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The existence and multiplicity of solutions to a quasilinear, elliptic partial differential

equation (PDE) with singular non-linearity is analyzed. The PDE is a recently derived

variant of a canonical model used in the modeling of micro-electromechanical systems

(MEMS). It is observed that the bifurcation curve of solutions terminates at single dead-

end point, beyond which no classical solutions exist. A necessary condition for the existence

of solutions is developed, revealing that this dead-end point corresponds to a blow-up in

the solution’s gradient at a point internal to the domain. By employing a novel asymptotic

analysis in terms of two small parameters, an accurate characterization of this dead end

point is obtained. An arc length parameterization of the solution curve can be employed

to continue solutions beyond the dead-end point, however, all extra solutions are found

to be multivalued. This analysis therefore suggests the dead-end is a bifurcation point

associated with the onset of multivalued solutions for the system.

KeyWords: Prescribed mean curvature, Disappearing solutions, Singular perturbation, MEMS,

Singular nonlinearity

1 Introduction and statement of main results

A micro-electromechanical systems (MEMS) capacitor consists of two surfaces held op-

posite of one another. The lower surface is a rigid inelastic ground plate, while the upper

surface is a thin elastic membrane that is held fixed along its boundary and is free to

deflect in the presence of a potential difference V (cf. Figure 1). When V is small enough,

a stable equilibrium deflection is attained by the membrane; however, if V exceeds a crit-

ical value V ∗, called the pull-in voltage, an equilibrium deflection is no longer attainable

and the upper surface will touchdown on the lower surface. This loss of a stable equi-

librium is called the pull-in instability and the mathematical modeling of its onset has

been the focus of numerous studies (for a thorough account, see [7, 20] and the references

therein). Recently to address the discrepancy between theoretical predictions of V ∗ and
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Figure 1. Schematic diagram of a MEMS capacitor.

experimental data, the following quasilinear, elliptic partial differential equation (PDE)

for the dimensionless equilibrium deflection z = u(x, y) was derived [1, 2]:

div
∇u

√

1 + ε2|∇u|2
=

λ

(1 + u)2
in Ω, (1.1 a)

u = 0 on ∂Ω. (1.1 b)

Here, ε is the aspect ratio h/L of the device, λ ∝ V 2 is a nonnegative dimensionless

parameter quantifying the relative strengths of the elastic and electrostatic forces in the

system and Ω is a bounded region in R
2 with boundary ∂Ω. The left-hand side of equation

(1.1 a) captures the elastic effects of the membrane and comes from minimizing a surface

area functional. In particular, equation (1.1 a) can be written geometrically as

2H/ε =
λ

(1 + u)2
, (1.2)

where H is the mean curvature of the non-parametric surface (x, y, εu(x, y)) in Ω.

In typical applications, the aspect ratio ε is a small quantity and many MEMS re-

searchers simplify PDE (1.1 a) by linearizing the left-hand side, yielding

∆u =
λ

(1 + u)2
in Ω, u = 0 on ∂Ω. (1.3)

This reduced problem has been extensively studied and many of its properties are well

known (cf. [7, 10, 13, 14, 20]). One of the canonical properties is the existence of a critical

value, λ∗, such that for each λ < λ∗, problem (1.3) admits a unique stable solution. At the

end of this branch of stable solutions there is a saddle node bifurcation, and no solutions

exist for λ > λ∗. When Ω is taken to be the unit ball B1(0) = {x ∈ R
2 : |x| < 1}, the

unstable solution branch undergoes infinitely many additional saddle node bifurcations

[11], leading to higher multiplicity in the solution set (see Figure 2). However when

ε 6= 0, the solution set (λ, u) of problem (1.1) can be markedly different from that of

problem (1.3). Specifically, it was numerically observed in [1] that the bifurcation curve

(λ(ε), ‖u‖∞) of problem (1.1) in the unit ball undergoes a finite number of folds before

terminating at a single dead-end point, denoted (λ∗(ε), α∗(ε)) (see Figure 3). The focus

of this paper is to explain and analyze this profound difference between the solution

structures of problems (1.1) and (1.3) in the two-dimensional unit ball B1(0) in the

singular limit ‖u‖∞ → 1−. In particular, we show that as the solution curve approaches
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Figure 2. (a) Bifurcation diagram of problem (1.3) for Ω equal to the two-dimensional unit
ball. (b) A magnified portion of (a) revealing more of the infinite fold structure proved in [11].
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Figure 3. (a) Bifurcation curves of (1.1) in B1(0) computed via numerics for various ε. From
right to left, the curves correspond to ε = 0.05, 0.1, 0.5, 1, 2. At this scale ε = 0.05 and ε = 0.1
appear equal. (b) A magnified portion of (a). Here, the curves for ε = 0.05, 0.1, 0.5 are seen.

(λ∗, α∗), the value of the derivative of the solution (in the radial direction) becomes

unbounded at some internal point, thus characterizing this bifurcation point as a blow-

up in the gradient. Additionally, it suggests that multivalued solutions may be continued

beyond the dead-end point.

To investigate this latter observation, we assume that the dimensionless equilibrium

deflection of the membrane is defined parametrically by (x(a, b), y(a, b), z(a, b)) for local

coordinates (a, b), instead of the more restrictive non-parametric form (x, y, u(x, y)). In

this way, the new problem for (1.1) becomes

2H/ε =
λ

(1 + z)2
on Σ, (1.4 a)

(x, y) = ∂Ω on ∂Σ, z = 0 on ∂Σ, (1.4 b)

where the surface Σ is defined the by the map X(a, b; ε) = (x(a, b), y(a, b), εz(a, b)) and H
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is its mean curvature. Consequently, this generalization removes the difficulties encoun-

tered at vertical tangents and allows for the bifurcation curve of (1.1) to be a continued

beyond the dead-end point.

In the particular case of Ω equal to the unit ball B1(0) in R
2, we show that by taking

advantage of radially symmetry, problem (1.4) reduces to the coupled system of ODEs

r′′ = − ε2λz′

(1 + z)2
+
ε2(z′)2

r
, z′′ +

r′z′

r
=

λr′

(1 + z)2
, 0 < s < ℓ;

r(0) = 0, r′(0) = 1, r(ℓ) = 1, z′(0) = 0, z(ℓ) = 0,

(1.5)

where ℓ is the length of the curve (r(s), εz(s)) and is to be determined. Then we perform

a singular perturbation analysis of (1.5) in the limit as z(0) → −1+ to recover an infinite

fold point structure that is similar to that of (1.3) in B1(0) (see Figures 4(a)–(b)).

However, all of the additional solutions beyond (λ∗, α∗) cannot be put into nonparametric

form, i.e., they cannot be represented as the graph of a function z = u(x, y) in B1(0)

(cf. [1]). We call these solutions strictly parametric.

The disappearance of solutions behavior is not isolated to problem (1.1) and has arisen

in other mean curvature equations [5, 8, 15, 16]. In addition, issues of existence, unique-

ness and multiplicity of solutions to problems of general type

div
∇u

√

1 + |∇u|2
= λf(x, u), x ∈ Ω; u = 0, x ∈ ∂Ω

have been a topic of recent consideration by several authors (see [3, 12, 17, 18, 19] and

the references there-in). Our main results are now stated.

