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Several nonlinear eigenvalue problems modeling the steady-state deflection of an elastic membrane associated with

a MEMS capacitor under a constant applied voltage are analyzed using formal asymptotic methods. The nonlinear

eigenvalue problems under consideration represent various regular and singular perturbations of the basic membrane

nonlinear eigenvalue problem ∆u = λ/(1 + u)2 in Ω with u = 0 on ∂Ω, where Ω is a bounded two-dimensional domain.

The following three perturbations of this basic problem are considered; the addition of a bending energy term of the

form −δ∆2u; the effect of a fringing-field where λ is replaced by λ
`

1 + δ|∇u|2
´

, and the effect of including a small inner

undeflected disk of radius δ. For each of the perturbed problems an asymptotic expansion of the fold point location λc

at the end of minimal solution branch in the limit δ → 0 is constructed. This calculation determines the pull-in voltage

threshold, which is critical for the design of a MEMS device. In addition, with regards to solution multiplicity, it is

shown numerically that the effect of each of the perturbations is to destroy the well-known infinite fold point behavior

associated with the bifurcation diagram of the basic membrane problem in the unit disk.

Key words: Nonlinear eigenvalue problem, Fold point, Matched asymptotic expansions, Boundary Layer, Shooting,
Psuedo-arclength continuation.

1 Introduction

Micro-Electromechanical Systems (MEMS) combine electronics with micro-size mechanical devices to design various

types of microscopic machinery (cf. [18]). A key component of many MEMS systems is the simple MEMS capacitor

shown in Fig. 1. The upper part of this device consists of a thin deformable elastic plate that is held clamped along

its boundary, and which lies above a fixed ground plate. When a voltage V is applied to the upper plate, the upper

plate can exhibit a significant deflection towards the lower ground plate.
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Figure 1. Schematic plot of the MEMS capacitor with a deformable elastic upper surface that deflects towards the fixed
lower surface under an applied voltage

By including the effect of a bending energy it was shown in [18] (see also [16] and the references therein) that the
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dimensionless steady state deflection u(x) of the upper plate satisfies the fourth-order nonlinear eigenvalue problem

−δ∆2u + ∆u =
λ

(1 + u)2
, x ∈ Ω ; u = ∂nu = 0 x ∈ ∂Ω . (1.1)

Here, the positive constant δ represents the relative effects of tension and rigidity on the deflecting plate, and λ ≥ 0

represents the ratio of electric forces to elastic forces in the system and is directly proportional to the square of

the voltage V applied to the upper plate. The boundary conditions in (1.1) assume that the upper plate is in an

undeflected and clamped state along the rim of the plate. The model (1.1) was derived in [18] from a narrow-gap

asymptotic analysis.

A special limiting case of (1.1) is when δ = 0, so that the upper surface is modeled by a membrane rather than a

plate. Omitting the requirement that ∂nu = 0 on ∂Ω, (1.1) reduces to the MEMS membrane problem

∆u =
λ

(1 + u)2
, x ∈ Ω ; u = 0 x ∈ ∂Ω . (1.2)

This simple nonlinear eigenvalue problem has been studied using formal asymptotic analysis in [19] and [9] for the

unit slab and the unit disk. For the unit disk, one of the key qualitative features for (1.2) is that the bifurcation

diagram |u|∞ versus λ for radially symmetric solutions of (1.2) has an infinite number of fold points with λ → 4/9

as |u|∞ → 1 (cf. [19]). Analytical bounds for the pull-in voltage instability threshold, representing the fold point

location λc at the end of the minimal solution branch for (1.2), have been derived (cf. [19], [8], [9]). A generalization

of (1.2) that has received considerable interest from a mathematical viewpoint is the following problem with a variable

permittivity profile |x|α in an N -dimensional domain Ω:

∆u =
λ|x|α

(1 + u)2
, x ∈ Ω ; u = 0 x ∈ ∂Ω . (1.3)

There are now many rigorous results for (1.2) and (1.3) in the unit ball in dimension N and in more general domains

Ω. In particular, upper and lower bounds for λc have been derived for (1.2) and for (1.3) for the range of parameters

α and N where solution multiplicity occurs (cf. [8]). In [12] it has been proved that there are an infinite number of

fold points for (1.2) in a certain class of symmetric domains. Many other rigorous results for solution multiplicity for

(1.3) under various ranges of α and N have been obtained in [8], [6], and [11].

In contrast to (1.2) and (1.3), there are only a few rigorous results available for (1.1) and its fourth-order variants.

Under Navier boundary conditions u = ∆u = 0 on ∂Ω, the existence of a maximal solution for (1.1) was proved in

[16] and its uniqueness established in [14]. Under Navier boundary conditions and in the three-dimensional unit ball

it was proved in [13] that −∆2u = λ/(1 + u)2 has infinitely many fold points for the bifurcation branch corresponding

to radially symmetric solutions. In [5], the regularity of the minimal solution branch together with bounds for the

“pull-in voltage” for the corresponding clamped problem −∆2u = λ/(1 + u)2 with u = ∂nu = 0 on |x| = 1 in the

N -dimensional unit ball are established for N ≤ 8. Some related rigorous results are given in [2].

In [21] the effect on the pull-in voltage of the electric field at the edge of a disk-shaped membrane of finite extent

was analyzed by deriving a uniform expansion for the electric field that includes edge effects. It was shown in [21]

that such edge effects induce a global perturbation of the basic nonlinear eigenvalue problem (1.2). From equation

(34) of [21] the perturbed problem for δ ≪ 1 is

∆u =
λ

(1 + u)2
(

1 + δ|∇u|2
)

, x ∈ Ω ; u = 0 , x ∈ ∂Ω . (1.4)

Here δ = d/L
2

is an aspect ratio, where d is the gap width between the upper and lower surfaces, and L is the
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lengthscale of each of the surfaces (see Fig. 1). For the unit disk, (1.4) was studied numerically in §5 of [21], where it

was shown that the effect of the fringing-field is to reduce the pull-in voltage. In addition, it was shown qualitatively

in [21] that the effect of the fringing-field is to destroy the infinite fold point structure of the basic membrane problem

(1.2) in the unit disk.

Another simple modification of the membrane problem (1.2) in the unit disk is to pin the rim of a concentric

inner disk in the undeflected state (cf. [20], [7]). The perturbed problem for δ ≪ 1 in the concentric circular domain

0 < δ < |x| < 1 is formulated as

∆u =
λ

(1 + u)2
, 0 < δ < r < 1 ; u = 0 on |x| = 1 and |x| = δ . (1.5)

This change in the topology of the membrane from inserting a small inner disk has a two-fold effect on the solu-

tion. Firstly, it increases the pull-in voltage rather significantly. Secondly, it allows for the existence of non-radially

symmetric solutions that bifurcate off of the radially symmetric solution branch (cf. [20], [7]).

For δ ≪ 1, the problems (1.1), (1.4), and (1.5), can all be viewed as perturbations of the basic and well-studied

membrane problem (1.2). The primary goal of this paper is to determine how the pull-in voltage threshold for (1.2)

gets perturbed for δ ≪ 1 under these three perturbations of the basic model. A rather precise determination of the

pull-in voltage threshold is required for the actual design of a MEMS capacitor since, typically, the operating range

of the device is chosen rather close to the pull-in instability threshold (cf. [18], [21]). Therefore, in mathematical

terms, our primary goal is to calculate asymptotic expansions for the fold point location λc at the end of the minimal

solution branch for (1.1), (1.4), and (1.5), in the limit δ → 0. In the companion paper [17], a quantitative asymptotic

theory describing the destruction of the infinite fold points for (1.2) in the unit disk when (1.2) is perturbed for

0 < δ ≪ 1 to either the biharmonic problem (1.1), the fringing-field problem (1.4), or the annulus problems (1.5), is

developed.

