Abstract

We sketch the proof of the Brown representability theorem and give a few applications of it, the most important being the construction of the classifying space for principal G-bundles.

Let G be a topological group and let CW be the homotopy category of based connected CW-complexes. A classifying space for G is a space BG such that for all $X \in \text{CW}$, there exists a bijection between the set of based principal G-bundles on X and the set $[X, BG]$ of all homotopy classes of basepoint-preserving maps from X to BG. This determines the homotopy groups of BG in the following way.

Theorem 0.1. For all $n \geq 1$, we have $\pi_n(BG) \cong \pi_{n-1}(G)$.

Remark. For instance, if G is a discrete group, we deduce that BG is a $K(G, 1)$.

Proof of Theorem 0.1. A based map $S^n \to BG$ is the same as a based principal G-bundle on S^n. Via the clutching construction, this is the same as a based map $S^{n-1} \to G$.

Theorem 0.1 might suggest to the reader that the following is true.

Theorem 0.2. The group G is homotopy equivalent to ΩBG.

Proof. Let us give two equivalent descriptions of the map $f : G \to \Omega BG$.

- A map $f : G \to \Omega BG$ is the same as a map $\Sigma G \to BG$, which is the same as a based principal G-bundle on ΣG. There is an obvious choice of such a bundle, again arising from the clutching construction.

- More directly, we define $f : G \to \Omega BG$ as follows. Consider $g \in G$. Define $f(g) \in \Omega BG$ to be the based loop $f(g) : S^1 \to BG$ that classifies the G-bundle on S^1 obtained by gluing the ends of the trivial G-bundle on $[0, 1]$ together using g.

To prove that f is a homotopy equivalence, we show that it induces an isomorphism on all homotopy groups. In other words, for all $n \geq 1$ the map $[S^n, G] \to [S^n, \Omega BG]$ induced by f is an isomorphism. Now, using the clutching construction an element of $[S^n, G]$ is the same as a principle G-bundle on S^{n+1}, i.e. an element of $[S^{n+1}, BG] = [\Sigma S^n, BG] = [S^n, \Omega BG]$. It is easy to see that this bijection is induced by f.

Of course, it is not obvious that a classifying space BG for G exists! There are several explicit constructions of BG, the first being due to Milnor [M]. Our next task is to give an abstract nonsense reason why BG must exist. The key is the following theorem, which was first proved by Brown [Bro].

Theorem 0.3 (Brown representability). Let $F : \text{CW} \to \text{Set}$ be a contravariant functor satisfying the following two properties.

1. Given any collection $\{X_\alpha\}$ of elements of CW, we have $F(\vee_\alpha X_\alpha) = \prod_\alpha F(X_\alpha)$.

2. Let X be an object of CW. Consider a cover $X = Y \cup Z$ by subcomplexes such that $Y, Z, Y \cap Z \in CW$. Then for all $y \in F(Y)$ and $z \in F(Z)$ that restrict to the same element of $F(Y \cap Z)$, there exists some $x \in F(X)$ that restricts to $y \in F(Y)$ and $z \in F(Z)$.

Then there exists some $C \in CW$ and some $c \in F(c)$ such that for all $X \in CW$, the map $[X, C] \to F(X)$ taking $f: X \to C$ to $f^*(c)$ is a bijection.

Remark. It is absolutely necessary for us to consider based connected CW-complexes. The theorem is false without these assumptions; see [Bra].

Before we prove Theorem 0.3, let us give several examples of how it can be used.

Example. If G is a topological group, then we can apply Theorem 0.3 to the functor taking X to the set of based principal G-bundles; the result is the classifying space BG for G.

Example. For all $n \geq 1$, we can apply Theorem 0.3 to the cohomology functor $H^n(\cdot, A)$; the result is a $K(A, n)$ (as can be seen by plugging spheres into the statement).

Example. If T is a based connected topological space, then we can apply Theorem 0.3 to the functor $[\cdot, T]$. The result is a CW-approximation for T, i.e. a based connected CW-complex C such that $[X, C] = [X, T]$ for all $X \in CW$. We remark that the image in $[C, T]$ of the identity in $[C, C]$ is the usual map that arises in a CW-approximation theorem.

We now sketch the proof of Theorem 0.3.