1.1 Statement of main results

First, in §2.1, we establish the following necessary condition for the existence of solutions

of problem (1.1) in the unit ball.

Theorem 2.3 Fix ε > 0 and let u(· ;λ), with λ > 0, be a solution to problem (1.1) in

the two-dimensional unit ball B1(0). Then ‖u‖∞ 6 1−B(ε2λ), where B is defined as

B(Λ) :=



















(

3− 2
√
2
)

2
Λ, when 0 < Λ 6 4 + 3

√
2,

3Λ +
√

Λ(Λ− 8)

4(1 + Λ)
, when Λ > 4 + 3

√
2.

(2.6)

Consequently, for any λ < λ∗ and ε > 0, there exists an α∗(ε, λ) ∈ R such that ‖u‖∞ <

α∗ < 1.

This result is proved in the Lemmas and Theorems leading up to Corollary 2.4 and

demonstrates that unlike problem (1.3), problem (1.1) in B1(0) has no solutions for ‖u‖∞
arbitrarily close to 1. This loss of a classical solution is shown to be due to the formation

of a singularity in the radial derivative at a point internal to the domain.

Next to complement the aforementioned qualitative result, we employ a novel formal

asymptotic analysis to gain insight into the disappearance of solutions at the dead-end
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Figure 4. (a) Bifurcation curves of (1.5) computed via numerics for various ε. The dashed
line represents strictly parametric solutions, which naturally continue on from the final classical
solutions of (1.1). From right to left, the curves correspond to ε = 0.05, 0.1, 0.5, 1, 2. (b) A
magnified portion of panel (a), where ε = 0.05, 0.1, correspond to the right and left curves,
respectively. In panels (c) and (d), the radially symmetric solutions from the strictly parametric
branch are plotted for the case ε = 0.1 with z(0) = −0.9998 and z(0) = −0.99995, respectively.
As indicated by the insets displaying a zoomed neighbourhood of the origin, the solution is
multivalued and folds back upon itself multiple times. As the branch is traversed, solutions
undergo additional folding.

point and establish a very accurate prediction of its location. Our analysis demonstrates

that the disappearance of solutions is connected in an intricate way to small values of the

parameters ε and δ := 1−‖u‖∞. Therefore, the perturbation analysis involves two small

parameters and must be performed in the distinguished limit ε2/δ = δ0 for δ0 = O(1).

This formal approach allows for an explicit characterization of the upper solution branch

in terms of two functions. Formally, we obtain the following result.

Principal Result 2.1 For solutions u of (1.1) in the two-dimensional unit ball B1(0),

there is a regime where both ε ≪ 1 and δ ≪ 1, with ε2/δ = O(1), such that the upper
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solution branch of the bifurcation curve has the asymptotic parameterization

‖u‖∞ = 1− δ, λ =
4

9
− δ

4

3
Ã(ε2/δ) sin

[

−
√
2 log δ + φ̃(ε2/δ)

]

+O(δ2) (1.6)

as δ → 0+, where Ã(δ0) and φ̃(δ0) are functions determined by the initial value problem

1

ρ

(

ρw0
′

√
1 + δ0w0

′2

)′
=

4

9
w0

−2, 0 < ρ <∞; w0(0) = 1, w0
′(0) = 0 (1.7 a)

w0 = ρ2/3 + Ã(δ0) sin

(

2
√
2

3
log ρ+ φ̃(δ0)

)

+ O(1) ρ→ ∞. (1.7 b)

A casual inspection of expansion (1.6) may suggest that the result is uniformly valid

as δ → 0+, contradicting the results of Theorem 2.3. However, in Theorem 2.7 we prove

that there exists a δ∗0 such that initial value problem (1.7) has no global solutions when

δ0 > δ∗0 . This implies that (1.6) is only valid for ε2/δ < δ∗0 , and the value of δ∗0 can then

be used to accurately predict the dead-end point for problem (1.1) (see Principal Result

2.1).

Then in §2.3, nonparametric problem (1.4) with ∂Ω = B1(0) is studied and found

to be amenable to the aforementioned asymptotic analysis. In particular, an accurate

representation of the solution branch in the limit δ := 1 + z(0) → 0+ is obtained.

Specifically, we have the formal result, which is uniformly valid as δ → 0+.

Principal Result 2.3 For solutions of problem (1.4) with ∂Ω = B1(0), there is a regime

where both ε ≪ 1 and δ ≪ 1, with ε2/δ = O(1), such that the upper solution branch of

the bifurcation curve has the asymptotic parameterization

|z(0)| = 1− δ, λ = λ0 − δ
4

3
Ã1(ε

2/δ) sin
[

−
√
2 log δ + φ̃1(ε

2/δ)
]

+O(δ2). (1.8)

Moreover, λ0 = 4/9, and the functions Ã1(δ0) and φ̃1(δ0) are determined by the far field

behavior of Z0,

Z0(ρ) = ρ2/3 − 4δ0
9

+ Ã1(δ0) sin

(

2
√
2

3
log ρ+ φ̃1(δ0)

)

+ O(1) as ρ→ ∞, (1.9 a)

of the initial value problem

R0
′′ = −4δ0

9

Z0
′

Z0
2 + δ0

(Z0
′)2

R0
, Z0

′′ +
R0

′Z0
′

R0
=

4

9

R0
′

Z0
2 , 0 < ρ <∞;

R0(0) = 0, R0
′(0) = 1, Z0(0) = 1, Z0

′(0) = 0,

(1.9 b)

where

R0(ρ) = ρ− 2δ0
3
ρ1/3 + O(1) as ρ→ ∞. (1.9 c)

This result shows that nonparametric problem (1.4) provides a natural continuation

to solutions of problem (1.1) beyond the dead-end point. These additional solutions are

found to be strictly parametric, as seen in Figure 4(c) and Figure 4(d).

Last, in §3, a few open problems are discussed.
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2 Two-dimensional analysis

2.1 A necessary condition for existence of solutions

In this section, we investigate the disappearance of classical solutions u of problem (1.1)

in B1(0) using techniques similar to ones introduced in [4, 8] to study the behavior of

pendent liquid drops. To do so we first note that since the right-hand side of equation

(1.1 a) is positive, the solutions to problem (1.1) must be negative (see, e.g., [9, 21]).

From this fact we can apply a Gidas-Ni-Nirenberg type result to infer that u is necessarily

radially symmetric [22, Thm. 8.2.1]. That is, u(x, y) = u(r), where r =
√

x2 + y2, and

problem (1.1) in the unit ball B1(0) reduces to

1

r

(

ru′√
1 + ε2u′2

)′
=

λ

(1 + u)2
, 0 < r < 1; u′(0) = u(1) = 0, (2.1)

where u(r) ∈ (−1, 0] for 0 < r < 1. For convenience, we introduce the change of variable

u(r) 7→ u(ρ = r/ε), which from problem yields

1

ρ

(

ρu′√
1 + u′2

)′
=

Λ

(1 + u)2
, 0 < ρ < ε−1; u′(0) = 0, u(ε−1) = 0. (2.2)

Here, ′ now represents differentiation with respect to ρ, and Λ := ε2λ. In this form,

the ordinary differential equation in (2.2) admits the very advantageous geometrical

interpretation:

(ρ sinψ)′ =
Λρ

(1 + u)2
,

where ψ is the angle of inclination of the solution curve (ρ, u), measured counterclockwise

from the positive ρ-axis to its tangent. It is important to note that these differential

equations are equivalent on any interval in which |u′(ρ)| <∞.

