Basic Concepts of
Crystallography




Language of Crystallography: Real Space

 Combination of local (point) symmetry elements, which include angular rotation,
center-symmetric inversion, and reflection in mirror planes (total 32 variants), with
translational symmetry (14 Bravais lattice) provides the overall crystal symmetry in
3D space that is described by 230 space group. Formula of crystallography:

Local (point)symmetry + translational symmetry — spatial symmetry
OR
32 Point groups + 14 Bravais lattice —230 space group



Unit Cell

* In 3D space the unit cells are replicated by three noncoplanar translation vectors
a,, a,, a; and the latter are typically used as the axes of coordinate system

* |In this case the unit cell is a parallelepiped that is defined by length of vectors
a,, a,, a; and angles between them.

+i
The volume of the parallelepiped is
Given by the mixed scalar-vector product

a1 of translation vectors:

-3 o ",’/ + o

3 V=a;|a X as]

Any point, r, within a unit cell is defined
by three fractional coordinates, x, vy, z:

_3_1
s fl"/ +a r = xa; + ya; + zas



Indexing Crystal Points

In principle, atoms can occupy any partial position within the unit cell. However,
there is a very restricted set of points, which can serve as symmetry elements. As a
rule, these are the parallelepiped corners, (0,0,0), the centers of its faces (1/5,1/5,0),
(1/2,0,Y5), (0Y/5,11,), the center of the unit cell, (1/,1/5,1/;), or points equally displaced
from other points of high symmetry, for example, (Y4,Y/4,/4). In crystals of rhom-
bohedral (trigonal) or hexagonal symmetries, containing regular triangles as a 2D
symmetry motif, the center of such a triangle is a highly symmetric point with
coordinates (%/3,1/3,0) or (/3,%/5,0). In order to obtain the latter coordinates, we draw
lines parallel to our coordinate axes and passing through the center of the triangle
(see Figure 2.2). Then we recall well-known geometrical result that at the center of a
regular triancle the heights of the triangle are divided in proportion 2: 1.

(1/3,2/3,0)

(2/3,1/3,0)




Point Coordinates

The position of any point (e.g. P)
within the unit cell can be defined

in terms of generalized coordinates
(e.g. g, r, s) which are fractional
multiples of the unit cell edge length
(a, b, c respectively): (qrs)




Point Coordinates

Problem: Locate the point with coordinates % ,1, %

0.12 nm[/_M_ _______
Ne o
L 0.46 nm
x/
a=0.48 nm P:qrs=P: %1%
b =0.46 nm ga=%0.48nm=0.12 nm
c =0.40nm rb =0.46 nm

sc =% 0.40nm =0.20 nm



Indexing Crystal Points

First of all. one set of carbon atoms occupy all corner positions of the cubic unit cell; the coordinates of

these atoms are as follows: 000, 100, 110, 010, 001, 101, 111, and 011.
Another set of atoms reside on all of the face-centered posttions, with the following coordmates: %%0
11 11 11 1

22 227 227 2

1 1.1
00—, and —1—.
2 2 2

The third set of carbon atoms are positioned within the interior of the unit cell Using an x-y-z coordinate
system oriented as in Figure . the coordinates of the atom that lies toward the lower-left-front of the unit cell has

. 311 - . . ;
the coordinates YL whereas the atom situated toward the lower-right-back of the unit cell has coordinates of

13 l Also, the carbon atom that resides toward the upper-left-back of the unit cell has the &%; coordinates.

444
And, the coordinates of the final atom. located toward the upper-night-front of the unit cell, are %%%

(1/3,2/3,0)

I

1
I

(2/3,1/3,0)




Indexing Crystallographic Directions

Such symmetry elements as rotation axes are associated with certain crystallographic
directions. The latter also designated by vector, r:

r = uay +vay; + was

but this time with integer numbers standing for projections along the translation
vectors. In fact, within a 3D network, to which individual unit cells belong, the
meaningful crystallographic directions are those connecting the network nodes.
Since, the origin of our coordinate system is naturally at node (0,0,0), Equation
simply reflects the fact that vector r passes at least through one additional node of the
network, which is expressed as a linear combination of translation vectors. Also in
this case, the concise record for vector r, namely [u v W], is in common use.

