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MULTIPLE QUENCHING SOLUTIONS OF A FOURTH ORDER
PARABOLIC PDE WITH A SINGULAR NONLINEARITY

MODELING A MEMS CAPACITOR∗

A. E. LINDSAY† AND J. LEGA‡

Abstract. Finite time singularity formation in a fourth order nonlinear parabolic partial differ-
ential equation (PDE) is analyzed. The PDE is a variant of a ubiquitous model found in the field of
microelectromechanical systems (MEMS) and is studied on a one-dimensional (1D) strip and the unit
disc. The solution itself remains continuous at the point of singularity while its higher derivatives
diverge, a phenomenon known as quenching. For certain parameter regimes it is shown numerically
that the singularity will form at multiple isolated points in the 1D strip case and along a ring of
points in the radially symmetric two-dimensional case. The location of these touchdown points is
accurately predicted by means of asymptotic expansions. The solution itself is shown to converge
to a stable self-similar profile at the singularity point. Analytical calculations are verified by use of
adaptive numerical methods which take advantage of symmetries exhibited by the underlying PDE
to accurately resolve solutions very close to the singularity.
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1. Introduction. Microelectromechanical systems (MEMS) combine electronics
with micro-size mechanical devices to design various types of microscopic machinery
(cf. [35]). A key component of many MEMS is the simple capacitor shown in Fig-
ure 1.1. The upper part of this device consists of a thin deformable elastic plate
that is held clamped along its boundary and which lies above a fixed ground plate.
When a voltage V is applied between the plates, the upper surface can exhibit a
significant deflection towards the lower ground plate. When the applied voltage V
exceeds a critical value V ∗, known as the pull-in voltage, the deflecting surface can
make contact with the ground plate. This phenomenon, known as touchdown, will
compromise the usefulness of some devices but is essential for the operation of others
(e.g., switches and valves). Capturing and quantifying this phenomenon is a topic of
some mathematical interest and is the subject of this paper.

A canonical model, originally proposed in [35], suggests that the dimensionless
deflection u(x, t) of a device occupying a bounded region Ω ⊂ R

2 satisfies the fourth-
order problem

(1.1) ut = −Δ2u+ δΔu− λf(x)

(1 + u)2
, x ∈ Ω ;

u = 0, ∂nu = 0 x ∈ ∂Ω ;

u = 0, t = 0, x ∈ Ω.

Here, the positive constant δ represents the relative effects of tension and rigidity on
the deflecting plate, and λ ≥ 0 represents the ratio of electric forces to elastic forces
in the system and is directly proportional to the square of the voltage V applied to
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Fig. 1.1. Schematic plot of the MEMS capacitor (reproduced from [33]) with a deformable
elastic upper surface that deflects towards the fixed lower surface under an applied voltage.

the upper plate. The function f(x) ∈ Cα(Ω) for α ∈ (0, 1) represents possible het-
erogeneities in the deflecting surface’s dielectric profile while the boundary conditions
in (1.1) assume that the upper plate is in a clamped state along its rim. The model
(1.1) was derived in [35] from a narrow-gap asymptotic analysis.

The second order equivalent of (1.1),

(1.2) ut = Δu − λf(x)

(1 + u)2
, x ∈ Ω ;

u = 0, x ∈ ∂Ω ;

u = 0, t = 0, x ∈ Ω,

has been the subject of extensive study recently, and there are now many established
results regarding the behavior of solutions, both dynamic and steady (cf. [7, 19, 24,
32, 36] and the references therein for a thorough account). In particular it is known
that there exists a λ∗ > 0 such that whenever λ > λ∗ and infΩ f > 0, the device
touches down in finite time, i.e., ||1 + u(·, t)||inf → 0+ as t → t−c . Lower and upper
bounds have been established on the touchdown time tc of (1.2), and it is known that
if touchdown occurs at an isolated xc ∈ Ω, then f(xc) �= 0. Additionally, a refined
asymptotic study of the touchdown profile [10] was performed in [21], where it was
shown that the quenching solution is not exactly self-similar and has asymptotic form

(1.3)

u → −1 + [3f(xc)λ(tc − t)]1/3
(
1− 1

2| log(tc − t)| +
(x− xc)

2

4(tc − t)| log(tc − t)| + · · ·
)
,

where xc ∈ Ω and tc > 0 are the touchdown location and time, respectively. In
addition, when f(x) is a constant and Ω = [−1, 1], the unique touchdown point is
xc = 0.

In contrast to the second order problem (1.2), very much less is known about the
fourth order problem (1.1) [4], partly due to the lack of a maximum principle. In the
absence of the tension term (δ = 0) and with f(x) = 1, equilibrium solutions of (1.1)
were studied in [22] and the existence of a pull in voltage λ∗ was demonstrated for Ω
a radially symmetric ball. The maximal branch of equilibrium solutions to (1.1), i.e.,
those solutions with largest L2 norm for any sufficiently small λ, were constructed
in the limit as u → −1+ in one and two dimensions in [31, 34]. Under the relaxed
Navier boundary conditions u = Δu = 0 on ∂Ω, a maximum principle is available
and theoretical results regarding the existence and uniqueness of solutions are more
tractable [23, 27].
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Literature on the dynamics of fourth order MEMS equations is particularly sparse.
The work of [20] concerning the wave equation

(1.4)

μwtt + wt −Δw +BΔ2w =
λ

(1− w)2
in Ω× (0, T ];

w = Δw = 0 on ∂Ω× (0, T );

w(x, 0) = w0(x), wt(x, 0) = w1(x) in Ω

appears to be the first contribution to the topic in which it is shown that (1.4) touches
down in finite time for λ > λ∗.

In the present work radially symmetric dynamical solutions of the fourth order
MEMS problem

(1.5a) ut = −ε2Δ2u− 1

(1 + u)2
, x ∈ Ω, u(x, 0) = 0, x ∈ Ω,

are considered for domains

(1.5b) (strip) : Ω = [−1, 1]; (unit disc) : Ω = {x2 + y2 ≤ 1}
and boundary conditions

(clamped) : u = 0, ∂nu = 0, x ∈ ∂Ω;

(Navier) : u = 0, Δu = 0, x ∈ ∂Ω.
(1.5c)

The particular form of this equation is obtained from (1.1) by setting f(x) = 1,
neglecting the tension term Δu (δ = 0), taking λt as a new time variable, and defining
λ = ε−2. The consideration of radially symmetric solutions of (1.5a) on the strip and
unit disc geometries effectively focuses attention on the PDE

(1.6) ut = −ε2
[
u′′′′ +

2(N − 1)

r
u′′′ − N − 1

r2
u′′ +

N − 1

r3
u′
]
− 1

(1 + u)2
,

for N = 1 (strip) and N = 2 (unit disc).
The paper begins with some proofs confirming that (1.5) exhibits the pull-in

instability; i.e., there is a number ε∗ > 0 such that when ε < ε∗, (1.5) has no
equilibrium solutions and will touch down to u = −1 in finite time. In section 3, a
moving mesh PDE method (MMPDE) is employed together with an adaptive time
stepping scheme to accurately resolve the solution of (1.5) very close to touchdown.
While touchdown occurs at the origin for certain parameter regimes as in the second
order equivalent, it is observed that for ε below some threshold εc, (1.5) may touch
down at two separate isolated points in the strip case and, under radially symmetric
constraints, along a ring of points in the unit disc case. Moreover, it is observed that
the location of the touchdown set has a dependence on ε that can be analyzed. While
multiple touchdown has been observed previously when tailored dielectric profiles f(x)
were considered, here the device is uniform (f(x) = 1) and the location of touchdown
can be parameterized through ε = λ−1/2. This may potentially allow MEMS devices
to perform more exotic tasks or simply extend their lives by spreading wear over a
larger area.