Now to study the non-existence of solutions of (2.2), we look at the corresponding

initial value problem

(ρ sinψ)
′
=

Λρ

(1 + u)2
, ρ > 0; u′(0) = 0, u(0) = α ∈ (−1, 0), (2.3)

whose maximal interval of existence is [0, ρ1). Note that ρ1 ∈ (0,+∞]; however, in what

follows, we will show that for a certain range of α sufficiently close to −1 the value of

ρ1 is finite, leading to the nonexistence of solutions of problem (2.2). To show this, we

begin by proving the following lemma about solutions of initial value problem (2.3).

Lemma 2.1 If u is a solution of initial value problem (2.3) in [0, ρ1), then sinψ > 0

in (0, ρ1), which implies that u is increasing on that interval. Furthermore, we have the

following bound for ρ in (0, ρ1):

Λ

2(1 + u(ρ))2
<

sinψ

ρ
<

Λ

2(1 + α)2
. (2.4)

Proof An integration of the differential equation in problem (2.3) yields

sinψ =
Λ

ρ

∫ ρ

0

ξ

(1 + u(ξ))2
dξ > 0, ρ ∈ (0, ρ1). (2.5)
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Now since u is increasing on (0, ρ1), we have α < u(ρ) < u(ρ1) for ρ ∈ (0, ρ1), and the

equality in (2.5) gives inequality (2.4).

Next we prove a crucial lemma about the solutions of initial value problem (2.3).

Lemma 2.2 Let Λ > 0 and assume that u(ρ; Λ) is a solution to problem (2.3), whose

maximal interval of existence is [0, ρ1). If α < −1 +B(Λ), where

B(Λ) :=



















(

3− 2
√
2
)

2
Λ, when 0 < Λ 6 4 + 3

√
2,

3Λ +
√

Λ(Λ− 8)

4(1 + Λ)
, when Λ > 4 + 3

√
2,

(2.6)

then ρ1 is finite. In particular,

2(1 + α)2

Λ
< ρ1 6

2 (1 +M)
2

Λ
. (2.7 a)

Moreover, at the end point (ρ1, u1), where u1 := limρ→ρ1
− u(ρ), we have the bound

α+
2(1 + α)2

Λ
< u1 < M < 0. (2.7 b)

and u′ → +∞ as ρ → ρ1
−, i.e., the slope of u becomes vertical at ρ = ρ1. Here, M is

specifically defined as

M :=
Λ(1 + 3α)− 2(1 + α)2 − (1 + α)

√

Λ2 − 12Λ(1 + α) + 4(1 + α)2

2Λ
, (2.8)

Proof Assume, for contradiction, that there exists a value ρ in (0, ρ1) such that u(ρ) =

M , where M is defined in (2.8). Note that since α < −1+B(Λ), the value M ∈ (−α, 0).
First, we have that because u is a solution of problem (2.3),

sinψ

ρ
+ (sinψ)′ =

Λ

(1 + u)2
, ρ ∈ (0, ρ1). (2.9)

Moreover, by Lemma 2.1, the solution u is increasing on this interval and we may use it

as independent variable; thus using

d

dρ
(sinψ) = − d

du
(cosψ), (2.10)

in equation (2.9) and then integrating the result with respect to u, we obtain

Λ

2(1 + α)2
(u− α) + (1− cosψ(u)) > Λ

[

1

1 + α
− 1

1 + u

]

,

where we have used inequality (2.4); or, equivalently

1− cosψ(u) >
Λ(u− α)

(1 + α)(1 + u)
− Λ(u− α)

2(1 + α)2
. (2.11)

Then from this inequality and a comparison principle, we have our desired result (cf. [4,

§2] or [8, §4.6]).
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Therefore, we have that if u(· ;α) is a solution to (2.3), with α < −1 + B(Λ), then

its derivative blows-up in finite time. Furthermore, from the definition of B in (2.6), the

blow-up point (ρ1, u1) must happen for u1 < 0. In using this crucial fact, we can establish

the following theorem, which rigorously proves, for all ε > 0, the disappearing solution

behavior of problem (1.1) in B1(0) observed in [1].

Theorem 2.3 Fix ε > 0 and let u(· ;λ), with λ > 0, be a solution to problem (1.1) in

the two-dimensional unit ball B1(0). Then ‖u‖∞ 6 1 − B(ε2λ), where B is defined in

(2.6).

Proof Because u is a solution of problem (1.1) in B1(0), we have that it is radially

symmetric and increasing with respect to r (see Lemma 2.1), implying u(0) = −‖u‖∞.

Furthermore, u(r/ε) is a solution of problem (2.2), which in turn is a solution of problem

(2.3) on (0, ρ1), with ρ1 > 1/ε. Assuming ‖u‖∞ > 1−B(ε2λ), i.e., u(0) < −1 +B(ε2λ),

we obtain that u|∂B1(0) 6 u(ρ1) < 0, which is a contradiction. Therefore, this assumption

must be wrong, which implies that ‖u‖∞ 6 1−B(ε2λ).

An immediate corollary to this theorem is the following.

Corollary 2.4 Let ε > 0 be fixed and λ > 0. Then there exists an α∗(ε, λ) < 1 such that

if u(· ;λ) is a solution of problem (1.1) in B1(0), then ‖u‖∞ < α∗.

An illustration of Theorem 2.3 is shown in Figure 5.
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Figure 5. An illustration of Theorem 2.3. On or below the dashed line is the region where ‖u‖∞
must be, if u is a solution of problem (1.1) in B1(0). As seen, this region keeps the bifurcation
diagram bound away from ‖u‖∞ = 1. (a) For ε = 0.5; (b) For ε = 1.

2.2 Asymptotic analysis

In this section, we develop a novel singular perturbation technique to analyze the upper

solution branch of problem (1.1) in the two-dimensional unit ball for ε≪ 1. To this end,
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we consider the equation

1

r

(

ru′√
1 + ε2u′2

)′
=

λ

(1 + u)2
, 0 < r < 1; u′(0) = u(1) = 0, (2.1)

in the limits ε → 0+ and δ → 0+, where δ := 1 − ‖u‖∞ = 1 + u(0). The analysis will

reveal that these two small parameters must be related together in order to facilitate the

matching. In these limits, (2.1) is a singular perturbation problem with an inner layer at

r = 0. Therefore, in the outer region away from r = 0, we expand u and λ as

u = u0 + ε2u1 +O(ε4), λ = λ0 + ε2λ1 +O(ε4), (2.12)

and gather terms of similar order to find

∆u0 =
λ0

(1 + u0)2
, u0(0) = −1, u0(1) = 0, (2.13 a)

∆u1 +
2λ0

(1 + u0)3
u1 =

λ1
(1 + u0)2

+
3λ0(u0

′)2

2(1 + u0)2
− (u0

′)3

r
, u1(1) = 0. (2.13 b)

Here, ∆ := ∂rr+r
−1∂r denotes the two-dimensional radial Laplacian. The general solution

of problem (2.13) is

u0 = −1 + r2/3, λ0 =
4

9
; u1 =

λ1
3λ0

r2/3 +A sin(ω log r + φ) (2.14)

for constants A, φ—which will be determined by matching—and ω := (2
√
2)/3. Note

that u0
′ is not finite at r = 0, so the condition u′(0) = 0 will need to be enforced in a

boundary layer centered around r = 0. The value of λ1 will eventually be fixed by the

boundary condition u1(1) = 0.

