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Many types of cells require the ability to pinpoint the location of an external stimulus from the
arrival of di↵using signaling molecules at cell-surface receptors. How does the organization (number

and spatial configuration) of these receptors shape the limit of a cell’s ability to infer the source

location? In the idealized scenario of a spherical cell, we apply asymptotic analysis to compute
splitting probabilities between individual receptors and formulate an information-theoretic frame-
work to quantify the role of receptor organization. Clustered configurations of receptors provide an
advantage in detecting sources aligned with the clusters, suggesting a possible multiscale mechanism
for single-cell source inference.

The ability to pinpoint the location of an external stim-
ulus is critical for a variety of cell types. Canonical ex-
amples include eukaryotic gradient-directed cell migra-
tion (chemotaxis) [1], directional growth (chemotropism)
in growing neurons [2] and yeast [3]. A unifying feature
of these systems is that they must infer the spatial loca-
tion of the external source through the noisy arrivals of
di↵using particles to membrane receptors.

The spatial organization of receptors varies between
these examples. GABA receptors in nerve cone growth
begin relatively uniform on the membrane and dynami-
cally reorganize by clustering receptors toward the source
[4]. In budding yeast (S. cerevisiae), receptors are known
to dynamically cluster towards the direction of a received
signal in mate identification [3, 5]. In contrast, the re-
ceptors in Dictyostelium remain uniform throughout the
process of identifying a source location. These di↵erences
raise the question: what role does receptor clustering play

in locating external stimuli?

There has been considerable progress in answering this
question. Clustered receptors can provide robustness
against noise through rebinding cooperativity [6–10], or
by reducing correlation from downstream signals [11].
These observations fit into the broader pursuit of under-
standing how complex downstream machinery, activated
by noisy receptor input, robustly filters shallow gradients
[12–20]. Here we study the limits of the most upstream
stage: the di↵usive arrival of signaling molecules to a
fixed configuration of membrane receptors. We find that
receptor configuration alone contributes significantly to
the quality of signal acquired by the cell.

In this letter, we establish how receptor organization
(number and spatial distribution) shapes the limits of a
cell’s ability to detect the source location of di↵using par-
ticles. Our approach draws from the conceptual model
of Berg and Purcell [21] (and later [22]) consisting of a
spherical cell with circular absorbing surface sites rep-
resenting membrane receptors. We employ a matched
asymptotic approach to compute the probability a signal-

ing molecule hits a particular receptor [23, 24]. Within
an information-theoretic framework [25, 26], we estab-
lish the informational limit of the fully absorbing cell
and assess e�ciency relative to this limit as a function of
the surface fraction and number of receptors. We iden-
tify fundamental di↵erences in the information content of
clustered receptor configurations, suggesting higher in-
formation content in front of clustered receptors. This
observation is verified by performing a maximum like-
lihood inference, showing that a source can be located
with smaller average error in front of a cluster of recep-
tors. This suggests a multiscale mechanism for source
localization: if a cell can align toward an initial spatial
cue (e.g. as observed in budding yeast [3]) with accu-
racy limited by the spacing between clusters, then it can
exploit receptor nonuniformity to pinpoint the location
with an accuracy limited by receptor spacing within a
cluster.

Model. Let ⌦ be the unit sphere with N circular sur-
face receptors of common radius ". For a di↵using parti-
cle originating at x, the splitting probability pn(x) gives
the likelihood of its arrival at the nth receptor, without
reaching other receptors or escaping to spatial infinity.
The splitting probabilities encode the cell’s interaction

x=X(0)

receptors

FIG. 1. Model. Di↵using particles are released from a source
location x and either escape to spatial infinity or hit a per-
fectly absorbing cell-surface receptor.
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with the extracellular environment. The probabilities
{pn(x)}Nn=1 satisfy the mixed boundary value problem

�pn = 0, x 2 R3
\ ⌦

pn = 1, on nth receptor

pn = 0, all other receptors

@⌫pn = 0, elsewhere on cell surface

(1)

where @⌫ ⌘ n̂ · r is the normal derivative. The re-
ceptor locations are fixed on the surface (cf. Fig. 1)
with a general nonoverlapping configuration and centers
Y = {y1, . . . ,yN}. Dynamic rearrangement of recep-
tors [3, 4] is not explicitly captured in this modeling
paradigm, however, how such reorganizations may a↵ect
source detection and can be inferred by comparing di↵er-
ent static configurations. We have derived and validated
numerically [27] that as " ! 0,

pn(x;Y) ⇠ 4"G(x,yn) +
4"2

⇡

h�
3
2 � ln(2")

�
G(x,yn)

� 4⇡
NX

k=1
k 6=n

G(yn,yk)G(x,yk)
i
+O("3).

(2)

Here G(x, ⇠) is the surface Green’s function of the Lapla-
cian, exterior to the unit sphere. For |⇠| = 1, it is [28]

G(x, ⇠) =
1

2⇡


1

|x� ⇠|
�

1

2
ln
h1� x · ⇠ + |x� ⇠|

|x|� x · ⇠

i�
.

We distinguish between the unconditioned probabilities
pn(x) and the conditioned probabilities

qn(x;Y) =
pn(x;Y)

PN
k=1 pk(x;Y)

. (3)

The former incorporates the possibility for escape to in-
finity while the latter only reflects particles which have
reached a receptor. By working with the conditioned
probabilities, we adopt the biological assumption that
the cell has no knowledge about particles that did not
arrive at a receptor. The conditional probabilities do not
vanish as the receptor radius tends to zero (" ! 0) and

qn(x;Y) ! G(x,yn)/
PN

k=1 G(x,yk).
Consider a fixed, unknown source location x from

which particles are released and denote by cn the count
at the nth receptor. When the number of receptors N
and arriving particles M =

PN
n=1 cn are finite, there is

uncertainty in the acquired signal. To quantify this, we
first take these quantities to be infinitely large and then
consider the case where each is finite.

