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Abstract

We explain a theorem of Birkhoff that says that a smooth convex billiard table always
has periodic billiard paths of any given prime period.

1 Introduction
Let T be a compact region in R2 with smooth boundary ∂T . A billiard path in T is a bi-
infinite polygonal path in T which changes direction only at points of ∂T , where its angle
of incidence equals its angle of reflection:

T

∂T

The billiard path is periodic if it eventually closes up and starts repeating, in which case
its period is the number of line segments making up this repeating pattern. Here are a few
examples of periodic billiard paths:

Period 2 Period 3 Period 4

The goal of this note is to explain the following theorem of Birkhoff [B]:

Theorem 1.1 (Birkhoff). Let T be a compact convex region in R2 with smooth boundary
and let p be a prime. Then T has a periodic billiard path of period p.

One can also consider billiard paths in compact regions of R2 whose boundaries are only
piecewise smooth, in which case a billiard path is not allowed to hit one of the corners.
In contrast to the elementary proof of Theorem 1.1, it is not known whether or not every
convex polygon in R2 has a periodic billiard path. Masur [M] proved that periodic billiard
paths exist on polygons whose angles are rational multiples of π. This question is otherwise
wide open even for triangles, where the best current result is a theorem of Schwartz [S] that
says that such paths exist for triangles whose angles are all less that 100◦.
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2 Billiards in an ellipse
For the proof of Theorem 1.1, we will first need to understand some classical facts about
billiards in an ellipse. Recall that an ellipse E has two points f1 and f2 called its foci such
that for some c > 0 we have

E = {x ∈ R2 | |x− f1|+ |x− f2| ≤ c}.

The main result we will need about billiards in an ellipse is as follows.

Theorem 2.1. Let E be an ellipse with foci f1 and f2. Then any billiard path in E that
passes through f1 bounces off ∂E once and then passes through f2.

Theorem 2.1 implies that all billiard paths in an ellipse that go through one of the foci
keep going back and forth between the two foci. This fact has been used in architecture to
construct “whispering galleries”: since sound waves travel like billiard paths, in an elliptical
room if a person whispers at one of the foci then their voice will be concentrated and easily
audible at the other one.

Proof of Theorem 2.1. Write

E = {x ∈ R2 | |x− f1|+ |x− f2| ≤ c}.

Let z ∈ ∂E be any point, let ` be the tangent line through E at z, and let γ1 and γ2 be the
line segments connecting f1 and f2 to z, respectively. Our goal is to prove that the angles
formed by γ1 and γ2 with ` are the same:

f1

z

ℓ

γ1 γ2

f2

The points on the outside of E are precisely those points x such that |x− f1|+ |x− f2| > c.
Since ` intersects E at z and otherwise lies outside of E, the point z is the unique point of
` that minimizes the sum of the distances from f1 and f2. Let f2 and γ2 be the reflections
of f2 and γ2 across `:
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γ1

γ2

γ2

The point z is the unique point of ` that minimizes the sum of the distances from f1 and
f2. Reflecting on the above picture, we see that the fact that a straight line minimizes
the length of a path connecting two points implies that the union of γ1 and γ2 must be a
straight line. The desired conclusion about the angles follows.

3 Proof of Theorem 1.1
Let us first recall the statement. Let T be a compact convex region in R2 with smooth
boundary and let p be a prime. Our goal is to prove that T has a periodic billiard path of
period p.

What we will prove is that the longest possible closed path consisting of p straight line
segments connecting points of ∂T is a billiard path. More precisely, define the function

L : (∂T )p −→ R

via the formula

L(x1, . . . , xp) = |x2 − x1|+ · · ·+ |xp − xp−1|+ |x1 − xp|.

The function L is continuous and its domain is compact, so it achieves a global maximum
at a point (x1, . . . , xp) ∈ (∂T )p. Let B be the closed path that starts at x1, then goes in a
straight line to x2, then goes in a straight line to x3, etc., and ends by going in a straight
line from xp to x1. We will prove that B is a billiard path if we extend it to repeat infinitely
often; since p is prime, the period of the resulting path is p (instead of merely a divisor of
p).

We must prove that the angle of incidence equals the angle of reflection at each xi.
Cyclically permuting the the xi, it is enough to do this at x2. To keep our notation from
getting out of hand, in the case p = 2 let x3 = x1. Define

c = |x2 − x1|+ |x3 − x2|

and let E be the ellipse
E = {x | |x− x1|+ |x− x3| ≤ c},

so E has foci x1 and x3 and x2 ∈ ∂E. The points on the outside of E are precisely those
x ∈ R2 such that |x − x1| + |x − x3| > c. If there was a point x′2 ∈ ∂T outside of E, then
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we could replace x2 with x′2 and increase L, contradicting the maximality of L(x1, . . . , xp).
The whole region T thus lies inside of E. As in the picture

x3x1

x2

T

E

this implies that the tangent lines to ∂T and ∂E at x2 are the same. Theorem 2.1 now
implies that the angles of incidence and reflection at x2 are indeed the same, as desired.
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