Next we analyze the boundary layer near r = 0 by introducing the inner variables

ρ = r/γ, u = −1 + δw(ρ),

where γ ≪ 1 is the scale of the boundary layer. Substituting these change of variables

into problem (2.1) gives the following equation for w(ρ):

1

ρ

(

ρw′
√

1 + ε2δ2γ−2w′2

)′

=
γ2

δ3
λ

w2
, 0 < ρ <∞; w(0) = 1, w′(0) = 0.

A dominant balance requires that γ = δ3/2 and ε2/δ = δ0, where δ0 is an O(1) constant.

Then we expand w as w = w0 +O(1), for δ → 0+, and find that the problem for w0(ρ) is

1

ρ

(

ρw0
′

√
1 + δ0w0

′2

)′
=

λ0
w0

2
, 0 < ρ <∞; w0(0) = 1, w0

′(0) = 0. (2.15)

The matching condition, from (2.14), provides the leading order far field behavior w0 ∼
ρ2/3 as ρ → ∞. To find the next order correction, we look for perturbations about this

leading order form. Specifically, we let w0 = ρ2/3+v(ρ)+ · · · as ρ→ ∞, where v ≪ ρ2/3,

and retain all the linear terms to obtain

∆v +
2λ0
ρ2

v +
2δ0
ρ4/3

v′ = 0,
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which via WKB analysis has the far field behavior

v ∼ Ã(δ0) sin(ω log ρ+ φ̃(δ0)), as ρ→ ∞.

Therefore, the function w0 ∼ ρ2/3 + v + · · · as ρ → ∞, which augments problem (2.15)

to give the full specification of w0:

1

ρ

(

ρw0
′

√
1 + δ0w0

′2

)′
=

λ0
w0

2
, 0 < ρ <∞; w0(0) = 1, w0

′(0) = 0, (2.16 a)

w0 ∼ ρ2/3 + Ã(δ0) sin(ω log ρ+ φ̃(δ0)), as ρ→ ∞. (2.16 b)

To carry out matching, we introduce the intermediate variable rη = r/η(ε), where

ε3 ≪ η ≪ 1 as ε→ 0+, and the corresponding order O(ε2) condition

lim
ε→0+

rη fixed

1

ε2

(

u0(ηrη) + ε2u1(ηrη) + 1− ε2

δ0
w0(δ0

3/2ηrη/ε
3))

)

= 0. (2.17)

From solution (2.14) and problem (2.16) we have

1

ε2
u0(ηrη) = − 1

ε2
+

η

ε2
rη
2/3

u1(ηrη) =
λ1
3λ0

η2/3rη
2/3 + A sin(ω log ηrη + φ)

1

δ0
w0

(

δ0
3/2ηrη
ε3

)

=
η2/3

ε2
rη
2/3 +

Ã(δ0)

δ0
sin(ω log(ηrη) + ω log

δ0
3/2

ε3
+ φ̃(δ0)) + O(1)

as ε→ 0+, where rη is fixed, so that equation (2.17) yields

A =
Ã(δ0)

δ0
, φ = ω log(δ0

3/2/ε3) + φ̃(δ0).

Finally applying the boundary condition u1(1) = 0 in (2.14) gives

λ1 = −3λ0
Ã(δ0)

δ0
sin(ω log(δ0

3/2/ε3) + φ̃(δ0))

and hence,

λ = λ0 + ε2λ1 +O(ε4) = λ0 − δ3λ0Ã(δ0) sin(−
√
2 log δ + φ̃(δ0)).

At this stage, we fix the value of ε in the main problem (2.1) and write δ0 = ε2/δ with

ε2 fixed but still O(δ). This leads to the following asymptotic result regarding the upper

solution branch of the bifurcation curve for problem (1.1) in B1(0).

Principal Result 2.1 For solutions u of problem (1.1) in the two-dimensional unit ball

B1(0), there is a regime where both ε ≪ 1 and δ ≪ 1, with ε2/δ = O(1), such that the

upper solution branch of the bifurcation curve has the asymptotic parameterization

‖u‖∞ = 1− δ, λ =
4

9
− δ

4

3
Ã(ε2/δ) sin

[

−
√
2 log δ + φ̃(ε2/δ)

]

+O(δ2). (2.18)
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where Ã(δ0) and φ̃(δ0) are functions determined by the initial value problem

1

ρ

(

ρw0
′

√

1 + δ0(w0
′)2

)′

=
4

9

1

w2
0

, 0 < ρ <∞; w0(0) = 1, w0
′(0) = 0 (2.19 a)

w0 = ρ2/3 + Ã(δ0) sin

(

2
√
2

3
log ρ+ φ̃(δ0)

)

+ O(1) ρ→ ∞. (2.19 b)

The asymptotic parameterization (2.18) of the upper solution branch of (2.1) appears

outwardly to be defined for ‖u‖∞ arbitrarily close to 1, potentially contradicting Corol-

lary 2.4. However, the parameterization assumes that the quantities Ã(ε2/δ) and φ̃(ε2/δ)

are well defined as δ → 0+. So one can expect that Ã(δ0) and φ̃(δ0) will not be defined

for δ0 sufficiently large. Therefore before observing the predictive accuracy of (2.18), let

us first consider the existence of solutions to (2.19 a) for δ0 sufficiently large.

To do so, we follow a similar procedure to the one outlined in the previous section and

introduce a change of variables—specifically, ξ = ρ/
√
δ0, with w0(ρ) = v(ξ)—so that

problem (2.19 a) becomes

1

ξ

(

ξv′
√

1 + (v′)2

)′

=
4δ0
9

1

v2
, 0 < ξ <∞; v(0) = 1, v′(0) = 0. (2.20)

Hence, the mean curvature operator is isolated on the left-hand side, and the differential

equation in problem (2.20) yields the geometric representation

(ξ sinψ)′

ξ
=

4δ0
9

1

v2
, (2.21 a)

where ψ is the angle of inclination of the solution curve. In noting that the differential

equation in problem (2.20) and differential equation (2.21 a) are equivalent on any interval

in which v′(ξ) is bounded, we look at (2.21a), coupled with the initial condition

v(0) = 1, (2.21 b)

to study the nonexistence of solutions of problem (2.20). Also note that if v satisfies prob-

lem (2.21), then the condition v′(0) = 0 is redundant, which can be seen by integrating

differential equation (2.21 a) and then taking ξ → 0+. Futhermore, we set [0,Ξ) to be

the maximal interval of existence of initial value problem (2.21) and like in §2.1, show
that Ξ must be finite when δ0 is sufficiently large.

Lemma 2.5 If v satisfies initial value problem (2.21) on [0,Ξ), then sinψ > 0 for ξ ∈
(0,Ξ), which implies that v is increasing on that interval. Furthermore, we have the

following bound for ξ in (0,Ξ):

2δ0
9v(ξ)2

<
sinψ(ξ)

ξ
<

2δ0
9
. (2.22)
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Proof Integrating differential equation (2.21 a) yields

sinψ(ξ) =
4δ0
9

1

ξ

∫ ξ

0

η v(η)−2 dη > 0.

for all ξ in (0,Ξ), and the results follow as in Lemma 2.1.