In section 4, the location of touchdown for (1.5) is analyzed by means of asymp-
totic expansions which predict that for the strip case, the two touchdown points are

(1.7)

x±
c ∼ ±

[
1− ε1/2f(tc)

1/4[η0 + f(tc)η1 + f2(tc)η2 + · · · ]
]
, f(t) = 1− (1 − 3t)1/3,
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while for the unit disc radially symmetric touchdown occurs on a ring with radius

(1.8) rc ∼ 1− ε1/2f(tc)
1/4η0 − εf(tc)

1/2η 1
4
− ε3/2f(tc)

3/4η 1
2
+ · · · ,

where η0, η1, η2 and η 1
4
, η 1

2
are numerically determined constants whose values depend

on the boundary conditions applied in (1.5b). Note that these asymptotic predictions
are in terms of the touchdown time tc and are valid for ε < εc. In order to estimate the
values of xc and rc, a numerical approximation of tc is required. These formulae are
shown to agree well with full numerics, particularly when ε 	 1. The limiting profile
of (1.5) as infx∈Ω u(x, t) → −1 is also constructed. In contrast to the quenching
profile (1.3) of the second order problem (1.2), it is observed that (1.5) exhibits a
self-similar quenching profile which finalizes to

(1.9) u(x, t) → −1 + c0

( |x− xc|
ε1/2

)4/3

as t → t−c ,

where the parameter c0 is determined numerically and has value c0 = 0.9060 for both
the strip case and touchdown away from the origin in the radially symmetric unit disc
case. In the unit disc geometry with touchdown at the origin, the numerically obtained
value is c0 = 0.7265. The stability of this profile is determined, and convergence of
the numerical solution of (1.5) to the self-similar profile (1.9) is verified in each case.

2. Preliminary results. In this section two preliminary results are established.
The first result demonstrates that for ε small enough, (1.5) has no equilibrium so-
lution. The second result proves that when no equilibrium solutions exist for (1.5),
the solution will touch down, i.e., reach u(x, t) = −1, at some point in space in some
finite time. These results rely on a positive eigenpair (φ0, μ0) of the problem

(2.1a) Δ2φ = μφ, x ∈ Ω

for the strip and unit disc geometries and the boundary conditions

(clamped) : φ = 0, ∂nφ = 0, x ∈ ∂Ω;

(Navier) : φ = 0, Δφ = 0, x ∈ ∂Ω.
(2.1b)

In the case of clamped boundary conditions, it is well known that for general two-
dimensional geometries, the principal eigenfunction of (2.1) need not be of one sign.
Two well-known cases are that of the square [5] and annulus [6]. However, if only
the strip and the unit disc are considered, then (2.1) does admit a strictly one signed
principal eigenfunction together with a positive eigenvalue. A brief calculation shows
that the eigenfunctions for the clamped strip satisfy

φ = C

[
sin ξ(x − 1)− sinh ξ(x− 1)

+

[
sin 2ξ − sinh 2ξ

cos 2ξ − cosh 2ξ

]
[cos ξ(x− 1)− cosh ξ(x − 1)]

]
,

(2.2a)

where ξ = μ1/4 and

(2.2b) cos 2ξ cosh 2ξ = 1.
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For the clamped unit disc, the eigenfunctions are

(2.2c) φ = C

[
I0(ξr) − I0(ξ)

J0(ξ)
J0(ξr)

]
, J0(ξ)I

′
0(ξ) = J ′

0(ξ)I0(ξ),

where again ξ = μ1/4. In equations (2.2), the constant C is fixed by normalization.
The case of Navier boundary conditions for this eigenvalue problem were considered
in [20], where it was shown that (φ0, μ0) = (φΩ, λ

2
Ω) for

(2.3) ΔφΩ + λΩφΩ = 0, x ∈ Ω; φΩ = 0, x ∈ ∂Ω,

is a positive eigenpair of (2.1a). The maximum principle guarantees the positivity of
the principal eigenpair of (2.3) for any Ω ⊂ R

N [21]. The principal eigenfunctions for
the strip and unit disc geometries under Navier boundary conditions are therefore

(strip) : μ0 =
π4

16
φ0 = C sin

(π
2
(x− 1)

)
,(2.4a)

(unit disc) : μ0 = z40 φ0 = CJ0(z0r),(2.4b)

where C is a normalization constant and in (2.4b) z0 is the first root of J0(z0) = 0.
The following theorems show that for ε small enough, (1.5) admits no equilibrium

solutions and will touch down to u = −1 in finite time. The proof techniques involved
have been employed previously in [25, 33] and rely on a positive eigenfunction of (2.1).
Therefore, in the case of clamped boundary conditions for (1.5), the result is limited
to the strip and unit disc geometries.

Theorem 1 (cf. [25, 33]). There exists a real 0 < ε∗ < ∞ such that for 0 <
ε < ε∗, (1.5) has no equilibrium solutions when considered on the strip or unit disc
with clamped conditions and any Ω ⊂ R

2 for Navier conditions. In addition ε∗ ≥ ε̄ =√
27/4μ0, where (φ0, μ0) is a positive eigenpair of (2.1).
Proof. Take (φ0, μ0) to be an eigenpair of (2.1) with φ0 > 0 and μ0 > 0. Multi-

plying the equilibrium equation of (1.5) (i.e., ut = 0) by φ0 and integrating gives

(2.5)

∫
Ω

φ0

(
ε2μ0u+

1

(1 + u)2

)
dx = 0.

Clearly (2.5) cannot hold when the integrand is strictly positive, which occurs when
the inequality

(2.6) ε2μ0u+
1

(1 + u)2
> 0

is satisfied on Ω. This implies that ε∗ is finite. The equality ε2μ0u = −(1 + u)−2 has
exactly one solution when ε2μ0 = 27/4 and no solutions when ε2μ0 < 27/4. Therefore,
whenever ε2μ0 < 27/4, (2.6) holds and (1.5) certainly has no equilibrium solutions.
Moreover, the smallest positive ε such that (1.5) has an equilibrium solution, ε∗,
satisfies

(2.7) ε∗ ≥ ε̄ =

√
27

4μ0
.

Numerical values of μ0, determined from the smallest positive solutions of (2.2b) and
(2.2c), together with ε̄ and ε∗ are given in Table 2.1 under both clamped and Navier
boundary conditions.
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Table 2.1

Numerical values of the principal eigenvalue μ0 from (2.2), ε̄ from Theorems 1, 2, and ε∗ under
clamped and Navier boundary conditions. The values of ε∗ were calculated numerically in [33] as a
saddle-node bifurcation point of equilibrium solutions to (1.5).

