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Abstract

We discuss theorems of P. Smith and Floyd connecting the cohomology of a simplicial
complex equipped with an action of a finite p-group to the cohomology of its fixed
points.

1 Introduction

Let G be a discrete group. A simplicial G-complex is a simplicial complex X equipped with
an action of G by simplicial automorphisms. Around 1940, Paul Smith proved a number of
striking theorems that relate the cohomology of a simplicial G-complex to the cohomology
of the subspace XG of fixed points. See [Sm] for references. In these notes, we discuss and
prove one of Smith’s main results.

Basic definitions. To state Smith’s results, we need some definitions. Fix a prime p and
a simplicial complex X.

• The simplicial complex X is mod-p acyclic if

Hk(X;Fp) =
{
Fp if k = 0,
0 otherwise.

Note that this implies that X is nonempty and connected.
• The simplicial complex X is a mod-p homology n-sphere if

Hk(X;Fp) =
{
Fp if k = 0 or k = n,

0 otherwise.

Note that we are not requiring that X be a manifold nor that it be n-dimensional.
• If all the mod-p homology groups of X are finite-dimensional and only finitely many
of them are nonzero, define

χp(X) =
∞∑
k=1

(−1)k dim Hk(X;Fp) ∈ Z.

We emphasize that this is an integer.
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Smith’s theorem. The following theorem summarizes some of Smith’s results.

Theorem A (Smith). Let p be a prime, let G be a finite p-group, and let X be a finite-
dimensional simplicial G-complex. The following then hold.

(a) If all the mod-p homology groups of X are finite dimensional, then the same is true
for XG and χp(X) ≡ χp(XG) modulo p.

(b) If X is mod-p acyclic, then so is XG. In particular, XG is nonempty.
(c) If X is a mod-p homology n-sphere, then XG is either empty or a mod-p homology

m-sphere for some 0 ≤ m ≤ n.

Remark 1.1. The condition that X is a simplicial complex can be somewhat relaxed at
the cost of using Čech cohomology and imposing certain technical conditions on the spaces
involved. See [B] for a discussion, and Remark 4.2 below for some more details on why our
proof does not work in general.
Remark 1.2. No theorem like Theorem A holds for groups that are not finite p-groups.
For instance, if G is a finite cyclic group whose order is not a power of a prime, then
building on work of Conner–Floyd [CF], Kister [K] constructed a simplicial action of G on a
triangulation X of Euclidean space such that XG = ∅. The ultimate result in this direction
is a remarkable theorem of Oliver [O] that characterizes the possible fixed-point sets for
actions of arbitrary finite groups on finite-dimensional contractible complexes.

Compactness and Euler characteristic. If p is a prime, G is a finite p-group, and X
is a compact simplicial G-complex, then there is the following elementary argument for
why χp(X) ≡ χp(XG) modulo p. Subdividing X appropriately, we can assume that X/G is
the simplicial complex whose k-simplices are the G-orbits of simplices of X. In particular,
XG is a subcomplex of X. The proof will be by induction on |G|.

The base case is where |G| = p, so G is a cyclic group of order p. This implies that for
all simplices ∆ of X, the G-orbit G ·∆ either consists of a single simplex (so ∆ ∈ XG) or
consists of p distinct simplices. Adding all of these up, we see that in fact

χ(X) + (p− 1)χ(XG) = pχ(X/G);

here we can talk about χ rather than χp since everything is compact. Reducing everything
modulo p, we see that χ(X) ≡ χ(XG) modulo p, as desired.

Now assume that |G| > p and that the result is true for all smaller groups. Since G is a
finite p-group, it is nilpotent. This implies that there is a nontrivial proper normal subgroup
G′ of G. The group G/G′ acts on XG′ , and applying our inductive hypothesis twice we see
that

χ(X) ≡ χ(XG′) ≡ χ
((
XG′

)G/G′)
= χ(XG)

modulo p, as desired.

