(cos θ0, sin θ0), we obtain that for M ≫ 1, the arrival angle is normally distributed N (θ0, σ

2
θa
) where

(6) σ2
θa(M,R) ∝

R
(
1− 1

R

)2
logM

.

The implication of (6) is that a single particle, traveling along a ballistic path from the source to a cell
receptor [32, 34], can yield an accurate estimate on the direction of the source. Moreover, this estimate can
be formed without a cell integrating receptor fluxes as required in the use of splitting probabilities or MLE.
Finally in Sec. 5 we conclude by discussing some potential extensions.

2. Asymptotic construction of splitting probabilities and dynamic fluxes. In this section, we
obtain an asymptotic representation [29, 28, 16, 58, 8, 10] of the solution of (1) and (2) as ε → 0. This
analysis requires knowledge of the solution vc(y) to a rescaled form of the governing equations in a stretched
region y = (x−xk)/ε in the vicinity of each receptor. The details of this solution are provided in Appendix
A. We consider the static and dynamic problems separately.

2.1. Splitting Probabilities: The static problem. The splitting probabilities have previously been
calculated for closed geometries [29, Section 5] and here we modify the analysis for the exterior setting. The
absorbers satisfy ∂Ωj → xj as ε→ 0. In terms of the local problem with stretched variable y = (x− xj)/ε,
we establish that ϕk(xj + εy) ∼ δjk +Ajkνjvc(y) where vc solves (62). This forms the local condition

ϕk(x) ∼ δjk +Ajkνj log |x− xj |+Ajk + · · · , x → xj , j = 1, . . . , N ; νj =
−1

log(εℓj/4)
.

In order to evaluate the limiting behavior of (1) as ε → 0, we may formally expand the solution in an
asymptotic expansion of the small parameter 1/| log ε| as

(7) ϕk(x) = ϕ
(0)
k (x) +

1

| log ε|
ϕ
(1)
k (x) +O

(
1

| log ε|2

)
, Ajk = A

(0)
jk +

1

| log ε|
A

(1)
jk +O

(
1

| log ε|2

)
.

After collecting terms we have a series of problems. At leading order term, ϕ
(0)
k (x) satisfies

∆ϕ
(0)
k = 0, x ∈ R2 \ Ω; ϕ

(0)
k (x) bounded as |x| → ∞;(8a)

∇ϕ(0)k · n = 0, x ∈ ∂Ω \ ∪N
j=1{xj};(8b)

ϕ
(0)
k (x) ∼ δjk +A

(0)
jk as x → xj , j = 1, . . . , N,(8c)
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while the correction problem for ϕ
(1)
k (x) satisfies

∆ϕ
(1)
k = 0, x ∈ R2 \ Ω; ϕ

(1)
k (x) bounded as |x| → ∞;(9a)

∇ϕ(1)k · n = 0, x ∈ ∂Ω \ ∪N
j=1{xj};(9b)

ϕ
(1)
k (x) ∼ A

(0)
jk log |x− xj |+A

(1)
jk − log

ℓj
4

as x → xj , j = 1, . . . , N,(9c)

where the constants A
(0)
jk and A

(1)
jk are to be determined. We define the surface Green’s function Gs(x; ξ) for

the Laplacian, which solves

∆Gs = 0, x ∈ R2 \ Ω; −∇Gs · n = δ(x− ξ), x ∈ ∂Ω \ {ξ};(10a)

Gs ∼
−1

π
log |x− ξ|+Rs(ξ) + o(1), as x → ξ.(10b)

The leading order problem (8) has a constant solution while ϕ
(1)
k (x) is expressed as

(11) ϕ
(1)
k (x) = −π

N∑
j=1

A
(0)
jk Gs(x;xj) + ϕ̄

(1)
k ,

for constant ϕ̄
(1)
k . So that there is no growth as |x| → ∞, we have that

∑N
j=1A

(0)
jk = 0. This boundedness

criteria is analogous to the Fredholm solvability condition used in the splitting problem on a finite domain

[29]. Summing (8c) and applying
∑N

j=1A
(0)
jk = 0 yields that

(12) ϕ
(0)
k =

1

N
, A

(0)
jk =

1

N

{
1−N j = k

1 j ̸= k
.

The equality of the splitting probabilities in the limit ε→ 0 means that the finite receptor size is necessary
to perform source inference in two dimensions. This is in contrast to the three dimensional equivalent [33].
Matching the solution (11) to local behavior (9c) yields (N+1) linear equations for the values of the constants

(A
(1)
1k , . . . , A

(1)
Nk, ϕ̄

(1)
k ),

N∑
j=1

A
(1)
jk = 0, ϕ̄

(1)
k − π

[
A

(0)
jk Rs(xj) +

N∑
i=1
i ̸=j

A
(0)
ik Gs(xi,xj)

]
= A

(1)
jk − log

ℓj
4
, j = 1, . . . , N.

This completes the expansion to O(| log ε|−1). Further terms of the expansion can be calculated to improve
the accuracy of the series, however, these additional terms cannot mitigate the fact that 1/| log ε|n+1 ≪
1/| log ε|n only when ε is exceedingly small. This well known issue of logarithmic expansions in two di-
mensional singularly perturbed problems [59, 58] can be resolved by obtaining the so-called “sums-of-logs”
solution to (1). This involves positing the expansion

ϕk(x) = ϕ∗k(x;ν) + o(1), as ε→ 0,

where the correction terms are smaller than any power of 1/| log ε|. Here ϕ∗k(x;ν) satisfies

∆ϕ∗k = 0, x ∈ R2 \ Ω; ϕ∗k(x) bounded as |x| → ∞;(13a)

∇ϕ∗k · n = 0, x ∈ ∂Ω \ ∪N
j=1{xj};(13b)

ϕ∗k(x) ∼ δjk +Ajkνj log |x− xj |+Ajk, as x → xj , j = 1, . . . , N.(13c)

In terms of the surface Green’s function, the solution of (13) is expressed as the linear combination

(14) ϕ∗k(x) = −π
N∑
j=1

AjkνjGs(x;xj) + ϕ̄k,
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where ϕ̄k = lim|x|→∞ ϕ∗k(x) is a constant arising from the homogeneous solution which reflects the splitting
probability independent of the initial location. The solution (14) must not contribute a monopole as |x| → ∞
and so the strength terms {νjAjk}Nj=1 sum to zero which enforces that ϕ∗k(x) ∈ (0, 1) for all x ∈ R2 \ Ω.

The additional constraints for the unknowns (A1k, . . . , ANk, ϕ̄k) arise from matching the solution (14) to the
local behavior (13c). In total, the system of (N + 1) linear equations becomes

N∑
j=1

νjAjk = 0, ϕ̄k − π
[
AjkνjRs(xj) +

N∑
i=1
i̸=j

AikνiGs(xi,xj)
]
= Ajk + δjk, j = 1, . . . , N.

This system is compactly represented in matrix form as

(15a)

[
I + π Gs V −eT

ν 0

][
Ak

ϕ̄k

]
= −

[
ek

0

]
,

Ak = (A1k, . . . , ANk),

ν = (ν1, . . . , νN ),

e = (1, 1, . . . , 1),

ek = (0, . . . 1︸︷︷︸
kth

. . . , 0), [Gs]i,j =

{
Rs(xi) i = j

Gs(xi;xj) i ̸= j
[V]i,j =

{
νi i = j

0 i ̸= j
(15b)

and I is the N × N identity matrix. This linear system is solved and the full solution obtained from (14).
In Appendix B, we give derivations of the Green’s functions Gs(x; ξ) for the disk and half plane geometries.