For the biharmonic problem (1.1) asymptotic expansions for the fold point location, denoted by λc, at the end of

the minimal solution branch are derived in the limiting parameter ranges δ ≪ 1 and δ ≫ 1 for an arbitrary domain

Ω with smooth boundary. To treat the δ ≪ 1 limit of (1.1), singular perturbation techniques are used to resolve the

boundary layer near the boundary ∂Ω of Ω, which is induced by the term δ∆2u in (1.1). This analysis yields effective

boundary conditions for the corresponding outer solution, which is defined away from an O(δ1/2) neighborhood of

∂Ω. Then, appropriate solvability conditions are imposed to determine analytical formulae for the coefficients in the

asymptotic expansion of λc for δ ≪ 1. These coefficients are evaluated numerically for the unit slab and the unit

disk. In contrast, the analysis of (1.1) for the limiting case δ ≫ 1 consists of a regular perturbation expansion off of

the solution to the pure Biharmonic nonlinear eigenvalue problem −∆2u = λ̃/(1 + u)2, with λ̃ ≡ λ/δ. In this way it

is shown for the unit disk and the unit slab that

λc ∼ 70.095δ + 1.729 + · · · , δ ≫ 1 ; λc ∼ 1.400 + 5.600 δ1/2 + 25.451 δ + · · · , δ ≪ 1 ; (Unit Slab) , (1.6 a)

λc ∼ 15.412δ + 1.001 + · · · , δ ≫ 1 ; λc = 0.789 + 1.578 δ1/2 + 6.261 δ + · · · , δ ≪ 1 ; (Unit Disk) . (1.6 b)

It is shown below in Fig. 8, Fig. 6(b), and Fig. 7(b), that (1.6) compares very well with full numerical results for λc

computed from (1.1). In particular, rather remarkably, Fig. 8 below shows that the asymptotic result for λc in (1.6)

derived for the δ ≫ 1 limit can give a reliable estimate of λc even for δ ≈ 0.03. The asymptotic results in (1.6) for

δ ≪ 1 accurately predict λc for 0 < δ < 0.03 (see Fig. 6(b) and Fig. 7(b)). Therefore, for the unit slab and the unit
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disk we conclude that (1.6) gives a rather accurate estimate of λc for (1.1) for essentially the entire range 0 < δ < ∞,

and hence (1.6) can give a good prediction of the pull-in voltage for (1.1). This conclusion is one of the main results

of this paper.

For δ ≪ 1 it is shown that through an analysis of the fold point location λc for (1.4) that the effect of a fringing-

field is to reduce the pull-in voltage by an amount of O(δ) for δ ≪ 1. For the unit disk, it is calculated through a

solvability condition that λc ∼ 0.789− 0.160δ for δ ≪ 1. This asymptotic result is shown to compare very favorably

with full numerical results computed from (1.4).

For δ ≪ 1 a singular perturbation analysis of the fold point location λc for the annulus problem (1.5) shows that

λc ∼ 0.789 + O (−1/ log δ). The coefficient of this logarithmic term, which is evaluated numerically, is shown to be

positive. Therefore, the effect of the inner disk of radius δ is to perturb the pull-in voltage for the membrane problem

(1.2) rather significantly even when δ ≪ 1. Some related nonlinear eigenvalue problems with small holes were treated

in [24] and [23].

The outline of this paper is as follows. In §2 some numerical approaches for the computation of solutions of (1.1),

(1.2), (1.4), and (1.5), are discussed and results are given for the corresponding bifurcation diagrams |u|∞ versus

λ. For the unit slab and unit disk, a simple upper bound for the fold point location λc at the end of the minimal

solution branch for (1.1) is derived and calculated numerically. In §3 and §4 asymptotic expansions for the fold point

location λc for (1.1) are derived in the limit δ → 0 for the unit slab and for a multi-dimensional domain, respectively.

In §5 an asymptotic expansion for this fold point location for (1.1) in the limit δ ≫ 1 is constructed. Finally, in §6 an

asymptotic expansion for the fold point location for the minimal solution branch of the fringing-field problem (1.4)

and the annulus (1.5) are obtained. Brief conclusions are given in §6.

2 Numerical Solution of Some Nonlinear Eigenvalue Problems

In this section, an outline of the numerical methods used to compute the bifurcation diagrams associated with the

nonlinear eigenvalue problems (1.1), (1.2), (1.4), and (1.5), is provided. The results of these computations provide

motivation for the asymptotic analysis in §3–6 and are useful for validating our asymptotic results.

For the membrane problem (1.2), the use of scale invariance as a computational technique to compute bifurcation

diagrams was explored in [19]. By introducing the new variables t and w by

u(r) = −1 + αw(y) , y = tr ,

it was shown in [19] that the bifurcation diagram for (1.2) can be parameterized as

|u(0)| = 1 − 1

w(η)
, λ =

η2

w3(η)
, η > 0 , (2.1)

where w(η) is the solution of the initial value problem

w′′ +
1

η
w′ =

1

w2
, η > 0 ; w(0) = 1 , w′(0) = 0 . (2.2)

By solving (2.2) numerically, the bifurcation diagram, as shown in Fig. 2, is obtained. For this problem, it was shown

in [19] that there are an infinite number of fold points that have the limiting behavior |u(0)| → 1− as λ → 4/9. A

similar scale invariance method can also be used for computing solutions to the generalized membrane problem (1.3).

Next, the scale invariance method is extended to compute solutions to the fourth-order problem (1.1) for the
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Figure 2. Numerical solutions for |u(0)| versus λ computed from (1.2) for the unit disk Ω = {|x| ≤ 1} in two-dimensions.
The magnified figure on the right shows the beginning of the infinite set of fold points

.

two-dimensional unit disk. By introducing new variables v and y by

u = −1 + αv(y) , y = Tr ,

equation (1.1) becomes

−δαT 4∆2
yv + αT 2∆yv =

λ

α2v2
.

The conditions u′(0) = u′′′(0) = 0 imply that v′(0) = v′′′(0) = 0. The free parameter v(0) is chosen as v(0) = 1 so

that u(0) = −1+α. Enforcing the boundary condition u(1) = 0 requires that α = 1/v(T ), while u′(1) = 0 is satisfied

if v′(T ) = 0. Finally, by letting λ = α3T 4, a parametric form of the bifurcation diagram is given by

|u(0)| = 1 − 1

v(T )
, λ =

T 4

v3(T )
,

where v(y) is the solution of

−δ∆2
yv +

1

T 2
∆yv =

1

v2
, 0 ≤ y ≤ T ; v(0) = 1 , v′(0) = 0 , v′′′(0) = 0 , v′(T ) = 0 . (2.3)

There are two options for solving (2.3). The first option, representing a shooting approach, consists of solving (2.3)

as an initial value problem and choosing the value of v′′(0) so that v′(T ) = 0. The second option is to solve (2.3)

directly as a boundary value problem. For this approach it is convenient to rescale the interval to [0, 1] by making

the transformation y → Ty, resulting in

−δ∆2
yv + ∆yv =

T 4

v2
, 0 ≤ y ≤ 1 ; v(0) = 1 , v′(0) = 0 , v′′′(0) = 0 , v′(1) = 0 . (2.4)

In these variables, the bifurcation diagram for (1.1) is then parameterized in terms of T by

|u(0)| = 1 − 1

v(1)
, λ =

T 4

v3(1)
, (2.5)

where v(y) is the solution to (2.4). A similar approach is used to compute the bifurcation diagram of (1.1) in a slab.

It is remarked that the solution of the membrane problem (1.2) using the scale invariance method requires that

the initial value problem (2.2) be solved exactly once. In contrast, for the fourth-order problem (1.1) the solution of

either (2.3) or (2.4) must be computed for each point on the bifurcation branch. However, notice that in contrast to

solving (1.1) directly using a two-parameter shooting method, the scale invariance method leading to (2.3) involves

only a one-parameter shooting.
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Figure 3. Numerical solutions of (1.1) for the unit disk Ω = {|x| ≤ 1} for several values of δ. From left to right the solution
branches correspond to δ = 0.0001, 0.01, 0.05, 0.1. The figure on the right is a magnification of a portion of the left figure.

In Fig. 3 the numerically computed bifurcation diagram of |u(0)| versus λ is plotted for Ω = {|x| ≤ 1} and for

various values of δ > 0 with δ small. These numerical results indicate that the presence of the biharmonic term in

(1.1) with small nonzero coefficient δ destroys the infinite fold point behavior associated with the membrane problem

(1.2) shown previously in Fig. 2. Furthermore, numerical results suggest the existence of some critical value δc << 1,

such that for δ > δc equation (1.1) exhibits either zero, one, or two, solutions, with the resulting bifurcation diagram

having only one fold point at the end of the minimal solution branch. In §4 an asymptotic expansion of the fold point

at the end of the minimal solution branch for (1.1) in powers of δ1/2 for δ ≪ 1 is developed. In §3 the corresponding

problem in the unit slab is considered. In §5 an asymptotic expansion of the fold point for (1.1) when δ ≫ 1 for both

the unit disk and the unit slab is constructed.

To numerically compute the bifurcation diagram associated with the fringing-field problem (1.4) in the unit disk

the numerically observed fact that the solution can be uniquely characterized by the value of u(0) is exploited. By

assigning a range of values to u(0) in the interval (−1, 0), (1.4) is solved as an initial value problem and the value

of λ is uniquely determined by the zero of g(λ) = u(1; λ). A Newton iteration scheme is implemented on g(λ) with

initial guess u(0) = λ = 0. This method was found to be effective provided the stepsize in u(0) is sufficiently small.