[112]

(a) v

[110]



Indexing Crystallographic Directions

Linear combinations of different vectors r (1 are also lattice vectors. By using
concise record we can simply summate corresponding indices u, v, w in order to '
indicate these combinations. For example, the spatial diagonal of any parallelepiped,
is expressed as [111]=[100] + [010] + [001], while its face diagonals are
[110] =[100] + [010], [011] = [010] + [001], and [101] =[100] + [001], independent-
ly of the unit cell’s symmetry (see Figure e vector composed of two face
diagonals situated in two nonparallel faces, say the diago 1] and [011], is
[112] =[101] + [011], while their difference, [1-10], belongs to the set o
diagonals (see Figure ). For diagonals situated within the same face, say [110] and
[1-10], similar procedures produce vectors parallel to the parallelepiped edges, [200]
and [020] (see Figure/.

[110]
(@) (b) (@)

[112]

(a) Crystallographic directions, the [112] and [1-10] as produced (a) Crystallographic directions, the [200] and [020] as produced
by vector summation of certain face diagonals by vector summation of certain face diagonals
(b) Arrangement of these vectors in 3D space (b) Arrangement of these vectors in 3D space




Crystallographic Directions

is a vector connecting the coordinate origin and a specific point of a
unit cell. In crystallography such vector is defined by
three directional indices [u v w]

Rules for indexes determination:
1. A vector of desired length is positioned that it
pass through the origin of the coordinate system.
Translate it through a crystal lattice if needed!!

2. The length of the vector projection on each
axis are determined again in terms of unit cell
dimensions (a, b, c)

3. Obtained three numbers are multiplied or
divided by a common factor to reduce them to
integer values (e.g. u vand w)

4. Notation in square bracket [u v w] defines
the desired crystallographic direction




Indexing Crystallographic Directions

Xy — X
Or u=n(2 1)




Indexing Crystallographic Directions
Hexagonal System

The hexagon edge (X-direction) is parallel to the translation vector a,, Set of translation vectors a,, a,, a, in the hexagonal
Thatis r=a, , hence is along the [100] — direction. For Y — direction (basal) plane used for the four-digit indexing
r=a,+ 2 a, thatis [120]-direction of crystallographic directions hexagonal crystal

r = uay +vay; + was

a,
___ D220 p
\ a,
\
\
Y \
AY a,
a, The system is based on four translation vectors, three of them being in the
[100] hexagon plane (i.e. a;, a,, a;) and the fourth one, a3, perpendicular to it.
» X
" r — udi + va + sas + was

Definitely, three projections in the hexagon plane, u, vand s are
no longer independent. This follows from relationship:

a+a+a;, =0
e.g. [120] —direction —[0,1,-1,0]

Indexing crystallographic directions in the hexagonal
(basal) plane of hexagonal crystal




Crystallographic Directions:
Hexagonal Crystals

It is convenient to use a four- axis (Miller-Bravais) coordinate system:
a,,a,,a; axes lay in one basal plain and located at 120° to each other,
while the z axis is perpendicular to the basal plane.

i Same rules determine in this case
[0001] | four indices [u v s w]:
1 by convention the first three pertain

I . . .
| to projections in a,, a,, z axes
|

-—4“'——-—_

|
|
| , [uU"v w'] = [uvsw] conversion:
I | a,
| ¥
a1 i | _
a3 <t 4 —[1120]
A e a
[1100]

where n is a factor required to reduce indices
to integer numbers



Indexing Crystallographic Directions

ﬂ'}*"{

el | -

e |
-

b =

iy

For this direction, projections on the al, a2, and z axes are a, a/2, and ¢/2, or,
in terms of g and ¢ the projections are 1, 1/2, and 1/2, which when multiplied
by the factor 2 become the smallest set of integers: 2, 1, and 1. This means that

u’'=2
vi=1
wi =1

Now, from Equations from the previous slide, the u, v, t, and w indices become
u=n/3-(2u’-v’)
v=n/3-(2v’-u’)
s=-(u+v)
wW=nw

No reduction is necessary inasmuch as all of these indices are integers;
therefore, this direction in the four-index scheme is [1011]



Language of Crystallography: Reciprocal pace

 Symmetry elements of the third type, crystallographic planes, are indexed in a
unusual way. For this purpose, a new space with three basis vectors b,, b,, b, , is
created, which is orthogonal to real space.

a; - b, = Oy,

where the 9, is the Kronecker symbol 6, = 0 if izk and 1 if i=k.