Finite-dimensionality. The condition that X is finite-dimensional is essential for all
three parts of Theorem A. Let G be a finite p-group (in fact, the arguments below will not
use the fact that G is finite nor that it is a p-group).
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• Let X be the universal cover of a K(G, 1). The group G then acts freely on X, so
XG = ∅, contradicting (b), and 0 = χp(XG) 6= χp(X) = 1, contradicting (a).
• Generalizing the usual construction of a K(G, 1), more elaborate infinite-dimensional
counterexamples to (a) and (b) can be constructed as follows. Let K be any simplicial
complex. Endow K with the trivial G-action. Form X by first equivariantly attaching
1-cells toK that are permuted freely by G to make it connected, then equivariantly at-
taching 2-cells to make it simply-connected, etc. The result is a contractible simplicial
G-complex X with XG = K.
• With a bit more care, an argument like in the previous bullet point can show that
any simplicial complex K can be the fixed-point set of a simplicial action of G on a
mod-p homology n-sphere for any n (necessarily infinite-dimensional), contradicting
(c).

Remark 1.3. L. Jones [J] proved a beautiful converse to part (b) of Theorem A that says that
if K is a finite simplicial complex that is mod-p acyclic and G is a finite p-group, then there
exists a finite-dimensional contractible simplicial G-complex X such that XG ∼= K.

Stronger result. In fact, what we will actually prove is the following theorem, which is
due to Floyd [F]. See below for how to derive Theorem A from it.

Theorem B (Floyd). Let G be a finite p-group and let X be a finite-dimensional simplicial
G-complex whose mod-p homology groups are all finitely generated. The following then hold.

(i) For all n ≥ 0, we have
∞∑
k=n

dim Hk(XG;Fp) ≤
∞∑
k=n

dim Hk(X;Fp).

In particular, all the mod-p homology groups of XG are finite-dimensional.
(ii) χp(XG) ≡ χp(X) modulo p.

Derivation of Smith’s theorem. Theorem A can be derived from Theorem B as follows.
As in Theorem A, let G be a finite p-group and let X be a finite-dimensional simplicial G-
complex.

• Part (a) of Theorem A is contained in the conclusions of Theorem B.
• For part (b) of Theorem A, assume that X is mod-p acyclic. Part (i) of Theorem B
then says that

∞∑
k=0

dim Hk(XG;Fp) ≤
∞∑
k=0

dim Hk(X;Fp) = 1.

This implies that either XG = ∅ or that XG is mod-p acyclic. To rule out XG = ∅,
we use part (ii) of Theorem B to see that

χp(XG) ≡ χp(X) ≡ 1 (mod p).

• For part (c) of Theorem A, assume that X is a mod-p homology n-sphere and that
XG 6= ∅. We must prove that XG is a mod-p homology m-sphere for some 0 ≤ m ≤ n.
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Part (i) of Theorem B says that

∞∑
k=0

dim Hk(XG;Fp) ≤
∞∑
k=0

dim Hk(X;Fp) = 2. (1.1)

The left hand side of (1.1) is thus either 0 or 1 or 2. The case where it is 0 is
precisely the case where XG = ∅, which is allowed. If the left-hand side of (1.1) is 1,
then necessarily the nonzero homology group is the 0th one, so χp(XG) = 1, which
contradicts the conclusion in part (ii) of Theorem B that says that modulo p we have

χp(XG) ≡ χp(X) =
{

0 if n is odd,
2 if n is even.

Finally, assume that the left hand side of (1.1) is 2, so XG is a mod-p homology
m-sphere for some m. To see that 0 ≤ m ≤ n, we apply part (i) of Theorem B again
to see that ∞∑

k=n+1
dim Hk(XG;Fp) ≤

∞∑
k=n+1

dim Hk(X;Fp) = 0,

so Hk(XG;Fp) = 0 for all k ≥ n+ 1.

Outline. We will begin in §2 by reducing Theorem B to the special case of a cyclic group
of order p. In §3, we will discuss some algebraic properties of the group ring of a cyclic
group of order p. Next, in §4 we will introduce Smith’s special homology groups. Part (i)
of Theorem B is then proved in §5 and part (ii) in §6.

2 An initial reduction

Let us first recall what we must prove. Let p be a prime, let G be a finite p-group, and let X
be a finite-dimensional simplicial G-complex whose mod-p homology groups are all finitely
generated. Subdividing X appropriately, we can assume that X/G is the simplicial complex
whose k-simplices are the G-orbits of k-simplices of X. In particular, XG is a subcomplex
of X. For all n ≥ 0, we must prove that

∞∑
k=n

dim Hk(XG;Fp) ≤
∞∑
k=n

dim Hk(X;Fp).