In order to numerically treat the annulus problem (1.5) it is advantageous to rescale the domain to [0, 1] with the

change of variables ρ = (r − δ)/(1 − δ). Then (1.5) transforms to

d2u

dρ2
+

(1 − δ)

δ + (1 − δ)ρ

du

dρ
=

λ(1 − δ)2

(1 + u)2
, 0 < ρ < 1 ; u(0) = u(1) = 0 . (2.6)

In a way similar to the numerical approach for the fringing-fields problem (1.4), solutions to (2.6) are computed at

predetermined values of u′(0) < 0 so that (2.6) becomes an initial value problem. The value of λ is then fixed by the

unique zero of g(λ) = u(1; λ), which is computed using Newton’s method.

The numerically computed bifurcation diagrams for the fringing-fields problem (1.4) and the annulus problem (1.5)

are plotted in Fig. 4(a) and Fig. 4(b), respectively, for various values of δ. It is again observed that, for δ small, that

the effect of the perturbation is to destroy the infinite fold point behavior associated with the membrane problem

(1.2). In §6 asymptotic results for the location of the fold point at the end of the minimal solution branch are given

for (1.4) and (1.5) when δ ≪ 1.

A straightforward approach to compute solutions to (1.1), (1.4), and (1.5), is to solve the underlying ODE boundary

value problems by using a standard boundary value solver such as COLSYS [1]. This approach works well provided
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Figure 4. Left figure: Numerical solutions for |u(0)| versus λ computed from the fringing-field problem (1.4) for the unit disk
Ω = {|x| ≤ 1} with, from left to right, δ = 1, 0.5, 0.1. Right figure: Numerical solutions for |u|∞ versus λ computed from (1.5)
in the annulus δ < r < 1 with, from left to right, δ = 0.00001, 0.001, 0.1.

that the bifurcation diagram can be parameterized in terms of the coordinate on the vertical axis of the bifurcation

diagram, such as u(0). Then, the BVP solver can be formulated to solve for u(x) and λ.

Next, a more general approach to the numerical solution of the bifurcation branch of (1.1) is described, which also

applies to a multi-dimensional domain Ω. For the unit square Ω = [0, 1] × [0, 1], (1.1) is not amenable to the scale

invariance technique and a more general approach based on pseudo-arclength continuation (cf. [15]) is required. This

method take a direct approach to compute solutions of the general problem

f : R
n × R → R

n, f(u, λ) = 0 . (2.7)

Starting with an initial solution (u0, λ0), the method seeks to determine a sequence of points (uj , λj) which satisfy

(2.7) to within some specified tolerance.

The following is a brief outline of this method based on [15]. In order to compute solutions around fold points at

which the system has a singular jacobian and the bifurcation curve has a vertical tangent, the method introduces a

parameterization of the curve n(u(s), λ(s), ds) = 0 in terms of an arclength parameter s and seeks new points on the

solution branch at predetermined values of the steplength ds. To choose n(u(s), λ(s), ds) = 0, consider some accepted

point (uj , λj) and its tangent vector to the curve at that point (u̇j, λ̇j), where an overdot represents differentiation

with respect to arclength s. Now, define

n(u(s), λ(s), ds) = u̇T
j · (u − uj) + λ̇j(λ − λj) − ds , (2.8)

as the hyperplane whose normal vector is (u̇j , λ̇j) and whose perpendicular distance from (uj , λj) is ds. The inter-

section of this hyperplane with the bifurcation curve will be non-zero provided the curvature of the branch and ds

are not too large. With this specification of n, the pseudo-arclength continuation method seeks a solution to the

augmented system

f(u(s), λ(s)) = 0 , n(u(s), λ(s), s) = 0 , (2.9)

which is non-singular at simple fold points (cf. [15]). Applying Newton’s method with initial guess (uj , λj) to the

solution of (2.9) results in the following iteration scheme:
(

fu(u(k), λ(k)) fλ(u(k), λ(k))

u̇T
j λ̇j

)(

∆u

∆λ

)

= −
(

f(u(k), λ(k))

n(u(k), λ(k))

)

u(k+1) = u(k) + ∆u

λ(k+1) = λ(k) + ∆λ
. (2.10)

By differentiating (2.7) with respect to λ and solving the resulting linear system fuuλ + fλ = 0, the tangent vector
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(u̇, λ̇) is specified as

u̇ = auλ, λ̇ = a, a =
±1

√

1 + ||uλ||22
.

The sign of a is chosen to preserve the direction in which the branch is traversed.

To compute solutions of (1.1) by the pseudo-arclength method in the unit square Ω = [0, 1] × [0, 1], the partial

derivatives are approximated by central finite difference quotients, which results in a large system of nonlinear

equations. In Fig. 5(b) the numerically computed bifurcation diagram for (1.1) in the unit square is plotted for

several values of δ. The computations were done with a uniform mesh-spacing of h = 1/100 in the x and y directions.

The bifurcation diagram is similar to that of the unit disk shown in Fig. 3(a). In Fig. 5(a) the corresponding numerical

bifurcation diagram for (1.1) in the one-dimensional unit slab is plotted.
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Figure 5. Numerical solutions of (1.1) for the slab 0 < x < 1 (left figure) and the unit square for several values of δ. From
left to right the solution branches correspond to δ = 0.1, 1.0, 2.5, 5.0 (left figure) and δ = 0.0001, 0.001, 0.01 (right figure).

A quantitative asymptotic theory describing the destruction of the infinite fold points for (1.2) when (1.2) is

perturbed for 0 < δ ≪ 1 to either the biharmonic problem (1.1), the fringing-field problem (1.4), or the annulus

problems (1.5), is given in the companion paper [17]. This is done by constructing the limiting form of the bifurcation

diagram when |u|∞ = 1 − ε, where ε → 0+. In [17] asymptotic results for the limiting behavior λ → 0 and ε → 0 of

the maximal solution branch are also presented for these perturbed problems.

2.1 Simple upper bounds for λc

In the case where Ω represents either the unit slab or the unit disk, a simple upper bound for the fold point location

at the end of the minimal solution branch, λc, is obtained for (1.1). The existence of this bound demonstrates that

λc is finite and provides a rather good estimate of its value. The bound is established in terms of the principal

eigenvalue of the differential operator appearing on the left hand side of (1.1). Therefore the associated eigenvalue

problem requires the determination of a function φ and a scalar µ such that

−δ∆2φ + ∆φ = −µφ , x ∈ Ω ; φ = ∂nφ = 0 , x ∈ ∂Ω . (2.11)

When Ω is either the unit slab or the unit disk the positivity of the first eigenfunction φ0 is verified numerically

from the explicit formulae for φ0 given below in (2.16) and (2.17). Owing to the lack of a maximum principle, the

positivity of the first eigenfunction for (2.11) is not guaranteed for more general domains. In particular, for domains

such as squares or rectangles or annuli, the principle eigenfunction of the limiting problem δ → ∞ in (2.11) is known
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to change sign (cf. [3], [4]). For a survey of such results see [22]. Therefore, the following discussion is limited to

either the unit slab or the unit disk.

To derive an upper bound for λc, the approach in [19] needs to be modified only slightly. We assume that u exists

and use Green’s second identity on u and the principal eigenfunction φ0 and eigenvalue µ0 of (2.11) to obtain

0 = δ

∫

Ω

(

−φ0∆
2u + u∆2φ0

)

dx =

∫

Ω

φ0

(

λ

(1 + u)2
+ µ0u

)

dx −
∫

Ω

(φ0∆u − u∆φ0) dx . (2.12)

The second integral on the right-hand side of (2.12) vanishes identically, and so a necessary condition for a solution

to (1.1) is that
∫

Ω

φ0

(

λ

(1 + u)2
+ µ0u

)

dx = 0 . (2.13)

Since φ0 > 0, then there is no solution to (2.13) when

λ

(1 + u)2
+ µ0u > 0, ∀u > −1 . (2.14)

By considering the point at which the inequality (2.14) ceases to hold, it is clear that there is no solution to (1.1)

when λ > 4µ0/27 and therefore

λc ≤ λ̄ ≡ 4µ0

27
, (2.15)

where µ0 is the first eigenvalue of (2.11).

For the unit slab 0 < x < 1, a simple calculation shows that the eigenfunctions of (2.11) are given up to a scalar

multiple by

φ = cosh(ξ1x) − cos(ξ2x) −
(

ξ2 sinh(ξ1x) − ξ1 sin(ξ2x)

ξ2 sinh ξ1 − ξ1 sin ξ2

)

(cosh ξ1 − cos ξ2) . (2.16 a)

Here ξ1 > 0 and ξ2 > 0 are defined in terms of µ by

ξ1 =

√

1 +
√

1 + 4µδ

2δ
, ξ2 =

√

−1 +
√

1 + 4µδ

2δ
, (2.16 b)

where the eigenvalues µ are the roots of the transcendental equation

2ξ1 +

(

ξ2
1 − ξ2

2

ξ2

)

sin ξ2 sinh ξ1 − 2ξ1 cosh ξ1 cos ξ2 = 0 . (2.16 c)

Similarly, for the unit disk 0 < r < 1, the eigenfunctions are given up up to a scalar multiple by

φ = J0(ξ2r) −
J0(ξ2)

I0(ξ1)
I0(ξ1r) , (2.17 a)

where J0 and I0 are the Bessel and modified Bessel functions of the first kind of order zero, respectively. The

eigenvalues µ are the roots of the transcendental equation

ξ1I1(ξ1) + ξ2
I0(ξ1)

J0(ξ2)
J1(ξ2) = 0 , (2.17 b)

where J1(ρ) = −J ′
0(ρ) and I1(ρ) = I ′0(ρ).