Now, we can prove the main lemma which leads to our desired main result for the

nonexistence of solutions of problem (2.19 a).

Lemma 2.6 Assume that v is a solution of initial value problem (2.21 a) with v(0) = 1,

whose maximal interval of existence is [0,Ξ). If

δ0 > δ̄0 :=
9(2

√
2 + 3)

2
, (2.23)

then Ξ and V := limξ→Ξ− v(ξ) must satisfy

9

2δ0
< ξ1 6

9

2δ0
M̄2 and 1 +

9

2δ0
< V < M̄, (2.24)

respectively, where

M̄ :=
3(2δ0 − 3)−

√

4δ0(δ0 − 27) + 81

4δ0
> 1. (2.25)

Moreover, v′ → +∞ as ξ → Ξ−, i.e., v′ blows-up in finite time.

Proof Assume for contradiction that there exist a value ξ in (0,Ξ) such that v(ξ) = M̄ .

First by Lemma 2.5, we know that on (0,Ξ) the solution v is increasing and consequently,

may use it as the independent variable; thus equation (2.21 a) gives

sinψ

ξ
− (cosψ)v =

4δ0
9

1

v2
, (2.26)

Then integrating with respect to v and using inequality (2.22) yields

1− cosψ(v) >
4δ0
9

(

1− 1

v

)

− 2δ0
9

(v − 1),

or

2δ0
9

(

v +

[

9

2δ0
− 3

]

+
2

v

)

> cosψ(v);

Then, as in proof of Lemma 2.2, the final results follow from this inequality and a

comparison theorem (see again [4, §2] or [8, §4.6]).

Therefore, since problem (2.21) and problem (2.20) are equivalent on (0, ξ1), then the

derivative of problem (2.20) also blows-up in finite time, which after changing variables

back to ρ yields the following result concerning initial value problem (2.19 a).

Theorem 2.7 There exists a value δ∗0 such that for δ0 > δ∗0 no global solutions of initial
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value problem (2.19a) exist. Furthermore,

δ∗0 6 δ̄0 :=
9(2

√
2 + 3)

2
≈ 26.2279.

Remark A numerical integration of the initial value problem (2.19 a) gives δ∗0 ≈ 18.142468,

indicating that δ̄0 is not a particularly tight upper bound on δ∗0 .

As a result of this theorem, an expansion for the dead-end point (λ∗(ε), α∗(ε)) can now

be extracted from (2.18); specifically, since problem (2.19a) has no solutions for δ0 > δ∗0 ,

the asymptotic approximation (2.18) fails at ε2/δ = δ∗0 , or δ = ε2/δ∗0 . Therefore using

these values in (2.18), the following asymptotic result for the dead-point of problem (1.1)

is established.

Principal Result 2.2 For ε≪ 1, the dead-end point (λ∗(ε), α∗(ε)) of the upper solution

branch of the bifurcation curve of problem (1.1) in the two-dimensional unit ball B1(0)

has the asymptotic expansion

α∗(ε) = 1− ε2/δ∗0 +O(ε4),

λ∗(ε) =
4

9
− ε2

4

3

Ã(δ∗0)

δ∗0
sin
[

−
√
2 log(ε2/δ∗0) + φ̃ (δ∗0)

]

+O(ε4).
(2.27)

In order to study the quantitative accuracy of Principal Results 2.1 and 2.2, it is

necessary to obtain the functions Ã(δ0) and φ̃(δ0), which are readily acquired by solving

problem (2.19a) numerically, then subtracting off the growth term ρ2/3 and applying

a least squares fit to the remainder (see Figure 6). In Figure 7, comparisons of the full

numerical solution of the upper branch of the bifurcation curve and asymptotic prediction

of (2.18) are displayed; furthermore, the agreement is observed to be very good.

In Figure 8, a comparison of the numerical and asymptotic values for the location

of the dead-end point is shown; note that agreement is very good, as in each case the

asymptotic error is O(ε4).

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

δ0

Ã
(δ

0
)

0 5 10 15 20
3

4

5

6

7

8

9

10

11

δ0

φ̃
(δ

0
)

Figure 6. Graphs of Ã(δ0) and φ̃(δ0) against δ0. The numerical integration fails abruptly at
roughly δ0 = δ∗0 ≈ 18.142468.
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Figure 7. Comparison of the full numerical solution of the bifurcation curve for problem (1.1)
in B1(0) (solid) with asymptotic formula (2.18) (dashed) and the solution curve of (1.1) in B1(0)
for δ = 0 (dash dot).

In Figure 9(a), the numerical (solid) and global asymptotic (dashed) solutions of prob-

lem (1.1) in B1(0) at the dead-end point (λ∗, α∗) for ε
2 = 0.2 are displayed. As expected

(see §2.1), the tangent of the solution curve is almost vertitcal, indicating that the deriva-

tive of the solution is becoming unbounded. Indeed, when solutions w0
′(ρ; δ0) of problem

(2.19 a) are plotted for several δ0 a blow-up in w0
′(ρ; δ0), as δ0 → δ∗0 , is observed (see

Figure 9(b)). This suggests that beyond the dead-end point solutions of (1.1) in B1(0)

cannot be represented by a nonparametric function. Therefore, in the next section, prob-

lem (1.1) in B1(0) is put into parametric form, and consequently becomes a system of

coupled ordinary differential equations. An asymptotic study of this coupled system re-

veals that strictly parametric solutions of problem (1.1) are present beyond the dead-end

point of the bifurcation diagram.
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0
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ε

1
−

α
∗
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(a) ε2/δ∗0 = 1− α∗(ε)

0 0.1 0.2 0.3 0.4 0.5
0.43

0.435

0.44

0.445

0.45

0.455

ε

λ
∗
(ε

)

(b) λ∗(ε)

Figure 8. Comparison of the asymptotic prediction, (2.27), (dashed line) of the dead end point
(λ∗(ε), α∗(ε)) with full numeric computations (solid) for: (a) the O(ε2) correction of α∗(ε); (b)
λ∗(ε). Notice that the scale on the y-axis of the right figure is quite fine and so the agreement
for λ∗(ε) is in fact better than the figures makes it appear.
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(a) Global Approximation for ε2 = 0.2.
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0

1
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ρ

w
0′
(ρ

)

(b) Blow up of w0
′(ρ; δ0) as δ0 → δ∗0 .

Figure 9. (a) The numerical (solid) and global asymptotic (dashed) profile in the boundary
layer. The curve is almost vertical indicating that the derivative is becoming infinite. (b) The
derivative function w0

′(ρ; δ0) plotted for several δ0. As δ0 → δ∗0 , it observed that w0
′(ρ; δ0)

appears to develop a singularity at a finite ρ∗.