2.2. Receptor arrival statistics: The dynamic problem. In the previous sections we alluded to
the usefulness of the dynamic fluxes to source inference. To obtain these dynamic quantities (3), we proceed
by applying a “hybrid numerical-asymptotic” method [16, 10] to the parabolic problem (2). The steps of this
method are to first apply a Laplace transform to the underlying parabolic equation, following by matched
asymptotic solution of the elliptic transform problem. Finally, the Laplace transform is inverted numerically
in terms of an efficient quadrature of the Bromwich contour. Our goal is to obtain the dynamic quantities

(16) Jk(t) = −D
∫
∂Ωk

∇p · n dS, qk(t) =

∫ t

0
Jk(τ)dτ∫ t

0
ρ(τ)dτ

, k = 1, . . . , N.

Accordingly, we define the Laplace transform of p(x, t)

(17) p̂(x; s) =

∫ ∞

t=0

p(x, t)e−stdt,

where p(x, t) satisfies (2) and the transform p̂(x; s) solves the modified Helmholtz equation

D∆p̂− sp̂ = −δ(x− x0), x ∈ R2 \ Ω;(18a)

p̂ = 0, x ∈ ∂Ωa; D∇p̂ · n = 0, x ∈ ∂Ωr.(18b)

Following the hybrid-asymptotic approach [40, 16], we solve (18) by means of matched asymptotic expansion
in the limit ε→ 0 and as such, replace each absorbing site ∂Ωj with the local behavior p̂ ∼ Aj(s)νj log |x−
xj |+ Aj(s) as x → xj . In this boundary layer analysis for the dynamic problem, we assume that ε2s ≪ 1.
Therefore our results are not uniformly valid as s → ∞, or correspondingly t → 0. The expansion p̂(x) =
p̂∗(x;ν, s) + o(1) results in a problem which again “sums-the-logs” where p̂∗ solves

D∆p̂∗ − sp̂∗ = −δ(x− x0), x ∈ R2 \ Ω; D∇p̂∗ · n = 0, x ∈ ∂Ω \ ∪N
j=1{xj};(19a)

p̂∗(x) ∼ Aj(s)νj log |x− xj |+Aj(s), as x → xj , j = 1, . . . , N.(19b)

The general solution of (19) is developed as

(20) p̂∗(x) = Gh(x;x0, s)− πD

N∑
j=1

Aj(s)νjGh(x;xj , s),
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where Gh(x; ξ, s) is the Green’s function of the modified Helmholtz equation satisfying

D∆Gh − sGh = 0, x ∈ R2 \ Ω; −D∇Gh · n = δ(x− ξ), x ∈ ∂Ω \ {ξ};(21a)

Gh ∼ −1

πD
log |x− ξ|+Rh(ξ; s) + o(1), as x → ξ.(21b)

In Appendix B we derive expressions for solutions of (21) in the upper half plane and the disk exterior
geometries. Matching (20) to the local condition (19b) as x → xk yields the conditions

(22a) Gh(xk;x0, s) = Ak(s) + πD
[
Ak(s)Rh(xk) +

N∑
j=1
j ̸=k

Aj(s)νjGh(xk;xj , s)
]
,

for k = 1, . . . , N . In terms of the strength vector A(s) = [A1(s), . . . , AN (s)]T , equations (22a) can be
represented in matrix equation form where the strengths satisfy the linear system,

(22b) (I + πDGhV)A(s) = g0, [Gh]i,j =

{
Rh(xi; s) i = j

Gh(xi;xj , s) i ̸= j
, g0 =

Gh(x1;x0, s)
...

Gh(xN ;x0, s)

 .
In the system (22b), the vector g0 describes the interaction between the source location and each receptor
while the matrix Gh encodes global information on the receptor configuration. We remark that in the vector
g0, the Green’s function is evaluated for a source in the bulk, while for the entries of Gh each source is on the
surface ∂Ω. Therefore we must obtain Gh(x; ξ, s) for both ξ ∈ ∂Ω and ξ ∈ R2 \Ω separately. The geometric
information of each receptor (e.g. size) is encoded solely through the diagonal matrix V, defined in (15b).
In this section, we show how to extend this asymptotic analysis to obtain the full time-dependent arrival
statistics. After applying the Laplace transform p̂(x; s) =

∫∞
t=0

e−stp(x; t)dt to (2), we obtain the modified
Helmholtz problem (18) We now discuss the inversion from Laplace space to physical time. One quantity of
interest is the flux (3) through each of the receptors. In the transform variables, these quantities are

(23) Ĵk(s) = πDAk(s)νk.

From the solution of the linear system (22b), we then apply a numerical inverse Laplace transform [60, 1, 61]
to obtain the fluxes over each receptor (23). Numerical inverse Laplace transform is based on quadrature of
the Bromwich integral, specifically

(24) Jk(t) =
1

2πi

∫
ΓB

estĴk(s) ds,

where ΓB is the complex contour ΓB = {γ + iy | − ∞ < y < ∞}. The parameter γ is chosen so that all

singularities of Ĵk(s) lie to the left of Re(s) = γ. In the present scenario associated with diffusion, the

singularities of Ĵk(s) lie along the negative real axis arising from the branch cut of
√
s. Rapid and effective

numerical evaluation of (24) is achieved by deforming the contour around Re(s) = 0 such that the integrand
of (24) decays very rapidly for Re(s) < 0. The Talbot contour ΓT is a family of deformations (see Fig. 2) to
ΓB given parametrically by

(25) ΓT = {σ + µ(θ cot θ + βi θ) | − π < θ < π},

where σ, µ and β are shape parameters [60, 55]. To achieve rapid and accurate evaluation of the inverse
Laplace transform, we apply the midpoint rule to the integral (24) along the curve (25).

2.3. Homogenization. In this section we identify a boundary homogenization limit as N → ∞ that
replaces the mixed Neumann and Dirichlet boundary conditions by a single condition D∇ph ·n = κ ph for a
permeability parameter κ > 0 [5, 4, 14, 38, 37, 23, 9]. For a circular cell Ω of radius rcell = 1 centered at the
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Fig. 2. A schematic of the Talbot curve (25) for parameter values σ = 0, µ = 2, β = 0.5. The red line indicates the
singularities along the negative real line arising from the

√
s singularity.

origin with source x0 = Reiθ0 , the homogenized problem ph(r, θ, t;R) solves

∂ph
∂t

= D
[∂2ph
∂r2

+
1

r

∂ph
∂r

+
1

r2
∂2ph
∂θ2

]
, r > 1, θ ∈ (0, 2π), t > 0;(26a)

ph =
1

r
δ(r −R)δ(θ − θ0), r > 1, θ ∈ (0, 2π), t = 0;(26b)

ph(r, θ + 2π, t) = ph(r, θ, t), r > 1, θ ∈ (0, 2π), t > 0.(26c)

D
∂ph
∂r

= κ ph, r = 1, θ ∈ (0, 2π), t > 0.(26d)

We find in Appendix B that the surface flux J (θ, t) = D∂rph |r=1 of (26) has Laplace transform

(27) Ĵ (θ, s) =
1

2π
χ0(α) +

1

π

∞∑
m=1

χm(α) cosm(θ − θ0), χm(α) =
Km(αR)

Km(α)−Dκ−1αK ′
m(α)

where Km(z) is the modified Bessel function of order m and α =
√
s/D is the scaled Laplace parameter. To

derive a formula for κ, we consider N equally spaced receptors of common angular extent ε with complex
coordinates xj = eiθj for θj = 2πj

N and j = 1, . . . , N . For the strength vector A(s) = [A1(s), . . . , AN (s)]T ,
we define the surface flux

ĴN (θ, s)=

N∑
j=1

Ĵk(s)δ(θ − θj) = πDν

N∑
j=1

Aj(s)δ(θ − θj).