We must also prove that χp(XG) ≡ χp(X) modulo p.

The first reduction is that it is enough to prove this for |G| = p. Indeed, assume that we
have done this. We will prove the general case by induction on the order of G, the base
case being the case where |G| = p. A general p-group is nilpotent. If |G| > p, there thus
exists a nontrivial proper normal subgroup G′ of G. The group G/G′ acts on XG′ and(

XG′
)G/G′

= XG.
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We can thus apply our inductive hypothesis twice, first to the action of G′ on X and then
to the action of G/G′ on XG′ . The desired conclusions follow.

It thus remains to prove the theorem in the case where |G| = p, i.e. the case where G is a
cyclic group of order p.

3 The group ring of a cyclic group

Let p be a prime and let G be a cyclic group of order p. If X is a simplicial G-complex,
then the homology groups Hk(X;Fp) have a G-action, and thus are modules over the group
ring Fp[G]. In this section, we introduce some special features of Fp[G] that we will use in
the next section to study these homology groups.

Let t be the generator of G, so Fp[G] ∼= Fp[t]/(tp − 1). Define

τ = 1− t ∈ Fp[G],
σ = 1 + t+ t2 + · · ·+ tp−1 ∈ Fp[G].

The following sequence of results relate τ and σ.

Lemma 3.1. The kernel of the map Fp[G] → τ · Fp[G] that multiplies elements by τ is
1-dimensional and spanned by σ. In particular, σ · Fp[G] is 1-dimensional.

Proof. A general element x of Fp[G] is of the form

x = a0 + a1t+ a2t
2 + · · ·+ ap−1t

p−1

for some ai ∈ Fp. We then have

τx = (a0 − ap−1) + (a1 − a0)t+ (a2 − a1)t2 + · · ·+ (ap−1 − ap−2)tp−1.

This is zero if and only if all the ai are equal, i.e. if and only if x is a multiple of σ.

Lemma 3.2. τp−1 = σ.

Proof. The binomial theorem says that

τp−1 = (1− t)p−1 =
p−1∑
i=0

(
p− 1
i

)
(−1)iti.

We must therefore prove that (
p− 1
i

)
(−1)i ≡ 1 (mod p)

for 1 ≤ i ≤ p− 1. For this, we calculate:(
p− 1
i

)
(−1)i = (p− 1)(p− 2) · · · (p− i)

(i)(i− 1) · · · (1) (−1)i ≡ (−1)i (1)(2) · · · (i)
(i)(i− 1) · · · (1)(−1)i = 1.
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Lemma 3.3. For all 0 ≤ i ≤ p− 1, we have σ ∈ τ i · Fp[G].

Proof. Lemma 3.2 says that σ = τp−1 = τ i · τp−1−i.

Lemma 3.4. For all 0 ≤ i ≤ p− 1, we have a short exact sequence

0 −→ σ · Fp[G] −→ τ i · Fp[G] −→ τ i+1 · Fp[G] −→ 0.

Proof. Immediate from Lemmas 3.1 and 3.3.

Lemma 3.5. For all 0 ≤ i ≤ p, the subspace τ i · Fp[t] of Fp[t] is (p− i)-dimensional.

Proof. The space τ0 · Fp[t] = Fp[t] is p-dimensional, and Lemma 3.4 implies that for 0 ≤
i ≤ p− 1 we have

dim
(
τ i · Fp[G]

)
= dim (σ · Fp[G]) + dim

(
τ i+1 · Fp[G]

)
= 1 + dim

(
τ i+1 · Fp[G]

)
.

The lemma follows.

4 The Smith special homology groups

Let p be a prime, let G be a cyclic group of order p, and let X be a simplicial G-complex
such that X/G is the simplicial complex whose k-simplices are the G-orbits of k-simplices
of X; in particular, XG is a subcomplex of X. Throughout this section, all chain complexes
and homology groups will have Fp-coefficients.

The chain complex C•(X) is a module over the group ring Fp[G]. Let

t, τ, σ ∈ Fp[G]

be as in §3. Since we are working over Fp, we have

τp = (1− t)p = 1p − tp = 1− 1 = 0.

Writing Cτk

• (X) for τk · C•(X), we thus have a filtration

C•(X) = Cτ
0
• ⊃ Cτ

1
• (X) ⊃ Cτ2

• (X) ⊃ · · · ⊃ Cτp

• (X) = 0

of chain complexes. We make the following definition.

