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Abstract

We prove that aside from trivial cases, finite-order homeomorphisms
of surfaces and graphs must act nontrivially on homology. For surfaces,
this classical theorem is usually deduced from the Lefschetz fixed point
theorem, while for graphs it is usually deduced via combinatorial manip-
ulations. Our proof is different and is in the same spirit as the original
proof (due to Hurwitz) of this theorem for surfaces.

In this note, we prove that if S is a compact oriented surface whose genus is
at least 2 and f : S → S is a periodic homeomorphism with f ̸= id, then the in-
duced map f∗ : H1(S;Z) → H1(S;Z) must be nontrivial. This is a well-known
theorem of Hurwitz [H]. The proof that appears in most modern textbooks
(due to Serre) deduces it from the Lefschetz fixed point theorem; see, e.g.,
[FM]. Our goal is to give a proof that is more in the spirit of Hurwitz’s origi-
nal proof. While it is a little longer, I feel that this proof is quite instructive.
Moreover, unlike the proof using the Lefschetz fixed point theorem, it can eas-
ily be adapted to prove the analogous result for graphs (I do not know who
to attribute this analogous result to, though it is an easy consequence of work
of Baumslag–Taylor [BT]). The key is a proposition concerning the homology
groups of orbit spaces of finite group actions which we prove in §1. We then
prove our main theorem for surfaces in §2 and for graphs in §3.

1 The homology of quotient spaces
If G is a group and M is a G-representation over a field F (that is, an F-vector
space on which G acts linearly; this is the same as a F[G]-module), then the
invariants of M are

MG := {m ∈ M | g(m) = m for all g ∈ G}

and the coinvariants of M are

MG := M/I with I = ⟨g(m) − m | g ∈ G, m ∈ M⟩.

These are related by duality: letting M∗ = HomF(M,F), we have a natural
isomorphism (M∗)G ∼= (MG)∗. The goal of this section is to prove the following
simple proposition. I do not know who to attribute it to, but it can be found
in e.g. [Br, Theorem III.2.4].
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Proposition 1.1. Let X be a simplicial complex and G be a finite group acting
simplicially on X. Then

Hk(X/G;Q) ∼= (Hk(X;Q))G and Hk(X/G;Q) ∼= (Hk(X;Q))G

for all k ≥ 0.

Remark. If G acts freely, then Proposition 1.1 is a consequence of the stan-
dard transfer lemma. In fact, the proof in [Br, Theorem III.2.4] goes by con-
structing a generalized transfer map for branched covers, though our proof
below is different.

Proof of Proposition 1.1. Since we are working over Q, cohomology is dual to
homology and the two assertions are equivalent. We will prove the first one.
Subdividing X appropriately, we can assume that X/G is a simplicial complex
whose p-simplices are in bijection with the G-orbits of p-simplices of X for all
p ≥ 0. The action of G on X turns the simplicial cochain complex C∗(X;Q)
into a cochain complex of Q[G]-modules. Our subdivision ensures that

C∗(X/G;Q) ∼= (C∗(X;Q))G.

The proposition now follows from Lemma 1.2 below.

Lemma 1.2. Let G be a finite group and let C∗ be a cochain complex of
Q[G]-modules. Then

(H∗(C∗))G = H∗((C∗)G)

Proof. This is an easy fact about representation theory. Recall that since G is
a finite group, it has finitely many irreducible representations over Q. If these
irreducible representations are V1, . . . , Vp and if V is a Q[G]-module, then we
can uniquely write

V = V k1
1 ⊕ · · · ⊕ V kp

p (k1, . . . , kp ∈ Z≥0);

the subspace V ki
i of V is called the Vi-isotypic component of V , and the

decomposition itself is called the isotypic decomposition of V . This works
even if V is infinite-dimensional. Each term of C∗ has an isotypic decompo-
sition, and this isotypic decomposition is preserved by the coboundary map.
This implies that for all 1 ≤ i ≤ p and k ∈ Z, the Vi-isotypic component
of Hk(C∗) is the same as the kth cohomology group of the cochain complex
composed of the Vi-isotypic components of C∗. This is in particular true for
the trivial representation, which is the assertion of the lemma.

2 Finite-order automorphisms of surfaces
To prove our theorem for surfaces, we need the following classical fact.

2



Theorem 2.1 (Riemann-Hurwitz formula). Let π : S → S ′ be an orientation-
preserving degree d branched cover between closed oriented surfaces. Assume
that the orders of the branch points are λ1, . . . , λk ∈ Z≥2. Then

χ(S) = dχ(S ′) −
k∑

i=1
(λi − 1).

Proof. Choosing a triangulation of S ′ that contains the images of all the branch
points and lifting this triangulation to S, we can assume that S and S ′ are
simplicial complexes and π is a simplicial map. Assume that S ′ has v vertices,
e edges, and t triangles. Our assumptions then imply that S has de edges
and dt triangles. As for vertices, we need a correction term to account for the
branch points: S has dv − ∑k

i=1(λi − 1) vertices. We conclude that

χ(S) = (dv −
k∑

i=1
(λi − 1)) − de + dt = dχ(S ′) −

k∑
i=1

(λi − 1),

as desired.

Our theorem then is as follows.

