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Abstract

We give two nonstandard constructions of free groups, one using geometric topology
and the other inspired by category theory.

1 Introduction

Let S be a set. Recall that a free group on S is a group F(S) together with a set map
n: S — F(9) satisfying the following universal property: for all groups G and all set maps
¢: S — G, there exists a unique homomorphism ®: F(S) — G such that the diagram
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commutes. The usual argument shows that F'(S) is unique if it exists, but of course its
existence is not obvious. The standard construction of F'(.S) exhibits it as a set of equivalence
classes of words in the formal symbols {s,s™! | s € S}, where two words are equivalent if
one can be obtained from the other by a sequence of insertions and deletions of the trivial
words ss™! or s7!s with s € S. This is a mildly awkward construction; in particular, it
requires a small trick to show that every word is equivalent to a unique reduced word (i.e.
one that contains no trivial subwords ss=! or s71s with s € S).

In this note, we give two alternate constructions of F'(S) that work directly from the
above universal property. One construction uses basic geometric topology, and the other is
inspired by category theory.

2 Geometric topology

The key to our first construction is the follow lemma:
Lemma 2.1. For all groups G, there exists a based space (X, xzq) such that m (X, x9) = G.

One has to be careful here: the usual construction of a two-dimensional CW-complex whose
fundamental group is a given group starts with a group presentation, a notion that depends
on having first constructed a free group! The following argument avoids this circularity:

Proof of Lemma 2.1. The natural candidate for such a space is an Eilenberg—MacLane space
for G. Here are two approaches to constructing this:
e The first uses Milnor’s “infinite join” construction from [M]. Regard G as a discrete
space, and inductively define spaces Z, as follows:

Zl =G and Zn+1 =G+ Zn.
Here * denotes the join of these two spaces. We have

ZlCZQCZgC“‘.
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The space Z is contractible. Indeed, since Z can be endowed with the structure of
a CW-complex, it is enough to prove that m(Z) = 0 for k > 0. Let f: S* — Z be
any continuous map. Since the k-sphere S* is compact, there exists some n > 0 such
that Im(f) C Z,. But the inclusion map Z, < Z,4+1 is clearly nullhomotopic, so
f is as well. The group G acts freely on Z, and the quotient Z/G is a space whose
fundamental group is isomorphic to G.

e The second approach is a bit more abstract. Recall that a classifying space for G
is a based space BG such that for all based connected CW-complexes Y, there is a
bijection between the set of based principal G-bundles on Y and the set [Y, BG] of
all homotopy classes of based maps from Y to BG. Brown’s representability theorem
([B]; see [P] for an expository account) shows that such a space BG exists. Elements
of m(BG) = [S', BG] are the same as based principal G-bundles on S', which by
the clutching construction are the same as elements of my(G) = G. We conclude that
m1(BG) = G. We remark that BG is actually an Eilenberg—MacLane space: for n > 2
elements of m,(BG) = [S™, BG| are the same as based principal G-bundles on S",
which by the clutching construction are the same as elements of m,_;(G). This latter
group is trivial since G is a discrete set. O

We now prove that free groups exist.
Theorem 2.2. For any set S, there exists a free group on S.

Proof. Let Y be the wedge of |S| circles labeled by elements of S with wedge point yg.
Define I' = m1 (Y, yo) and let n: S — T take s € S to the element corresponding to the circle
labeled by S. We claim that T" is a free group on S. To prove this, we verify the universal
property. Let G be a group and let ¢: S — G be a set map. Using Lemma 2.1, we can
find a based space (X, xzg) such that m(X,2z9) = G. Define ®: I' — G to be the map on
fundamental groups induced by the map (Y, yo) — (X, zo) that takes the circle labeled by
s € S to a loop representing 7(s). It is clear that the diagram
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commutes and that the resulting ® is unique. O

3 Category theory

We now give a categorical construction of a free group that we learned about from Lang’s
book on algebra; see [L, §1.12]. From a categorical point of view, the construction of a
free group is a functor F: Sets — Groups which is a left adjoint to the forgetful functor
U: Groups — Sets, i.e. such that there is a natural bijection

Homsgets (S, U(I")) +— Homgroups (F(S),T).



In category theory, there is a very general theorem (due to Freyd) known as the adjoint
functor theorem that constructs such left adjoints. Lang’s proof is essentially a specialization
of the usual proof of the adjoint functor theorem to the setting of groups. As a geometric
group theorist, the thing that surprises me the most about this proof is that perhaps the
most subtle issues in it are set-theoretic; one constructs an enormous collection of groups,
and it requires care to make sure that this collection is a set and not just a class.

The proof is as follows.

Theorem 3.1. For any set S, there exists a free group on S.

Proof. We begin with a sequence of definitions. Let € be the set of isomorphism classes of
groups that can be generated by a set of cardinality at most |S| (subtle point: there is such
a set; the reader should carefully convince themself of this). Next, define

D ={(G,v) | Ge€and ¢: S — G is a set map whose image generates G}.
Let

r= [[ ¢
(G)e®
and let 77: S — [ be the set map whose (G, 1))-coordinate function is . Finally, define
I" to be the subgroup of r generated by the image of 7 and let n: S — I' be the set map
obtained by restricting the target of 7.

We claim that T' is a free group on S (with respect to the set map n: S — I'). Indeed,
let H be any group and let ¢p: S — H be a set map. Letting G C H be the subgroup
generated by the image of ¢ and 1: S — G be the set map obtained by restricting the
target of ¢, we obtain an element (G, ) € ©. The projection of [ onto its (G, )-factor is
a homomorphism ®: I' — G such that the diagram
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S——G

commutes. The desired homomorphism ®: I' — H is then obtained by restricting d to
I' ¢ T and then including G into H. The uniqueness of ® is obvious (the key point being
that I" is generated by the image of 7). O
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