Definition 4.1. For ρ = τ i with 0 ≤ i ≤ p, the Smith special homology groups of X of
index ρ, denoted Hρ

•(X), are the homology groups of the complex Cρ• (C).

Remark 4.2. One might wonder why we insist on only defining the Smith special homology
groups for simplicial G-complexes. After all, for general spaces it would make perfect sense
to mimic the definition of the Smith special homology groups using singular homology. The
only serious use we will make of the simplicial complex structure is to deduce that if X is
finite-dimensional, then its Smith special homology groups must vanish in sufficiently high
degrees (this shows up in the proof of Proposition 5.1 below). This is not at all clear for
singular homology.
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The Smith special homology groups of different indices are related by two long exact se-
quences. The first is the following. In its statement, recall from Lemma 3.2 that σ = τp−1.

Lemma 4.3. Let G and X be as above. For all 1 ≤ i ≤ p−1, we have a long exact sequence

· · · → Hσ
k(X)→ Hτ i

k (X)→ Hτ i+1
k (X)→ Hσ

k−1(X)→ · · ·

Remark 4.4. Since τp = 0, we have Hτp

k (X) = 0, so for i = p− 1 this reduces to the trivial
fact that Hσ

k(X) ∼= Hτp−1
k (X).

Proof of Lemma 4.3. Lemma 3.2 says that σ = τp−1, which implies that the chain complex
Cσ• (X) is a subcomplex of Cτ i

• (X). We will prove that the sequence

0 −→ Cσ• (X) −→ Cτ
i

• (X) −→ Cτ
i+1
• (X) −→ 0 (4.1)

of chain complexes is exact. The desired long exact sequence is the associated long exact
sequence in homology.

Fix some k ≥ 0, let ∆ be a k-simplex of X, and let Y∆ be the subcomplex of X whose
k-simplices consist of the G-orbit of ∆. We thus have subspaces

Cσk (Y∆) and Cτ
i

k (Y∆) and Cτ
i+1
k (Y∆)

of
Cσk (X) and Cτ

i

k (X) and Cτ
i+1
k (X), (4.2)

respectively. The vector spaces (4.2) are direct sums of such subspaces, and the maps in
(4.1) preserve this direct sum decomposition. We conclude that it is enough to prove that
the sequence

0 −→ Cσ• (Y∆) −→ Cτ
i

• (Y∆) −→ Cτ
i+1
• (Y∆) −→ 0 (4.3)

is exact.

There are two cases. The first is where ∆ is a simplex of XG, so Y∆ = (Y∆)G = ∆. Since
τ = 1− t kills Ck(XG), all the terms of (4.3) are 0 and its exactness is trivial.

The second case is where ∆ is not a simplex of XG. In this case, since G is a cyclic group
of order p, the G-stabilizer of ∆ is trivial. This implies that as a Fp[G]-module we have

Ck(Y∆) ∼= Fp[G].

The sequence (4.3) is thus of the form

0 −→ σ · Fp[G] −→ τ i · Fp[G] −→ τ i+1 · Fp[G] −→ 0.

The exactness of this is precisely Lemma 3.4.

The second long exact sequence relating the different Smith special homology groups is as
follows. The reader should note the appearance of XG; this exact sequence will be the key
to relating the topology of X and XG.
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Lemma 4.5. Let G and X be as above. Fix some ρ = τ i with 1 ≤ i ≤ p − 1, and let
ρ = τp−i. We then have a long exact sequence

· · · → Hρ
k(X)⊕Hk(XG)→ Hk(X)→ Hρ

k(X)→ Hρ
k−1(X)⊕Hk−1(XG)→ · · ·

Proof. Let
ι : Cρ• (X)⊕ C•(XG)→ C•(X)

be the chain complex map induced by the inclusions of the two factors and let

π : C•(X)→ Cρ• (X)

be the chain complex map that multiplies chains by ρ. We will prove that the sequence

0 −→ Cρ• (X)⊕ C•(XG) ι−→ C•(X) π−→ Cρ• (X) −→ 0 (4.4)

of chain complexes is exact. The desired long exact sequence is the associated long exact
sequence in homology.