The flux, ĴN (θ, s), in this asymptotic limit is a sum of N δ-functions, one for each pore, and we wish to

study how this measure converges to the homogenized flux Ĵ (θ, s). What we will demonstrate is that as

N → ∞ the coefficients in the Fourier series of ĴN (θ, s) converge to those of the Fourier cosine series for

Ĵ (θ, s) given by (27). We now solve for the fluxes explicitly using ideas from the discrete Fourier transform
[13].
The Green’s function matrix Gh defined in (22a) is circulant, therefore we can find an eigenbasis {u1, . . . ,uN}
such that

(28) um ≡ [1, ωm, ω
2
m . . . , ωN−1

m ]T = [1, ωm, ω2m . . . , ω(N−1)m]T , ωk = e
2πik
M .

Expanding the strength vector as

A(s) =

N∑
m=1

cmum,
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guarantees due to orthogonality that cq = 1
N u∗

q ·A(s) which we expand for later use as

(29) eiqθ0cq = eiqθ0
1

N

N∑
j=1

Aj(s)e
−iqθj =

1

N

N∑
j=1

Aj(s) [cos q(θj − θ0)− i sin q(θj − θ0)] .

Taking the inner-product of (22b) with u∗
q yields that

(30) cq =
u∗
q · g0

N + πDν u∗
q Gh uq

.

For the terms u∗
q Gh uq we need the surface Green’s function (Appendix B)

Gh(x; ξ, s) = − 1

πD
log |x− ξ|+Rh(x; ξ, s);(31a)

Rh(x; ξ, s) =
1

πD

(
− 1

2

K0(α)

αK ′
0(α)

−
∞∑

m=1

[
Km(α)

αK ′
m(α)

+
1

m

]
cosm(θ − θ0)

)
.(31b)

where x = eiθ and ξ = eiθ0 . We decompose u∗
q Gh uq = S +R where the regular term R is

R =

N∑
m=1

N∑
n=1

e−iq(θm−θ0)Rh(xm;xn)e
iq(θn−θ0)(32)

=

(
N

2π

)2 ∫ 2π

θ=0

∫ 2π

θ̄=0

e−iq(θ−θ0)Rh(x(θ);x(θ̄))e
iq(θ−θ̄)dθdθ̄ +H.O.T.

= − N2

2πD


K0(α)
αK′

0(α)
, q = 0;

Kq(α)
αK′

q(α)
+ 1

q , q = 1, 2, 3, . . .
(33)

The singular term S is calculated as

S = − 1

πD

N∑
m=1

N∑
n=1
n ̸=m

e−iq(θm−θn) log |xm − xn| = − N

πD

N∑
n=2

cos(qθn) log |xn − 1|

= − N

πD
logN − N

πD

N∑
n=1

(
cos(qθn)− 1

)
log |xn − 1|

= − N

πD
logN +

N2

2π2D

∫ 2π

θ=0

(
1− cos(qθ)

)
log
(
2 sin θ

2

)
dθ +H.O.T.

= − N

πD
logN +

N2

2πD

{
0, q = 0;
1
q , q = 1, 2, 3, . . .

(34)

In the above calculations, higher order terms (H.O.T.) arise by interpreting summations as quadratures
and replacing with the equivalent integrals, a technique familiar from the discrete Fourier transform [13].
In practice, for a fixed wavenumber (here q) as N increases the error drops exponentially in 1/N for C∞

integrands. Combining (33) and (34) gives

(35) u∗
q Gh uq = R+ S = −N logN

πD
− N2

2πD

Kq(α)

αK ′
q(α)

.

To calculate the term u∗
q · g0 we need the bulk Green’s function (70)

(36) Gh(θ;R, θ0, s) = − 1

2πD

K0(αR)

αK ′
0(α)

− 1

πD

∞∑
m=1

Km(αR)

αK ′
m(α)

cosm(θ − θ0),
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for x = (cos θ, sin θ) and ξ = R(cos θ0, sin θ0). We calculate that

u∗
q · g0 =

N∑
k=1

e−iqθkGh(xk,x0, s) ≈ e−iqθ0
N

2π

∫ 2π

θ=0

cos q(θ − θ0)Gh(θ;R, θ0) dθ

= −e−iqθ0
N

2πD

Kq(αR)

αK ′
q(α)

+ H.O.T.(37)

Combining equations (30), (35) and (37), we determine that

(38) cq =
u∗
q · g0

N + πDν u∗
q Gh uq

≈ e−iqθ0

πDνN

Kq(αR)
αK′

q(α)
.

2
N log εN4 +

Kq(α)
αK′

q(α)

If we now formally expand ĴN (θ, s) as a Fourier series,

(39) ĴN (θ, s) =
1

2π
χ0(α) +

1

π

∞∑
m=1

χm(α) cosm(θ − θ0) + ψm(α) sinm(θ − θ0),

we find that for m = 0, 1, 2, . . .,

χm(α) =

∫ 2π

0

ĴN (θ, s) cosm(θ − θ0) dθ =

∫ 2π

0

 N∑
j=1

Ĵk(s)δ(θ − θj)

 cosm(θ − θ0) dθ ,

=

N∑
j=1

Ĵk(s) cosm(θj − θ0) ,

= πDν

N∑
j=1

Aj(s) cosm(θj − θ0) .

A similar calculation yields m = 1, 2, . . . that ψm(α) = πDν
∑N

j=1Aj(s) sinm(θj − θ0). Now combining
this calculation with (29) yields

(40) eiqθ0cq =
1

N

N∑
j=1

Aj [cos q(θj − θ0)− i sin q(θj − θ0)] =
1

πDνN

[
χm(α)− iψm(α)

]
but from (38) this yields in the limit of large N (and fixed q) that

χq(α)− iψq(α) ∼
Kq(αR)
αK′

q(α)
.

2
N log εN4 +

Kq(α)
αK′

q(α)

and as the righthand side is real, we conclude that ψq(α) tends to zero in the limit of large N . This can be
interpreted physically as an approximately symmetric response to the source at θ0 in the limit of large N .
A direct comparison with the Robin surface flux (27) reveals that χq(α) = χq(α) (again in the limit of large
N) if one chooses the homogenization parameter to be

(41) Dκ−1 = − 2

N
log
(εN

4

)
.

This result is in agreement with those previously determined for steady state [45, 39] quantities, but is
obtained here for all dynamic modes, demonstrating that homogenization has much broader efficacy. This
has been recently observed in the first passage time distribution of capture to planar absorbers [16].
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2.4. Short time asymptotics via the method of moments. In this section we obtain the short-
time asymptotics for the solution of (26) which will be used to describe the source detection for very early
arrivals to the cellular surface. This is a familiar problem from stochastic processes; the earliest arrivals
are concentrated at the point closest to the source. Heuristically, this can be viewed as a boundary layer
calculation. The outer solution is just the free space Green’s function and the inner solution is confined
to a boundary layer of width

√
Dt at the edge of the disc. Specifically, we will consider the problem when

ε ≪
√
Dt ≪ 1, that is where the diffusion length is much longer than the typical receptor size (so the

homogenization approximation is valid) but much smaller that the disc radius. We expect that the arrivals
will be concentrated near the point on the disc closest to the source.
The homogenized problem derived in the previous section allows a straightforward characterization of the
fluxes at short times via the method of moments. Our starting point is the expansion of the Laplace transform
of the flux density (72) as a Fourier cosine series (reflecting the even symmetry of the distribution). For
convenience we take θ0 = 0 and calculate from (27) and the orthogonality of the Fourier modes that

(42) χn(α) =

∫ π

θ=−π

Ĵ (θ, α) cosnθ dθ.

Next we exploit the exponential localization of the distribution to treat the interval θ ∈ [−π, π] as effectively
infinite and define the centered moments of the distribution, Mn(t) and their Laplace transform M̂n(α) =
L[Mn(t)], where as usual α =

√
s/D,

(43) Mn(t) =

∫ π

θ=−π

J (θ, t)θn dθ, M̂n(α) =

∫ π

θ=−π

Ĵ (θ, α)θn dθ.