μ0 ε̄ ε∗
Strip Unit disc Strip Unit disc Strip Unit disc

Navier BCs 6.0881 33.4452 1.0530 0.4492 1.0771 0.4695

Clamped BCs 31.2852 104.3631 0.4645 0.2543 0.4778 0.2683

The following theorem shows that for ε < ε̄ touchdown occurs in finite time.
Theorem 2. Suppose that ε < ε̄ =

√
27/4μ0; then the solution of (1.5) reaches

u = −1 in some finite time tc when considered on the strip or unit disc with clamped
boundary conditions, or on any bounded Ω ⊂ R

2 under Navier boundary conditions.
Proof. The proof follows Theorem 3.1 of [25] and relies on the existence of a

positive eigenfunction φ0 of (2.1). Let φ0 be normalized by the condition
∫
Ω
φ0 dx = 1.

By multiplying (1.5a) by φ0 and integrating by parts, the equality

(2.8)
d

dt

∫
Ω

φ0u dx = −ε2μ0

∫
Ω

φ0u dx−
∫
Ω

φ0

(1 + u)2
dx

is obtained. Defining E(t) =
∫
Ω
φ0u dx where E(0) = 0 implies that

dE

dt
= −ε2μ0E −

∫
Ω

φ0

(1 + u)2
dx ≤ −ε2μ0E − 1

(1 + E)2
,

where in the last step Jensen’s inequality has been applied. Standard comparison
principles show that E(t) ≤ F (t), where F (t) satisfies

(2.9)
dF

dt
= −ε2μ0F − 1

(1 + F )2
, F (0) = 0.

Equation (2.9) is separable, and so it is solved to show the touchdown time for F (t),
t̄, at which F (t̄) = −1, satisfies

(2.10) t̄ =

∫ 0

−1

(
ε2μ0s+

1

(1 + s)2

)−1

ds .

The touchdown time for F (t) is finite when this integral converges, which occurs when
ε < ε̄ ≡ √

27/4μ0. Finally, since

E(t) =

∫
Ω

φ0u dx ≥ inf
x∈Ω

u

∫
Ω

φ0 dx = inf
x∈Ω

u,

it follows that

(2.11) inf
x∈Ω

u ≤ E(t) ≤ F (t),

so that if t̄ from (2.10) is finite, then the touchdown time of (1.5), tc, must also be
finite. Therefore when ε <

√
27/4μ0, tc < t̄, where t̄ is given in (2.10). In the limit

as ε → 0+, (2.10) has the expansion

(2.12) t̄ =
1

3
+

ε2μ0

30
+O(ε4).
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This provides the asymptotic upper bound on the touchdown time tc of (1.5),

(2.13) tc <
1

3
+

ε2μ0

30
+O(ε4),

in the limit as ε → 0+.
The preceding analysis demonstrates the presence of the ubiquitous pull-in insta-

bility for (1.5) for general geometries when the boundary conditions are Navier and
for the strip and unit disc domains when clamped boundary conditions are applied. It
is an open and challenging problem to prove that (1.5) exhibits the pull-in instability
for general geometries Ω ⊂ R

N when clamped boundary conditions are applied. A
useful byproduct of the analysis presented here is the estimators on the critical pull-in
voltage ε∗ for each of the geometries and boundary conditions considered, as collated
in Table 2.1.

3. Numerics. In order to obtain accurate numerical representations of (1.5)
close to touchdown, a method which can resolve the rapidly changing spatially local-
ized and temporal features of the equation seems warranted. To facilitate this, the
r-adaptive moving mesh scheme MOVCOL4 of [37] together with the adaptive time
stepping scheme of [3] is implemented. Both schemes take advantage of the underlying
invariance of equation (1.5) to the transformation

(3.1) t → at, (1 + u) → a1/3(1 + u), x → a1/4x.

A brief overview of the method is now provided; for more details see [3, 37]. The
physical domain is approximated by the grid

(3.2a) x0 < x1(t) < · · · < xN (t) < xN+1,

the node points of which are evolved with the equation

(3.2b) −γXtξξ = (M(X)Xξ)ξ.

Here γ is a small parameter which controls the relaxation timescale to the equidis-
tribution profile, M(X) is known as the monitor function, and xi(t) = X(iΔξ, t) is
a map between the physical domain and a computational domain Ωc = [0, 1] with
coordinate ξ ∈ [0, 1]. In calculations, the value γ = 10−4 was used and the boundary
conditions Ẋ0 = ẊN+1 = 0 were applied. The monitor function

(3.3) M(X) =
1

(1 + u(X))3
+

∫
Ω

1

(1 + u)3
dx

was selected, which provides a balance between grid points in the region where M is
large (e.g., where ||1 + u||inf is small) and also in regions where the solution is not
changing rapidly but modest resolution is still required so that iterative procedures
converge. Importantly, with this choice of M(u), (3.2b) retains the symmetry (3.1) of
the underlying equation. Spatial discretization was effected by a seventh order poly-
nomial collocation procedure with evaluation at four Gauss points in each subinterval
(cf. Appendix A). After accounting for boundary conditions, this results in a system
of 4(N+2) equations for the solution and its first three derivatives at each node point.
The mesh equation (3.2b) is discretized as follows:

(3.4a) −γ
Ẋi−1 − 2Ẋi + Ẋi+1

Δξ2
=

Mi+ 1
2
(Xi+1 −Xi)−Mi− 1

2
(Xi −Xi−1)

Δξ2
,
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where

(3.4b) Mi+ 1
2
=

M(Xi+1) +M(Xi)

2
.

The integral term of (3.3) is evaluated by the trapezoid rule on the subintervals defined
by the Xi’s. The efficient simulation of the PDE close to singularity necessitates the
use of temporal adaptivity. The underlying symmetry of the problem (3.1) provides
an indication of how the time stepping should be adjusted according to the solution
magnitude and motivates the introduction of a computational time coordinate,

(3.5)
dt

dτ
= g(u), g(u) =

1

infx∈Ω ||M(u)|| ,

where again (3.5) retains the underlying symmetry (3.1) of the underlying problem.
The discretized main equation (1.5) and equations for the mesh (3.2b) are written in
terms of the computational time τ and solved simultaneously as a DAE of form

(3.6) 0 = M(y, τ)yτ − f(y, τ), y = (t(τ),u,X)T .

Here u ∈ R
4(N+2) is a vector containing the nodal values of the solution and its first

three derivatives, while X ∈ R
N+2 is the vector of grid points. The square mass

matrix M is of size 5(N + 2) + 2 and has entries filled with the discretizations of
(1.5) and (3.3), while f ∈ R

5(N+2)+2 represents the discretized right-hand sides. The
resulting equations are solved in MATLAB with the routine ode23t.

In Figure 3.1 the three solution regimes for (1.5) on the strip under clamped
boundary conditions are observed. When ε > ε∗ the beam attains a steady equilibrium
deflection and does not touch down (cf. Figure 3.1(a)). The second solution regime
lies in the parameter range εc < ε < ε∗ whereby the solution touches down in finite
time at the origin only, as displayed in Figure 3.1(c). The simulation is halted when
infx∈Ω ||1 + u(x, t)|| reaches a specified proximity to u = −1. In the case N = 1 with
ε = 0.2, the solution can be followed to u(0) = −0.99999 with tc − t = O(10−17).
In the case of multiple touchdown points symmetric about the origin, the solution
can be followed to infx∈Ω u(x, t) = −0.999 where tc − t = O(10−10). When multiple
touchdown points are present, it is more challenging to integrate (1.5) very close to
touchdown as grid points will tend to coalesce on one of the two touchdown points
thereby hindering convergence at the other. On the figures displaying numerical
solutions, the grid points are indicated on the curve as crosses and are observed to
coalesce on the singularity point as t → tc (cf. Figure 3.1(d)). In the third parameter
regime 0 < ε < εc, touchdown occurs in finite time at two isolated points symmetric
about the origin (cf. Figure 3.1(e)) with the location of touchdown as a function of ε
indicated in Figure 3.1(b). The border of the one and two point touchdown regimes
is approximately εc ≈ 0.066.