2.3 Arc length asymptotic analysis

In this section, we analyze the parametric problem, (1.4), for ∂Ω = ∂B1(0), i.e.,

2H/ε =
λ

(1 + z)2
on Σ, (2.28 a)

(x, y) = ∂B1(0) on ∂Σ, z = 0 on ∂Σ, (2.28 b)

where the surface Σ is defined the by the map X(a, b; ε) = (x(a, b), y(a, b), εz(a, b)) and

H is its mean curvature. To simplify the situation, we first note that due to a result of

Wente [23], the surface X must be rotationally symmetric about its vertical axis. Thus,

X can be written as X(s, θ; ε) = (r(s) cos θ, r(s) sin θ, εz(s)), where θ ∈ [0, 2π) and s is

the arc-length parameter of the curve (r(s), εz(s)). Second, we have

∆ΣX = 2HN,

where ∆Σ is the Laplace-Beltrami operator on Σ and N is a unit normal on Σ (cf. [6],

pp.72–74). As a result, problem (2.28) reduces the the following problem for r(s) and

z(s) (cf. [1], p.463):

r′′ = − ε2λz′

(1 + z)2
+
ε2(z′)2

r
, z′′ +

r′z′

r
=

λr′

(1 + z)2
, 0 < s < ℓ;

r(0) = 0, r′(0) = 1, r(ℓ) = 1, z′(0) = 0, z(ℓ) = 0,

(2.29)

where λ and ℓ are unknown parameters to be determined. Furthermore, to facilitate the

analysis of the upper solution branch, we impose the condition z(0) = −1+ δ and study

problem (2.29) in the limits ε → 0+ and δ → 0+, where the relationship between these

two small parameters is to be determined. In the outer region away from s = 0, we
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expand r, z, λ and ℓ as

r(s; ε) = r0(s) + ε2r1(s) + ε4r2(s) +O(ε6),

z(s; ε) = z0(s) + ε2z1(s) + ε4z2(s) +O(ε6),
(2.30 a)

and

λ(ε) = λ0 + ε2λ1 + ε4λ2 +O(ε6), ℓ(ε) = ℓ0 + ε2ℓ1 + ε4ℓ2 +O(ε6), (2.30 b)

which upon substituting into problem (2.29) gives

r0
′′ = 0, z0

′′ +
r0

′z0
′

r0
=

λ0r0
′

(1 + z0)2
, 0 < s < 1;

r0(0) = 0, r0
′(0) = 1, r0(ℓ0) = 1, z(0) = −1, z0

′(0) = 0, z0(ℓ0) = 0,

(2.31)

at order O(1). Therefore in solving problem (2.31) we find

r0(s) = s, z0(s) = −1 + s2/3, λ0 =
4

9
, ℓ0 = 1. (2.32)

However, z0
′(0) 6= 0 and therefore, we have a boundary layer at s = 0 for z(s). Next,

from (2.29), (2.30) and (2.32) we have

r1
′′ =

4

27
s−5/3, z1

′′ +
1

s
z1

′ +
8

9s2
z1 =

2

3

r1
s7/3

+
9λ1 − 2r1

′

9s4/3
,

r1(0) = 0, r1
′(0) = 0, r1(1) = −ℓ1, z1(1) = −2

3
ℓ1,

(2.33)

at order O(ε2). The solution for r1(s) is

r1(s) =

(

2

3
− ℓ1

)

s− 2

3
s1/3 (2.34)

where the condition r1
′(0) = 0 will be enforced in the boundary layer at s = 0. Then

using solution (2.34) in problem (2.33), we obtain

z1
′′ +

1

s
z1

′ +
8

9s2
z1 = − 32

81s2
+

(

λ1 +
8

27
− 4

9
ℓ1

)

1

s4/3
, z1(1) = 0,

which upon solving gives

z1(s) =
(27λ1 + 8− 12ℓ1)

36
s2/3 − 4

9
+A1 sin (ω log s+ φ1) , ω :=

2
√
2

3
. (2.35)

Here, A1 and ϕ1 are constants that will be determined by matching and the value of λ1
will be determined later by applying the condition z1(1) = −2ℓ1/3. In order to fix the

value of ℓ1, an expansion to higher order is required. Accordingly, we use (2.30) in (2.29)

to find a system of differential equations at order O(ε4) (see Appendix B), which upon

solving gives

r2(s) =
K1

s1/3
+K2 +

6ℓ1 − 4 + 36A1 sinφ1
27

s1/3 + C2s,

where

K1 :=
2 + 4

√
2A1 cos (ω log s+ φ1)− 16A1 sin (ω log s+ φ1)

27
,

K2 :=

(

2

27
− 2ℓ1

3
+ ℓ1

2 − ℓ2 − C2 −
2

9
ωA1 cosφ1 −

20

27
A1 sinφ1

)

,
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and

z2(s) =
K3

s2/3
+

K4

s1/3
+

4

3
A1 sinφ1 +A2 sin (ω log s+ φ2) +K5s

2/3,

where

K3 :=
2

81
+
A1

2

2
− 58

√
2

81
A1 cos (ω log s+ φ1)−

20

81
A1 sin (ω log s+ φ1)

+
5

38
A1

2 cos (2ω log s+ 2φ1) +
2
√
2

19
A1

2 sin (2ω log s+ 2φ1) ,

K4 :=
4− 36ℓ1 + 54ℓ1

2 − 54ℓ2 − 54C2 − 8
√
2A1 cosφ1 − 40A1 sinφ1

18
,

K5 :=
48ℓ1 − 36ℓ1

2 − 16− 162A1
2 + 243λ2 + 108C2

324

+
9A1

2 cos 2φ1 − 2A1(3ℓ1 − 2) sinφ1
18

.

Next we introduce the inner variable ρ = s/γ, which after plugging into z0 gives the

near field behavior z = −1 + γ2/3ρ + · · · as s → 0+. Moreover, z = −1 + O(δ) in the

inner layer, and as a result, we choose γ = δ3/2. Then for matching we write the outer

solution, (2.30 a), in terms of the inner variable, ρ = s/δ3/2, to obtain

r = δ3/2
(

ρ− 2δ0
3
ρ1/3 +

δ0
2K1

ρ1/3

)

+ δ2δ0
2K2

+ δ5/2
(

δ0

(

2

3
− ℓ1

)

ρ+
δ0

2(6ℓ1 − 4 + 36A1 sinφ1)

27
ρ1/3

)

+O(δ7/2)

(2.36 a)

and

z = −1 + δ

(

ρ2/3 − 4δ0
9

+ δ0A1 sin
(

ω log ρ+
√
2 log δ + φ1

)

+
δ0

2K3

ρ2/3

)

+ δ3/2
δ0

2K4

ρ1/3

+ δ2
((

(4 − 6ℓ1)δ0
9

− δ0A1 sinφ1

)

ρ2/3

+
4δ0

2

3
A1 sinφ1 + δ0

2A2 sin
(

ω log (δ3/2ρ) + φ2

)

)

+O(δ3)

(2.36 b)

as s→ 0+. It will be seen that the inner solution cannot be matched to the order O(δ2)

of expansion (2.36 a). For this reason, the constant C2 is chosen such that K2 vanishes,

which causes K4 to vanish and gives the reduced local behavior

r = δ3/2
[

ρ− 2δ0
3
ρ1/3 +O(ρ−1/3)

+ δ

(

δ0

(

2

3
− ℓ1

)

ρ+
δ0

2(6ℓ1 − 4 + 36A1 sinφ1)

27
ρ1/3

)

+O(δ2)

]

,

(2.37 a)
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and

z = −1 + δ

[

ρ2/3 − 4δ0
9

+ δ0A1 sin
(

ω log ρ+
√
2 log δ + ϕ1

)