The linearity of the moments implies that the Laplace transform of the moments are the moments of the
Laplace transform. The even symmetry guarantees that the odd moments will vanish, as does the mean and
the skewness of the distribution.
The first moment is exactly χ0(α) which we will expand for α =

√
s/D ≫ 1 corresponding to

√
Dt ≪ 1.

In addition, we will make an assumption about the homogenization parameter that 0 < Dκ−1 ≪ 1. This
can be thought of as having a fixed receptor fraction on the surface, εN < 4 (to ensure positivity of the log
term), and letting N increase to infinity.

M̂0(α) = χ0(α) =
K0(αR)

K0(α)−Dκ−1αK ′
0(α)

∼ κe−α(R−1)

√
R(αD + κ)

[
1 +O

(
1

α

)]
whose inverse transform is

M0(t) =
κ√
R
e−

(R−1)2

4Dt

[
1√
πDt

− κ

D
erfc(β)eβ

2

]
·
[
1 +O(

√
Dt)

]
β =

2κt+ (R− 1)

2
√
Dt

Note that β > R−1
2
√
Dt

≫ 1 and expanding in the limit of large β yields

M0(t) =
κ(R− 1)√

R

e−(R−1)2/4Dt

√
πDt

[
1

2κt+ (R− 1)

]
·
[
1 +O(

√
Dt)

]
,

which is a uniform approximation independent of the relative sizes of κt and (R− 1).
Expanding cosnθ = 1− (nθ)2/2 + (nθ)4/24 + · · · as a Taylor series yields

(44) χn(α) =

∫ 2π

θ=0

Ĵ (θ, α) cosnθ dθ = M̂0(α)−
n2

2
M̂2(α) +

n4

24
M̂4(α) + · · ·

We now expand χn(α) for fixed n and α ≫ 1, a limit for which uniform approximations are well-known for
the modified Bessel functions. First, we rewrite χn(α) as

χn(α) =
Kn(αR)/K

′
n(α)

Kn(α)/K ′
n(α)−Dκ−1

.
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Asymptotically the ratios of Bessel functions for fixed n and α≫ 1 yields

Kn(αR)

K ′
n(α)

∼ e−α(R−1)

R

[
−1 +

(4n2 + 3)(R− 1) + 4

8R
α−1

+
(−16n4 + 8n2 − 33)(R− 1)2 + (3n2 − 72)(R− 1) + (64n2 − 48)

128
α−2 +O

(
α−3

)]
where the denominator Kn(α)/K

′
n(α) can be expanded by setting R = 1 in this expression. The jth term

for the expression in the square bracket is a polynomial in n of degree 2(j − 1) times α−(j−1). Substituting
into the expression for χn(α) and expanding for α ≫ 1 while allowing the relative size of α and D/κ to be
arbitrary allows us to identify the Laplace transforms of the moments in (44),

M̂0(α) ∼
κe−α(R−1)

√
R(αD + κ)

[
1 +O

(
1

α

)]
,

M̂2(α) ∼
κ(R− 1)e−α(R−1)

αR
3
2 (αD + κ)

[
1 +O

(
1

α

)]
,

M̂4(α) ∼
3κ(R− 1)2e−α(R−1)

α2R
5
2 (αD + κ)

[
1 +O

(
1

α

)]
.

The inverse transform M̂2(α) can be approximated for α, β ≫ 1 as

M2(t) =M0(t)

[
2Dt

R

]
·
[
1 +O(

√
Dt)

]
.

This allows us to compute the variance

Var[J (θ, t)] ≡ M2(t)

M0(t)
∼ 2Dt

R
.

A similar tedious calculation yields the result that

M4(t) =M0(t)

[
12(Dt)2

R2

]
·
[
1 +O(

√
Dt)

]
,

and shows that the kurtosis satisfies

Kur[J (θ, t)] ≡ M4(t) ·M0(t)

[M2(t)]2
∼ 3 +O(

√
Dt).

This is consistent with a Gaussian distribution, specifically, we have in the limit t→ 0+ that

J (θ, t) ∼ M
σ
√
2π
e−

θ2

2σ2 ; σ2 = Var[J (θ, t)] ∼ 2Dt

R
;(45a)

M =M0(t) ∼
κ(R− 1)√
πRDt

e−
(R−1)2

4Dt

[
1

2κt+ (R− 1)

]
.(45b)

We remark that the limiting behavior of (45b) as t→ 0+ is consistent with the short time asymptotic of the
survival probability derived in (74).

3. Source Recovery. In this section we investigate source inference using both dynamics fluxes (50)
and splitting probabilities. We consider the situation where M particles are released from a location x. The
particles arrive at one of the N receptors with centers {xk}Nk=1 and the counts at each being {ck}Nk=1 so that∑N

k=1 ck =M .
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One potential avenue for formulating a problem for the source location x0 uses the discrete splitting proba-
bilities ck/M together with the asymptotic formulation (14). Assuming ϕk ≈ ck/M for M sufficiently large,
and source location x, this yields the system

(46) ϕ̄k − ck
M

= π

N∑
j=1

AjνjGs(x;xj), k = 1, . . . , N.

For the circular cellular geometry (cf. Fig. 1), it was shown in [17] that the system (46) generates a unique
solution provided N ≥ 3. In practice, the number of receptors may be large so that (46) is highly over
determined thus limiting the practicality in source inference. We therefore consider the maximum likelihood
approach of [33] which adopts a probabilistic viewpoint to obtain a distribution for the source location given
splitting probabilities and the receptor counts {ck}Nk=1. The multinomial likelihood function is given by

(q1)
c1 × (q2)

c2 × · · · × (qN )cN =

N∏
k=1

(qk)
ck ,

where qk := qk(x; t) are the dynamic signals or, alternatively, the splitting probabilities ϕk(x) = lim
t→∞

qk(x, t).

For convenience, the negative log-likelihood is considered giving the estimator

(47) x̂MLE(t) = argmax
x

L(x; t), L(x; t) = −
N∑

k=1

ck log[qk(x; t)].

The use of a finite number of signaling particles (M < ∞) reflects a low concentration of chemoattractant
and simultaneously the number M serves as a parameter for controlling noise of the receptor signal in the
source inference process. To more precisely quantify the role of noise in the inference process, we consider
the “exact” landscape L∗ defined as

(48) L∗(x;x0, t) = −
N∑

k=1

qk(x0, t) log[qk(x, t)].

In (48), the finite receptor counts ck have been replaced by the exact relative fluxes qk(x0, t). While it may
be feasible to implement MLE on the cellular level [21], here we use this methodology only as a map from
the receptor configuration and input signal to a source estimate.

4. Results. In this section, we provide validation of our results. We cross-verify where possible the
different approaches to obtaining the static splitting probabilities and the dynamic receptor fluxes. In the
static case of the splitting probabilities, we develop (see Appendix C) a highly accurate numerical solution
based on a least squared fitting approach of (1). In all scenarios, a particle based Kinetic Monte Carlo
(KMC) method [16] is employed to rapidly and accurately sample all static and dynamic quantities while
providing noisy receptor inputs for source reconstruction.

4.1. Ex: Asymptotic verification in disk geometry with three receptors. In this test case
we validate in Fig. 3 the asymptotic approximation on the disk geometry with three receptors given by
parameters

(49) ℓ = εℓc = ε
[π
3
,
π

3
,
2π

3

]
, xj = [cos θj , sin θj ], θj =

[π
4
, π,

3π

2

]
, x = [2, 0].