Case M = 1, N = 1: To establish the information
content in this limit, we consider the arrival distribution
to the sphere for a point source at distance R > 1 from
the cell center. We adopt a coordinate system where the
source is located at the north pole, and let ✓ 2 [0,⇡)

and � 2 [0, 2⇡) denote the arrival location on the sphere.
The density describing (✓,�) is equivalent to the classical
charge distribution on a conducting sphere induced by a
point charge [29–31]

fR(✓,�) = fR(✓) =
1�R�2

4⇡(1� 2R�1 cos ✓ +R�2)
3
2

sin ✓.

In the context of cellular decision making [32], we as-
sume that the cell has a prior distribution of each recep-
tor being equally likely to have an arrival of particles, i.e.
the cell is initially uninformed about the source location.
For the fully absorbing sphere, this yields

funif(✓,�) = funif(✓) =
1

4⇡
sin ✓.

The directional information encoded by the arrivals of
particles to the surface is therefore a measure of the devi-
ation between the measured and prior distributions. The
Kullback-Leibler (KL) divergence, or relative entropy, of
q from p is defined by

dre(p k q) :=

Z
p(x) ln

⇣p(x)
q(x)

⌘
dx.

The relative entropy dre(p k q) interpreted in a Bayesian
sense computes the amount of information gained revis-
ing the belief distribution from q to p. Consequently, the
relative entropy from the uniform distribution of arrivals
encodes the amount of directional information the cell
has. This quantity is found explicitly as a function of R:

E(R) := dre(fR k funif) =

Z 2⇡

0

Z ⇡

0
fR ln

⇣ fR
funif

⌘
d✓ d�

= ln(R) + 3R coth�1(R)�
1

2
ln
�
R2

� 1
�
� 3.

We note that E(R) is positive and monotonically de-
creasing with intuitive limiting values. As the source
approaches the absorbing sphere, limR!1+ E(R) = 1.
That is, the noise encoded from di↵usion vanishes close
to the cell and the arrivals encode the exact direction of
the source. However, E(R) ⇠ 3

2R
�2 as R ! 1, so that

for distant sources, di↵usion induces more noise in the
arrival locations and directional information is reduced.
Case M = 1, N < 1: We now consider a finite

number of receptors. From the conditioned probabilities
qn(x;Y) in (3), we define the information gained revising
the prior belief from uniform to be the deviation

E(R,N) =
NX

n=1

Z

|x|=R
qn(x;Y) ln

⇣qn(x;Y)

1/N

⌘
dx.

E(R,N) averages over the angular position of the source.
In the calculation for the fully absorbing sphere, the lo-
cation of the source was chosen arbitrarily due to rota-
tional symmetry. To compare directly to that quantity
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FIG. 2. Directional information with finite number of re-

ceptors. Relative entropy from uniform E(R,N) for uni-
formly spaced receptors as a function of the number of re-
ceptors N normalized by the entropy in the fully absorb-
ing sphere limit, E(R). In the red, dashed: receptor ra-
dius " = {1, 2, 3, 4, 5} ⇥ 10�2, blue, solid: surface fraction
f = {1, 2.5, 5, 7.5, 10}% with R = 5 fixed. Inset: E(R,N) as
a function of R, with N = 25 receptors fixed and the same
varied surface fractions.

with explicit receptors, we average over angular positions
of the source. Later, we explore the role of angular posi-
tion relative to receptors in an unaveraged quantity. The
probabilities qn(x;Y) are computed with a numerical so-
lution to (1) for varying source locations and uniformly
spaced receptor configurations Y centered at Fibonacci
spiral points [33]. The results of computing E(R,N) for
varying number of receptors can be seen in Fig. 2. We
first vary the receptor radius " and see that the result-
ing behavior is intuitive: as the characteristic distance
between receptors decreases, the resolution increases and
the fully absorbing sphere serves as a limiting object for
finite number of receptors: E(R,N) ! E(R) as N ! 1.
Estimates of receptor numbers range from N ⇡ 104�105

for lymphotcytes [34], N ⇡ 102, for GABA receptors in
neural cone growth [35] and N ⇡ 104 in budding yeast
[3]. For N = 1000 and " = 0.05, the largest values in
the figure, the surface fraction coverage f = "2N/4 is
approximately f ⇡ 70% and the information content is
e↵ectively at the limit of the fully absorbing sphere.

Is this e↵ect due to having more receptors or just a
byproduct of increasing the absorbing surface area? We
instead vary f (setting " =

p
4f/N) and observe that the

information content still increases as a function of N . In
the case of 1% surface fraction coverage by N = 1000 re-
ceptors, the directional information content is over 50%
of the fully absorbing limit [36]. This surprising result is
analogous to the Berg and Purcell flux dependence on the
absorbing surface perimeter. The probabilities qn are in-
fluenced by arrivals to other receptors, the rate at which
is controlled by the flux, meaning again the perimeter is
the factor that influences the rate at which information
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information
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location
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config
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surface,
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FIG. 3. Relative entropy for two receptor configurations.
Left and center columns: The directional entropy (4) as a
function of the source location for each configuration and
R = {1.25, 1.75, 2.5}. Right column: The di↵erence between
the two entropies. At smaller R values, clustered configura-
tions can receive more directional information. This di↵erence
diminishes at large R values suggesting receptor organization
plays a negligible role when locating distant sources.

is gained. In the inset of Fig. 2, we see E(R,N) ⇠ R�2

as R ! 1 alongside the perfectly absorbing limit.
Clustered receptor configurations. We have so far ex-

amined how a finite number of uniformly distributed re-
ceptors approaches the fully absorbing sphere limit. Re-
ceptor clustering reduces the total flux to the receptors
[37], but it remains to determine the e↵ect on directional
sensing. The relative entropy in this case is the nonaver-
aged quantity