+O(ρ−2/3)

+ δ

((

(4− 6ℓ1)δ0
9

− δ0A1 sinφ1

)

ρ2/3 +O(1)

)

+O(δ2)

]

,

(2.37 b)

as s → 0+. As a consequence, these local expansions motivate us to introduce the fol-

lowing local variables within the vicinity of s = 0:

ρ = s/δ3/2, r(s) = δ3/2R(ρ), z(s) = −1 + δZ(ρ). (2.38)

These new variables then transform the system of differential equations in (2.29) into

R′′ =
ε2

δ

(

−λZ
′

Z2
+

(Z ′)2

R

)

, Z ′′ +
R′Z ′

R
=
λR′

Z2
. (2.39)

Here a dominant balances requires ε2/δ = δ0, where δ0 = O(1). Therefore, expanding R

and Z as

R = R0 + δR1 +O(δ2), Z = Z0 + δZ1 +O(δ2), (2.40)

respectively, we find that the leading order problem for the inner solution is

R0
′′ = −δ0

λ0Z0
′

Z0
2 + δ0

(Z0
′)2

R0
, Z0

′′ +
R0

′Z0
′

R0
=
λ0R0

′

Z0
2 , 0 < ρ <∞;

R0(0) = 0, R0
′(0) = 1, Z0(0) = 1, Z0

′(0) = 0.

(2.41)

To find the far field behavior of R0 and Z0, we assume R0 ∼ ρ + V as ρ → ∞, where

V ≪ ρ, and Z0 ∼ ρ2/3 +W as ρ → ∞, where W ≪ ρ2/3. Substituting these relations

into problem (2.41), gives asymptotic differential equations for V (ρ) and W (ρ),

V ′′ ∼ 4δ0
27

ρ−5/3, W ′′ +
W ′

ρ
+

2λ0
ρ2

W ∼ −32δ0
81

1

ρ2
, as ρ→ ∞,

whose solution is V ∼ −(2δ0/3)ρ
1/3,W ∼ −δ0λ0+Ã1(δ0) sin(ω log ρ+ φ̃1(δ0)) as ρ→ ∞.

Hence, the far field behavior for the solution, R0 and Z0 of problem (2.41) is

R0(ρ) = ρ− 2δ0
3
ρ1/3 + O(1),

Z0(ρ) = ρ2/3 − δ0λ0 + Ã1(δ0) sin
(

ω log ρ+ φ̃1(δ0)
)

+ O(1),
as ρ→ ∞. (2.42)

Proceeding to O(δ) terms, we substitute the expansions in (2.40) into problem (2.39) to

find that R1 and Z1 satisfy

R1
′′ = δ0

(

−δ0λ1Z0
′ + λ0Z1

Z0
2 +

2λ0Z1Z0
′

Z0
3 − R1Z0

′2

R0
2 +

2Z0
′Z1

′

R0

)

, 0 < ρ <∞,

Z1
′′ =

δ0λ1R0
′ + λ0R1

′

Z0
2 − 2λ0Z1R0

′

Z0
3 +

R1R0
′Z0

′

R0
2 − R1

′Z0
′ +R0

′Z1
′

R0
, 0 < ρ <∞,

R1(0) = 0, R1
′(0) = 0, Z1(0) = 0, Z1

′(0) = 0.

(2.43)

From the expansions in (2.37) we expect the far field behavior of both R1 and Z1 to grow

algebraically. Therefore, we assume R1 ∼ aρα and Z1 ∼ bρβ as ρ → ∞ and substitute
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this behavior into problem (2.43) along with the far field behavior of R0 and Z0. After a

dominant balance, this yields

aα(α− 1)ρα−2 ∼ −2δ0
2λ1
3

ρ−5/3 +

(

4bβδ0
3

+
4bδ0λ0

3
− bβδ0λ0

)

ρβ−7/3,

bβ(β − 1)ρβ−2 ∼ δ0λ1ρ
−4/3 − b (β + 2λ0) ρ

β−2,

as ρ→ ∞. Consequently,

a = −δ02λ1, α =
1

3
, b =

3δ0λ1
4

, β =
2

3
,

which implies that

R1 ∼ −δ02λ1ρ1/3, Z1 ∼
3δ0λ1
4

ρ2/3, as ρ→ ∞. (2.44)

As a result, expansions (2.40), (2.42) and (2.44) give the following far field behavior of

the inner solution:

R =

(

ρ− 2δ0
3
ρ1/3 + · · ·

)

+ δ
(

−δ02λ1ρ1/3 + · · ·
)

+O(δ2),

Z =
(

ρ2/3 − δ0λ0 + Ã1(δ0) sin
(

ω log ρ+ φ̃1(δ0)
)

+ · · ·
)

+ δ

(

3δ0λ1
4

ρ2/3 + · · ·
)

+O(δ2)

(2.45)

as δ → 0+ and ρ → ∞. Then for matching we compare (2.38), using (2.45), with (2.37)

to get

ℓ1 =
2

3
, A1 =

Ã1(δ0)

δ0
, φ1 = φ̃1(δ0)−

√
2 log δ, λ1 = −4

3
A1 sinφ1. (2.46)

Note that the boundary condition z1(1) = −2ℓ1/3 is automatically satisfied by the

value of λ1 determined in (2.46). By returning to the definition of λ made in (2.30 b) and

recalling that ε2/δ = δ0 , a two term expansion of λ is now given by

λ =
4

9
− δ

4

3
Ã1(ε

2/δ) sin
[

−
√
2 log δ + φ̃1(ε

2/δ)
]

+ · · · .

Next, we fix ε in governing problem (2.29). Therefore, for our asymptotic analysis to

remain valid, we need ε2/δ = δ0 = O(1), leading to the following asymptotic result

regarding the upper solution branch of the bifurcation diagram of (2.29).

Principal Result 2.3 For solutions of (1.4) with ∂Ω = ∂B1(0), there is a regime where

both ε ≪ 1 and δ ≪ 1, with ε2/δ = O(1), such that the upper solution branch of the

bifurcation curve has the asymptotic parameterization, (λ(δ; ε), |z(0)|), where

|z(0)| = 1− δ, λ = λ0 − δ
4

3
Ã1(ε

2/δ) sin
[

−
√
2 log δ + φ̃1(ε

2/δ)
]

+O(δ2). (2.47)

Moreover, λ0 = 4/9, and Ã1(δ0) and φ̃1(δ0) are functions determined by the far field

behavior of Z0,

Z0(ρ) = ρ2/3 − 4δ0
9

+ Ã1(δ0) sin
(

ω log ρ+ φ̃1(δ0)
)

+ O(1) as ρ→ ∞, (2.48 a)
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of the initial value problem

R0
′′ = −4δ0

9

Z0
′

Z0
2 + δ0

(Z0
′)2

R0
, Z0

′′ +
R0

′Z0
′

R0
=

4

9

R0
′

Z0
2 , 0 < ρ <∞;

R0(0) = 0, R0
′(0) = 1, Z0(0) = 1, Z0

′(0) = 0,

(2.48 b)

where

R0(ρ) = ρ− 2δ0
3
ρ1/3 + O(1) as ρ→ ∞. (2.48 c)

To study the accuracy of this result, we compute the functions Ã1(δ0) and φ̃1(δ0) as in

§2.2 (see Figure 10). As expected, these new functions are continuations of those found

in Principal Result 2.1.