In Fig. 3(a) we show that the splitting probabilities {ϕ1(ε), ϕ2(ε), ϕ3(ε)} obtained from asymptotics and
numerics are in very close agreement for a wide range of ε values. As ε→ 0, we observe that ϕk(ε) → 1/N in
agreement with equation (12). For the splitting probability ϕ3(0.3), we show in Fig. 3(b) contours indicating
equal likelihood of arriving first at receptor k = 3.
To validate the time-dependent arrival statistics, we calculate from (24) the full arrival density ρ(t), the
fractional cumulative signal qk(t) and the fractional fluxes J̄k(t) satisfying

(50) ρ(t) =

N∑
j=1

Jj(t), qk(t) =

∫ t

0
Jk(τ)dτ∫ t

0
ρ(τ)dτ

, J̄k(t) =
Jk(t)

ρ(t)
.
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(a) ϕk(ε) against ε.
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(b) ϕ3(x) with ε = 0.3. (c) Arrival time density ρ(t).

(d) qk(t) as t → ∞. (e) Fluxes Jk(t). (f) Relative fluxes J̄k = Jk/ρ(t).

Fig. 3. Validation of the hybrid asymptotic method for example 4.1 and parameters (49). Panels (a-b) feature numerical
results from the series method described in Appendix C while panels (c-f) feature M = 106 arrival times obtained from a
Kinetic Monte-Carlo (KMC) method [16]. Panel (a): Numerical validation of the asymptotic splitting probabilities. Panel
(b): numerical solution of the splitting probability ϕ3(x) for ε = 0.3. Panel (c): full distribution of first passage times
from asymptotics (50) and KMC data. Panel (d): Convergence of the accumulated signals (50) to the asymptotic splitting
probabilities {ϕ1, ϕ2, ϕ3} for ε = 0.1. Panel (e): Fluxes Jk(t) against time to individual receptors. Panel (f): Relative fluxes
J̄k(t) = Jk(t)/ρ(t) against time to individual receptors with convergence to {ϕ̄1, ϕ̄2, ϕ̄3}.

In Fig. 3(c) we demonstrate that the asymptotic approximation of the full arrival data is in close agreement
with times generated from a Kinetic Monte Carlo method (described in [16]). In Fig. 3(d) we see that
qk(t) → ϕk as t → ∞, and in particular we note that this convergence occurs on a long timescale. In 3(e),
we show the instantaneous fluxes into the receptors with the location and height of the peaks indicating
the prominence of signal to the receptors. If a cell needs to make a quick (t ≈ 100) decision on the source
location, then the k = 1 receptor is the primary recipient of signal and gives the best information to make
an inference on the source direction. In Fig. 3(f), we show the instantaneous relative fluxes J̄k(t) and
observe that J̄k(t) → ϕ̄k as t → ∞. The quantities ϕ̄k (see Eq. (14)) reflect the component of the splitting
probabilities that are independent of the source location. Therefore, Fig. 3(f) provides an estimate of the
time (t ≈ 102) beyond which particles attain thermal equilibrium and no longer contain source information.

We now demonstrate source inference in this scenario (parameters (49) with ε = 0.1). This configuration
of receptors is not representative of a real cell, however, this is an informative test case since N = 3 is the
minimum required to uniquely locate (triangulate) the source [17]. In this test case, we generated M = 104

arrival times with the particle approach [16] and took receptor counts at times t = 100, t = 101, t = 103 and
t = ∞. The count measurements (see Table 1) demonstrate that short time data has much richer information
on the source direction.
When surveying the counts in Table 1, we clearly see the importance of short time arrival data. For example,
by t = 100, 7% of the particles have been captured yet none have arrived at receptor k = 2. This strongly
suggests the source is not to the left of the cell and that the signal through receptors k = 1, 3 convey richer
information on the source location. However, the splitting probabilities, which arise once all particles have
been absorbed (t = ∞), do not give such a clear conclusion that the source is to the right. Indeed, the
smaller deviation in counts across the receptors may diminish the quality of the inference.
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time c1 c2 c3
1
M

∑3
k=1 ck

t = 100 580 0 153 0.07
t = 101 1741 183 973 0.29
t = 103 2765 929 2070 0.58
t = ∞ 4192 2194 3614 1.00

Table 1
Cumulative count data for arrival for M = 104 particles at individual receptors for given times. Receptor configuration

given in (49) with ε = 0.1.

(a) t = 101 (b) t = 103 (c) t = ∞

Fig. 4. Inference for parameters (49) and ε = 0.1. The landscape L∗(x;x0, t) of (48) formed using the relative fluxes
(50) at t = 101, t = 103 and splitting probabilities (t = ∞). The source x0 = [2, 0] is marked as a red dot and the contours
indicate regions where L∗(x;x0, t) is within (0.125%, 0.25%, 0.5%, 1.0%) of the estimator x0. Solid white dots indicate 20 MLE
estimates x̂MLE derived from (47) using M = 104 arrival times.

To examine further the role of dynamics on source inference, for each time t = 101, t = 103 and t = ∞
(splitting probabilities), we form 20 MLE estimates x̂MLE (Fig. 4, solid white dots) from M = 104 arrivals,
as defined in (47). Simultaneously we plot contours of the exact landscape L∗(x;x0, t) defined in (48), where
the shown regions are within (0.125%, 0.25%, 0.5%, 1.0%) of the minimum of L∗. The contours are shown
to correctly envelop the source x0 while the estimates x̂MLE form a cloud surrounding the source x0. The
results in Fig. 4 demonstrate the robustness of this method under noisy perturbations and corroborate the
data in Table 1 indicating that the short time flux yields a tight and clear direction for the source, but a
poor estimate on the distance. At the later time t = 103, and for the splitting probabilities (t = ∞), the
estimate on the distance is markedly improved.

4.2. Ex: Circular cell with homogeneous receptor covering. In this example we consider the
scenario of a circular cell of radius rcell = 1 centered at the origin and with N = 10 homogeneously spaced
receptors of common extent parameterized by

(51) xk =
(
cos

2πk

N
, sin

2πk

N

)
, ℓk = εℓc, k = 1, . . . , N.

The parameters used are ε = π/20, ℓc = 1 and the simulations are initiated with M = 104 particles at
the source x0 = [R, 0] for R > 1. In particular we examine the inference landscape L∗(x;x0, t) and source

estimates x̂MLE as the source distance R and cumulative signal C(t) =
∫ t

τ=0
ρ(τ)dτ varies.

In Fig. 5 we plot contours of the exact landscape L∗(x;x0, t) and 20 MLE estimates x̂MLE over source
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Fig. 5. The inference landscape L∗(x;x0, t) for the example (51) with a disk geometry covered by N = 10 equally spaced
receptors. Horizontal axis indicates the fraction of initial signal captured and vertical axis indicates source distance. Using
random samples of size M = 104 arrivals, we plot 20 x̂MLE estimates (white markers) based on (48).

distances R = {2, 5, 10, 20} and absorbed fractions C(t) = {2%, 10%, 20%, 100%}. We draw three main
conclusions from Fig. 5. First, the quality of inferred source direction decreases as R increases which is to
be expected when identifying a more distant source. Second, and somewhat counterintuitively, the precision
of the angular estimate on the source direction is reduced as the acquired signal increases. Indeed, at each
source distance, the strongest angular signal is acquired from the early arrival data (C(t) = 2%). Third,
the effect of noise, shown through the cloud of 20 estimates x̂MLE, confirms predictions of the inference
landscape L∗(x;x0, t). Namely that when the acquired signal is low, the directional estimate is accurate.
For large acquired signals, the source distance is correctly inferred.

4.3. Ex: Homogenization and polar momentum. In the above example, MLE inference revealed
that early receptor arrivals contained rich information on the source direction. We now explore the efficacy
of a simple inference mechanism based on a polar average θpa of angular receptor positions θk weighted by
arrival numbers ck. Specifically, we sort arrival times and calculate an average θpa for each batch of Ms

arrivals

θpa =
1

Ms

N∑
k=1

ckθk,

N∑
k=1

ck =Ms.