The first root of (2.16 c) and (2.17 b) corresponding to the principle eigenvalue, µ0, of (2.11) is readily computed

using Newton’s method as a function of δ > 0. Then, the corresponding principal eigenfunction φ0 from either (2.16a)

or (2.17 a) can be readily verified numerically to have one sign on Ω. Then, in terms of µ0, (2.15) gives an explicit

upper bound for λc. These bounds for λc together with the full numerical results for λc are compared in Table 1.
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Slab Unit Disc

δ λ̄ λc λ̄ λc

0.25 20.3576 19.249 4.886 4.395
0.5 38.900 36.774 8.754 7.871
1.0 75.979 71.823 16.486 14.826
2.0 150.137 141.918 31.948 28.704

Table 1. Upper bounds, λ̄c, for the fold point location given in (2.15) compared with the numerically computed

fold point location λc of (1.1).
.

From this table it is observed that the upper bound provides is actually relatively close to the true location for the

fold point.

3 Biharmonic Nonlinear Eigenvalue Problem: Slab Geometry

In this section an asymptotic expansion for the fold point at the end of the minimal solution branch for (1.1) is

developed in a slab domain. This fold point determines the onset of the pull-in instability, and hence its determination

is important in the actual design of a MEMS device.

In a slab domain (1.1) becomes

−δu′′′′ + u′′ =
λ

(1 + u)2
, 0 < x < 1 ; u(0) = u(1) = u′(0) = u′(1) = 0 . (3.1)

In the limit δ ≪ 1, (3.1) is a singular perturbation problem for which the solution u has boundary layers near both

endpoints x = 0 and x = 1. The width of these boundary layers is found below to be O(δ1/2), which then induces an

asymptotic expansion for the fold point location in powers of O(δ1/2). Therefore, in the outer region defined away

from O(δ1/2) neighborhoods of both endpoints, u and λ are expanded as

u = u0 + δ1/2u1 + δu2 + · · · , λ = λ0 + δ1/2λ1 + δλ2 + · · · . (3.2)

Upon substituting (3.2) into (3.1), and collecting powers of δ1/2, the following sequence of problems is obtained

u′′
0 =

λ0

(1 + u0)2
, 0 < x < 1 , (3.3 a)

Lu1 =
λ1

(1 + u0)2
, 0 < x < 1 , (3.3 b)

Lu2 =
λ2

(1 + u0)2
− 2λ1u1

(1 + u0)3
+

3λ0u
2
1

(1 + u0)4
+ u′′′′

0 , 0 < x < 1 . (3.3 c)

Here L is the linear operator defined by

Lφ ≡ φ′′ +
2λ0

(1 + u0)3
φ . (3.4)

Next, appropriate boundary conditions for u0, u1 and u2 as x → 0 and x → 1 are determined. These conditions

are obtained by matching the outer solution to boundary layer solutions defined in the vicinity of x = 0 and x = 1.

In the boundary layer region near x = 1, the following inner variables y and v(y) are introduced together with the

inner expansion for v;

y = δ−1/2(x − 1) , u = δ1/2v , v = v0 + δ1/2v1 + δv2 + · · · . (3.5)
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Upon substitution of (3.5) and (3.2) for λ into (3.1), powers of δ1/2 are collected to obtain on −∞ < y < 0 that

−v′′′′0 + v′′0 = 0 , v0(0) = v′0(0) = 0 , (3.6 a)

−v′′′′1 + v′′1 = λ0 , v1(0) = v′1(0) = 0 , (3.6 b)

−v′′′′2 + v′′2 = λ1 − 2λ0v0 , v2(0) = v′2(0) = 0 . (3.6 c)

The solution to (3.6) with no exponential growth as y → −∞ is given in terms of unknown constants c0, c1, and c2,

by

v0 = c0 (−1 − y + ey) , (3.7 a)

v1 = c1 (−1 − y + ey) + λ0y
2/2 , (3.7 b)

v2 = c2 (−1 − y + ey) + λ1y
2/2 + c0λ0y

(

−1 + y + ey + y2/3
)

. (3.7 c)

The matching condition to the outer solution is obtained by letting y → −∞ and substituting v0, v1, and v2 into

(3.5) for u, and then writing the resulting expression in terms of outer variables. In this way, the following matching

condition as x → 1 is established:

u ∼ −c0(x−1)+O((x−1)2)+δ1/2
[

−c0 − c1(x − 1) + O((x − 1)2)
]

+δ
[

−c1 − (c0λ0 + c2)(x − 1) + O((x − 1)2)
]

+· · · .

(3.8)

This matching condition not only gives appropriate boundary conditions to the outer problems for u0, u1, and u2,

defined in (3.3), but it also determines the unknown constants c0, c1, and c2 in the inner solutions (3.7) in a recursive

way. In particular, the O(δ0) term in (3.8) yields that u0 = 0 at x = 1 and that c0 is then given by c0 = −u′
0(1).

The remaining O(δ0) terms in (3.8) then match identically as seen by using the solution u0 to (3.3 a). In a similar

way, boundary conditions for u1 and u2 and formulae for the constants c1 and c2 are established. A similar analysis

can be performed for the boundary layer region at the other endpoint x = 0. This analysis is identical to that near

x = 1 since u0, u1 and u2 are symmetric about the mid-line x = 1/2.

In this way, the following boundary conditions for (3.3) are obtained:

u0(0) = u0(1) = 0 , u1(0) = u1(1) = u′
0(1) , u2(0) = u2(1) = u′

1(1) . (3.9)

The constants c0, c1, and c2, in (3.7) that are associated with the boundary layer solution near x = 1 are given by

c0 = −u′
0(1) , c1 = −u′

1(1) , c2 = −u′
2(1) + λ0u

′
0(1) , (3.10)

which then determines the boundary layer solution in (3.7) explicitly.

Therefore, (3.3) for u0, u1, and u2, must be solved subject to the boundary conditions as given in (3.9). With the

introduction of α = u0(1/2), a parameterization of the minimal solution branch for u0 and λ0 is established and

the dependence uj = uj(x, α) for j = 0, 1, 2 follows. It is readily verified that the solution to (3.3 b) is given by (see

Lemma 3.2 below)

u1 =
λ1

3λ0
(1 + u0) , (3.11)

where λ1 is found by satisfying u1(1) = u′
0(1). Therefore, for δ ≪ 1, the following explicit two-term expansions for

both the outer solution and for the global bifurcation curve λ(α) is developed:

u ∼ u0(x; α) + δ1/2u′
0(1, α) [1 + u0(x, α)] + O(δ) , λ ∼ λ0(α) + 3λ0(α)u′

0(1, α)δ1/2 + O(δ) . (3.12)

It is noted that this “global” perturbation result for λ is not uniformly valid in the limit α → −1 corresponding
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to λ0 → 0. In this limit, the term (1 + u0)
−2 is nearly singular at x = 1/2, and a different asymptotic analysis is

required (see §5 of [17]).

A higher-order local analysis of the bifurcation diagram near the fold point on the minimal solution branch is

now constructed. This minimal solution branch for u0 is well-known to have a fold point at α = α0 ≈ −0.389 at

which λc ≡ λ0(α0) ≈ 1.400. This point determines the pull-in voltage for the unperturbed problem. To determine

the location of the fold point for the perturbed problem, expand α(δ) = α0 + δ1/2α1 + δα2, where αj is determined

by the condition that dλ/dα = 0 is independent of δ. Defining λc(δ) = λ(α(δ), δ), the expansion of the fold point for

(3.1) when δ ≪ 1 is determined to be

λc = λ0c + δ1/2λ1(α0) + δ

[

λ2(α0) −
λ2

1α(α0)

2λ0αα(α0)

]

+ O(δ3/2) . (3.13)

Here the subscript indicates derivatives in α.