* This new space is called reciprocal space. To built reciprocal space starting from
real space, which is defined by vectors a,, a,, a; the following mathematical
operations is used:

b1 = [afz X a3]/V
bz — [a3 X al}/V
b3 — [al X az]/V

Please prove that thus introduced system fits orthogonal conditions above.
Also prove that the following relation between the volumes in reciprocal (V,) and

real (V) spaces stands:
Ve="by-by x b3] = V!



Reciprocal and Real Spaces

Let us illustrate the construction of reciprocal space by selected examples. For cubic 33
crystals, the basis vectors in real space have equal lengths, |a,| = |a,| = |a3| = a,, and .

angles between them, a=f=vy=90°.

Using equations: o

b1 = [az X a3]/V
by, = [a3 x aq]/V V:dl'[ﬂz Xﬂ3] / /
by = [a1 x a3]/V

yields | b, |= |b,|= | bs|=1/a,and each vector b; is parallel to the corresponding vector & .

* Note that in crystallography only the relationship between vectors make sense, rather than their absolute values.

- Since for cubic symmetry the triads of basis vectors in both spaces have equal
lengths and 90 angles between them the real and reciprocal spaces are coincide.
It is worth noting that this is a unigue situation.

 For lower symmetries these spaces are different, independently how small a
distortion is.



Reciprocal and Real Spaces: Example

a3
Let us for example apply the tensile deformation to a cubic / b /
crystal along one of its age (e.g. a;). Under this deformation

the cubic unit cell transforms into tetragonal prism with a2
ds | =c>1. The angles between the prism edges remain at 90 °. A T.-.

In the reciprocal space we have | b, | = | b, | =1/a, while )
| by |=1/c. Vectors by, b,, b, are parallel to vectors a,, a,, a,

respectively. So, in the reciprocal space the unit cell is again
the tetragonal prism, but differing from one in real space by
the tetragonality parameter, which is now a /c<1.




Reciprocal and Real Spaces: Example

Symmetries, in which the angles between the basis vectors
differ from 90°, require more careful consideration.

For example in hexagonal crystal the basis vectors in the basal
plane are equal to each other | a, | ~ | a, | =a, and the angle
between them is y=120°. The third vector is normal to hexagon
plane (a=p=90°), but has a different length | as | =C.

In reciprocal space vector b, is parallel a; and its length | b, | =1/c
Vectors b, and b, are as shown in Figure with their lengths being
| b, | = | b, | =2/(V3-a) and angles between them is 60°.

b1 = [dz ><a3]/V
bz — [a3 ><a1]/V
b3 = {al X az]/V




Reciprocal and Real Spaces

Vector, H, belongs to reciprocal space and are combination
by = [az % a3]/v of basis vectors, by, b,, bs:
b, = [a3 X a1]/V H = hby + kb, + b3
b; = a1 x az]/V with integer projection (h,k,l) which are called the Miller indices

*® Vectors H represent different crystallographic planes.

* Why do we need so extravagant way of representation of crystallographic planes?
* Briefly, this representation is very well suited for analyzing the diffraction
conditions in crystal for calculating the phase of the waves, scattered by atomic plane

In order to understand the interrelation between vectors H and crystallographic
planes, we need first to define the latter in real space. For further analysis it is most
appropriate to define specific crystallographic plane via segments, OA=x.a;,
OB =y,a,, OC =z,a3, which it cuts on the axes of the coordinate system (see
Figure ). Vectors AB, BC, AC, located within the plane, are expressed as:

AB = y,a;—x,a1 By using equations:
BC = z,a3—Yot2 H = hby + kb, + 1b;
AC = zoaz3—x.a1 a; - by = Oy
Show that scalar products of vector H and AB,BC,AC equal:
H-AB=k-y,-h-x,
H-BC=l-z,-k-y,

H-AC=l-z,-h-x,



Reciprocal and Real Spaces

In order to understand the interrelation between vectors H and crystallographic
planes, we need first to define the latter in real space. For further analysis it is most
appropriate to define specific crystallographic plane via segments, OA=x.a;,
OB =y,a,, OC =z,a3, which it cuts on the axes of the coordinate system (see
Figure 3.2). Vectors AB, BC, AC, located within the plane, are expressed as:

