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Abstract

We give two proofs of a theorem of Chevalley–Weil that describes the homology of a
cover of a surface as a representation of the deck group.

Our goal is to prove the following beautiful theorem of Chevalley–Weil.

Theorem 0.1 (Chevalley–Weil, [CW]). Let Σg be a genus g surface and let Σ̃ be a finite
cover of Σg with deck group G. Then as a Q[G]-module we have

H1(Σ̃;Q) ∼= (Q[G])2g−2 ⊕Q2.

I learned the first proof from Thomas Church.

Proof 1 (character theory). Let χ be the character of the Q[G]-representation H1(Σ̃;Q). We
want to show that χ equals the character of (Q[G])2g−2 ⊕ Q2. Since the left-action of G
on itself freely permutes the elements of G, the character of Q[G] takes the value 0 on all
non-identity elements of G. We deduce that our goal is to prove that

χ(g) =
{

(2g − 2)|G|+ 2 if g = 1
2 if g 6= 1

(g ∈ G).

We divide this into two cases.
• Let g ∈ G be a nonidentity element. The action of g on Σ̃ has no fixed points, so the
Lefschetz fixed point theorem says that

0 = trace(H0(Σ̃;Q) g→ H0(Σ̃;Q))− trace(H1(Σ̃;Q) g→ H1(Σ̃;Q))

+ trace(H2(Σ̃;Q) g→ H2(Σ̃;Q))

= trace(Q id−→ Q)− χ(g) + trace(Q id−→ Q)
= 2− χ(g).

We deduce that χ(g) = 2, as desired.
• We now deal with the identity. The surface Σ̃ has Euler characteristic |G|(2 − 2g).
Letting g̃ be the genus of Σ̃, we thus see that |G|(2− 2g) = 2− 2g̃, so

g̃ = 1
2 (2− |G| (2− 2g)) = (g − 1)|G|+ 1

and
χ(1) = dimQ H1(Σ̃;Q) = (2g − 2)|G|+ 2,

as desired.

I learned the second proof from [GLLM].
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Proof 2 (topology). Endow Σg with the usual CW-complex structure consisting of a single
vertex ∗ and 2g edges e1, . . . , e2g and a single face f . Lift this to a CW-complex structure
on Σ̃. The cellular chain complex

0→ C2(Σ̃;Q)→ C1(Σ̃;Q)→ C0(Σ̃;Q)→ 0

is a chain complex of Q[G]-representations. We can identify these representations as follows.
Let ∗̃ be an arbitrary lift of ∗, let ẽ1, . . . , ẽ2g be arbitrary lifts of e1, . . . , e2g, and let f̃ be
an arbitrary lift of f . The group G freely permutes the cells of Σ̃, so the 0-cells of Σ̃ are
precisely G · ∗, the 1-cells are precisely G · ẽ1, . . . , G · ẽ2g, and the 2-cells are precisely G · f̃ .
We conclude that the cellular chain complex of Σ̃ takes the form

0→ Q[G]→ (Q[G])2g → Q[G]→ 0.

When we take the homology of this chain complex, the 0th and 2nd homology groups should
be Q. We deduce that when we form H1(Σ̃;Q), we eliminate all but the trivial representation
from two copies of Q[G] (though of course these copies are not embedded in the indicated
product in a standard way!). It follows that

H1(Σ̃;Q) ∼= (Q[G])2g−2 ⊕Q2,

as desired.
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