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Abstract

We sketch the proof of the Brown representability theorem and give a few appli-
cations of it, the most important being the construction of the classifying space for
principal G-bundles.

Let G be a topological group and let CW be the homotopy category of based connected
CW-complexes. A classifying space for G is a space BG such that for all X ∈ CW, there
exists a bijection between the set of based principal G-bundles on X and the set [X,BG]
of all homotopy classes of basepoint-preserving maps from X to BG. This determines the
homotopy groups of BG in the following way.

Theorem 0.1. For all n ≥ 1, we have πn(BG) ∼= πn−1(G).

Remark. For instance, if G is a discrete group, we deduce that BG is a K(G, 1).

Proof of Theorem 0.1. A based map Sn → BG is the same as a based principal G-bundle
on Sn. Via the clutching construction, this is the same as a based map Sn−1 → G.

Theorem 0.1 might suggest to the reader that the following is true.

Theorem 0.2. The group G is homotopy equivalent to ΩBG.

Proof. Let us give two equivalent descriptions of the map f : G→ ΩBG.

• A map f : G→ ΩBG is the same as a map ΣG→ BG, which is the same as a based
principal G-bundle on ΣG. There is an obvious choice of such a bundle, again arising
from the clutching construction.

• More directly, we define f : G→ ΩBG as follows. Consider g ∈ G. Define f(g) ∈ ΩBG
to be the based loop f(g) : S1 → BG that classifies the G-bundle on S1 obtained by
gluing the ends of the trivial G-bundle on [0, 1] together using g.

To prove that f is a homotopy equivalence, we show that it induces an isomorphism on all
homotopy groups. In other words, for all n ≥ 1 the map [Sn, G]→ [Sn,ΩBG] induced by f
is an isomorphism. Now, using the clutching construction an element of [Sn, G] is the same
as a principle G-bundle on Sn+1, i.e. an element of [Sn+1, BG] = [ΣSn, BG] = [Sn,ΩBG].
It is easy to see that this bijection is induced by f .

Of course, it is not obvious that a classifying space BG for G exists! There are several
explicit constructions of BG, the first being due to Milnor [M]. Our next task is to give an
abstract nonsense reason why BG must exist. The key is the following theorem, which was
first proved by Brown [Bro].

Theorem 0.3 (Brown representability). Let F : CW → Set be a contravariant functor
satisfying the following two properties.

1. Given any collection {Xα} of elements of CW, we have F (∨αXα) =
∏
α F (Xα).

1



2. Let X be an object of CW. Consider a cover X = Y ∪ Z by subcomplexes such that
Y, Z, Y ∩ Z ∈ CW. Then for all y ∈ F (Y ) and z ∈ F (Z) that restrict to the same
element of F (Y ∩ Z), there exists some x ∈ F (X) that restricts to y ∈ F (Y ) and
z ∈ F (Z).

Then there exists some C ∈ CW and some c ∈ F (c) such that for all X ∈ CW, the map
[X,C]→ F (X) taking f : X → C to f∗(c) is a bijection.

Remark. It is absolutely necessary for us to consider based connected CW-complexes. The
theorem is false without these assumptions; see [Bra].

Before we prove Theorem 0.3, let us give several examples of how it can be used.

Example. If G is a topological group, then we can apply Theorem 0.3 to the functor taking
X to the set of based principal G-bundles; the result is the classifying space BG for G.

Example. For all n ≥ 1, we can apply Theorem 0.3 to the cohomology functor Hn(·, A);
the result is a K(A,n) (as can be seen by plugging spheres into the statement).

Example. If T is a based connected topological space, then we can apply Theorem 0.3 to
the functor [·, T ]. The result is a CW-approximation for T , i.e. a based connected CW-
complex C such that [X,C] = [X,T ] for all X ∈ CW. We remark that the image in [C, T ]
of the identity in [C,C] is the usual map that arises in a CW-approximation theorem.

We now sketch the proof of Theorem 0.3.

Proof sketch of Theorem 0.3. We begin by observing that it is enough to construct C ∈ CW
and c ∈ F (C) that satisfy the conclusion of the theorem for all spheres Sn with n ≥ 1.
Indeed, if X ∈ CW is arbitrary, then for x ∈ F (X) we can construct f : X → C satisfying
f∗(c) = x by the usual “cell by cell” procedure, and similarly if f, f ′ : X → C satisfy
f∗(c) = (f ′)∗(c) = x, then we can construct a homotopy from f to f ′ cell by cell.

We will construct C as follows. Start with C0 = {∗} and c0 the unique element of
F (C0). Assume that Cn−1 and cn−1 ∈ F (Cn−1) has been constructed such that for all
1 ≤ k ≤ n − 1, we have [Sk, Cn−1] = F (Sk) via pullback of cn−1. We will construct a
CW-complex Cn containing Cn−1 as a subcomplex together with cn ∈ F (Cn) that restricts
to cn−1 ∈ F (Cn−1). The complex Cn will be obtained from Cn−1 by attaching n-cells and
(n+ 1)-cells, and from this it is easy to see that we still have [Sk, Cn] = F (Sk) via pullback
of cn for all 1 ≤ k ≤ n− 1. We just have to find the right cells to attach to make this true
for Sn as well. There are two parts to this (generators and relations):

• First, we wedge on an n-sphere for each element of F (Sn) to get a complex C ′n.
Using the first condition in the theorem, we can extend cn−1 to c′n ∈ F (C ′n) such
that the map fx : Sn → C ′n taking Sn to the sphere representing x ∈ F (Sn) satisfies
(fx)∗(c′n) = x. This implies that the map [Sn, C ′n]→ F (Sn) is surjective.

• We now want to make it injective. Observe that the cogroup structure on Sn (the
same one that makes homotopy groups into groups) makes F (Sn) into a group. The
map [Sn, C ′n] → F (Sn) is then a group homomorphism. To construct Cn, we attach
cells to C ′n to kill off the kernel. Extending c′n over Cn requires the second condition
in the theorem.
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Repeating this procedure, we get an increasing sequence

C0 ⊂ C1 ⊂ C2 ⊂ · · ·

of based connected CW-complexes. Define

C = ∪∞n=0Cn.

We now come to the final subtle point of the proof, namely constructing an element c ∈ F (C)
that restricts to cn ∈ F (Cn) for all n. The issue here is that we have not assumed any kind
of “continuity” for our functor F . Indeed, there is a map

F (C)→ lim
←
F (Cn),

but this map need not be bijective. However, it is surjective, which is good enough for us.
To prove that it is surjective, replace C by the telescoping collection of mapping cylinders
M(Cn → Cn+1) (with the basepoints all collapsed to points so that everything is based).
This does not change the homotopy type of C; however, we can now decompose C as X∪Y ,
where X is the union of the even mapping cylinders M(C2n → C2n+1) and Y is the union
of the odd mapping cylinders M(C2n+1 → C2n+2). Since we have collapsed basepoints,
X is actually the wedge of the spaces M(C2n → C2n+1), and similarly for Y . The space
M(Cn → Cn+1) is homotopy equivalent to Cn+1, so we can view cn+1 as an element of
F (M(Cn → Cn+1)). Using the first condition in the theorem, we can then construct
elements cx ∈ F (X) and cy ∈ F (Y ) restricting to the various cn. It is clear that cx and cy
restrict to the same element of F (X ∩ Y ) (here X ∩ Y is another wedge!), so the second
condition in the theorem allows us to glue cx and cy together to an element c ∈ F (C).
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