In the radially symmetric unit disc case, touchdown occurs at the origin when
εc < ε < ε∗ and on an inner ring of points when ε < εc ≈ 0.075.

A possible interpretation for this behavior is that u = −1 is an attractor of the
system and that the location of touchdown is governed by the critical points of the
deflection u(x, t) as the solution enters the basin of attraction for u = −1. This would
suggest that the source of the multiple touchdown points lies in the dynamics of (1.5)
for small t.
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Fig. 3.1. The above figures relate to numerical solutions of (1.5) for the strip domain with
clamped boundary conditions. The mesh points are indicated on solutions with small crosses so that
their dynamics can be observed. In panel (a), solutions are shown for ε = 0.5 > ε∗ so that touchdown
does not occur and a steady state deflection is approached. Panel (b) displays the relationship between
touchdown location(s) and the value of ε. The critical value ε = εc, below which touchdown occurs at
two points, is approximately εc = 0.066. In panels (a) and (c)–(f), solutions are increasing in time
from top to bottom. Panel (c) shows solutions for ε = 0.2 < ε∗ and touchdown is observed at the
origin around time t = 0.3833. In Panel (d), a zoom in of the touchdown region is displayed, which
shows the refinement of the mesh in this area. In panel (e), solutions are shown for ε = 0.02, where
touchdown is observed at two separate points, symmetric about the origin around t = 0.3240. Panel
(f) displays a zoom in of the negative touchdown region for Panel (e), and again the refinement of
the mesh in this region is apparent.
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4. Asymptotics.

4.1. Small time asymptotics. In this section an analysis of the biharmonic
MEMS equation

(4.1) ut = −ε2Δ2u− 1

(1 + u)2
, x ∈ Ω; u(x, 0) = 0, x ∈ Ω,

is performed in the small time regime t → 0+ for strip and disc domains (1.5b) and
boundary conditions (1.5c). In this regime the deflection of the beam is small, which
allows the (1+u)−2 term to be linearized, and in this way its influence can be thought
of, to leading order, as a uniform forcing term of unit strength.

In a region away from the boundary where the ε2Δ2u is negligible for ε 	 1, the
leading order solution satisfies u(x, t) = ū(t), where

(4.2) ūt = − 1

(1 + ū)2
, ū(0) = 0, ū = −1 + (1− 3t)1/3,

which determines the scale for the solution. This scale, together with the scaling
invariance (3.1), motivates the following expansion for the stretching boundary region
in the vicinity of the end point x = 1:

(4.3) u(x, t) = f(t) v(η, t), η =
1− x

ε1/2f(t)1/4
, f(t) = 1− (1 − 3t)1/3.

Note that f(t) = t + O(t2) as t → 0, so an expansion of v(η, t) in powers of t
corresponds at lowest order to an expansion in small f(t) and matches to the outer
region exactly. Employing variables (4.3) together with the expansion

(4.4) v(η, t) =

∞∑
n=0

fn(t)vn(η) +

∞∑
k=1,k �=4p,p∈N

(
ε1/2f(t)1/4

)k

v k
4
(η)

for the solution gives a sequence of problems to be solved for v k
4
(η), k = 0, 1, 2, . . . .

The O(ε1/2f(t)1/4) component of (4.4) is the first correction to the 2r−1urrr term
which appears, in the radial case N = 2, at a lower order due to the expansion not
being centered on the origin. As can be seen from the equations below, when N = 1,
all of the v k

4
with noninteger indexes may be chosen zero, so that the profiles v k

4
(η),

for k mod 4 �= 0, play no role in the one-dimensional (1D) case. Equating powers of
f(t)1/4 yields

v0ηηηη − η

4
v0η + v0 = −1, η > 0;

(4.5a)

v1ηηηη − η

4
v1η + 2v1 = ε2(N − 1)G1

(
v0(η), v 1

4
(η), v 1

2
(η), v 3

4
(η)

)
+

η

2
v0η, η > 0;

(4.5b)

(4.5c)

v2ηηηη − η

4
v2η + 3v2 = ε4(N − 1)G2

(
v0(η), v 1

4
(η), v 1

2
(η), . . . , v 7

4
(η)

)
− 3

(
v0 − η

v0η
4

+ v20

)
+

η

2
v1η − 2v1, η > 0;
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Fig. 4.1. Numerical solutions of equations (4.5). On the left panel v0 (solid curve), v1 (dashed
curve), and v2 (dotted curve) are displayed for N = 1 under clamped boundary conditions. On the
right panel, v0 (solid curve), v 1

4
(dashed curve), and v 1

2
(dotted curve) are displayed for N = 2

under Navier boundary conditions.

v 1
4ηηηη

− η

4
v 1

4 η
+

5

4
v 1

4
= 2(N − 1)v0ηηη, η > 0;(4.5d)

v 1
2ηηηη

− η

4
v 1

2 η
+

3

2
v 1

2
= (N − 1)G 1

2

(
v0(η), v 1

4
(η)

)
, η > 0;(4.5e)

v 3
4ηηηη

− η

4
v 3

4 η
+

7

4
v 3

4
= (N − 1)G 3

4

(
v0(η), v 1

4
(η), v 1

2
(η)

)
, η > 0.(4.5f)

In the above, the functions G k
4
represent lower order terms that only contribute when

N = 2. In what follows, we retain the first three nonzero terms of expansion (4.4)
when N = 1, and the first three terms (v0, v 1

4
, and v 1

2
) when N = 2. The above

equations are then solved together with boundary and far field behavior:

(4.5g)

(clamped) : vj(0) = vjη(0) = 0, vjη, vjηηη → 0, η → ∞, j = 0, 1, 2, 1
4 ,

1
2 .

(Navier) :
vj(0) = vjηη(0) = 0, vjη , vjηηη → 0, η → ∞, j = 0, 1, 2;

v k
4
(0) = v k

4 ηη
(0)− v k−1

4 η(0) = 0, v k
4 η
, v k

4 ηηη
→ 0, η → ∞, k = 1, 2.

The ODEs of (4.5) are solved numerically as boundary value problems on an interval
[0, L], with L taken to be sufficiently large so that their limiting behavior for η → ∞
is well manifested. Several profiles (v0(η), v1(η), v2(η), v 1

4
(η), v 2

4
(η)) are displayed in

Figure 4.1 for both boundary conditions.
In the 1D strip case (N = 1), a solution valid for x ∈ (−1, 1) is obtained by

superimposing the left and right boundary phenomena and subtracting the extra far
field solution to give a uniform approximation. This gives the small time approximate
solution in the 1D case:

(4.6) u(x, t) = f(t)

[
2∑

n=0

fn(t)

[
vn

(
x+ 1

ε1/2f(t)1/4

)
+ vn

(
1− x

ε1/2f(t)1/4

)]
− 1

]
.