Theorem 2.2. Let S be a compact oriented surface with χ(S) < 0 and let
f : S → S be a periodic homeomorphism with f ̸= id. Then f acts nontrivially
on H1(S;Z).

Remark. Theorem 2.2 is clearly false for g = 0 and g = 1.

Proof of Theorem 2.2. If f is not orientation-preserving, then f acts nontriv-
ially on H2(S;Z). Considering cup products, we see that f must therefore act
nontrivially on H1(S;Z), and thus on H1(S;Z). We can therefore assume that
f is orientation-preserving. Assume for the sake of contradiction that f acts
trivially on homology. Let G ⊂ Homeo+(S) be the subgroup generated by f
and let π : S → S/G be the projection. Since G preserves orientation, the map
π is a branched covering. Letting d = |G| ≥ 2 and λ1, . . . , λk ∈ Z≥2 be the
orders of the branch points, we can apply Theorem 2.1 and get that

χ(S) = dχ(S/G) −
k∑

i=1
(λi − 1).

Proposition 1.1 together with our assumption that f acts trivially on homology
implies that χ(S) = χ(S ′). Combining this with the above sum, we get that

k∑
i=1

(λi − 1) = (d − 1)χ(S).

The left hand side of this is positive. However, since d ≥ 2 and χ(S) < 0, the
right hand side is negative, a contradiction.
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3 Finite-order automorphisms of graphs
Let Λ be a graph and let f : Λ → Λ be a periodic homeomorphism. It is
possible for f to not be the identity but to act trivially on H1(Λ;Z). Here are
two examples.

• Let Λ be a p-vertex triangulation of the circle and let f : Λ → Λ be an
order p rotation.

• Let Λ be an arbitrary graph such that there exists some vertex v ∈ Λ
and two edges e1 and e2 containing v and ending at valence 1 vertices.
Then we can let f : Λ → Λ flip e1 and e2 while fixing the remainder of Λ
(including v).

The following theorem says that in some sense these are the only things that
can go wrong.

Theorem 3.1. Let Λ be a compact connected graph and let f : Λ → Λ be a
periodic homeomorphism. Assume that the following hold.

• The homeomorphism f acts trivially on H1(Λ;Z).
• The homeomorphism f fixes all valence 1 vertices of Λ.
• If H1(Λ;Z) ∼= Z, then f fixes at least one point of Λ.

Then f = id.

Proof. Assume for the sake of contradiction that f ̸= id. By subdividing Λ,
we can assume that f is a simplicial map that does not flip any edges. Also,
by replacing f with a power we can assume that the order p ≥ 2 of f is prime.
Let G ⊂ Homeo(Λ) be the subgroup generated by f , so |G| = p.

We will begin by dealing with the case that is closest to that of surfaces
(and whose proof closely tracks that of Theorem 2.2), namely when f does
not fix any edges of Λ (and hence has isolated fixed points). Since f acts
trivially on H1(Λ;Z), Proposition 1.1 implies that χ(Λ) = χ(Λ/G). Let v be
the number of vertices of Λ/G and e be the number of edges of Λ/G. Also let
v0 be the number of vertices of Λ that are fixed by f . Since |G| = p is prime,
all vertex and edge orbits have size either 1 or p. Since we are assuming that
f does not fix any edges, we deduce that Λ has p(v − v0) + v0 vertices and pe
edges. We therefore get that

v − e = χ(Λ/G) = χ(Λ) = p(v − v0) + v0 − pe.

Manipulating this, we see that (p − 1)(v − e) = (p − 1)v0, so

v − e = v0.

If H1(Λ;Z) has rank at least 2, then v − e < 0 but v0 ≥ 0, so we get a
contradiction. If H1(Λ;Z) has rank 1, then v − e = 0, but by our assumptions
we have v0 ≥ 1, so we also get a contradiction. Finally, if H1(Λ;Z) has rank 0,
then Λ is a tree and v − e = 1, so v0 = 1. By assumption, f fixes all valence
1 vertices, so Λ has a single valence 1 vertex. The only compact tree with a
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single valence 1 vertex is the trivial one-point tree, so we conclude that Λ is a
single point and f = id, a contradiction.

We now reduce the general case to that of the previous paragraph. Let
Λfix = {x ∈ Λ | f(x) = x}. Since we have assumed that f ̸= id, the graph Λfix
must be a proper subgraph of Λ. We remark that Λfix need not be connected.
Let Λ′ be the graph that results from taking Λ and collapsing a maximal forest
in Λfix. The projection map Λ → Λ′ is a homotopy equivalence and f induces
a simplicial homeomorphism f ′ : Λ′ → Λ′ that does not flip any edges and
has order p. The key property of Λ′ is that all its edges that are fixed by
f ′ are loops; let Λ′′ ⊂ Λ′ be the result of removing those fixed edges and let
f ′′ : Λ′′ → Λ′′ be the restriction of f ′. Since Λfix is a proper subgraph of Λ,
the graph Λ′′ must contain edges and f ′′ ̸= id. If the rank of H1(Λ′′;Z) is one,
then either the rank of H1(Λ;Z) is one and by assumption f (and hence f ′′)
must fix a point or we have have removed at least one loop when we formed
Λ′′, so again f ′′ must fix a point. We can thus apply the previous paragraph
to the action of f ′′ on Λ′′ to obtain a contradiction.
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