In Fig. 6 we show results for N = 100 homogeneously spaced receptors occupying half the cellular surface for
Ms = 1001. The KMC simulations are initiated by M = 105 particles at location x0 = (5, 0) with diffusivity
D = 1. Fig. 6(a) shows that a simple average of receptor input gives an excellent estimate of source direction
for short times (t ⪅ 103). At larger times (t ⪆ 103), the directional information in the signal vanishes and the
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polar average becomes uniform U [−π, π], as shown by the p-value of a Kolmogorov–Smirnov (KS) test with
5% significance. To explain this sharp transition, we utilize the homogenized solution and calculate from
(41) that κ = 206.98. We show the arrival time distribution (Fig. 6(b)) and the ratio of the first to zeroth
modes (Fig. 6(c)) of the homogenized surface flux L−1(χ1(s))/L−1(χ0(s)) derived in (72). The transition
coincides with the amplitude of this ratio diminishing. This corresponds to the surface flux becoming more
radially symmetric so that the remaining free particles carry no directional information on the source. The
associated homogenized CDF for this example predicts that at the transition time (t ≈ 103), the remaining
≈ 60% of free particles have no angular information corresponding to their initial position (Fig. 6(c)).

(a) Polar average θpa. (b) Arrival time distribution. (c) First mode of surface flux.

Fig. 6. Inferring direction from early arrivals and homogenization. Panel (a): Averaged angular receptor input θpa based
on Ms = 1001 arrivals (blue) and the p-value of Kolmogorov-Smirnov (KS) test compared to uniform CDF with 5% significance
(red). Panel (b): Homogenized, KMC and full asymptotics of arrival time distribution in close agreement. Panel (c): Ratio of
first and second modes of the surface flux (blue) and fraction captured (red). The amplitude of this ratio quantifies the angular
information that free particles carry on the source direction.

4.4. Ex: Extreme arrivals to an all absorbing cell. In the preceding examples, we have observed
that early arrivals give significant directional information on the source. To establish a theoretical bound of
the accuracy on source detection based the first of M independent arrivals, we consider the time and impact
distribution to a homogenized circular cell of radius rcell = 1. The arrival times are TM = {t1, t2, . . . , tM} with
corresponding arrival angles ΘM = {θ1, θ2, . . . , θM}. We remark that the arrival times TM and associated
angles ΘM are not independent and in general longer times give rise to uniform angles, while at shorter times
the angular distribution is centered on the source direction. The random variable ta = min TM is known as
the extreme arrival time and θa is the polar coordinate of the associated arrival location. The distribution
of ta for M ≫ 1 was recently found (see [31, Theorem 1]) to satisfy

(52)
ta − bM
aM

→ X, as M → ∞,

where X follows the Gumbel distribution P(X > x) = exp(−ex). The quantities aM , bM are determined in
terms of the short time asymptotics of the probability P (t) = P(t1 > t) of a single walker. For a given q,
A ̸= 0, and B > 0, we have that

1− P (t) ∼ Atqe−B/t, as t→ 0+;(53a)

aM =
bM

q(1 +WM )
, bM =

B

qWM
, WM =W∗

(B
q
(AM)

1
q

)
,(53b)

and where W∗(z) is the principal branch of the LambertW function, defined as the inverse function of
f(z) = zez. The mean and variance of the Gumbel distribution are

(54) E[ta] = bM − γeaM , Var[ta] =
π2

6
a2M ,
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where γe ≈ 0.5772 is the Euler–Mascheroni constant. We are able to identify in the homogenized scenario
that the relevant parameters (75) are

(55) q =
3

2
, A =

√
D√
πR

4κ

(R− 1)2
, B =

(R− 1)2

4D
.

In terms of the expectation we have that as M → ∞

E[ta] ∼
(R− 1)2

6DWM

[
1− 2γe

3(1 +WM )

]
.(56)

For the arrival time ta, the associated arrival location θa in polar coordinates is calculated as

P[θa = η] =

∫ ∞

τ=0

P[θ = η|t = τ ]P[ta = τ ]dτ(57)

=
1

aM

∫ ∞

τ=0

P[θ = η|t = τ ]e−z−ezdτ, z =

(
τ − bM
aM

)
.(58)

To approximate this integral, consider that −z − ez has a critical point at z = 0 (t = bM ) and so

e−z−ez ≈ exp
[
− 1− (t− bM )2

2a2M

]
, (t− bM )2 ≪ 1.

Therefore we see that applying Laplace’s method yields

P[θa = η] ≈ e−1

∫ ∞

τ=0

P[θ = η|t = τ ]
1

aM
exp

[
− (τ − bM )2

2a2M

]
dτ

≈
√
2πe−1 P[θ = η|t = bM ].(59)

We note that t = bM is the mode of the Gumbel distribution and the factor
√
2πe−1 ≈ 0.922 is an error

induced by the Laplace approximation that we normalize to unity. For bM ≪ 1, the result (45) indicates
that P[θ = η|t = bM ] ∼ N (θ0, 2DbM/R). After algebra, we conclude that as M → ∞, the arrival angle is
distributed θa ∼ N (θ0, σ

2
θa
) with variance σ2

θa
given by

σ2
θa(M,R) =

g(R)

WM
, g(R) =

(R− 1)2

3R
, WM =W∗

[(2κ2M2

9πD2
g(R)

) 1
3

]
.

We remark that W∗(z) ∼ log z as z → ∞ giving the leading order behavior as M → ∞

(60) σ2
θa(M,R) ∝

R
(
1− 1

R

)2
logM

.

The relationship (60) implies that provided the signal strength M is large enough and the source is not too
distant, the first arrival yields the source direction with reasonable accuracy.
As a demonstration of this theory, we consider the scenario of a cell of radius rcell = 1 centered at the origin
with N = 100 homogeneously spaced receptors occupying 10% of the surface. We calculate ta from (56)
and the associated arrival angle θa. We plot in Fig. 7 comparisons between the extreme value statistics
and numerical data based on 1000 KMC simulations each with M = 106 particles. We observe in Fig. 7(a)
that the distribution of ta is well predicted by the extreme value theory over six orders of magnitude. The
distribution of angular arrivals θa is also very well predicted by (60) as shown in Fig. 7(b). Remarkably, this
result shows that a cell can make an informed decision on the source direction based on just a single arriving
signaling molecule, provided the source distance R is not too large.
We now provide a rough comparison between the timescales predicted by extreme statistics (56) and those
observed in experiments. We consider an example of directional sensing in neutrophils where a cellular
reaction was observed after ≈ 5 secs when exposed to a point source of chemoattractant (10µM, fMLP) placed
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(a) Mean extremal arrival times E[ta]. (b) Extremal arrival angle θa.

Fig. 7. The distribution of extreme arrival times ta and their angular distribution with M = 106 particles averaged over
1000 simulations. Panel (a): The first arrival time ta against R. Panel (b): Comparison of angular distributions of the first
arrival from KMC and theory (solid red) for various R.

by pipette [62]. This response combines the time to acquire receptor input and to complete downstream
signaling dynamics. To approximate the former of these two timescales, we assume N ≈ 104 fMLP receptors
[2] of individual radius roughly ra = 5nm [63] which lies in the validity of the homogenization limit (41). If
we assume a volume 1µl is released from a micropipette, this yields an effective particle number M ≈ 1012.
The diffusivity of the chemoattractant fMLP has been estimated at D = 1.2 × 10−6 cm2/sec [15]. If we
consider cell radii in the range rcell = 5µm−10µm and sources in the range rsource = 5rcell − 10rcell, the first
extreme arrival time in light of these parameters is E[ta] ≈ 0.05−1 secs. The predictions of extreme statistics
are of roughly the same order of magnitude as those observed experimentally and provide a minimum time
for a cell to respond to a diffusive signal.