Fix some k ≥ 0, let ∆ be a k-simplex of X, and let Y∆ be the subcomplex of X whose
k-simplices consist of the G-orbit of ∆. We thus have subspaces

Cρk(Y∆)⊕ Ck
(
(Y∆)G

)
and Ck(Y∆) and Cρk(Y∆)

of
Cρk(X)⊕ Ck(XG) and Ck(X) and Cρk(X), (4.5)

respectively. The vector spaces (4.5) are direct sums of such subspaces, and the maps ι and
π preserve this direct sum decomposition. We conclude that it is enough to prove that the
sequence

0 −→ Cρk(Y∆)⊕ Ck
(
(Y∆)G

)
ι−→ Ck(Y∆) π−→ Cρk(Y∆) −→ 0 (4.6)

is exact.

There are two cases. The first is where ∆ is a simplex of XG, so Y∆ = (Y∆)G = ∆. Since
both ρ = τ i and ρ = τp−i kill Ck(XG), the sequence (4.6) is of the form

0 −→ 0⊕ Fp
∼=−→ Fp −→ 0 −→ 0.

This is evidently exact.

The second case is where ∆ is not a simplex of XG. In this case, since G is a cyclic group
of order p, the G-stabilizer of ∆ is trivial. This implies that (Y∆)G has no k-simplices, so

Ck
(
(Y∆)G

)
= 0.

Moreover, as a Fp[G]-module we have

Ck(Y∆) ∼= Fp[G].

The sequence (4.6) is thus of the form

0 −→ ρ · Fp[G] −→ Fp[G] −→ ρ · Fp[G] −→ 0. (4.7)
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The leftmost map here is clearly injective. Similarly, the rightmost map is clearly surjective.
Finally, Lemma 3.5 says that

dim (ρ · Fp[G]) = dim
(
τ i · Fp[G]

)
= p− i

and
dim (ρ · Fp[G]) = dim

(
τp−i · Fp[G]

)
= i.

Since these add up to dimFp[G] = p, the exactness of (4.7) follows.

5 The inequality

Let p be a prime. In this section, all homology groups will have Fp coefficients. Our goal
in this section is to use the Smith special homology groups to prove part (i) of Theorem B
for the case of cyclic groups of order p, which we observed in §2 implies the general case.
In fact, we will prove the following stronger proposition, whose additional conclusions will
be important later when we study Euler characteristics. Let τ ∈ Fp[G] be as in §4.

Proposition 5.1. Let G be a cyclic group of order p and let X be a finite-dimensional
simplicial G-complex such that the quotient X/G is the simplicial complex whose k-simplices
are the G-orbits of simplices of X. Assume that all the mod-p homology groups of X are
finite-dimensional. For some 1 ≤ i ≤ p− 1, set ρ = τ i. The following then hold.

• All the Smith special homology groups Hρ
k(X) are finite-dimensional.

• For all n ≥ 0, we have
∞∑
k=n

dim Hk(XG) ≤
( ∞∑
k=n

dim Hk (X)
)
− dim Hρ

n(X).

In particular, all the Hk(XG) are finite-dimensional.

Proof. Set ρ = τp−i. For all k, Lemma 4.5 gives a long exact sequence which contains the
segment

Hρ
k+1(X) −→ Hρ

k(X)⊕Hk(XG) −→ Hk(X). (5.1)

Setting
ai = dim (Hρ

i (X)) and ai = dim
(
Hρ
i (X)

)
,

we deduce from (5.1) that

ak + dim
(
Hk

(
XG

))
≤ ak+1 + dim (Hk (X)) . (5.2)

Noting that the roles of ρ and ρ in Lemma 4.5 can be reversed, we obtain in a similar way
that

ak + dim
(
Hk

(
XG

))
≤ ak+1 + dim (Hk (X)) . (5.3)

Let X be N -dimensional. From the definition of the Smith special homology groups, we see
that for k ≥ N + 1 we have

Hρ
k(X) = Hρ

k(X) = 0.
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The case k = N of (5.2) and (5.3) thus reduce to

aN + dim
(
HN

(
XG

))
≤ dim (HN (X)) <∞

and
aN + dim

(
HN

(
XG

))
≤ dim (HN (X)) <∞,

so aN , aN <∞. The case k = N − 1 of (5.2) and (5.3) then say that

aN−1 + dim
(
HN−1

(
XG

))
≤ aN + dim (HN−1 (X)) <∞

and
aN−1 + dim

(
HN−1

(
XG

))
≤ aN + dim (HN−1 (X)) <∞,

so aN−1, aN−1 <∞. Repeating this argument and working backwards, we see that ak, ak <
∞ for all k, as claimed in the first conclusion of the proposition.