AB = yoap—x,a; By using equations:
BC = z,a3—yoa2 H = hb{ + kb, + 1bs
AC = z,a3— %, a; - b, = oy
It can be shown that scalar products of vector H and AB,BC,AC equal:
H-AB=k-y,-h"x,
H-BC=l-z-k-y, = l/xo
H-AC=l-z,-h-x,
ke = 1)y
Now by setting:
yee | | =1/

The scalar products HrAB=H-BC=H-AC=0
which means that vector H is normal to AB,BC,AC
and hence normal to the crystallographic plane




Vector H

e In diffraction applications not only is the direction of vector of
reciprocal lattice H of great importance but also its length, which is
reciprocal to the length of the normal to the crystallographic plane,
counted from the origin of the coordinate system (segment OM).

* This distance is called the d-spacing that is the spacing between
parallel planes taking in the diffraction processes of e.g. electrons:

d=|H|™"

To prove that recall that OA=a,/h, and H = hb; + kb, +1b3
In this case scalar product H-OA is:

cosd
h

where § is the angle between the normal to the crystallographic plane and vector a,.
Since OM is parallel to vector H, we can also find the value of cos 8 from triangle AOM:

H-0A4 = |H| |a)| 20 = (hby + kb, +1b3) - (a1 /h) = 1

cos & = OM/OA =dh/|a|
Thus:  d = |H|™




Reciprocal and Real Spaces

B =1/x
k =1/p,
= 1./z,
H = hb; + kb, + 1b;

In order to attribute vector H to a certain plane, one has to find

the segments that this plane cuts on the edges of the unit cell

in real space, and then convert them to Miller indices by using

~Equations. The normal to the plane is given by vector H and the

concise plane indexing is simply (hkl).

* Note that this procedure is applicable to every crystal
independently of its symmetry.

For example, the crystallographic plane parallel to a,-
translation and passing through the diagonal, which connects
vectors a, a,-is always (110) and passing through the ends of
vectors a, a, a; is always the (111) plane.

S7A
V

‘__

B



Crystallographic Planes

z (001) Plane referenced to

i Crystallographic planes are typically
R —— specified by three Miller indices (hkl)

¢ origin at point O

Rules for indexes determination:

1. If the plane passes through the origin,
or another plane must be constructed by

Other equivalent

(001) planes
/ : appropriate parallel translation or new
Other equivalent .
? (110) planes origin must be selected at the corner of
(@) (b) .
‘ the another unit cell.
fz (1111 Pl refrencnd 2. After such operation, the plane either
the origin at point 0 intersects or // to the axes and the length of

The planar intercept each axes is determined
in term of lattice parameters a, b and c.

3. The reciprocal of these number are taken
4. If necessary these numbers are reduced
/ Other equivalent/ to the set of smallest integers (e.g. h,k,l)

(111) planes
. 5. These integers in parentheses (hkl)

c)
( represent the crystallographic plane



Crystallographic Planes

Problem: Determine the Miller indices for the plane

f
y P——

(a)
Solution:
1.  Since the plane passes through the existing origin the new origin must be selected
at the corner of adjust unit cell.
2. Asrelated to new origin the following intercepts (in terms of lattice parameters
a, b, and c) with x, y, z axes can be referred: « (plane is // to x-axis), -1, 1/2
3.  The reciprocal of these numbers are: 0, -1 and 2 and they are already integer!
4.  Thus the Miller indices of the consider plane are: (0-12)



Crystallographic Calculations

There are typical crystallographic calculations that are performed in real space,
reciprocal space, or using both spaces, depending on the calculation target.