5. Discussion. In this paper we have explored source inference from the dynamics of the diffusive fluxes
to localized surface receptors. A key ingredient in our analysis is the application of a new hybrid asymptotic-
numerical method that allows for the rapid and accurate determination of the time-dependent solution to
an exterior parabolic problem. These quantities give a more detailed understanding of cellular response to
external signals than previously available through static quantities (e.g. the splitting probabilities). The full
arrival statistics describe both the equilibration timescale and the short time dynamics of the signal to the
cell. As an application of these newly obtained dynamic quantities, we explored their use in source inference.
This work leads to several conjectures that may have biological implications. First, we observe that the
equilibration time scale is long and therefore steady state quantities may not be useful for understanding
cellular responses, particularly in dynamic environments. Second, we observe that the earliest arrivals to the
surface receptors contain the most directional information. Therefore a cell can make a quick and accurate
directional decision, at the cost of accuracy in source distance, by heavily weighting the earliest signal it
receives.
In the extreme scenario where the cell chooses a direction based on just one arrival to its membrane, we find
that the accuracy is surprisingly good provided the source distance is not large. An important characteristic of
simplistic directional inference methods is that they make minimal biological assumptions regarding cellular
computing abilities, memory of previous receptor engagements, knowledge of cellular geometry and receptor
configurations. This work suggests that a cell can take simple averages over a small number of signaling
receptors to accurately infer the location of nearby signaling sources.

Acknowledgments. A. E. Lindsay acknowledges support from NSF grant DMS-1815216.

Appendix A. Inner solution at a receptor. A key ingredient in the asymptotic analysis of both
the static splitting probabilities (1) and the Laplace transform problem (18), is knowledge of the solution
to a rescaled version of (1) in the O(ε) neighborhood of each receptor. This inner solution is a half-plane
problem where the curvature of the cell is negligible, the receptor is replaced by an absorbing segment, and
the response to the externally varying probability density is quasi-static. In the unrescaled outer problem
the receptor is replaced by a δ-function and the response can be analyzed via a surface Green’s function
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In an O(ε) neighborhood of the jth receptor centered at xj = (xj , yj), the solution is described in terms of
a local arc-length coordinate system (η, σ) where η represents the distance from x ∈ R2 \ Ω to ∂Ω and σ
denotes arc-length along ∂Ω. In this system, the Laplacian becomes

(61) ∆ :=
∂2

∂η2
− κ̄

1− κ̄η

∂

∂η
+

1

1− κ̄η

∂

∂σ

(
1

1− κ̄η

∂

∂σ

)
.

Here κ̄ = κ̄(σ) is the curvature along ∂Ω. In the arc-length coordinate system, the receptor center becomes
(η, σ) = (0, σj). Rescaling in the receptor neighborhood with η̂ = η/ε and σ̂ = (σ − σj)/ε, the Laplacian
becomes ∆ → ε−2(∂2η̂η̂ + ∂2σ̂σ̂) +O(ε−1) and we have the half-plane problem

∂2vc
∂η̂2

+
∂2vc
∂σ̂2

= 0, σ̂ ∈ (−∞,∞), η̂ > 0;(62a)

vc = 0, |σ̂| < ℓj/2, η̂ = 0; ∂η̂vc = 0, |σ̂| > ℓj/2, η̂ = 0.(62b)

vc = log[η̂2 + σ̂2]
1
2 − log dj + · · · , as η̂2 + σ̂2 → ∞, dj =

ℓj
4
.(62c)

The solution of (62) can be obtained by use of the elliptical coordinate system [45] and is used to construct
solutions of (1) and (18). We remark that when applying this boundary layer analysis to the Helmholtz
problem (17), we assume that sε2 ≪ 1 and consequently cannot expect a valid expansion near the receptors
for arbitrarily short times. In Sec. 2.4, we consider separately the short time surface fluxes in the limit
t→ 0+.

Appendix B. Green’s functions. In this appendix we tabulate the various Green’s functions for
Laplace’s equation and the Helmholtz equation that arises from the Laplace transform of the heat equation.

Half Plane: In the case of the half-plane (Ω := {x = (x, y) ∈ R2 | y < 0}) with a Neumann boundary
condition, we have the following exact Green’s functions satisfying Laplace’s equation (10) and the Helmholtz
equation (21) respectively,

Gs(x; ξ) =
−1

2π

{
log |x− ξ|+ log |x− ξ′|, ξ2 > 0;

2 log |x− ξ|, ξ2 = 0.
(63a)

Gh(x; ξ, s) =
1

2πD

{
K0 (α|x− ξ|) +K0

(
α|x− ξ′|

)
, ξ2 > 0;

2K0 (α|x− ξ|) , ξ2 = 0.
(63b)

where ξ = (ξ1, ξ2) is the location of the source in the bulk, ξ′ = (ξ1,−ξ2) is the source’s image in the half
plane, K0(z) is a modified Bessel function, and α =

√
s/D.

Unit Disk: In the case of a unit disk (Ω := {x = (x, y) ∈ R2 | x2 + y2 < 1}, we first solve for the Green’s
function Gs for the Laplacian (10). In terms of polar variables (r, θ) and ξ = eiθ0 , the problem to be solved
is

∂2Gs

∂r2
+

1

r

∂Gs

∂r
+

1

r2
∂2Gs

∂θ2
= 0, r > 1, θ ∈ (0, 2π);(64a)

Gs(r, θ; θ0) = Gs(r, θ + 2π, θ0), r > 1, θ ∈ (0, 2π);(64b)

−∂Gs

∂r
= δ(θ − θ0), r = 1, θ ∈ (0, 2π).(64c)

The separable solution of (64) can be expressed in the cosine series

Gs(r, θ; θ0) =
−1

2π
log r +

1

π

∞∑
n=1

cosn(θ − θ0)

nrn
.

The series can be summed directly by defining x = reiθ and specifying that

(65)

∞∑
n=1

cosn(θ − θ0)

nrn
= Re

[ ∞∑
n=1

1

n

(
x

|x|2ξ

)n
]
= − log

∣∣∣∣1− x

|x|2ξ

∣∣∣∣ = −1

2
log

∣∣∣∣x− ξ

x

∣∣∣∣2 .
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After rearranging we obtain that

Gs(x; ξ) = − 1

π
log |x− ξ|+Rs(x; ξ), Rs(x; ξ) =

1

2π
log |x|.

For the Helmholtz Green’s function exterior to the disk with source ξ = Reiθ0 , we examine the form of the
series for R = 1 and R > 1 separately.

• Unit disk with a source on the surface: In this scenario, the surface Helmholtz Green’s function satisfies

D
[∂2Gh

∂r2
+

1

r

∂Gh

∂r
+

1

r2
∂2Gh

∂θ2

]
− sGh = 0, r > 1, θ ∈ (0, 2π);(66a)

Gh(r, θ; θ0) = Gh(r, θ + 2π, θ0), r > 1, θ ∈ (0, 2π);(66b)

−D∂Gh

∂r
= δ(θ − θ0), r = 1, θ ∈ (0, 2π).(66c)

The appropriate separable solution is then the Bessel cosine series

Gh(r, θ; θ0) =
−1

2πD

K0(αr)

αK ′
0(α)

− 1

πD

∞∑
n=1

Kn(αr)

αK ′
n(α)

cosn(θ − θ0).