Therefore, to determine a three-term expansion for the fold point as in (3.13), the quantities λ1, λ2, λ1α and λ0αα

must be calculated at the unperturbed fold point location α0 from the solution to (3.3) with boundary conditions

(3.9). To do so, the problems for u0 and u1 in (3.3) are first differentiated with respect to α to obtain on 0 < x < 1

that

Lu0α =
λ0α

(1 + u0)2
, (3.14 a)

Lu0αα =
λ0αα

(1 + u0)2
− 4λ0αu0α

(1 + u0)3
+

6λ0u
2
0α

(1 + u0)4
, (3.14 b)

Lu1α =
λ1α

(1 + u0)2
− 2λ1u0α

(1 + u0)3
− 2λ0αu1

(1 + u0)3
+

6λ0u1u0α

(1 + u0)4
. (3.14 c)

Here L is the linear operator defined in (3.4). At the unperturbed fold location α = α0, where λ0α = 0, the

function u0α is a nontrivial solution satisfying Lu0α = 0. Therefore, λ1(α0), λ2(α0), λ0αα(α0), and λ1α(α0), can be

calculated by applying a Fredholm solvability condition to each of (3.3 b), (3.3 c), (3.14 b), and (3.14 c), respectively.

Upon applying Lagrange’s identity to (3.14 a) and (3.3 b) at α = α0, the following equality is established:
∫ 1

0

u0αLu1 dx =

∫ 1

0

u1Lu0α dx = −u1(1)u′
0α(1) + u1(0)u′

0α(0) .

Therefore, since u1(1) = u1(0) = u′
0(1) from (3.9), and u′

0α(1) = −u′
0α(0), it follows at α = α0 that

λ1I = −2u′
0(1)u′

0α(1) , I ≡
∫ 1

0

u0α

(1 + u0)2
dx . (3.15)

The integral I can be evaluated more readily using the following lemma:

Lemma 3.1: At α = α0, the following identity holds:

I ≡
∫ 1

0

u0α

(1 + u0)2
dx = − 2

3λ0
u′

0α(1) . (3.16)

To prove this lemma, (3.14a) is first multiplied by (1 + u0) and then integrated over 0 < x < 1. Setting α = α0,

integrating by parts twice, and then using u′′
0 = λ0/(1 + u0)

2, results in the following sequence of equalities:

I = − 1

2λ0

∫ 1

0

(1 + u0)u′′
0α dx = − 1

2λ0

[

2u′
0α(1) +

∫ 1

0

u0αu′′
0 dx

]

= −u′
0α(1)

λ0
− 1

2

∫ 1

0

u0α

(1 + u0)2
dx .

This last expression gives I = −u′
0α(1)/λ0 − I/2 which is rearranged to yield (3.16), and completes the proof of

Lemma 3.1. �.
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Next, (3.16) is substituted into (3.15) and evaluated at α = α0 to reveal that

λ1 = 3λ0u
′
0(1) . (3.17)

This result is consistent with the global perturbation result (3.12) when it is evaluated at α = α0.

The values of λ0αα, λ1α, and λ0αα, at α = α0 can be evaluated by imposing similar solvability conditions with

respect to u0α. From (3.14a) and (3.14 b), and by using (3.16) for I, it is readily shown at α = α0 that

λ0αα =
9λ2

0

u′
0α(1)

∫ 1

0

u3
0α

(1 + u0)4
dx . (3.18)

Next, from (3.14 a) and (3.14 c), we calculate at α = α0 that

∫ 1

0

u0αLu1α dx = −u1αu′
0α

∣

∣

∣

1

0
= −2u1α(1)u′

0α(1) .

Upon using (3.14 c) for Lu1α and u1α(1) = u′
0α(1) from (3.9), the expression above becomes

λ1αI = −
∫ 1

0

u0α

(

6λ0u1u0α

(1 + u0)4
− 2λ1u0α

(1 + u0)3

)

dx − 2 [u′
0α(1)]

2
. (3.19)

In a similar way, λ2 is evaluated at α = α0 by application of Lagrange’s identity to (3.14 a) and (3.3 c) to obtain

λ2I = −
∫ 1

0

u0α

[

3λ0u
2
1

(1 + u0)4
− 2λ1u1

(1 + u0)3
+ u′′′′

0

]

dx − 2u′
0α(1)u′

1(1) . (3.20)

The formulae above for λ1α and λ2 at α = α0, which are needed in (3.13), can be simplified considerably by using

the following simple result:

Lemma 3.2: At α = α0, the solution u1 to (3.3 b) with u1(1) = u1(0) = u′
0(1) is given, for any constant D, by

u1 =
λ1

3λ0
(1 + u0) + Du0α . (3.21)

Moreover, the correction term of order O(δ) in the expansion (3.13) of the fold point is independent of D.

The proof is by a direct calculation. Clearly u1 solves (3.3 b) at α = α0 since

Lu1 =
λ1

3λ0
L(1 + u0) =

λ1

3λ0

[

u′′
0 +

2λ0

(1 + u0)2

]

=
λ1

3λ0

[

λ0

(1 + u0)2
+

2λ0

(1 + u0)2

]

=
λ1

(1 + u0)2
.

In addition, since u0(1) = 0, then u1(1) = λ1/3λ0 = u′
0(1) from (3.17), as required by (3.9). Finally, a tedious but

direct computation using (3.18), (3.19), and (3.20), shows that λ2 − λ2
1α/[2λ0αα] at α = α0 is independent of the

constant D in (3.21). Therefore, the fold point correction is independent of the normalization of u1. The details of

this latter calculation are left to the reader. �

Therefore, D = 0 is taken to get u1 = λ1(1+u0)/(3λ0). Upon substitution of u1 into (3.19), it is observed that the

integral term on the right-hand side of (3.19) vanishes identically. Then, using (3.16) for I, the following compact

formula is obtained at α = α0:

λ1α = 3λ0u
′
0α(1) . (3.22)

Reassuringly, this agrees with differentiation of (3.12) by α followed by evaluation at α0. Similarly, in (3.20) for λ2,

one sets u1 = λ1(1 + u0)/(3λ0) and u2(1) = u′
1(1) = λ1u

′
0(1)/(3λ0), to obtain

λ2I = −2λ1

3λ0
u′

0(1)u′
0α(1) +

λ2
1

3λ0
I −

∫ 1

0

u0αu′′′′
0 dx . (3.23)
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Expression (3.23) can be reduced further by integrating twice by parts as follows:

∫ 1

0

u0αu′′′′
0 dx = −

∫ 1

0

u′
0αu′′′

0 dx = −u′
0αu′′

0

∣

∣

∣

1

0
+

∫ 1

0

u′′
0αu′′

0 dx

= −2u′
0α(1)λ0 +

∫ 1

0

(

− 2λ0u0α

(1 + u0)3

)(

λ0

(1 + u0)2

)

dx

= −2λ0u
′
0α(1) − 2λ2

0

∫ 1

0

u0α

(1 + u0)5
dx .

Combining this last expression with (3.23) together with the formula for I in (3.16) and λ1 = 3λ0u
′
0(1), it follows at

α = α0 that

λ2 = 6λ0 [u′
0(1)]

2 − 3λ2
0 −

3λ3
0

u′
0α(1)

∫ 1

0

u0α

(1 + u0)5
dx . (3.24)

The results of the preceding calculations are summarized in the following statement:

Principal Result 3.3: Let α0, λ0c ≡ λ0(α0) be the location of the fold point at the end of the minimal solution

branch for (3.3 a) with boundary conditions u0(0) = u0(1) = 0. Then, for the singularly perturbed problem (3.1), a

three-term expansion for the perturbed fold point location is

λc = λ0c + 3λ0δ
1/2u′

0(1) + δλ̂2 + · · · , λ̂2 ≡ λ2(α0) −
λ2

1α(α0)

2λ0αα(α0)
. (3.25 a)

Here λ̂2 is defined in terms of u0 and u0α by

λ̂2 = 6λ0 [u′
0(1)]

2 − 3λ2
0 −

3λ3
0

u′
0α(1)

∫ 1

0

u0α

(1 + u0)5
dx − [u′

0α(1)]3

2

(
∫ 1

0

u3
0α

(1 + u0)4
dx

)−1

. (3.25 b)

For the unit slab, the minimal solution branch for the unperturbed problem (3.3 a) can be obtain implicitly in

terms of the parameter α ≡ u0(1/2). Multiply (3.3 a) by u′
0 and integrate once to obtain

u
′

0 =

√

2λ0

1 + α

(

u − α

u + 1

)1/2

. (3.26)

A further integration using u0 (1/2) = α and u0(1) = 0, determines λ0(α) as

λ0(α) = 2(1 + α)

[

2

∫ 1

√
1+α

s2 ds
√

s2 − (1 + α)

]2

= 2(1 + α)

[√
−α + (1 + α) log

(

1 +
√−α√

1 + α

)]2

. (3.27)

Upon setting λ0α = 0, the fold point α0 ≈ −0.389 and λ0c ≈ 1.400 is determined. By using this solution the various

terms needed in (3.25) are easily calculated. In this way, (3.25) leads to the following explicit three-term expansion

valid for δ ≪ 1:

λc = 1.400 + 5.600 δ1/2 + 25.451 δ + · · · . (3.28)

In Fig. 6(b) a comparison of the two-term and three-term asymptotic results for λc versus δ from (3.28) is provided

alongside the corresponding full numerical result computed from (1.1). The three-term approximation in (3.28) is

seen to provide a reasonably accurate determination of λc. For δ = 0.01, in Fig. 6(a) the two-term approximation

(3.12) is compared with the global bifurcation curve with the full numerical result computed from (1.1) and from

the membrane MEMS problem (1.2), corresponding to δ = 0. It is clear that the fold point location depends rather

sensitively on δ, even when δ ≪ 1, owing to the O(δ1/2) limiting behavior.
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Figure 6. Left figure: Plot of numerically computed global bifurcation diagram |α| = |u (1/2) | versus λ for (1.1) with δ = 0.01
(heavy solid curve) compared to the two-term asymptotic result (3.12) (solid curve) and the unperturbed δ = 0 membrane
MEMS result from (1.2) (dashed curve). Right figure: Comparison of numerically computed fold point λc versus δ (heavy solid
curve) with the two-term (dashed curve) and the three-term (solid curve) asymptotic result from (3.28).

