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Abstract
We give two nonstandard constructions of free groups, one using geometric topology

and the other inspired by category theory.

1 Introduction
Let S be a set. Recall that a free group on S is a group F (S) together with a set map
η : S → F (S) satisfying the following universal property: for all groups G and all set maps
φ : S → G, there exists a unique homomorphism Φ: F (S)→ G such that the diagram

F (S)

Φ
��

S
φ
//

η
==

G

commutes. The usual argument shows that F (S) is unique if it exists, but of course its
existence is not obvious. The standard construction of F (S) exhibits it as a set of equivalence
classes of words in the formal symbols {s, s−1 | s ∈ S}, where two words are equivalent if
one can be obtained from the other by a sequence of insertions and deletions of the trivial
words ss−1 or s−1s with s ∈ S. This is a mildly awkward construction; in particular, it
requires a small trick to show that every word is equivalent to a unique reduced word (i.e.
one that contains no trivial subwords ss−1 or s−1s with s ∈ S).

In this note, we give two alternate constructions of F (S) that work directly from the
above universal property. One construction uses basic geometric topology, and the other is
inspired by category theory.

2 Geometric topology
The key to our first construction is the follow lemma:

Lemma 2.1. For all groups G, there exists a based space (X,x0) such that π1(X,x0) ∼= G.

One has to be careful here: the usual construction of a two-dimensional CW-complex whose
fundamental group is a given group starts with a group presentation, a notion that depends
on having first constructed a free group! The following argument avoids this circularity:

Proof of Lemma 2.1. The natural candidate for such a space is an Eilenberg–MacLane space
for G. Here are two approaches to constructing this:
• The first uses Milnor’s “infinite join” construction from [M]. Regard G as a discrete
space, and inductively define spaces Zn as follows:

Z1 = G and Zn+1 = G ∗ Zn.

Here ∗ denotes the join of these two spaces. We have

Z1 ⊂ Z2 ⊂ Z3 ⊂ · · · .
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Define
Z =

∞⋃
n=1

Zn.

The space Z is contractible. Indeed, since Z can be endowed with the structure of
a CW-complex, it is enough to prove that πk(Z) = 0 for k ≥ 0. Let f : Sk → Z be
any continuous map. Since the k-sphere Sk is compact, there exists some n� 0 such
that Im(f) ⊂ Zn. But the inclusion map Zn ↪→ Zn+1 is clearly nullhomotopic, so
f is as well. The group G acts freely on Z, and the quotient Z/G is a space whose
fundamental group is isomorphic to G.
• The second approach is a bit more abstract. Recall that a classifying space for G

is a based space BG such that for all based connected CW-complexes Y , there is a
bijection between the set of based principal G-bundles on Y and the set [Y,BG] of
all homotopy classes of based maps from Y to BG. Brown’s representability theorem
([B]; see [P] for an expository account) shows that such a space BG exists. Elements
of π1(BG) = [S1, BG] are the same as based principal G-bundles on S1, which by
the clutching construction are the same as elements of π0(G) = G. We conclude that
π1(BG) ∼= G. We remark that BG is actually an Eilenberg–MacLane space: for n ≥ 2
elements of πn(BG) = [Sn, BG] are the same as based principal G-bundles on Sn,
which by the clutching construction are the same as elements of πn−1(G). This latter
group is trivial since G is a discrete set.

We now prove that free groups exist.

Theorem 2.2. For any set S, there exists a free group on S.

Proof. Let Y be the wedge of |S| circles labeled by elements of S with wedge point y0.
Define Γ = π1(Y, y0) and let η : S → Γ take s ∈ S to the element corresponding to the circle
labeled by S. We claim that Γ is a free group on S. To prove this, we verify the universal
property. Let G be a group and let φ : S → G be a set map. Using Lemma 2.1, we can
find a based space (X,x0) such that π1(X,x0) ∼= G. Define Φ: Γ → G to be the map on
fundamental groups induced by the map (Y, y0) → (X,x0) that takes the circle labeled by
s ∈ S to a loop representing η(s). It is clear that the diagram

Γ
Φ
��

S
φ
//

η
??

G

commutes and that the resulting Φ is unique.

3 Category theory
We now give a categorical construction of a free group that we learned about from Lang’s
book on algebra; see [L, §I.12]. From a categorical point of view, the construction of a
free group is a functor F : Sets → Groups which is a left adjoint to the forgetful functor
U : Groups→ Sets, i.e. such that there is a natural bijection

HomSets(S,U(Γ))←→ HomGroups(F(S),Γ).
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In category theory, there is a very general theorem (due to Freyd) known as the adjoint
functor theorem that constructs such left adjoints. Lang’s proof is essentially a specialization
of the usual proof of the adjoint functor theorem to the setting of groups. As a geometric
group theorist, the thing that surprises me the most about this proof is that perhaps the
most subtle issues in it are set-theoretic; one constructs an enormous collection of groups,
and it requires care to make sure that this collection is a set and not just a class.

The proof is as follows.

Theorem 3.1. For any set S, there exists a free group on S.

Proof. We begin with a sequence of definitions. Let C be the set of isomorphism classes of
groups that can be generated by a set of cardinality at most |S| (subtle point: there is such
a set; the reader should carefully convince themself of this). Next, define

D = {(G,ψ) | G ∈ C and ψ : S → G is a set map whose image generates G}.

Let
Γ̂ =

∏
(G,ψ)∈D

G

and let η̂ : S → Γ̂ be the set map whose (G,ψ)-coordinate function is ψ. Finally, define
Γ to be the subgroup of Γ̂ generated by the image of η̂ and let η : S → Γ be the set map
obtained by restricting the target of η̂.

We claim that Γ is a free group on S (with respect to the set map η : S → Γ). Indeed,
let H be any group and let φ : S → H be a set map. Letting G ⊂ H be the subgroup
generated by the image of φ and ψ : S → G be the set map obtained by restricting the
target of φ, we obtain an element (G,ψ) ∈ D. The projection of Γ̂ onto its (G,ψ)-factor is
a homomorphism Φ̂ : Γ̂→ G such that the diagram

Γ̂

Φ̂
��

S
ψ
//

η̂
??

G

commutes. The desired homomorphism Φ: Γ → H is then obtained by restricting Φ̂ to
Γ ⊂ Γ̂ and then including G into H. The uniqueness of Φ is obvious (the key point being
that Γ is generated by the image of η).
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