In Figure 4.2, a comparison of the full numerical solution of (1.5) and the asymp-
totic solution (4.6) is displayed. Very good agreement is observed for small t. As
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Fig. 4.2. Comparison of full numerical solution (solid line) to (1.5) on the 1D strip with
clamped boundary conditions to the asymptotic prediction (dashed line) of equation (4.6). Panel (a)
shows ε < εc so that multiple touchdown points are present, while panel (b) has εc < ε < ε∗ so that
touchdown occurs at the origin. In both cases, solutions are increasing in time from top to bottom
and good agreement between numerics and asymptotics is observed right until the numerical solution
enters the touchdown regime.
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Fig. 4.3. Comparison of full radially symmetric numerical solution (solid line) to (1.5) on the
unit disc with Navier boundary conditions to the asymptotic prediction (dashed line) of (4.7). Panel
(a) shows ε < εc so that touchdown for radially symmetric solutions occurs on a ring of points,
while panel (b) has εc < ε < ε∗ so that touchdown occurs at the origin. In both cases, solutions
are increasing in time from top to bottom, and good agreement between numerics and asymptotics
is observed right until the numerical solution enters the touchdown regime.

t → 1/3−, f(t) → O(1) indicating that the asymptotic solution (4.6) breaks down.
Later in time, a new asymptotic regime based on small (tc − t) is entered. This
touchdown regime is explored in section 5.

In the unit disk case (N = 2), the three leading terms in the asymptotic solution,
each of which is displayed in Figure 4.1, are

(4.7) u(r, t) = f(t)
2∑

k=0

(
ε1/2f(t)1/4

)k

v k
4

(
1− r

ε1/2f(t)1/4

)
.

Figure 4.3 displays a comparison of the full numerical solution to (1.5) and the asymp-
totic solution (4.7). Good agreement is again observed for t small, which breaks down
as t → 1/3 and the touchdown regime is entered.



MULTIPLE TOUCHDOWN IN A MEMS CAPACITOR 947

4.1.1. Estimation of touchdown points. To estimate the touchdown points
of (1.5), the critical points of the small t approximations (4.6) and (4.7) are examined.
The first trough of the profile v(η, t), defined in (4.3), serves as an estimator of the
touchdown points and so its approximate value is determined asymptotically from
(4.4). Minima of u are candidates for touchdown points with their location determined
by the zeros of the derivative of u, where, to leading order, the candidates for the
touchdown points satisfy

v′0

(
1 + xc

ε1/2f(t)1/4

)
= v′0

(
1− xc

ε1/2f(t)1/4

)
(N = 1);(4.8a)

v′0

(
1− rc

ε1/2f(t)1/4

)
= 0 (N = 2).(4.8b)

Note that when 1+xc = O(ε1/2f(t)1/4), 1−xc = O(1), and so for ε1/2f(t)1/4 	 1,
a zero of the left-hand side of (4.8a) corresponds to the far field, i.e., flat, region of
the right-hand side of (4.8a). In other words, for ε1/2f(t)1/4 	 1 in the strip case
N = 1, the two propagating regions do not interact directly and the critical points are
the local minima of the profile v(η, t) inside each of the two regions. This assumption
breaks down when ε1/2f(t)1/4 = O(1), as the two waves will superimpose to generate
more complex solutions of (4.8).

The critical point inside each expanding region, ηc(t), satisfies

(N = 1) ηc(t) = η0 + f(t)η1 + f2(t)η2 + · · · ,
(N = 2) ηc(t) = η0 + ε1/2f(t)1/4η 1

4
+ εf(t)1/2η 1

2
+ · · · , f(t) = 1− (1− 3t)1/3,

where the corrections are determined asymptotically from the condition vη(ηc(t), t) =
0. In the N = 1 case, this provides the condition

0 = v0η(ηc) + fv1η(ηc) + f2v2η(ηc) + · · ·
= v0η(η0) + f [η1v0ηη(η0) + v1η(η0)]

+ f2[v2η(η0) + η2v0ηη(η0) + η1v1ηη(η0) +
η21
2
v0ηηη(η0)] + · · · ,

which gives the following definition for the corrections ηj , j = 0, 1, 2:

(4.9)

v0η(η0) = 0, η1 = − v1η(η0)

v0ηη(η0)
,

η2 =
−1

v0ηη(η0)

[
v2η(η0) + η1v1ηη(η0) +

η21
2
v0ηηη(η0)

]
.

A similar calculation can be performed for the N = 2 case, and so the values of
η0, η1, η2 for N = 1 with clamped boundary conditions and η0, η 1

4
, η 1

2
for N = 2 with

Navier boundary conditions are found to be

(clamped) : η0 = 3.7384, η1 = −0.6641, η2 = 0.1085.(4.10a)

(Navier) : η0 = 2.8832, η 1
4
= 0.3533, η 1

2
= 0.9457.(4.10b)



948 A. E. LINDSAY AND J. LEGA

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ε

T
o
u
ch
d
o
w
n
P
o
in
ts

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ε

T
o
u
ch
d
o
w
n
P
o
in
ts

Fig. 4.4. Touchdown location for (1.5) from full numerics (solid line), compared with asymp-
totic formula (4.11) with tc from full numerics (dashed line) and asymptotic formula (4.11) with
tc = 1/3 (dotted line). Left figure, case N = 1 with clamped boundary conditions; right figure, case
N = 2 with Navier boundary conditions.

This now allows for the two critical points x±
c (t) (which estimate the touchdown points

when evaluated at t = tc) in the strip case N = 1 and the ring of touchdown points
rc(tc) in the radially symmetric unit disc case N = 2 to be specified as

N = 1 x±
c (t) = ±

[
1− ε1/2f(t)1/4[η0 + f(t)η1 + f2(t)η2]

]
,(4.11a)

N = 2 rc(tc) = 1− ε1/2f(tc)
1/4η0 − εf(tc)

1/2η 1
4
− ε3/2f(tc)

3/4η 1
2
+ · · · .(4.11b)

Note that the approximation for the touchdown locations requires tc, the touchdown
time of (1.5). As observed in Figure 4.4, asymptotic formula (4.11) captures the loca-
tion of touchdown very well, particularly when ε 	 εc. As ε → ε−c , the approximation
breaks as the left and right boundary effects are superimposing, and so the touchdown
points are no longer simply the minima of the isolated profile v(y, t).

5. Touchdown regime. To establish a blow up profile in the touchdown regime,
the techniques of [28] are employed. The correct similarity variables are investigated
by initially rescaling equation (1.5a) with

u = −1 + Uû(x̂, t̂), t = T t̂, x = Lx̂,

which results in

U

T
ût̂ = −ε2

U

L4
Δ2

x̂û− 1

U2û2
.

A balance of all terms suggests scaling with L ∼ T 1/4 and U ∼ T 1/3, and so an
appropriate self similar solution would be of form

u = −1 +R(t)1/3v

(
x

R(t)1/4

)
,

where R(t) is the quenching rate of the solution. In general, rigorous determination
of R(t) is a difficult problem, and so we make reasonable guesses and investigate their
validity with numerical calculations. This approach is not definitive, however, as the
case of blow-up in the critical nonlinear Schrödinger equation (NLS) [9] illustrates,
where the rate is known to satisfy the so called loglog law:

R(t) ∼ 2π(tc − t)

log(− log(tc − t))
, t → t−c .
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Numerical verification of this rate law would require accurate solutions for almost
surely unobtainably small values of (tc − t). As such, the evidence presented here for
self-similar quenching awaits rigorous verification. The case of quenching solutions
in the strip and unit disc geometries are treated separately and both appear to be
self-similar in nature. For more details on the development of log corrections to blow-
up/quenching rates, the interested reader is directed to [13, 14, 17, 18].