E(x;Y) =
NX

n=1

qn(x;Y) ln
⇣qn(x;Y)

1/N

⌘
, (4)

For a given source location x and receptor configuration
Y, this measure should be interpreted as a prior distri-
bution of uniform probabilities across receptors, which
is not necessarily equivalent to any particular distribu-
tion of x, the quantity being estimated. See [38] for a
discussion of priors in direction sensing.
Let Yclust and Yunif denote clustered and uniform re-

ceptor configurations (Fig. 3). Clustered configurations
are formed by placing receptors in a spherical cap and
copying across the sphere at Fibonacci spiral points. For
these configurations, the relative entropy (with respect to
uniform probabilities) is computed using the asymptotic
result (2) and shown in Fig. 3. The asymptotic result al-
lows for rapid evaluation of these probabilities at a large
number of source locations.
In Fig. 3, the directional relative entropy appears to

be heterogeneous in space for Yclust but directionally uni-
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FIG. 4. Comparison of entropies for clustered and uniform

receptor configurations. Di↵erence in entropy is computed in
front of the cluster (green) and averaged over source loca-
tions (purple). Clustered configurations have higher relative
entropy in front of clusters but lower on average, with this
e↵ect most magnified close to the cell.

form for Yunif . The di↵erence E(x;Yclust) � E(x;Yunif)
(Fig. 3, right column) indicates that directional entropy
in front of a cluster is higher than that of the uniform
configuration, and this di↵erence diminishes as source
distance increases. This implies that informational con-
tent is richer for the clustered configuration when parti-
cles are arriving from sources in front of the cluster.

To explore further, we compute in Fig. 4 the di↵er-
ence in entropy both in front of a cluster and aver-
aged over possible source locations (i.e. E(Rex;Y) andR
|x|=R E(x;Y)dx). The results are shown for 45 total re-
ceptors and source distances R = 2, 4. In front of a clus-
ter, nonuniform configurations have higher entropy lev-
els, but on average, perform worse. The benefits of clus-
tering become diminished as the source location becomes
farther away or the configuration becomes less clustered.
The resolution is therefore determined by the spacing be-
tween receptors. Thus, smaller receptor spacing within a
cluster can resolve finer detail. Expectedly, as the source
location moves away, the noise from di↵usion makes both
distributions converge to uniform probabilities and the
di↵erence vanishes.

Case M < 1, N < 1: For infinitely many incident
particles (M = 1), the qn are discerned exactly. How

does source inference operate given a noisy sample formed

by finite arrivals? The probabilities of arrival at each re-
ceptor are multinomial (dependent on x) with likelihood

L(x;Y) =
NX

n=1

cn
M

ln(qn(x,Y)),

The maximum likelihood estimate (MLE) of the source
is

x̂MLE = argmax
x

L(x;Y). (5)

0 1 2 3 4
−2

−1

0

1

2

0 1 2 3 4
−2

−1

0

1

2
uniform clustered

=1.22 =1.06

b

a

0 1 2 3 4

−2

−1

0

1

2

0 5 10 15 20

−10

−5

0

5

10

0 50 100 150 200

−100

−50

0

50

100

R = 2

source
distance

 sample size

R = 10

R = 100

M

 

= 102 M

 

= 103 M

 

= 104 M

 

= 105

FIG. 5. Frequency of maximum likelihood estimated loca-

tions. a) For varying source locations x at a distance R (from
the center of the cell) and sample sizes M , frequencies of MLE
estimated locations (5) for uniform receptor covering. b) es-
timated locations for the configurations of receptors shown in
Fig. 3. Colors correspond to relative frequency of estimated
location.

We use this inference scheme only as a statistical abstrac-
tion to quantify the limits of uncertainty in the system.
Cellular mechanisms for MLE-based [39] or Bayesian
[40] inference have been proposed but are fundamentally
downstream of di↵usive arrivals and beyond the scope
of this Letter. Relative entropy and Fisher information
(the standard error of MLE) are related [41] so we ex-
pect the previous results about relative entropy to in-
form the error in the MLE estimate. In Fig. 5a, we vary
the source location x = (R, 0, 0) for R = 2, 10, 100 and
M = 102, 103, 104, 105. The receptor configuration re-
mains the uniform configuration in Fig. 3. For each trial,
we compute the MLE estimate numerically with from (5)
with z = 0 fixed and plot the frequency of results. The
error hkx̂MLE � xki scales ⇠ M� 1

2 , as predicted by the
central limit theorem but also as ⇠ R�2 [27], in accor-
dance with the relative entropy results in the M = 1

case. To verify the claim in Fig. 3 that certain source
locations may be better detected by a clustered config-
uration, we fixed the source at x = (2.5, 0, 0) and took
M = 50 particles. The frequency of predicted locations,
shown in Fig. 5b, yields a lower mean error for the clus-
tered configuration than that of the uniform.
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Discussion. We have examined the role of receptor or-
ganization on detection of external stimuli. We demon-
strate that a cell can operate near theoretical limits with
a finite number of receptors and noisy arrival data. When
receptors are not uniformly spaced, the information con-
tent is larger in front of clusters suggesting that resolu-
tion is limited by receptor spacing. A cell with clustered
receptors can potentially benefit by forming a crude es-
timate and aligning itself in that direction.

Altogether, our results reinforce the notion that cells
must balance trade-o↵s between directional signal cover-
age and robustness as seen in other work [8–11]. How-
ever, we emphasize that the only mechanism by which
receptors are interacting in our model is through bind-
ing competition, as no downstream signaling or rebind-
ing are included. Understanding the interplay between
receptor organization and downstream signaling mech-
anisms is a natural direction for future investigations.
Finally, it would be interesting to study the relative en-
tropy of physiological or dynamical cluster configurations
(e.g. [8]) compared to the synthetic ones utilized here.
Our work suggests the spatial organization of membrane
bound receptors plays a crucial role in cellular scale di-
rectional sensing and decision making.
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[47] Á. González, Mathematical Geosciences 42, 49 (2009).
[48] J. Kaye and L. Greengard, Journal of Computational

Physics , 100047 (2019).