Real Space

In this space we operate with crystallographic directions. Typically, we need to calculate
the angle between crystallographic directions, [u v w] and [u* v* w*], within a certain
crystal. By using full expressions of these vectors, namely, r=ua; + va, + wa; and
r=u"a, + v'a, + w* a3, we find:

rer*

CoOsS(p = |r| : lr*l

(uay +va, +was) (Wa; +viay+w*as)
V (vay +vay +was) (va; +vay +was) /(v ar +viay +was) (u*a; +v*a; +w*az)

a, = a[010]

/ w a, = a[100]

a, = a[010]

Note that the result of calculations also depends on the relationship a / \

between vectors a,,a, a; .
a, = a[100]

(@ (b)



Angles between two crystallographic directions

Real Space

The angle between two crystallographic directions.

et (uay +va; +was) (W a, +via; +w*as) (A)
lr|- ||  (uay +va; +was) (uay +vay +was )/ (u*a; +viay +wras) (v a; +via; +whas)

cosp =

Two vectors are mutually perpendicular when:

(vay+va;+was)(u a, +via,+was) =0

If all angles between translation vectors are 90° equation (A) transforms to :

uu*a? b +ww*c?

 (a) + (0B) + (we) 2 (wra) 4 (b4 (wc)?

CosQ= where |a;| =a, |a,] =h, |as]| =c.

Two crystallographic directions are perpendicular:
a,=al010]

un’ a? + Wb+t =0 Vi 2\ = aftoo]

a, = a[010]

Note that the result of calculations also depends on the relationship h / \

between vectors a,,a, a; .
a, = a[100]

(a) (b)



The bond-length calculation

Real Space

Another example of calculations in real space provides the bond-length calculation.

The bond length, L, is measured between two atoms, occupying positions (x;, y1, z1)
and (x,, y2, 22). Correspondingly:

L=+/[(a—x)a1+(y2—y1)ar 1 (z—20)a3][(x2—1 )as + (y—p1) a2 + (z2—2z1)as] | (B)

Note again that the result of calculations also depends on the relationship
between vectors a,,a, a; .

If all angles between all translation vectors are 90° equation (B) transforms to :

L= \/(xz —51)2 a2+ (2 —y1) D2+ (22 —21 ) 22

where again |a:| =a, |a;| =b, |as| =c.

As an example, let us find the shortest C—O bond in calcite (CaCO;) structure. This
bond is within the planar carbonate group (COs;), having the following atomic 75
coordinates: C— (0,0, 0), 0 —(x, 0, 0), (0, x, 0), (x, x, 0) (with x = 0.257) \
Relevant translations have equal lengths, |a;| = |a,| = a = 4.990 A, and angle between

them y =120°. Q

Putting this numbers to Equation (B) gives L. o=x-a=1.282 A /

Atomic arrangement within planar carbonate group CO; in calcite: C —filled circle; O —
open circles. Translation vectors, a; and ay, are indicated by arrows.



The bond-length calculation : Examples

Real Space
If all angles between all translation vectors are 90° equation (B) transforms to Equation (C) :

L=\/(xz—x1)2a2+(Y2~Y1)2b2+(zz—-21)262 where again |a;| =a, |a,| =b, |asz|=c.

Interesting information can be extracted from comparison between the C—C bond
lengths in two carbon-comprising structures: diamond and graphite. Diamond has
cubic structure with carbon atoms occupying the cube vortices and the centers of the
cube faces. lhe rest of the atoms are located 11 pOSIUONS snitted Irom tnose
mentioned by one quarter along one of the space cube diagonals (see Figure
It follows from Figure  that the shortest bond is between atoms with coordinates
(0, 0, 0) and (Y4, Y4, Y4). Since the structure is a cubic one, we use Equation (C) for
bond-length calculation. Substituting into Equation (€) :atomic coordinates and
lattice parameter of diamond a =b=c= 3.567 A, we find Le_c=1.545 A,

By contrast, graphite has so-called hexagonal structure with lattice parameters
o] = |a2] = 3 = 2.456 A and |as| = c=6.694 A. The angle between translations a,
and a, is 120°, other angles equal 90° (see Figure ). Atoms within the unit cell

occupy the following positions (0, 0, 0); (0, 0, 1); (Y3, s, 0); (¥, Y5, 12). It follows
from Figure that graphite has layered structure along the as-axis with
interlayer spacing L[*c_c=c¢/2=3.347 A, which is much larger than the length,
Lc_, of the shortest C—C bond within individual layer. In order to calculate the
Lc_c-value, we put into Equation (B)  coordinates of neighboring atoms (000)

and (%3, 2/3, 0) within the layef, as well as the lattice parameters mentioned, which
yields Ic_c = a/+/3 = 1.418 A,