5.1. Touchdown solutions in one dimension. In similarity variables

(5.1) u(x, t) = −1 + (tc − t)1/3v(η, s), η =
x− xc

ε1/2(tc − t)1/4
, s = − log(tc − t),

(1.5a) is transformed to

(5.2) vs = −vηηηη − η

4
vη +

v

3
− 1

v2
; (η, s) ∈ R× R

+.

Far field and initial conditions for v(η, s) are now discussed. The behavior of v(η, s)
for η → ±∞ corresponds to a solution of u(x, t) for x �= xc as t → t−c . Assuming a
localized quenching solution at x = xc, it can be expected that ut = O(1) in a region
away from xc as t → t−c . Now,

(5.3) ut = (tc − t)−2/3
[
vs +

η

4
vη − v

3

]
,

and so the condition that ut = O(1) implies that

(5.4) vs +
η

4
vη − v

3
= O((tc − t)2/3), t → t−c .

For a fixed x �= xc, the limit t → t−c corresponds to |η| → ∞, and so (5.4) augments
(5.2) to establish

vs = −vηηηη − η

4
vη +

v

3
− 1

v2
, (η, s) ∈ R× R

+;(5.5a)

vs =
v

3
− η

4
vη, η → ±∞.(5.5b)

A key step is to determine the limiting behavior of solutions to (5.5) for any fixed
η as s → ∞. One obvious candidate for an equilibrium state is the constant v̄ = 31/3.
An analysis of its stability leads one to consider the eigenvalue problem

(5.6) L2w = μw, Lm ≡ −
(
− d2

dη2

)m

− η

4

d

dη
+ I

for m = 2. The spectrum of the operator Lm in the weighted space L2
ρ(R) where

ρ = e−a|η|ν , with a positive (cf. [2, 11]), is

(5.7) σ(Lm) =

{
μk = 1− k

m
; k = 0, 1, 2, . . .

}
,

and so there are two linearly unstable modes associated with this equilibrium, μ0 = 1
and μ1 = 1 − 1/m for m ≥ 2. The instability associated with the mode μ0 = 1
is generated by the invariance of the touchdown time tc and is therefore not a true
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instability. The instability associated with the μ1 = 1 − 1/m mode represents a true
instability when m ≥ 2. The presence of this positive eigenvalue indicates that (5.5)
does not satisfy v(η, s) → 31/3 for fixed η as s → ∞; thus we seek equilibrium solutions
of the nonlinear problem

v̄ηηηη +
η

4
v̄η − v̄

3
+

1

v̄2
= 0, −∞ < η < ∞;(5.8a)

v̄

3
− η

4
v̄η = 0, η → ±∞,(5.8b)

and investigate the multiplicity and stability of its solution.
The Robin condition of (5.8b) suggests that (5.8) admits a far field series solution

of the form

(5.9) v̄(η) ∼ vp ≡
∞∑
n=0

cn|η|4/3−4n, |η| → ±∞.

Here the constants cn = cn(c0) are functions of the parameter c0 for n ≥ 1 and can be
determined by lengthy but straightforward manipulations, e.g., c1 = 40c0/81 + c−2

0 .
The parameter c0 plays the role of a nonlinear eigenvalue and it is expected that
(5.8) will have solutions for isolated values only. Taking the limit t → t−c for fixed
x �= xc corresponds to the limit |η| → ∞ and therefore, in physical co-ordinates, the
touchdown profile is expected to satisfy

(5.10) u(x, t) ∼ −1+ c0

∣∣∣∣x− xc

ε1/2

∣∣∣∣
4/3

+ c1(tc− t)

∣∣∣∣x− xc

ε1/2

∣∣∣∣
−8/3

+ · · · as t → t−c .

Additional boundary conditions are now obtained for (5.8) by suppressing exponen-
tially growing modes of the linearization of (5.8) about v̄ for large η. To analyze
linearized perturbations of (5.8) about vp, set v̄ = vp + σw, where σ 	 1, to arrive at
the equation

(5.11) wηηηη +
η

4
wη − w

3
− 2

w

v3p
= 0, −∞ < η < ∞.

For large |η|, a WKB ansatz solution of the form

w ∼ exp

[
1

δ

∞∑
k=0

δkgk(ζ)

]
, η =

ζ

ν
,

for ν 	 1 and δ = ν4/3 produces the leading order equation

g40ζ +
ζ

4
g0ζ = 0,

which admits three exponential solutions:

g0j(ζ) = −3|ζ|4/32−8/3 exp

[
2πij

3

]
, j = 0, 1, 2.

The terms exp(g0j) for j = 1, 2 are growing as η → ±∞ and need to be suppressed in
the solution of (5.8). The mode corresponding to g′0 = 0 is w = η4/3, which represents
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an arbitrary change in the value of c0. At the following order, exp(g1(ζ)) = η−10/9,
which now gives the following full specification for v̄(η):

v̄ηηηη +
η

4
v̄η − v̄

3
+

1

v̄2
= 0, −∞ < η < ∞;(5.12a)

v̄ ∼
∞∑
n=0

cnη
4/3−4n + C̄|η|−10/9 exp

[
−3|η|4/32−8/3

]
, η → ±∞.(5.12b)

Extracting information from (5.12) is analytically challenging as it involves solv-
ing a fourth order, nonlinear, nonconstant coefficient and nonvariational differential
equation. This motivates the use of numerical techniques to analyze the multiplicity
and stability of solutions to (5.12).

5.1.1. Numerical and stability analysis. This section deals with the numer-
ical determination and linear stability of solutions to (5.12). Related similarity ODEs
have been solved by several authors in the context of pinch-off dynamics for thin films
[29, 30], and a framework for their solution is well established. Equation (5.12a) is
solved by first applying a centered difference discretization scheme to the derivative
terms on a uniform grid of [−L,L]. The Robin condition (5.8b) is discretized and
applied to remove the ghost points from both end points and thus effectively yields
four boundary conditions for the system. The application of the Robin condition
at two nodal points enforces the far field behavior v̄ ∼ c0|η|4/3 and also eliminates
exponentially growing terms.

This discretization leads to a large system of nonlinear equations to be solved via
a relaxed Newton’s method [1]. The iterations are initialized with a solution of the
reduced equation

(5.13)
η

4
ṽη − ṽ

3
+

1

ṽ2
= 0; ṽ = 3

√
c30η

4 + 3, c0 > 0,

over a wide range of positive c0 until convergence is achieved. This initial guess has
the advantage of satisfying the far field behavior exactly for a given c0 and also being
smooth at the origin. The size L of the system is taken to be sufficiently large so
that the far field behavior is well manifested. After seeking convergence over a wide
range of parameters c0, exactly two solutions to (5.12), denoted v̄1(η) and v̄2(η), were
found, as shown in Figure 5.1. This solution multiplicity appears to be qualitatively
similar in character to that observed [2, 11, 12] in the self-similar blow-up of fourth
order PDEs with power law nonlinearity. To address the question of the existence of
a stable self-similar quenching profile for (1.5), the linear stability of v̄1(η) and v̄2(η)
is now analyzed by setting v = v̄(η) + φ(η)eμs for φ 	 1 in (5.5) to arrive at the
eigenvalue problem

μφ = −φηηηη − η

4
φη +

(
1

3
+

2

v̄3

)
φ, −∞ < η < ∞;(5.14a)

μφ =
φ

3
− η

4
φη, η → ±∞.(5.14b)

Apart from the following two modes associated with translation in touchdown time tc
and location xc,

(5.15) μ0 = 1, φ0 =
v̄

3
− η

4
v̄η; μ1 =

1

4
, φ1 = v̄η,
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Fig. 5.1. Plots of two self-similar profiles v̄1(η) and v̄2(η) satisfying (5.12). The dotted curves

represent the far field behavior v̄j(η) ∼ c
(j)
0 |η|4/3 as |η| → ∞. The values c

(1)
0 = 0.906 and c

(2)
0 =

0.1047 were determined numerically. Note that v̄2 has a small dimple at the origin, indicating three
critical points.