Supplementary Material for “Receptor organization determines

the limits of single-cell source location detection”

Sean D. Lawley,
1
Alan E. Lindsay,

2
and Christopher E. Miles

3, ⇤

1Department of Mathematics, University of Utah, Salt Lake City, UT 84112 USA

2Department of Applied & Computational Mathematics & Statistics,

University of Notre Dame, South Bend, IN 46556 USA

3Courant Institute of Mathematical Sciences,

New York University, New York, NY 10005 USA

(Dated: June 12, 2020)

1



CONTENTS

Matched asymptotic analysis for the splitting probabilities 2

Matching and solving outer problems 6

Numerical Validation of Asymptotic Splitting Probabilities 10

Three receptor test case 11

Homogeneous covering case 12

Clustered Test Case 13

Maximum likelihood estimate error scaling 14

Mean error uniform and clustered configurations and varied M,R 15

References 16

MATCHED ASYMPTOTIC ANALYSIS FOR THE SPLITTING PROBABILITIES

In this section, we use a matched asymptotic approach to derive an asymptotic expansion

for the splitting probabilities. To simplify notation, we solve for p(x) where it is assumed

that the distinguished receptor is j = 1. The problem to be solved is then

�p = 0, x 2 R3
\⌦; @⌫p = 0, x 2 @⌦\{[N

j=1@⌦j}; (S1a)

p = �1j, x 2 @⌦j, j = 1, . . . , N ; p ! 0, as |x| ! 1. (S1b)

To establish the correct expansion of (S1) as " ! 0, the first step is to analyze the solution

in the O(") neighborhood near each receptor, hereafter referred to as the “inner” region.

The region away from the receptors, in which |x� xk| = O(1) for k = 1, . . . , N , is referred

to as the “outer” region. A key part of the analysis is knowledge of G(x;x0), the surface

Green’s function exterior to the unit sphere that satisfies the system

�G = 0, r = |x| > 1, ✓ 2 (0, ⇡), � 2 (0, 2⇡); (S2a)

�@rG|r=1 =
1

sin ✓0
�('� '0)�(✓ � ✓0), ✓ 2 (0, ⇡), � 2 (0, 2⇡); (S2b)

G ⇠
1

2⇡|x|
as |x| ! 1; (S2c)
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where x0 = (sin ✓0 cos'0, sin ✓0 sin'0, cos ✓0)T . The solution of (S2) for |x0| = 1 is given

explicitly (cf. [S1]) by

G(x;x0) =
1

2⇡

h
1

|x� x0|
�

1

2
log

⇣
1� x · x0 + |x� x0|

|x|� x · x0

⌘i
. (S3)

We first develop the solution to (S1) in a boundary layer in the vicinity of the receptor

centered at xk. The first step is to introduce the local coordinate system

z =
x� xk

"
, ⌘ =

r � 1

"
, s1 = sin ✓k

'� 'k

"
, s2 =

✓ � ✓k
"

, (S4)

where r = |x| and ⌘ is a rescaled measure of distance to ⌦. Here s = (s1, s2) 2 R2

represents, for ⌘ = 0, an approximate surface cartesian coordinate system near the kth

receptor. Defining the operators

L := @⌘⌘ + @s1s1 + @s2s2 ,

A := �2⌘(@s1s1 + @s2s2) + cot ✓k(@s2 � 2s2@s1s1) + 2@⌘,

equation (S1a) is transformed to

1

r2
@

@r

✓
r2
@p

@r

◆
+

1

r2 sin ✓

@

@✓

✓
sin ✓

@p

@✓

◆
+

1

r2 sin2 ✓

@2p

@�2

⇠ "�2
Lp+ "�1

Ap+O(1) = 0. (S5)

The key ingredient required to establish the correct asymptotic expansion of (S1) as " ! 0,

is the local behavior of the Green’s function G(x;xk) (S3) as x ! xk. In terms of the

rescaled local coordinates (S4), this behavior is given by

G =
1

2⇡


1

"|z|
+

1

2
log("/2) +

1

2
log[⌘ + |z|] +O(")

�
. (S6)

The next step is to use the following two-term expansion (cf. Lemma A.1 of [S2]) for 1/|z|

in terms of the local coordinates (s1, s2, ⇢), where |s| := (s21 + s22)
1
2 and ⇢ := (⌘2 + |s|2)

1
2 ,

1

|z|
=

1

⇢
�

"

2⇢3
⇥
⌘|s|2 + s21s2 cot ✓k

⇤
+O("2).

Substituting this into (S6) yields the local behavior of G(x;xk) as x ! xk is

G =
1

2⇡


1

"⇢
+

1

2
log("/2) +

1

2

⇣
log[⌘ + ⇢]�

1

⇢3
�
⌘|s|2 + s21s2 cot ✓k

�⌘�
+O("). (S7)
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In view of (S7), and the fact that pk = O(1) on ⌘ = 0, we expand the inner solution near

the kth receptor, in terms of the inner variables (⇢, s1, s2), as

p ⇠ wk
0 + " log("/2)wk

1 + "wk
2 + · · · , as " ! 0. (S8)

Plugging (S8) into (S1) and using (S5), we have for n = 0, 1, 2, and k = 1, . . . , N ,

Lwk
n = ��1k�2nAw1

0, ⌘ > 0, s 2 R2
; (S9a)

wk
n = �1k�0n, ⌘ = 0, |s| < ak; @⌘w

k
n = 0, ⌘ = 0, |s| � ak. (S9b)