4 Biharmonic Nonlinear Eigenvalue Problem: Multidimensional Domain

The results of §3.1 are now extended to the case of a bounded two-dimensional domain Ω with smooth boundary

∂Ω. Equation (1.1) is considered in the limit δ → 0, and it is assumed that the fold point location at the end of the

minimal solution branch u0(x, α), λ0(α) for the unperturbed problem

∆u0 =
λ0

(1 + u0)2
, x ∈ Ω ; u0 = 0 , x ∈ ∂Ω , (4.1)

has been determined. This fold point location is labeled as λ0c = λ0(α0) for some α = α0. For an arbitrary domain Ω,

α can be chosen to be the L2 norm of u0. For the unit disk, where u0(r) is radially symmetric, it is more convenient

to define α by α = u0(0).

For the perturbed problem (1.1), λ and the outer solution for u are expanded in powers of δ1/2 as in (3.2), to

obtain

Lu1 ≡ ∆u1 +
2λ0

(1 + u0)3
u1 =

λ1

(1 + u0)2
, x ∈ Ω , (4.2 a)

Lu2 =
λ2

(1 + u0)2
− 2λ1u1

(1 + u0)3
+

3λ0u
2
1

(1 + u0)4
+ ∆2u0 , x ∈ Ω . (4.2 b)

The expansion of the perturbed fold point location is again as given in (3.13).

To derive boundary conditions for u1 and u2, a boundary layer solution near ∂Ω with width O(δ1/2) is constructed.

It is advantageous to implement an orthogonal coordinate system η, s, where η > 0 measures the perpendicular

distance from x ∈ Ω to ∂Ω, whereas on ∂Ω the coordinate s denotes arclength. In terms of (η, s), (1.1) transforms to

−δ

(

∂ηη − κ

1 − κη
∂η +

1

1 − κη
∂s

(

1

1 − κη
∂s

))2

u +

(

∂ηηu − κ

1 − κη
∂ηu +

1

1 − κη
∂s

(

1

1 − κη
∂su

))

=
λ

(1 + u)2
.

(4.3)

Here κ = κ(s) is the curvature of ∂Ω, with κ = 1 for the unit disk. The inner variables and the inner expansion,

defined in an O(δ1/2) neighborhood of ∂Ω, are then introduced as

η̂ = η/δ1/2 , u = δ1/2v , v = v0 + δ1/2v1 + δv2 + · · · . (4.4)
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After substituting (4.4) into (4.3) and collecting powers of δ, some lengthy but straightforward algebra produces the

following sequence of problems on −∞ < η̂ < 0:

−v0η̂η̂η̂η̂ + v0η̂η̂ = 0 , v0 = v0η̂ = 0 , on η̂ = 0 , (4.5 a)

−v1η̂η̂η̂η̂ + v1η̂η̂ = −2κv0η̂η̂η̂ + κv0η̂ + λ0 , v1 = v1η̂ = 0 , on η̂ = 0 , (4.5 b)

−v2η̂η̂η̂η̂ + v2η̂η̂ = −2κv1η̂η̂η̂ + κv1η̂ − 2κ2η̂v0η̂η̂η̂ − κ2v0η̂η̂ + κ2η̂v0η̂

+ 2v0η̂η̂ss − v0ss + λ1 − 2λ0v0 , v2 = v2η̂ = 0 , on η̂ = 0 . (4.5 c)

The asymptotic behavior of the solution to (4.5) with no exponential growth as η → −∞ is given in terms of unknown

functions c0(s), c1(s), and c2(s) by

v0 ∼ −c0 + c0η̂ , v1 ∼ −c1 +
(

c1 −
c0κ

2

)

η̂ ,

with v2 ∼ −c2 + O(η) as η → 0. Therefore, with u = δ1/2v, and by rewriting v in terms of the outer variable

η = η̂δ1/2, the following matching condition, analogous to (3.8), is obtained for the outer solution:

u ∼ c0η + δ1/2
[

−c0 + η
(

c1 −
c0κ

2

)]

+ δ [−c1 + O(η)] + · · · . (4.6)

Noting that the outer normal derivative ∂nu on ∂Ω is simply ∂nu = −∂ηu, (4.6) then implies the following boundary

conditions for the outer solutions u1 and u2 in (4.2):

u0 = 0 , u1 = ∂nu0 , u2 = ∂nu1 +
κ

2
∂nu0 , x ∈ ∂Ω . (4.7)

The functions c0(s) and c1(s), which determine the leading two boundary layers solutions explicitly, are given by

c0 = −∂nu0 , c1 = −∂nu1 −
κ

2
∂nu0 , x ∈ ∂Ω ,

with a more complicated expression, which we omit, for c2(s). Notice that the boundary condition for u2 on ∂Ω

depends on the curvature κ of ∂Ω.

The remainder of the analysis to calculate the terms in the expansion of the fold point is similar to that in §3. At

α = α0, Lu0α = 0, and so each of the problems in (4.2) must satisfy a solvability condition. By applying Green’s

identity to u0α and u1, together with the boundary condition u1 = ∂nu0 on ∂Ω, it follows at α = α0 that

λ1I = −
∫

∂Ω

(∂nu0) (∂nu0α) dx , I ≡
∫

Ω

u0α

(1 + u0)2
dx . (4.8)

The integral I can be written more conveniently by using the following lemma:

Lemma 4.1: At α = α0, the following identity holds:

I ≡
∫

Ω

u0α

(1 + u0)2
dx = − 1

3λ0

∫

∂Ω

∂nu0α dx. (4.9)

To prove this result, the equation for u0α together with Green’s second identity and the divergence theorem is

used to calculate

I = − 1

2λ0

∫

Ω

(1 + u0)∆u0α dx = − 1

2λ0

[
∫

∂Ω

∂nu0α dx +

∫

Ω

u0α∆u0 dx

]

= − 1

2λ0

∫

∂Ω

∂nu0α dx − I

2
.

Solving for I then gives the result. �

Upon substituting (4.9) into (4.8), λ1 can be expressed at α = α0 as

λ1 = 3λ0

(

∫

∂Ω
(∂nu0) (∂nu0α) dx
∫

∂Ω ∂nu0α dx

)

. (4.10)
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From (3.13) this then specifies the correction of order O(δ1/2) to the fold point location.

To determine the O(δ) term in the expansion (3.13) of the fold point, the terms λ0αα, λ1α, and λ2 at α = α0 must

be calculated. This is done through solvability conditions with u0α in a similar way as in §3. This procedure leads to

the following identities at α = α0:

λ0αα =
18λ2

0
(∫

∂Ω
∂nu0α dx

)

∫

Ω

u3
0α

(1 + u0)4
dx , (4.11 a)

λ1αI = −
∫

Ω

u0α

(

6λ0u1u0α

(1 + u0)4
− 2λ1u0α

(1 + u0)3

)

dx −
∫

∂Ω

[∂nu0α]
2

dx , (4.11 b)

λ2I = −
∫

Ω

u0α

[

3λ0u
2
1

(1 + u0)4
− 2λ1u1

(1 + u0)3
+ ∆2u0

]

dx −
∫

∂Ω

[

∂nu1 +
κ

2
∂nu0

]

∂nu0α dx . (4.11 c)

In contrast to the one-dimensional case of §3, u1 cannot be obtained as explicitly as in Lemma 3.2. In place of

Lemma 3.2, it is readily shown that u1 admits the following decomposition at α = α0:

u1 =
λ1

3λ0
(1 + u0) + u1a + Du0α . (4.12)

Here D is any scalar constant, and u1a at α = α0 is the unique solution to

Lu1a = 0 , x ∈ Ω ; u1a = ∂nu0 −
λ1

3λ0
, x ∈ ∂Ω ;

∫

Ω

u1au0α dx = 0 . (4.13)

By substituting (4.12) into (4.11), a straightforward calculation shows that λ2 − λ2
1α/[2λ0αα] is independent of D.