We now turn to the second conclusion. Rearranging (5.2) and (5.3), we see that

dim
(
Hk

(
XG

))
≤ dim (Hk (X)) + (ak+1 − ak) . (5.4)

and
dim

(
Hk

(
XG

))
≤ dim (Hk (X)) + (ak+1 − ak) . (5.5)

As we will see, there is a slight difference in the calculation we are about to do depending
on whether or not

N∑
k=n

dim
(
Hk

(
XG

))
has an even or an odd number of terms; to avoid cluttering our notation, we will assume
that it has an even number. Now, alternately using (5.4) and (5.5), we see that

N∑
k=n

dim
(
Hk

(
XG

))
≤

N∑
k=n

dim (Hk (X)) + (an+1− an) + (an+2− an+1) + · · ·+ (aN+1− an).

This would end with aN+1 − an if there were an even number of terms in our sum. The
above sum telescopes and thus reduces to

N∑
k=n

dim
(
Hk

(
XG

))
≤

N∑
k=n

dim (Hk (X)) + (aN+1 − an).

Since X is N -dimensional, the term aN+1 is actually 0. We conclude that

N∑
k=n

dim
(
Hk

(
XG

))
≤

N∑
k=n

dim (Hk (X))− an,

as desired.
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6 The Euler characteristic

We finally prove part (ii) of Theorem B for the case of cyclic groups of order p.

We start by recalling what we must prove. Fix a prime p. All homology groups in this section
have coefficients in Fp. Let G be a cyclic group of order p and let X be a finite-dimensional
simplicial G-complex all of whose mod-p homology groups are finite dimensional. Subdivid-
ing, we can assume that X/G is the simplicial complex whose k-simplices are the G-orbits
of the simplices of X; in particular, XG is a subcomplex of X. In the previous section,
we proved that all the mod-p homology groups of XG are finite-dimensional, so its mod-p
Euler characteristic χp(XG) is well defined. We must prove that χp(X) ≡ χp(XG) modulo
p.

Let τ ∈ Fp[G] be as in §4. For 1 ≤ i ≤ p, Proposition 5.1 says that all the Smith special
homology groups Hτ i

k (X) are finite-dimensional. Moreover, since X is finite-dimensional,
only finitely many of them are nonzero. It thus makes sense to define

χτ
i

p (X) =
∞∑
k=0

(−1)k dim Hτ i

k (X).

Now, the case ρ = τ1 of Lemma 4.5 gives a long exact sequence

· · · → Hτp−1
k (X)⊕Hk(XG)→ Hk(X)→ Hτ

k(X)→ Hτp−1
k−1 (X)⊕Hk−1(XG)→ · · · .

Taking Euler characteristics, we deduce that

χp(X) = χτp(X) + χτ
p−1
p (X) + χp(XG).

To prove that χp(X) and χp(XG) are equal modulo p, it is enough to prove that

χτp(X) + χτ
p−1
p (X) ≡ 0 (mod p). (6.1)

For this, we will use the other long exact sequence connecting the Smith special homology
groups, namely the one given by Lemma 4.3. For 1 ≤ i ≤ p− 1, this is of the form

· · · → Hτp−1
k (X)→ Hτ i

k (X)→ Hτ i+1
k (X)→ Hτp−1

k−1 (X)→ · · · ;

here we are using Lemma 3.2, which says that τp−1 = σ. Since τp = 0, this is only interesting
when 1 ≤ i ≤ p− 2. For these values, taking Euler characteristics we see that

χτ
i

p (X) = χτ
p−1
p (X) + χτ

i+1
p (X).

This implies that
p−1∑
i=1

χτ
i

p (X) =

p−2∑
i=1

(
χτ

p−1
p (X) + χτ

i+1
p (X)

)+ χτ
p−1
p (X)

=

p−1∑
i=2

χτ
i

p (X)

+ (p− 1)χτp−1
p (X) .

Rearranging, we see that
χτ

1
p (X) = (p− 1)χτp−1

p (X) .
The desired equation (6.1) follows.
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