The problems (S9) can be solved exactly for n = 0, 1, 2 and k = 1, . . . , N . To obtain these

solutions, we introduce (denoted by wc) the planar electrified disk problem defined on the

tangent plane to the sphere at x = xk,

Lwc = 0, ⌘ > 0, s 2 R2
; wc ! 0 as ⇢ ! 1, (S10a)

wc = 1, ⌘ = 0, |s| < ak; @⌘wc = 0, ⌘ = 0, |s| � ak, (S10b)

The exact solution (see [S2, S3]) to (S10) is

wc =
2

⇡
sin

�1
(ak/L), L :=

1

2

hp
(|s|+ ak)2 + ⌘2 +

p
(|s|� ak)2 + ⌘2

i
. (S11a)

In terms of the capacitance ck of the kth receptor, the far-field behavior is

wc ⇠ ck
⇣
1

⇢
+

⇡2c2k
24

⇣
1

⇢3
�

3⌘2

⇢5

⌘
+ · · ·

⌘
as ⇢ ! 1; ck :=

2ak
⇡

. (S11b)

The solution of problems (S9) may all be represented in terms of wc. For example, we have

that

wk
0 = �1kwc. (S12)

In light of the fact that wk
0 = 0 for k 6= 1, we additionally have that

wk
1 = Ak(1� wc), k = 1, . . . , N ;

wk
2 = Bk(1� wc), k = 2, . . . , N,

for constants {A1, . . . , AN} and {B2, . . . , BN} to be found from matching with the outer

expansion. To determine the problem for the last equation w1
2, we note that equations
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(S12), (S9), together with Lwc = 0 in (S10) imply

Lw1
2 = �2(@⌘wc + ⌘@⌘⌘wc)� cot ✓1(@s2wc � 2s2@s1s1wc), ⌘ > 0, s 2 R2

; (S13a)

w1
2 = 0, ⌘ = 0, |s| < a1; @⌘w

1
2 = 0, ⌘ = 0, |s| � a1. (S13b)

The process of matching solutions of (S13) to the outer expansion requires that we determine

all monopoles in the far-field. For this reasons we identify such terms in (S13) by first

decomposing

w1
2 = B1(1� wc)� w2o � w2e, (S14)

where w2o satisfies

Lw2o = cot ✓1(@s2wc � 2s2@s1s1wc), ⌘ > 0, s 2 R2
; (S15a)

w2o = 0, ⌘ = 0, |s| < a1; @⌘w2o = 0, ⌘ = 0, |s| � a1; (S15b)

w2o ⇠
c1
2⇢3

(s21s2 cot ✓1), as ⇢ ! 1, (S15c)

and w2e satisfies

Lw2e = 2(@⌘wc + ⌘@⌘⌘wc), ⌘ > 0, s 2 R2
; (S16a)

w2e = 0, ⌘ = 0, |s| < a1; @⌘w2e = 0, ⌘ = 0, |s| � a1; (S16b)

w2e ⇠ �
c1
2
log[⌘ + ⇢] +

c1
2⇢3

⌘|s|2, as ⇢ ! 1. (S16c)

Clearly w1
2 in (S14) has a monopole arising from the wc term. To determine whether other

monopole terms arise from equations (S15) and (S16), we use the exact solution (see [S2,

Lemma B.2]) of (S15)

w2o = cot ✓1

✓
s21
2
@s2wc � s2s1@s1wc

◆
. (S17)

Using the solution (S17) and evaluating the limit ⇢ ! 1, it can be shown that w2o does

not give rise to a monopole in the far field. However, w2e does exhibit a monopole in its far

field. Specifically, it was shown in [S2, Lemma B.1] that

w2e ⇠ �
c1
2
log[⌘ + ⇢] +

c1
2⇢3

⌘|s|2 +
c1b1
⇢

, as ⇢ ! 1, b1 :=
c1
2

h
log(4a1)�

3

2

i
. (S18)

Combining equations (S14) and (S18), we obtain the needed far behavior

w1
2 ⇠ B1

✓
1�

c1
⇢

◆
�

c1b1
⇢

+
c1
2
log[⌘ + ⇢] +O(⇢�3

), ⇢ ! 1. (S19)
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Matching and solving outer problems

In this section, we develop the solution in the outer region away for the receptors and this

solution to the inner through a matching process. In light of the local solution expansion

(S8), the correct expansion of the outer solution to (S1) is

p(x) = "p0 + "2 log("/2)p1 + "2p2 + · · · , (S20)

where each pj satisfies

�pj = 0, |x| > 1, @rpj = 0, x 2 @⌦\{x1, . . . ,xN}, (S21)

subject to certain asymptotic behaviors as x ! xk for k = 1, . . . , N that are to be determined

by matching. For each of these problems, we show below that the solution will either be a

zero constant (since pj ! 0 as |x| ! 1) or a superposition of Green’s functions, where each

receptor e↵ectively introduces a Coulomb source of a certain strength.

The matching condition is that as x ! xk and ⇢ ! 1.

"p0 + "2 log("/2)p1 + "2p2 + · · · ⇠ wk
0 + " log("/2)wk

1 + "wk
2 + · · · . (S22)

Plugging (S12) into (S22) and using (S11b) and the leading order behavior,

⇢ ⇠ "�1
|x� xk|,

we determine the leading order matching condition

"p0 ⇠ �1k
"ck

|x� xk|
. (S23)

Hence, we have that p0 solves the problem

�p0 = 0, |x| > 1; @rp0 = 0, x 2 @⌦\{x1, . . . ,xN}; (S24a)

p0 ⇠
c1

|x� x1|
, as x ! x1; p0 ! 0, as |x| ! 1. (S24b)

A comparison of (S2) and (S3) reveals that the solution of (S24) can be expressed as

p0(x) = 2⇡c1G(x;x1). (S25)
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We now seek the higher order corrections to (S25) by matching higher order terms to the

expansion (S22). Now, if k 6= 1, the matching condition as x ! xk becomes

"p0(xk) + "2 log("/2)p1 + "2p2 + · · · (S26)

⇠ " log("/2)Ak

⇣
1�

"ck
|x� xk|

⌘
+ "Bk

⇣
1�

"ck
|x� xk|

⌘
+ · · · ,

⇠ " log("/2)Ak + "Bk � "2 log("/2)Ak
ck

|x� xk|
� "2Bk

ck
|x� xk|

+ · · · .