Hence, set D = 0 in (4.12) for simplicity. By substituting (4.12) for u1 into (4.11 b), and then using (4.9) for I, λ1α

at α = α0 can be written as

λ1α =
18λ2

0
(∫

∂Ω
∂nu0α dx

)

∫

Ω

u1au3
0α

(1 + u0)4
dx + 3λ0

(

∫

∂Ω
[∂nu0α]

2
dx

∫

∂Ω ∂nu0α dx

)

. (4.14)

Similarly, equation (4.12) for u1 and (4.9) for I are substituted into (4.11 c). In addition, in the resulting expression,

the following identity which is readily derived by integration by parts, is used:
∫

Ω

u0α∆2u0 dx = −2λ2
0

∫

Ω

u0α

(1 + u0)5
dx − λ0

∫

∂Ω

∂nu0α dx . (4.15)

In this way, expression (4.11 c) for λ2 at α = α0 simplifies to

λ2 =
2λ2

1

3λ0
− 3λ2

0 +
3λ0

(∫

∂Ω ∂nu0α dx
)

∫

∂Ω

[

∂nu1a +
κ

2
∂nu0

]

∂nu0α dx

− 6λ3
0

(∫

∂Ω ∂nu0α dx
)

∫

Ω

u0α

(1 + u0)5
dx +

9λ2
0

(∫

∂Ω ∂nu0α dx
)

∫

Ω

u2
1au0α

(1 + u0)4
dx . (4.16)

The results of the preceding calculations are summarized as follows:

Principal Result 4.2: Let λc ≡ λ0(α0) be the fold point location at the end of the minimal solution branch for the

unperturbed problem (4.1) in a bounded two-dimensional domain Ω, with smooth boundary ∂Ω. Then, for (1.1) with

δ ≪ 1, a three-term expansion for the perturbed fold point location is

λc = λ0c + 3λ0δ
1/2

(

∫

∂Ω
(∂nu0) (∂nu0α) dx
∫

∂Ω ∂nu0α dx

)

+ δλ̂2 + · · · , λ̂2 ≡ λ2(α0) −
λ2

1α(α0)

2λ0αα(α0)
. (4.17)

Here λ0αα(α0), λ1α(α0), and λ2(α0) are as given in (4.11 a), (4.14), and (4.16), respectively.

For the special case of the unit disk where Ω := {x | |x| ≤ 1}, then u0 = u0(r) and u0α = u0α(r) are radially

symmetric, and κ = 1. Therefore, for this special geometry, u1a ≡ 0 from (4.13), and consequently the various terms
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in (4.17) can be simplified considerably. In analogy with Principal Result 3.3, the following asymptotic expansion is

obtained for the fold point location of (1.1) in the limit δ → 0 for the unit disk:

Corollary 4.3: For the special case of the unit disk, let α0 = u0(0) and λ0c ≡ λ0(α0) be the location of the fold point

at the end of the minimal radially symmetric solution branch for the unperturbed problem (4.1). Then, for (1.1) with

δ ≪ 1, a three-term expansion for the perturbed fold point location is

λc = λ0c + 3λ0δ
1/2u′

0(1) + δλ̂2 + · · · , λ̂2 ≡ λ2(α0) −
λ2

1α(α0)

2λ0αα(α0)
. (4.18 a)

Here λ̂2 is defined in terms of u0 and u0α by

λ̂2 =
3

2
λ0u

′
0(1) + 6λ0 [u′

0(1)]
2 − 3λ2

0 −
6λ3

0

u′
0α(1)

∫ 1

0

ru0α

(1 + u0)5
dr − [u′

0α(1)]
3

2

(
∫ 1

0

ru3
0α

(1 + u0)4
dx

)−1

. (4.18 b)

The first term in λ̂2 above arises from the constant curvature of ∂Ω.

For the unit disk, numerical values for the coefficients in the expansion (4.18) are obtained by first using COLSYS

[1] to solve for u0 and u0α. In this way, the explicit three-term expansion for the unit disk is

λc = 0.789 + 1.578 δ1/2 + 6.261 δ + · · · . (4.19)

In addition, for the unit disk it follows as in (3.12) that the global bifurcation diagram is given for δ ≪ 1 by

λ ∼ λ0(α) + 3λ0(α)u′
0(1, α)δ1/2 + O(δ) . (4.20)

For the unit disk, Fig. 7(b) provides a comparison of the two-term and three-term asymptotic results for λc versus

δ from (4.19) along with the corresponding full numerical result computed from (1.1). Since the coefficients in (4.19)

are smaller than those in (3.28), the three-term approximation for the unit disk is seen to provide a more accurate

determination of λc than the result for the slab shown in Fig. 6(b). For δ = 0.01, Fig. 7(a) provides a comparison

of the two-term approximation (4.20) to the global bifurcation curve with the full numerical result computed from

(1.1) and also the membrane MEMS problem (1.2), corresponding to δ = 0. From this figure it is seen that (4.20)

compares favorably with the full numerical result provided that α is not too close to −1. Recall that λ → 4/9 as

α → −1 for (1.2), whereas from the numerical results in §2, λ → 0 as α → −1 for (1.1) when δ > 0. The singular

limit α → −1 is examined in the companion paper [17]

5 Perturbing from the Pure Biharmonic Eigenvalue Problem

Next, equation (1.1) is considered in the limit δ ≫ 1. To study this limiting case, (1.1) is rewritten as

−∆2u +
1

δ
∆u =

λ̃

(1 + u)2
, x ∈ Ω ; u = ∂nu = 0 , x ∈ ∂Ω , (5.1)

where λ̃ ≡ λ/δ. For δ ≫ 1, the solution u and the nonlinear eigenvalue parameter λ̃ are expanded as

u = u0 +
1

δ
u1 + · · · , λ̃ = λ̃0 +

1

δ
λ̃1 + · · · . (5.2)

Inserting this expansion in (5.1) and collecting terms, requires that u0 and u1 satisfy

−∆2u0 =
λ̃0

(1 + u0)2
, x ∈ Ω ; u0 = ∂nu0 = 0 , x ∈ ∂Ω , (5.3 a)

Lbu1 ≡ ∆2u1 −
2λ̃0

(1 + u0)3
u1 = − λ̃1

(1 + u0)2
+ ∆u0 , x ∈ Ω ; u1 = ∂nu1 = 0 , x ∈ ∂Ω . (5.3 b)
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Figure 7. Left figure: Plot of numerically computed global bifurcation diagram |α| = |u (0) | versus λ for (1.1) with δ = 0.01
(heavy solid curve) compared to the two-term asymptotic result (4.20) (solid curve) and the unperturbed δ = 0 membrane
MEMS result from (1.2) (dashed curve). Right figure: Comparison of numerically computed fold point λc versus δ (heavy solid
curve) with the two-term (dashed curve) and the three-term (solid curve) asymptotic result from (4.19).

The minimal solution branch for the unperturbed problem (5.3 a) is parameterized as λ̃0(α), u0(x, α). It is assumed

that there is a simple fold point at the end of this branch with location α = α0, where λ̃0c = λ̃0(α0). Since Lbu0α = 0

at α = α0, the solvability condition for (5.3 b) determines λ̃1 at α = α0 as

Ibλ̃1 =

∫

Ω

u0α∆u0 dx , Ib =

∫

Ω

u0α

(1 + u0)2
dx . (5.4)

By using the equation and boundary conditions for u0α and u0, we can calculate Ib using Green’s identity as

Ib =
1

2λ0

∫

Ω

(u0 + 1)∆2u0α dx =
1

2λ0

[
∫

∂Ω

∂n (∆u0α) dx +

∫

Ω

u0α∆2u0 dx

]

=
1

2λ0

∫

∂Ω

∂n (∆u0α) dx − Ib

2
. (5.5)

This yields that

Ib =
1

3λ0

∫

∂Ω

∂n (∆u0α) dx . (5.6)

Principal Result 5.1: Let λ̃0(α) and u0(x, α) be the minimal solution branch for the pure biharmonic problem

(5.3 a), and assume that there is a simple fold point at α = α0 where λ̃0c = λ̃0(α0). Then, for δ ≫ 1, the expansion

of the fold point for (1.1) is given by

λc ∼ δ
[

λ̃0c + δ−1λ̃1(α0) + O(δ−2)
]

, λ̃1(α0) ≡ 3λ0

(

∫

Ω
u0α∆u0 dx

∫

∂Ω ∂n (∆u0α) dx

)