Table 5.1

The first eight numerically obtained eigenvalues of (5.14) for the two profiles v̄1(η) and v̄2(η).
The value of L = 50 and a uniform discretization with N = 1000 grid points were used.

μ0 μ1 μ2 μ3 μ4 μ5 μ6 μ7

v̄1 1.0003 0.2499 −0.1369 −0.4328 −0.6089 −0.8431 −1.1431 −1.4251

v̄2 1.0000 0.7740 0.5347 0.2499 −0.0828 −0.4464 −0.8269 −1.2151

the spectra of (5.14) must in general be determined numerically by reducing, via
discretization, (5.14) to a linear system L̄μφ = 0 and then seeking μ such that det L̄μ =
0. The eigenvalues appear to be purely real and the largest eight numerically obtained
eigenvalues associated with each of the two profiles v̄1(η) and v̄2(η) are displayed in
Table 5.1. In the spectra associated with each profile, the two eigenvalues identified in
(5.15) are present. Ignoring these particular values, it is observed that the spectrum
associated with v̄1 is strictly negative, while the spectrum associated with v̄2 contains
two positive eigenvalues.

This suggests that the profile v̄1(η) is a stable self-similar quenching profile for
(1.5), and indeed, in Figure 5.2, convergence of the full numerical solution to v̄1(η) is
observed as t → t−c for the case of touchdown at and away from the origin.

5.2. Radially symmetric quenching solutions in two dimensions. Self-
similar quenching profiles of the MEMS problem (1.5) are now considered in two
spatial dimensions. For radially symmetric solutions on the unit disc, the cases of
touchdown at and away from the origin are treated separately. The variables

(5.16) u(x, t) = −1 + (tc − t)1/3v̄(η), η =
r

ε1/2(tc − t)1/4
,

which assume touchdown at the origin, transform (1.5) to

(5.17) −Δ2
ηv̄ −

1

4
η · ∇ηv̄ +

v̄

3
− 1

v̄2
= 0, η ∈ R

2,

which is a PDE for the self similar quenching profile. The question of existence,
multiplicity, and stability of solutions to (5.17) appears to be an open question in
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Fig. 5.2. Comparison of full numerical solutions (dashed lines) of (1.5) to the stable self-
similar profile (solid line) v̄1(η) for various t approaching touchdown at tc. This is for N = 1 and
clamped boundary conditions.

spatial dimensions N ≥ 2 (cf. [12]). If a radially symmetric solution v̄(η) = v̄(|η|) is
presumed, then (5.17) reduces to

(5.18) v̄′′′′ +
2

ρ
v̄′′′ − 1

ρ2
v̄′′ +

1

ρ3
v̄′ +

1

4
ρ v̄′ − v̄

3
+

1

v̄2
= 0,

where ρ = |η|. A far field analysis similar to that which led to (5.12) can be applied
to (5.17) to establish boundary conditions which imply algebraic growth with expo-
nentially growing terms suppressed at infinity. After algebra the full problem for the
radially symmetric self-similar quenching profile in dimension N = 2 is

v̄′′′′ +
2

ρ
v̄′′′ − 1

ρ2
v̄′′ +

1

ρ3
v̄′ +

1

4
ρ v̄′ − v̄

3
+

1

v̄2
= 0, ρ > 0,(5.19a)

v̄(ρ) ∼
[
c0ρ

4/3 + o(ρ4/3)
]
+ C̄ρ−16/9 exp

[
−3ρ4/32−8/3

]
+ · · · , ρ → ∞,(5.19b)

with symmetric conditions at the origin enforced by

(5.19c) v̄′(0) = v̄′′′(0) = 0.

This nonlinear equation is solved numerically by first discretizing (5.19a) on [0, L] for
L large, applying far field behavior (5.19b) as a Robin condition (cf. (5.8b)) at consec-
utive endpoints followed by Newton iterations initialized with (5.13). The iterations
are initialized over a wide range of the parameter c0, with convergence observed for

two isolated values, c
(1)
0 = 0.7265 and c

(2)
0 = 0.0966. The two associated profiles v̄1(ρ)

and v̄2(ρ) are displayed in Figure 5.3.
As in the N = 1 case, the second profile v̄2(ρ) has a dimple at the origin, and as

illustrated in Figure 5.4(a), full numerical solutions of (1.5) are observed to converge
to the monotonic self-similar profile v̄1(ρ).

For touchdown away from the origin in the radially symmetric unit disc case, the
self-similar quenching profile appears to be the same as that obtained for the N = 1
case. Indeed, the appropriate similarity variables are

(5.20) u(x, t) = −1 + (tc − t)1/3v̄(η), η =
r − rc

ε1/2(tc − t)1/4
.
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Fig. 5.3. Plots of two self-similar profiles v̄1(ρ) and v̄2(ρ) satisfying (5.19). The dotted curves

represent the asymptotic far field behavior v̄j(ρ) ∼ c
(j)
0 ρ4/3 as ρ → ∞. The values c

(1)
0 = 0.7265

and c
(2)
0 = 0.0966 were determined numerically. Note that v̄2 has a small dimple at the origin,

indicating two critical points including that at ρ = 0.

These variables rescale the biharmonic term as

−ε2Δ2u → −(tc − t)−2/3
[
v̄ηηηη +O(ε1/2(tc − t)1/4)

]
,

and so in the limit as t → tc, the v̄ηηηη term is dominant. This results in a self-similar
profile which satisfies

v̄ηηηη +
η

4
v̄η − v̄

3
+

1

v̄2
= 0, −∞ < η < ∞;(5.21a)

v̄(η) ∼
∞∑
n=0

cnη
4/3−4n + C̄|η|−10/9 exp

[
−3|η|4/32−8/3

]
, η → ±∞,(5.21b)

as derived for the 1D case in (5.12). Consequently, quenching solutions away from the
origin in the radially symmetric unit disc case are expected to converge to the self-
similar quenching profile of the N = 1 case, as confirmed by the numerical simulations
displayed in Figure 5.4(b).
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Fig. 5.4. Convergence of radially symmetric solutions (dashed and dotted) of (1.5) to self-
similar profiles. Left: Touchdown is at the origin and convergence is observed to the monotone
profile v̄1(ρ) (solid) solving (5.19). Right: For this case, touchdown is away from the origin and so
convergence is to the monotone profile v̄1(η) solving (5.12), as in the 1D strip case. In both figures,
the dotted curve represents the solution for smallest (tc − t).
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6. Discussion. Quenching solutions of a fourth order parabolic differential equa-
tion with a singular nonlinearity have been analyzed for a 1D strip and under radial
symmetry on the unit disc with both clamped and Navier boundary conditions. In
contrast to its second order equivalent, the fourth order PDE can quench at multiple
points away from the origin. More precisely, in the case N = 1, we have shown that
the PDE can quench at two distinct points symmetric about the origin, while in the
radially symmetric unit disc case, it can quench on an inner circle of finite radius.