This suggests that we need to modify the outer expansion by adding a constant logarithmic

switchback term " log("/2)�. However, since p must vanish as |x| ! 1, any constant

solution must be trivial so that � = 0 and thus Ak = 0 for k = 2, . . . , N . Hence, the

matching condition (S26) reduces to

"p0(xk) + "2 log("/2)p1 + "2p2 + · · · ⇠ "Bk � "2Bk
ck

|x� xk|
+ · · · . (S27)

From (S27), it follows that

Bk = p0(xk) = 2⇡c1G(x1;xk), p2 ⇠ �
Bkck

|x� xk|
, as x ! xk, k 6= 1. (S28)

The term p1 will match to terms of O("2 log("/2)) in the higher order corrections of (S8).

We now examine the local behavior near the distinguished receptor as x ! x1. From the

local behavior of the Green’s function (S7), we have that as x ! x1,

"p0 ⇠ c1
h
1

⇢
+

"

2
log("/2) +

"

2

⇣
log[⌘ + ⇢]�

1

⇢3
�
⌘|s|2 + s21s2 cot ✓k

�⌘i
+O("2). (S29)

The matching condition (S22) as x ! x1, ⇢ ! 1, using (S29), (S14), and (S18), is then

c1
h
1

⇢
+

"

2
log("/2) +

"

2

⇣
log[⌘ + ⇢]�

1

⇢3
�
⌘|s|2 + s21s2 cot ✓k

�⌘i
+ "2 log("/2)p1 + "2p2

⇠
c1
⇢
+ " log("/2)A1

�
1�

c1
⇢

�

+ "
h
B1

�
1�

c1
⇢

�
�

c1
2⇢3

(s21s2 cot ✓1) +
c1
2
log[⌘ + ⇢]�

c1
2⇢3

⌘|s|2 �
c1b1
⇢

i
+ · · · ,

Canceling out the terms that match automatically, this condition reduces to

c1
"

2
log("/2) + "2 log("/2)p1 + "2p2 + · · ·

⇠ " log("/2)A1

⇣
1�

c1
⇢

⌘
+ "

h
B1

⇣
1�

c1
⇢

⌘
�

c1b1
⇢

i
+ · · · , as x ! x1, ⇢ ! 1.
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To establish the local behavior of p1 and p2, we return to the outer variable using ⇢ ⇠

"�1
|x� x1| to obtain as x ! x1,

c1
"

2
log("/2) + "2 log("/2)p1 + "2p2 + · · ·

⇠ " log("/2)A1 � c1"
2
log("/2)A1

1

|x� x1|
+ "B1 �

"2c1
|x� x1|

(B1 + c1) + · · · .

This matching condition yields that

A1 = c1/2, B1 = 0.

It then follows that p1 and p2 have the local behaviors

p1 ⇠
�c21/2

|x� x1|
, as x ! x1, p2 ⇠

�c1b1
|x� x1|

, as x ! x1.

The full specification of problem p1 is now

�p1 = 0, |x| > 1; @rp1 = 0, x 2 @⌦\{x1, . . . ,xN}; (S30a)

p1 ⇠ �
1

2

c21
|x� x1|

, as x ! x1; p1 ! 0, as |x| ! 1. (S30b)

while the problem for p2 is

�p2 = 0, |x| > 1; @rp2 = 0, x 2 @⌦\{x1, . . . ,xN}; (S31a)

p2 ⇠ �
c1b1

|x� x1|
, as x ! x1; p2 ⇠ �

c1Bk

|x� xk|
, as x ! xk, k 6= 1; (S31b)

p2 ! 0, as |x| ! 1. (S31c)

The solutions of these problem are represented in terms of G(x;x0) as

p1(x) = �⇡c21G(x;x1), (S32a)

p2(x) = �2⇡b1c1G(x;x1)� 4⇡2
NX

k=2

c1ckG(xk;x1)G(x;xk), (S32b)

where the value of b1 is defined in (S18). By combining (S25) and (S32) into expansion

(S20), we have the final expression for the splitting probability in the limit as " ! 0,

p ⇠ "2⇡c1G(x;x1)� "2 log("/2)⇡c21G(x;x1)

� 2⇡"2c1

"
b1G(x;x1) + 2⇡

NX

k=2

ckG(xk;x1)G(x;xk)

#
+ · · · . (S33)
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The result (S33) is valid when the k = 1 receptor is distinguished. Transferring the dis-

tinguished receptor to the jth, we recover the main result, namely the splitting probability

pj(x) has the limiting behavior

pj(x) ⇠ "2⇡cjG(x;xj)� "2 log("/2)⇡c2jG(x;xj)

� 2⇡"2cj

2

64bjG(x;xj) + 2⇡
NX

k=1
k 6=j

ckG(xk;xj)G(x;xk)

3

75+ · · · . (S34)

as " ! 0.

As one validation of this new result, we compare with the asymptotic result for the

capacitance problem, derived in [S2]. We consider P (x), the probability that the di↵using

particle reaches any receptor, i.e.