Crystallographic Calculations

Reciprocal Space

Here, we operate with crystallographic planes. Typically, we have to calculate the

angle between crystallographic planes (hkl) and (h*k**) within the same structure:
H:hbl -+ kbz -+ lb3 aﬂd H*:h* bl -+ k* bz -+ l* b3.

we find:
H -H*

H|-[H]

€65 =

(hbl +kb, +lb3) (hxbl —f-k*bz —l—l*b3)
v/ (hb1+kby +1b3) (hby +kby +1b3)/(h*by +k*by +#b3) (W by +k b, +1b3)

Note again that the result of calculations also depends on the relationship between vectors b;,b, b; .

Two planes are perpendicular when:
(hbl +kb, +lb3)(h*b1 +k*b, —|—I*b3) =0
Again if all angles between vectors in reciprocal space are 90° equations can be simplified:
(hh* /a?)+ (kk* /b*) +1I* / c?
V(8@ + (/) + (10 (e fa) 4+ (ke /0 + (0 f o)

cos p =

I

(hh* Ja?) + (kk* /b)) + (I1F /2)

The orthogonality condition for crystallographic planes has its simplest form in cubic
crystals (a=b=¢):

hh> +kk* +1IF =0

0



Angle between Crystallographic Planes

Reciprocal Space

(hh* a?) + (kk* /B2) +1I* /¢
V (B1a) 4 /64 (0 (b [8)+ (ke /) + (1 )

cos p =

(A)

The orthogonality condition for crystallographic planes has its simplest form in cubic
crystals (a=b=¢):

hh> +kk* +1IF =0 (B)

O ¢
For example, by using Equatior (B) we immediately find the triads of mutually ® Ca
perpendicular planes in cubic crystals, as for example, (100), (010), and (001); or (110), A Of
(1-10), and (001); or (111), (1-10), and (11-2), normals to which could be used as e O2

Cartesian coordinate axes. At the same time, applymg Equatlon (A) to the (130) and

(~110) planes in the aragonite structure (@ =4.962 A, b = 7.969 A, ¢ = 5.743 A), shown
in Figure , we find

g Tl . e = .-
cos = ) E A © A o
V(1+ (/@) 1+ (b/3a)) e e

" ® e 4 © a
i"“b"z """" e
1A @ A o
TR R
L ® e A
PEEES— . — o __




D-spacing

Reciprocal Space

In reciprocal space, we also calculate the length of vector H, which is related to the
d-spacing between planes (hkl):

1
|H| = 3= v/ (hby +kby +1b3) (hby + kb, + 1b3)

Applying the equation to cubic crystal yields:

d-1 — VR +R+P

a

Applying the equation to tetragonal crystal yields:

& h2+k2
d - \/ + CZJ

Applying the equation for hexagonal crystal yields:

g1 — \/% (h2+hk+k2)_|_ 2




Angle between crystallographic direction & plane

Both Space

Some calculations require usage of both spaces, the real and reciprocal ones. This is
the case when calculating an angle between crystallographic direction, r [u, v, w], and
plane H (hkl):
r-H  (uay+va,+was) (hby + kb, +1b3)
vl [H] vl - |H]|
uh + vk +wl
 /(uaty +va, + was) (uay +va; + was) \/(hb1+kby +1b3) (hby + kb, + 1b3)

cosQ =

If vector r and H having the same indices are parallel or not?

* In cubic crystals all vectors with identical indices are parallel since there are no
difference between real and reciprocal space. In fact setting u=h, v=k, w=I in above
equation together with |a, | =a, |b, | =1/a, a=B=y=90°, vields .

Wk 4P
LA (1)) TR T B
However, any symmetry reduction results in a finite angle between certain vectors r
[hkl] and H (hkl), which thus are no longer parallel. For example, in tetragonal crystals
(a1l =la2l = a, |as| =c, |b1|=|bo|=1/a, |bs|=1/c, and a =B =y=90°) this angle
equals:

CosQ = =land @ =0.

W 4+ k2412
VEAHR 4 (c/a) R\ /12 +12 1 (a/c)R

cosQ =

We see again that those vectors rand H that are sensitive to the tetragonality of the
unit cell, that is, have both projections h,k and I, are nonparallel (¢ # 0).