A combination of the asymptotic formula (2.47) and the numerically obtained functions

Ã1(δ0) and φ̃1(δ0) allow for a reconstruction of the bifurcation diagram (see Figure 11).
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(c) R0(ρ), δ0 = 75.
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(d) R0 vs Z0, δ0 = 75.

Figure 10. Upper left and right: Graphs of Ã1(δ0) and φ̃1(δ0) against δ0 computed from (2.48).
The solid line indicates where the coefficients agree with those computed from (2.19 a). Lower
left and right: Plots of R0(ρ) vs ρ and R0(ρ) vs Z0(ρ) for δ0 = 75. The oscillatory nature of R0

observed in (c) accounts for the multivalued solutions shown in (d).
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Numerically, Ã1(δ0) appears to grow linearly as δ0 → ∞, which would indicate that

δÃ1(ε
2/δ) is finite as δ → 0. Therefore the analysis predicts that the upper solution branch

of problem (2.29) undergoes infinitely many fold points in a way similar to the upper

branch of problem (1.3) for the two-dimensional unit disk. This prompts the following

conjecture.

Conjecture 2.8 For ε > 0 fixed and sufficiently small, the upper solution branch of the

bifurcation diagram of problem (1.4), with ∂Ω equal to the unit circle, undergoes infinitely

many folds. Also as |z(0)| → 1−, the nonlinear eigenvalue λ > 0 goes to a finite value

that is bounded away from zero.

In Figure 11, asymptotic approximation (2.47) is compared with the numerically com-

puted bifurcation diagram of problem (2.28). From this we see that the observed agree-

ment is very good.

0.4444 0.4445 0.4445
0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

λ

|z
(0
)|

(a) ε = 0.05

0.444 0.4445 0.445
0.9975

0.998

0.9985

0.999

0.9995

1

λ

|z
(0
)|

(b) ε = 0.1

Figure 11. Comparison of the full numerical solution of the bifurcation curve for (1.1) in B1(0)
(solid) with asymptotic formula (2.18) (dashed) for: (a) ε = 0.05; (b) ε = 0.1. In both (a) and
(b), the asymptotic prediction agrees extremely well with the full numerical solution.

3 Conclusion

In this work, we have analyzed the upper branch of solutions to problem (2.28) in the

limit ‖u‖∞ → 1−. In this situation there are marked differences between the solution

structure for ε = 0 and ε > 0. We have shown that for any ε > 0, solutions u of problem

(1.1) in B1(0) do not exist for ‖u‖∞ arbitrarily close to 1. Also, it is observed that as

the upper solution branch is traversed, a singularity in the first derivative of the solution

develops in the interior of the domain, and at this singularity, the branch of solutions

ends abruptly at a single dead-end point. Our asymptotic analysis allows for an accurate

prediction of this point to be made by relating it to a singularity in an associated initial

value problem. Moreover, our analysis predicts that the singularity occurs for a fixed

value of ε2/(1+‖u‖∞) and therefore establishes a relationship between a given ε and the
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dead-end point. In each case, the asymptotic parameterizations obtained for the solution

branch compare very well with full numerical solutions.

Finally, by studying a parametric version of problem (1.1), we find and analyze a new

family of solutions emanating from the dead-end point. These solutions are found to be

strictly parametric and provide a natural continuation of the bifurcation curve beyond

the dead-end point. This new solution branch retains the infinite fold points feature of

the ε = 0 problem.

The main limitation of our study is that we deal only with the two-dimensional unit

ball domain. Though our analysis has revealed interesting structure, an investigation

of problem (1.1) in more general domains would be desirable; specifically, can a result

like Theorem 2.3 be formulated. Additionally, it would be interesting to study solutions

of problem (1.1) in the unit ball in higher spatial dimensions. It has been rigorously

established that when B1(0) ⊂ R
n and 2 6 n 6 7, the bifurcation diagram of problem

(1.3) exhibits the infinite fold points structure [11]. What then is the effect of positive ε

on the bifurcation structure of (1.1) when n > 3?

Another interesting avenue for future investigation is the dynamic version of prob-

lem (1.1), namely the equation

ut = div
∇u

√

1 + ε2|∇u|2
− λ

(1 + u)2
in Ω× (0, T );

u(x, 0) = 0 in Ω, u = 0 in ∂Ω× (0, T ).

(3.1)

Is there an equivalent of disappearance of solutions for problem (3.1), i.e., does u or its

derivatives exhibit a singularity at some finite t before reaching u = −1?
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Appendix A

To solve (2.29) numerically, we use a shooting method. That is, we impose the initial

conditions

r(0) = 0, r′(0) = ℓ, z′(0) = 0, z(0) = α, (A 1)

where α ∈ (−1, 0) and find (λ, ℓ) such that F (λ, ℓ) :=
[

r(1;λ, ℓ)− 1 z(1;λ, ℓ)
]T

= 0.

To do so, we apply Newton’s method and iterate as

λn+1 = λn −







∂r

∂λ
(1;λn, ℓn)

∂r

∂ℓ
(1;λn, ℓn)

∂z

∂λ
(1;λn, ℓn)

∂z

∂ℓ
(1;λn, ℓn)







−1

[

r(1;λn, ℓn)− 1

(1;λn, ℓn)

]
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where λn =
[

λn ℓn
]T

. Therefore at each step we need to find rλ(1;λn, ℓn), rℓ(1;λn, ℓn),

zλ(1;λn, ℓn) and zℓ(1;λn, ℓn). To this end, we differentiate the ode given in (2.29) and

the initial conditions (A 1) with respect to λ and separately with respect to ℓ to get two

auxiliary problem for (rλ, zλ) and (rℓ, zℓ), whose solutions evaluated at ξ = 1 yield our

desired result.

Appendix B

Here are the order O(ε4) outer ODEs for (2.29):

r2
′′ =

M1

s7/3
+
M2

s5/3
,

r2(1) = ℓ1(ℓ1 − λ0)− ℓ2,

z2
′′ +

1

s
z2

′ +
2λ0
s2

z2 =
2r2
3s7/3

− 2r2
′

9s4/3
− M3

s2
+
M4

s4/3
− M5

s8/3

z2(1) =
ℓ1(15ℓ1 − 8)

27
− 2ℓ2

3
+

2A1ℓ1
3

(sinφ1 −
√
2 cosφ1)

(B 1)

where

M1 :=
144

√
2A1 cos

(

2
√
2

3 log s+ φ1

)

+ 144A1 sin
(

2
√
2

3 log s+ φ1

)

+ 8

243

M2 :=
8− 12ℓ1 − 72A1 sinφ1

243

M3 :=
32(3− 2ℓ1 − 9A1 sinφ1)

729

M4 :=
227 + 48ℓ1 − 36ℓ1

2 − 36A1(3ℓ1 − 2) sinφ1 − 324A1
2 sin2 φ1

243

M5 :=
4
(

4 + 54
√
2A1 cos

(

2
√
2

3 log s+ φ1

)

+ 180A1 sin
(

2
√
2

3 log s+ φ1

))

729

−
4A1

2 sin2
(

2
√
2

3 log s+ φ1

)

3

and we have simplified the result using (2.32), (2.34), (2.35) and (2.46).
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