P (x) = Px(absorbed at cell starting from x). (S35)

From linearity, we have that P (x) =
PN

j=1 pj(x) and so we have that

P (x) = 1 + C0v(x). (S36)

where v(x) is that “escape from capture problem” satisfying

�v = 0, x 2 R3
\⌦; v ⇠

1

|x|
�

1

C0
, as |x| ! 1; (S37a)

@⌫v = 0, x 2 @⌦\{[N
k=1@⌦j}; v = 0, x 2 @⌦j, k = 1, . . . , N. (S37b)

The capacitance C0 was determined in [S2] to have expansion as " ! 0,

1

C0
⇠

⇡

N"

h
1 +

"

⇡

⇣
log(2")�

3

2
+

4

N

NX

j=1

NX

k=j+1

1

|xj � xk|
+

1

2
log


|xj � xk|

2 + |xj � xk|

�⌘i

As a check on Principal Result 1, we use P (x) =
PN

j=1 pj(x) and result (S21) for pj(x), to

find that

P (x) =
NX

j=1

pj(x) ⇠ "2⇡
NX

j=1

cjG(x;xj)� "2 log("/2)⇡
NX

j=1

c2jG(x;xj)

� "2
NX

j=1

h
2⇡bjcjG(x;xj) + 4⇡2

NX

k=1
k 6=j

cjckG(xj;xk)G(x;xk)

i
+ · · · .

(S38)

After algebra and simplification, we find that that (S36) is exactly satisfied.
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NUMERICAL VALIDATION OF ASYMPTOTIC SPLITTING PROBABILITIES

In this section, we validate the asymptotic formulas for the splitting probabilities (S34) by

comparing to numerical results obtained from a spectral boundary integral method solution

of the exterior mixed Neumann-Dirichlet boundary value problem (S1). The computational

method is a linear integral equation relating the surface potential, f(x) = p|@⌦, to the surface

flux, q(x) = @⌫p|@⌦ = �@rp|@⌦. An application of Lagrange’s identity to p(x) and G(x;y),

the Green’s function satisfying (S2), yields the integral equation

p(x) =

Z

y2⌦
G(y;x)q(y) dS, x 2 R3

\ ⌦. (S39)

The surface flux, q(x), is non-zero only on the receptors, �a. When restricting to the surface

of the sphere with specified Dirichlet data u(x)|@⌦ = f(x), the following linear integral

equation is found

f(x) = A [q(y)] ⌘
1

2⇡

Z

y2�a

g (|y� x|) q(y) dS, x 2 ⌦ , (S40a)

where the kernel of the integral operator is defined by the Green’s function (S3) restricted

to the sphere

G(x;y) =
1

2⇡
g (|x� y|) , for x,y 2 ⌦; g(d) ⌘

1

d
+

1

2
log

✓
d

2 + d

◆
. (S40b)

The key challenge in the accurate numerical solution of (S40) is the divergence of the surface

flux q(x) along @�a - a notorious feature of mixed Neumann-Dirichlet boundary value prob-

lems [S4, S5]. This issue can be resolved by a careful choice of basis functions for the surface

potential, f(y), and the surface flux, q(y) in terms of the Zernike polynomials [S6] which are

a complete basis for square integrable function supported on circular geometries. By mim-

icking the known inverse square root singularity structure of the flux, as observed from the

solution of the electrified disk problem (S11), equation (S40) can be solved pseudo-spectrally

to high accuracy.

This approach, together with full implementation details, has been validated for a wide

variety of surface receptor configurations and is e↵ective for the case of thousands [S7]

and even hundreds of thousands [S8] of receptors. When the order of the method is fixed,

accuracy is reduced when receptors boundaries are nearly touching. The accuracy of the

numerical solution can be improved in such cases by taking additional Zernike modes in
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the expansion of the solution. In the following test cases, we focus on using this tool to

numerically validate the asymptotic formula (S34) for the splitting probabilities. In Fig. S1

we plot the 3D numerical solution of (S1) in a test problem featuring 5 receptors.

(a)Configuration. (b)Solution heat map. (c)Solution contours.

FIG. S1. Numerical solution of (S1) in a 5 receptor case with a single distinguished (purple)

receptor. The positions of the receptors are given by (S43) and each have common radius " = 0.4.

We remark that the solution drops to zero quite rapidly away from the sphere.

In the following, we validate the accuracy of the asymptotic formula in three scenarios: a

simple three receptor configuration, a clustered configuration, and a homogeneous covering.

The accuracy is quantified by considering the relative error

Erel =

����
pnum � pasy

pnum

���� . (S41)

In each of the examples, we find that the asymptotic expansion has the expected con-

vergence rate as " ! 0 and accurately predicts the splitting probabilities, provided the

receptors are well separated.

Three receptor test case

This example benchmarks the asymptotic formula for a simple configuration with three

receptors located at

xk = (sin ✓k cos'k, sin ✓k sin'k, cos ✓k), k = 1, 2, 3; (S42a)

(✓1,'1) =

⇣⇡
2
,
3⇡

2

⌘
, (✓2,'2) =

⇣⇡
4
,
⇡

2

⌘
(✓3,'3) =

⇣
2⇡

3
,
⇡

3

⌘
. (S42b)

For the fixed point x = (1,�1, 1), we demonstrate in Fig. S2 the accuracy of the asymptotic

splitting probabilities in the limit as the common receptor radius " ! 0. In this simple con-
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figuration, the splitting probabilities associated with each receptor are remarkable accurate,

even at large receptor radii.

0.0 0.1 0.2 0.3 0.4
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(a)Asymptotic splitting

probabilities.

10
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-1
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0

10
-5

10
-4

10
-3

10
-2

10
-1

(b)Relative error versus receptor

radius.

(c)Three receptor

configuration for " = 0.4.

FIG. S2. Comparison of asymptotic and numerical splitting probabilities for the three receptor

configuration described in (S42). All curves shown for splitting probabilities evaluated at location

x = (1,�1, 1).