. (5.7 a)

For the special case of the unit disk or a slab domain of unit length, then λ̃1(α0) reduces to

λ̃1(α0) ≡
3λ0

∂r (∆u0α)
∣

∣

∣

r=1

∫ 1

0

u0α (ru0r)r dr , (Unit Disk) ; λ̃1 =
3λ0

2u′′′
0α(1)

∫ 1

0

u0αu′′
0 dx (Unit Slab) . (5.7 b)

For the slab and the unit disk, the numerical values of the coefficients in the expansion (5.7) are calculated by

using COLSYS [1] to solve for u0 and u0α at the fold point of the minimal branch for the pure Biharmomic problem

(5.3 a). In this way, the following is obtained for δ ≫ 1:

λc ∼ δ

[

70.095 +
1

δ
1.729 + · · ·

]

(Unit Slab) ; λc ∼ δ

[

15.412 +
1

δ
1.001 + · · ·

]

(Unit Disk) . (5.8)
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Although (5.8) was derived in the limit δ ≫ 1, in Fig. 8 it is shown, rather remarkably, that (5.8) is also in rather

close agreement with the full numerical result for λc, computed from (1.1), even when δ < 1. Therefore, for the unit

disk and the unit slab, the limiting approximations for λc when δ ≪ 1 from (3.28) and (4.19), together with the

δ ≫ 1 result (5.8), can be used to rather accurately predict the fold point λc for (1.1) for a wide range of δ > 0.

5.0

4.0

3.0

2.0

1.0

0.0
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Figure 8. Comparison of full numerical result for λc versus δ (heavy solid curves) computed from (1.1) with the two-term
asymptotic results (5.8) (solid curves) for the unit slab (left figure) and the unit disk (right figure).

6 The Fringing-Field and Annulus Problems

Next, the fringing-field problem (1.4) is considered in the limit δ → 0 in a two-dimensional domain Ω with smooth

boundary ∂Ω. Let α0, λ0c = λ0(α0) be the location of the fold point for the unperturbed problem (4.1). To determine

the leading order correction to the fold point location for (1.4) when δ ≪ 1, the solution to (1.4) is expanded along

the minimal solution branch as

u = u0 + δu1 + · · · , λ = λ0 + δλ1 + · · · . (6.1)

The problem for u1 is obtained by substituting (6.1) into (1.4), which yields

Lu1 ≡ ∆u1 +
2λ0

(1 + u0)3
u1 =

λ1

(1 + u0)2
+ λ0

|∇u0|2
(1 + u0)2

, x ∈ Ω ; u1 = 0 x ∈ ∂Ω . (6.2)

Since Lu0α = 0 at α = α0, the solvability condition for (6.2) at α = α0 determines λ1 at α = α0 as

λ1(α0) = −λ0

I

∫

Ω

|∇u0|2u0α

(1 + u0)2
dx , I ≡

∫

Ω

u0α

(1 + u0)2
dx , (6.3)

where I is given in Lemma 4.1. For the special case of the unit disk and the unit slab the result is summarized as

follows:

Principal Result 6.1: Consider the fringing-field problem (1.4) with δ ≪ 1, and let λ0c be the fold point location

for the unperturbed problem (4.1). The, for δ ≪ 1, the fold point for the fringing-field problem (1.4) for the unit disk

and a slab domain of unit length satisfies

λc ∼ λ0c +
3λ2

0δ

u′
0α(1)

∫ 1

0

ru2
0ru0α

(1 + u0)2
dr , (Unit Disk) ; λc ∼ λ0c +

3λ2
0δ

2u′
0α(1)

∫ 1

0

(u′
0)

2u0α

(1 + u0)2
dx . (Unit Slab) . (6.4)

For the special case of the unit slab, as well as the unit disk considered in [21], the coefficient in (6.4) can be
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evaluated from the numerical solution of (4.1) to obtain

λc ∼ 0.789 − 0.160δ , (Unit Disk) ; λc ∼ 1.400− 0.529δ , (Unit Slab) ; . (6.5)

Since the coefficients of δ are negative, the fringing field reduces the pull-in voltage. In Fig. 9(a) a very favorable

comparison is shown between (6.5) for λc in the unit disk and the full numerical result computed from (1.4). A

similar comparison for the unit slab is shown in Fig. 9(b). Since the coefficients of δ in (6.5) are rather small, (6.5)

provides a rather good prediction of λc even for only moderately small δ.
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Figure 9. Left figure: Comparison of full numerical result for λc versus δ (heavy solid curve) for the fringing-field problem
computed from (1.4) with the two-term asymptotic result (6.5) (solid curve) for the unit disk. Right figure: A similar comparison
for the unit slab.

6.1 The Annulus Problem

Finally, the annulus problem (1.5) is considered in the limit δ ≪ 1 of a small inner radius. In this limit, (1.5) is

singularly perturbed, and the construction of the solution requires the matching of an outer solution defined for

r = O(1) to an appropriate inner solution defined near r = δ ≪ 1. Related nonlinear eigenvalue problems for Bratu’s

equation have been considered previously in [24] and [23]. Therefore, only a rather briefly outline of the singular

perturbation analysis is given here.

Let u0(r, α), λ0(α) be the radially symmetric minimal solution branch for the unperturbed problem (4.1) on

0 ≤ r ≤ 1. For the perturbed problem (1.5), λ and the outer solution u, valid for r = O(1), are expanded as

u = u0 +

( −1

log δ

)

u1 + · · · , λ = λ0 +

( −1

log δ

)

λ1 + · · · . (6.6)

From (1.5) it follows that u1 satisfies

Lu1 ≡ ∆u1 +
2λ0

(1 + u0)3
u1 =

λ1

(1 + u0)2
, 0 < r ≤ 1 ; u1 = 0 , on r = 1 . (6.7)

The matching condition to the inner solution will then lead to a Coulomb singularity for u1 as r → 0, which then

completes the specification of the problem for u1.

In the inner region, defined for r = O(δ), the inner variables ρ = r/δ and u = v/(− log δ) are introduced. To

leading order, it follows from (1.5) that ∆v = 0 with v(1) = 0. Thus, v = A log ρ for some unknown constant A. In
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terms of outer variables this yields the matching condition

u ∼ A +

( −1

log δ

)

A log r , r → 0 .

The matching of the inner and outer solutions then determines A = u0(0), and that u1 has the singular behavior

u1 ∼ u0(0) log r , as r → 0 . (6.8)

The problem (6.7) with singular behavior (6.8) determines u1 and λ1. To determine λ1(α0) from a solvability condi-

tion, Green’s identity is applied to u0α and u1 over a punctured disk ε < r < 1 in the limit ε → 0. This yields that

λ1I = −2πu0(0)u0α(0), where I is given in Lemma 4.1. The result is summarized as follows:

Principal Result 6.2: Consider the annulus problem (1.4) with δ ≪ 1, and let λ0c be the fold point location at the

end of the minimal solution branch for the unperturbed problem (4.1). The, for δ ≪ 1, the fold point for (1.5) satisfies

λc ∼ λ0c +

( −1

log δ

)

3λ0u0(0)u0α(0)

u′
0α(1)

+ O
( −1

log δ

)2

. (6.9)

With the parameterization u0(0) = α for the unperturbed solution, the terms in (6.9) are calculated from the

numerical solution of the unperturbed problem (4.1). This yields the explicit two-term expansion

λc ∼ 0.789 + 1.130

( −1

log δ

)

+ +O
( −1

log δ

)2

. (6.10)

Owing to the logarithmic dependence on δ, the fold point location experiences a rather large perturbation even for

δ rather small. This was observed in Fig. 4(b).

7 Conclusion

Asymptotic expansions for the fold point location at the end of the minimal solution branch for (1.1) were calculated

in the limiting parameter range δ ≪ 1 and δ ≫ 1 for an arbitrary domain Ω with smooth boundary. In addition,

two-term asymptotic approximations for the fold point location of the fringing-field (1.4) and annulus problems (1.5)

were derived for small δ. The coefficients in these asymptotic expansions were evaluated numerically for both the

unit slab and the unit disk. The results can be used to determine the shift in the pull-in voltage when the basic

membrane problem (1.2) is perturbed to either (1.1), (1.4), or (1.5).

In the companion paper [17] an asymptotic theory describing the destruction of the infinite fold points for (1.2)

when the disk problem (1.2) is perturbed for 0 < δ ≪ 1 to either the biharmonic problem (1.1), the fringing-field

problem (1.4), or the annulus problems (1.5), is given by constructing the limiting form of the bifurcation diagram

when |u|∞ = 1 − ε, where ε → 0+. Moreover, in [17] asymptotic results for the limiting behavior λ → 0 and ε → 0

of the maximal solution branch is presented for these perturbed problems.
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