A combination of singular perturbation theory with adaptive numerics has pro-
vided an analysis suggesting that this multiple touchdown phenomenon is due to the
fact that v0(η), which satisfies (4.5a) inside a stretching boundary layer, is nonmono-
tone. As seen in Figure 4.1, the profile v0(η) has a unique global minimum η0 ∈ (0,∞).
As a consequence, this point enters the basin of attraction of u = −1 ahead of oth-
ers and therefore becomes a touchdown point. Moreover, if ε is small enough, the
stretching layers emanating from each boundary do not have time to interact before
touchdown, and so the asymptotic formulation provides a very accurate prediction of
the quenching set.

In the limit as t → tc, where tc is the quenching time, the behavior of (1.5) was
shown to be self-similar in nature. This is again in contrast with the second order
equivalent of (1.5). The self-similar profile itself was obtained numerically and its
limiting behavior for t → tc is given by

u(x, tc) = −1 + c0

( |x− xc|
ε1/2

)4/3

for x close to xc, where c0 = 0.7265 for N = 2 and if touchdown occurs at the origin
and c0 = 0.9060 in the other cases.

There are many interesting questions which stem from this study. Our explo-
rations of the multiple touchdown phenomenon and the associated self-similar quench-
ing behavior have been based on a systematic application of matched asymptotic
methods and highly accurate adaptive numerics. A rigorous theory to accompany our
findings is highly desirable and constitutes a challenging avenue of investigation.

In the case of the unit disc, it may be possible for the dynamics of (1.5) to break
the radial symmetry of the quenching set. All the simulations presented here were
initialized with u(x, 0) = 0. Adding random noise to the initial condition breaks the
left-right symmetry for N = 1 and rotational symmetry for N = 2. The symmetry
breaking can be amplified by the dynamics of the PDE. In such a scenario, the ring
would most likely be split up into a collection of points whose arrangement would
need to be determined.

The prediction of the quenching set of (1.5) for larger classes of two-dimensional
(2D) geometries is another interesting open problem. For regular geometries, it may
be that the number of axes of symmetry determines the quenching set, but for irregular
domains, it is not clear that the touchdown locations can be determined by simple
geometric considerations. This question may be amenable to perturbation analysis—
for example, an almost circular domain whose boundary is r = 1 + δf(θ) for some
δ 	 1 and f(θ) a 2π periodic function.

A robust method for solving (1.5) for a large class of 2D geometries would be
an essential complement to any analytical investigation of the above questions. In
particular, a meshless method might be well suited to handle the highly nonuniform
grids needed to resolve the dynamics of (1.5) very close to touchdown [8].

Finally, a problem of some practical significance is to determine the existence
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and nature of solutions beyond touchdown. It is known that under certain conditions
[15, 16] solutions can be continued beyond a finite-time singularity and consequently
it may be possible for the solution u(x, t) of (1.5) to attain u = −1 on a finite region
of space-time.

The treatment of these open issues is beyond the scope of this manuscript and
will be left for future investigation.

Appendix A. Spatial discretization. For discretization in space, a collocation
method based on piecewise seventh order polynomial interpolation is employed. On
the interval x ∈ [Xi(t), Xi+1(t)] for i = 0, 1, . . . , N , the solution u(x, t) is written as

(A.1a) u(x, t) =

3∑
k=0

[u
(k)
i (t)L0,k(si) + u

(k)
i+1(t)L1,k(si)]H

k
i ,

where

(A.1b)

si =
x−Xi(t)

Hi(t)
∈ [0, 1], Hi(t) = Xi+1(t)−Xi(t),

u
(k)
i (t) =

[
dk

dxk
u(x, t)

]
x=Xi(t)

,

and the L0,j(s), L1,j(s) for j = 0, 1, 2, 3 are the shape functions

(A.1c)

L0,0(s) = (20s3 + 10s2 + 4s+ 1)(s− 1)4, L0,1(s) = s(10s2 + 4s+ 1)(s− 1)4,

L0,2(s) =
s2

2
(4s+ 1)(s− 1)4, L0,3(s) =

s3

6
(s− 1)4,

L1,0(s) = −s4(20s3 − 70s2 + 84s− 35), L1,1(s) = s4(s− 1)(10s2 − 24s+ 15),

L1,2(s) = −s4

2
(s− 1)2(4s− 5), L1,3(s) =

s4

6
(s− 1)3.

They satisfy

(A.1d)

[
dp

dxp
Li,k(si)

]
x=Xj(t)

=

{
1 if i = j and k = p
0 otherwise

,

so that the unknown coefficients u
(k)
i (t) are the values of u and its first three spatial

derivatives at the nodal points x = Xi(t). By construction, these are continuous at
the nodal points.

The dynamics of the u
(k)
i (t) is obtained by substituting expansion (A.1a) into the

PDE, using the following expressions for the temporal and spatial derivatives of u:

∂j

∂xj
u(x, t) =

3∑
k=0

[
u
(k)
i (t)

dj

dsj
L0,k(si) + u

(k)
i+1(t)

dj

dsj
L1,k(si)

]
Hk−j

i ,(A.2a)

∂

∂t
u(x, t) =

3∑
k=0

[
d

dt
u
(k)
i (t)L0,k(si) +

d

dt
u
(k)
i+1(t)L1,k(si)

]
Hk

i

+
dHi

dt

3∑
k=1

[
u
(k)
i (t)L0,k(si) + u

(k)
i+1(t)L1,k(si)

]
kHk−1

i(A.2b)

− ux(x, t)

[
dXi

dt
+ si

dHi

dt

]
.
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Navier and clamped boundary conditions can be applied at both endpoints by choosing

(clamped) u
(0)
0 = u

(1)
0 = u

(0)
N+1 = u

(1)
N+1 = 0,

(Navier) u
(0)
0 = u

(2)
0 = u

(0)
N+1 = u

(2)
N+1 = 0

in the strip Ω = [−1, 1] case and

(clamped) u
(1)
0 = u

(3)
0 = u

(0)
N+1 = u

(1)
N+1 = 0,

(Navier) u
(1)
0 = u

(3)
0 = u

(0)
N+1 = u

(2)
N+1 + u

(1)
N+1 = 0

in the unit disc Ω = {x2 + y2 ≤ 1} case.
The remaining equations are obtained by writing the discretized PDE at the

Gauss points,

ρ1 =
1

2
−

√
525 + 70

√
30

70
, ρ2 =

1

2
−

√
525− 70

√
30

70
, ρ3 = 1− ρ2, ρ4 = 1− ρ1,

on each interval [Xi(t), Xi+1(t)], for i = 0, . . . , N . This provides 4(N + 1) equations,
which together with the four boundary conditions are integrated in time to obtain

the 4(N + 2) unknown nodal values u
(k)
i (t) for k = 0, 1, 2, 3 and i = 0, . . . , N + 1.

Acknowledgments. A.E.L. is very grateful to M. J. Ward for many useful dis-
cussions.
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