Homogeneous covering case

To generate homogeneous coverings of the sphere, we use a simple and e↵ective set known

as the Fibonacci spiral points [S9, S10]. Given an integer M , the position of the N = 2M+1

spiral points are given by

xk = (sin ✓k cos'k, sin ✓k sin'k, cos ✓k); (S43a)

sin ✓k =
2k

N
, 'k =

2⇡k

�
, k = 1, . . . , N, (S43b)

and � = 1 + �
�1

= (1 +
p
5)/2 ⇡ 1.618 is the golden ratio. We calculate the splitting

probabilities for a configuration of N = 43 points given by (S43) and display the results in

Fig. S3 for three distinguished receptors.

The asymptotic approximation is accurate, provided the individual receptor radius is

small and the resulting configuration is well separated.
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(a)Asymptotic splitting

probabilities
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(b)Relative error versus receptor

radius.

(c)Homogeneous receptor

configuration for " = 0.04.

FIG. S3. Validation of the asymptotic splitting probabilities for a homogeneous covering of N = 43

receptors from the Fibonacci spiral points (S43). The asymptotic is accurate provided the receptor

radius is small enough to keep the configuration well-separated. All splitting probabilities evaluated

at the point x = (1, 1, 1).

Clustered Test Case

In this example, we benchmark the asymptotic splitting probabilities on an example with

a total of N = 42 surface receptors partitioned into 6 clusters of 7 receptors each.
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0.000

0.005

0.010
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(a)Asymptotic splitting

probabilities
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(b)Relative error versus receptor

radius.

(c)Clustered receptor

configuration for " = 0.04.

FIG. S4. Validation of the asymptotic splitting probabilities for a configuration of N = 42 receptors

into 6 clusters of 7 each. The asymptotic description is accurate, provided the receptor radius is

small enough to keep the configuration well-separated. All splitting probabilities evaluated at the

point x = (1, 1, 1).
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MAXIMUM LIKELIHOOD ESTIMATE ERROR SCALING

In Fig. 5 in the main text, we show spatial histograms of the maximum likelihood

estimated position x̂MLE as a function of the source distance kxk = R and number of particles

arriving to receptors M . In the following figures, we plot the average error hkx̂MLE � xki as

a function of M,R.
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FIG. S5. Continuation of Fig. 5 in main text for R = 100 and M = 10
6, 107. MLE estimate

approaches the true answer as the sample size M increases even for far away sources.

In more detail: in each of the following parameter scenarios, we ran 50, 000 trials. In

each trial, we draw counts cn for n = 1, . . . , N from a multinomial distribution with M

particles so
P

n cn = M with the nth receptor having probability qn(x). The likelihood

function L(x) (see main text) was computed with z = 0 fixed and the maximizer xMLE was

found numerically. For each of these trials, a single error is computed, kx̂MLE � xk and the

averaged quantities hkx̂MLE � xki are therefore averaged over these trials, corresponding to

the bias of the estimate.

As claimed in the main text, and seen Fig S6, the average error scales ⇠ M�1/2
and

⇠ R2
asymptotically. The scaling on M is expected from the central limit theorem and

asymptotic normality of the MLE estimator. The scaling on R persists from the infinite

data scenarios described in the main text. Since these are asymptotic scalings, deviations

occur if M is small.
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FIG. S6. Mean error scaling as a function of the number of arriving particles M and source distance

R. Numerical values corresponding to demonstrations in Fig. 5 in the main text.

MEAN ERROR UNIFORM AND CLUSTERED CONFIGURATIONS AND VAR-

IED M,R

In Fig. 6 in the main text, a scenario is depicted demonstrating that clustered config-

urations can provide smaller average errors hkx̂MLE � xki. However, this behavior is not

general. In the following figures, we report other scenarios where the error is approximately

the same or worse for the clustered configuration. Denote eu the mean error for the uniform

configuration and ec mean the error for the clustered configuration. Sweeping over the source

distance R and number of arriving particles M for close sources, we find the following mean

errors.

eu R = 1.25 R = 1.5 R = 2 R = 2.5 R = 3

M = 50 0.179 0.330 0.721 1.226 1.779

M = 100 0.128 0.221 0.478 0.813 1.254

M = 250 0.080 0.137 0.293 0.494 0.738

M = 500 0.056 0.096 0.206 0.343 0.512

M = 1000 0.040 0.067 0.145 0.241 0.358

TABLE S1. Mean error in the MLE estimated locations for the clustered receptor configuration

yunif in the main text.

From these values, we see that clustered configurations can provide lower mean error when
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ec R = 1.25 R = 1.5 R = 2 R = 2.5 R = 3

M = 50 0.131 0.264 0.625 1.075 1.621

M = 100 0.092 0.186 0.449 0.760 1.143

M = 250 0.059 0.118 0.287 0.491 0.727

M = 500 0.042 0.084 0.205 0.349 0.516

M = 1000 0.030 0.060 0.145 0.247 0.367

TABLE S2. Mean error in the MLE estimated locations for the clustered receptor configuration

yclust in the main text.

eu � ec R = 1.25 R = 1.5 R = 2 R = 2.5 R = 3

M = 50 0.049 0.065 0.095 0.151 0.157

M = 100 0.036 0.035 0.029 0.053 0.112

M = 250 0.021 0.018 0.006 0.003 0.011

M = 500 0.014 0.011 0.002 -0.006 -0.004

M = 1000 0.010 0.008 -0.001 -0.006 -0.009

TABLE S3. Di↵erence in the mean error in the MLE estimates for the uniform and clustered con-

figuration. Positive values indicate that the error in the uniform configuration is larger, indicating

worse performance for uniform.

M,R are small. As M and R become su�ciently large that the benefits of the clustered

configurations become diminished. This frontier is highlighted in Tables S3 and S4.
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