To isolate the singular and regular parts, we add and subtract a term 1
πD log |x − ξ| and replace one with

the identity (65). The reveals that for x = reiθ and ξ = eiθ0

Gh(x; ξ) = − 1

πD
log |x− ξ|+Rh(x; ξ);(67a)

Rh(x; ξ) =
1

πD

(
log r − 1

2

K0(αr)

αK ′
0(α)

−
∞∑

n=1

[
Kn(αr)

αK ′
n(α)

+
1

nrn

]
cosn(θ − θ0)

)
.(67b)

Using the well known large order asymptotics (https://dlmf.nist.gov/10.41) of Kn(z) ∼
√

π
2n [

ez
2n ]

−n as
n→ ∞, we observe that

Kn(αr)

αK ′
n(α)

∼ −1

nrn
, n→ ∞,

and therefore the series in (67b) is convergent, including as r → 1.

• Unit disk with a source in the bulk: Here the Helmholtz Green’s function satisfies

D
[∂2Gh

∂r2
+

1

r

∂Gh

∂r
+

1

r2
∂2Gh

∂θ2

]
− sGh = −1

r
δ(r −R)δ(θ − θ0), r > 1, θ ∈ (0, 2π);(68a)

Gh(r, θ; θ0) = Gh(r, θ + 2π, θ0), r > 1, θ ∈ (0, 2π);(68b)

∂Gh

∂r
= 0, r = 1, θ ∈ (0, 2π).(68c)

The separable solution which is continuous and satisfies ∂rGh = 0 on r = 1 is given by

(69) Gh =


∑∞

n=0An

[
In(αr)K

′
n(α)− I ′n(α)Kn(αr)

]
Kn(αR)
K′

n(α)
cosn(θ − θ0), 1 < r < R;∑∞

n=0An

[
In(αR)K

′
n(α)− I ′n(α)Kn(αR)

]
Kn(αr)
K′

n(α)
cosn(θ − θ0), r > R.

Applying the jump condition and the orthogonality of the functions {cosm(θ − θ0)}∞m=0 yields

D lim
δ→0

∫ r=R+δ

r=R−δ

∫ 2π

θ=0

cosm(θ − θ0)
1

r

∂

∂r

(
r
∂Gh

∂r

)
rdrdθ = −1,
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which fixes the constants

A0 =
1

2πD
, An =

1

πD
, n ≥ 1.

Finally, our interest is in Gh |r=1 which is written as the series

(70) Gh |r=1 (θ;R, θ0) = − 1

2πD

K0(αR)

αK ′
0(α)

− 1

πD

∞∑
n=1

Kn(αR)

αK ′
n(α)

cosn(θ − θ0).

In the above calculations, we have used the Wronskian Identity I ′n(z)Kn(z)− In(z)K
′
n(z) = z−1. We apply

(70) only in the situation |ξ| = R > 1 such that the series converges rapidly.

• Unit disk with a homogenized surface (Robin condition): We are interested in the solution ph(r, θ, t;R)
of the heat equation with Robin condition, defined by (26). We consider the problem exterior to the
disc of radius rcell = 1 with a source at R(cos θ0, sin θ0). We apply the Laplace transform Gh(r, θ; s) =∫∞
t=0

ph(r, θ, t)e
stdt, and find that Gh solves the Helmholtz Green’s function

D
[∂2Gh

∂r2
+

1

r

∂Gh

∂r
+

1

r2
∂2Gh

∂θ2

]
− sGh = −1

r
δ(r −R)δ(θ − θ0), r > 1, θ ∈ (0, 2π);(71a)

Gh(r, θ; θ0) = Gh(r, θ + 2π, θ0), r > 1, θ ∈ (0, 2π);(71b)

D
∂Gh

∂r
= κGh, r = 1, θ ∈ (0, 2π).(71c)

Similar to the Neumann case above, we obtain a continuous separable solution satisfying a jump condition
at r = R and the Robin condition at r = 1. Our interest is in the surface flux given by

(72) D∂rGh |r=1=
1

2π
χ0(α) +

1

π

∞∑
n=1

χn(α) cosn(θ − θ0), χn(α) =
Kn(αR)

Kn(α)−Dκ−1αK ′
n(α)

where zK ′
n(z) = nKn(z)− zKn+1(z) and α =

√
s
D . The total flux through the disk is

(73) Ĵ (s) =

∫ 2π

0

D∂rGh |r=1 dθ = χ0(α) =
K0(αR)

K0(α)−Dκ−1αK ′
0(α)

.

One of our goals is to find the limiting behavior of the survival probability P (t) =
∫∞
r=1

∫ 2π

θ=0
ph(r, θ, t)rdθdr

as t→ 0. Here again ph(r, θ, t) solves (26). The relationship P
′(t) = −J (t) connects the survival probability

with surface flux and therefore in transform space Ĵ (s) = 1 − sP̂ (s). The limit as t → 0+ corresponds to
s→ ∞ in transform space yielding

P̂ (s) =
1

s
− κ

s
3
2

√
RD

e
−
√
s
[

R−1√
D

]
, s→ ∞;(74a)

P (t) = 1− 4κ√
πR

√
D

(R− 1)2
t
3
2 e

−(R−1)2

4tD , t→ 0+.(74b)

The limiting form identified in (74b) is consistent with the short-time asymptotics (45b), after evaluating∫ t

0
M0(τ)dτ as t→ 0+. From (74b), we identify the coefficients P (t) = 1−Atqe−

B
t as

(75) q =
3

2
, A =

√
D√
πR

4κ

(R− 1)2
, B =

(R− 1)2

4D
.

Appendix C. Least squared solution of splitting problem.
Here we describe a numerical technique for the solution of (1) exterior to the unit disc. In polar coordinates
(r, θ), the solution (subscript of distinguished receptor omitted) has separable form

(76a) ϕ(r, θ) =
a0
2

+

∞∑
n=1

r−n(an cosnθ + bn sinnθ).
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The coefficients are found by applying the Neumann and Dirichlet conditions to arrive at the following dual
trigonometric series

a0
2

+

∞∑
n=1

(an cosnθ + bn sinnθ) =

{
1 distinguished receptor,
0 other receptors;

(76b)

∞∑
n=1

n(an cosnθ + bn sinnθ) = 0, reflecting portion(76c)

Progress can be made on analytical solutions of this dual series [39], however, in the present scenario, it is
more convenient to access the solution numerically. The series (76a) is truncated at a finite number of modes
M and a linear system for the (2M + 1) coefficients formed by introducing a grid of θ values. At each value
of θ, the entries of the system are filled according to the conditions (76b-76c) resulting in an overdetermined
system that is solved by least squared solutions. We find (see Fig. 3) that this solution approach is robust
and accurate for moderately small receptor extents, however, the number of modes M is prohibitive for very
small receptors. See [39, 54, 26] for more details on this solution procedure.

Appendix D. Half-Plane with three receptors.
As a supplemental example, we consider a three receptor scenario in the upper half plane. In this geometry,
the cell Ω does not have a finite area so it is necessarily a simplification of the biological setting. However, it
can be useful [17] to examine both the asymptotic formulations and the source inference approach. In this
context, the specific parameters used in this example are

(77) ℓ = ε
[1
2
, 1, 2

]
, x1 = [−3, 0], x2 = [0, 0], x3 = [3, 0], D = 4, ε = 0.1, x0 = [2, 3].

In Fig. 8 we show that the asymptotic formulations of both the splitting probabilities and the arrival time
distribution agree very well with Monte Carlo data. As with the disk case, the convergence qk(t) → ϕk as
t→ ∞ is observed on a long timescale.
In the upper half plane geometry, we do not have a ’shielding effect’ in which the geometry itself delays
the arrival of particles to the distant receptors. We observe in Fig. 8(a) that the short time data provides
only rough directional information and reflecting that the source is to the right of the origin. At moderate
time t = 103, we observe Fig. 8(e) a stronger angular signal (with respect to the origin) while the splitting
probabilities show recover of source distance and angle Fig. 8(f).
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