Proof sketch of Theorem 0.3. We begin by observing that it is enough to construct $C \in CW$ and $c \in F(C)$ that satisfy the conclusion of the theorem for all spheres S^n with $n \geq 1$. Indeed, if $X \in CW$ is arbitrary, then for $x \in F(X)$ we can construct $f: X \to C$ satisfying $f^*(c) = x$ by the usual “cell by cell” procedure, and similarly if $f, f': X \to C$ satisfy $f^*(c) = (f')^*(c) = x$, then we can construct a homotopy from f to f' cell by cell.

We will construct C as follows. Start with $C_0 = \{*\}$ and c_0 the unique element of $F(C_0)$. Assume that C_{n-1} and $c_{n-1} \in F(C_{n-1})$ has been constructed such that for all $1 \leq k \leq n-1$, we have $[S^k, C_{n-1}] = F(S^k)$ via pullback of c_{n-1}. We will construct a CW-complex C_n containing C_{n-1} as a subcomplex together with $c_n \in F(C_n)$ that restricts to $c_{n-1} \in F(C_{n-1})$. The complex C_n will be obtained from C_{n-1} by attaching n-cells and $(n+1)$-cells, and from this it is easy to see that we still have $[S^k, C_n] = F(S^k)$ via pullback of c_n for all $1 \leq k \leq n-1$. We just have to find the right cells to attach to make this true for S^n as well. There are two parts to this (generators and relations):

- First, we wedge on an n-sphere for each element of $F(S^n)$ to get a complex C'_n. Using the first condition in the theorem, we can extend c_{n-1} to $c'_n \in F(C'_n)$ such that the map $f_x: S^n \to C'_n$ taking S^n to the sphere representing $x \in F(S^n)$ satisfies $(f_x)^*(c'_n) = x$. This implies that the map $[S^n, C'_n] \to F(S^n)$ is surjective.

- We now want to make it injective. Observe that the cogroup structure on S^n (the same one that makes homotopy groups into groups) makes $F(S^n)$ into a group. The map $[S^n, C'_n] \to F(S^n)$ is then a group homomorphism. To construct C_n, we attach cells to C'_n to kill off the kernel. Extending c'_n over C_n requires the second condition in the theorem.
Repeating this procedure, we get an increasing sequence

\[C_0 \subset C_1 \subset C_2 \subset \cdots \]

of based connected CW-complexes. Define

\[C = \bigcup_{n=0}^{\infty} C_n. \]

We now come to the final subtle point of the proof, namely constructing an element \(c \in F(C) \) that restricts to \(c_n \in F(C_n) \) for all \(n \). The issue here is that we have not assumed any kind of “continuity” for our functor \(F \). Indeed, there is a map

\[F(C) \to \lim_{\leftarrow} F(C_n), \]

but this map need not be bijective. However, it is surjective, which is good enough for us. To prove that it is surjective, replace \(C \) by the telescoping collection of mapping cylinders \(M(C_n \to C_{n+1}) \) (with the basepoints all collapsed to points so that everything is based). This does not change the homotopy type of \(C \); however, we can now decompose \(C \) as \(X \cup Y \), where \(X \) is the union of the even mapping cylinders \(M(C_{2n} \to C_{2n+1}) \) and \(Y \) is the union of the odd mapping cylinders \(M(C_{2n+1} \to C_{2n+2}) \). Since we have collapsed basepoints, \(X \) is actually the wedge of the spaces \(M(C_{2n} \to C_{2n+1}) \), and similarly for \(Y \). The space \(M(C_n \to C_{n+1}) \) is homotopy equivalent to \(C_{n+1} \), so we can view \(c_{n+1} \) as an element of \(F(M(C_n \to C_{n+1})) \). Using the first condition in the theorem, we can then construct elements \(c_x \in F(X) \) and \(c_y \in F(Y) \) restricting to the various \(c_n \). It is clear that \(c_x \) and \(c_y \) restrict to the same element of \(F(X \cap Y) \) (here \(X \cap Y \) is another wedge!), so the second condition in the theorem allows us to glue \(c_x \) and \(c_y \) together to an element \(c \in F(C) \).

References

Andrew Putman
Department of Mathematics
University of Notre Dame
255 Hurley Hall
Notre Dame, IN 46556
andyp@nd.edu