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Abstract
We explain Dehn’s solution to the word problem for fundamental groups of surfaces
using hyperbolic geometry.

Fix some g ≥ 2 and let Σg be a closed oriented genus g surface. Recall that

π1(Σg) ∼= 〈α1, β1, . . . , αg, βg | [α1, β1] · · · [αg, βg] = 1〉.

Dehn [D] gave an elegant algorithm to decide whether or not a word in the generators
S = {α1, β1, . . . , αg, βg} represents the identity in π1(Σg). To describe this algorithm, we
must introduce some notation. Let F (S) denote the free group on S. For w ∈ F (S), write
|w| for the word length of w. Let r = [α1, β1] · · · [αg, βg] ∈ F (S). A shortening relation in
π1(Σg) is a relation r1 = r2, where r1, r2 ∈ F (S) satisfy the following:
• |r1| > |r2|.
• Either r1r

−1
2 or r2r

−1
1 is a cyclic permutation of r, which implies in particular that it

is conjugate to r and thus is a relation in π1(Σg).
• |r1| + |r2| = |r|. In other words, no cancellation occurs between the r1 and r2 pieces
of the aforementioned cyclic permutation of r.

The key to Dehn’s algorithm is the following theorem.

Theorem 0.1 (Dehn). Let w ∈ F (S) be a nontrivial reduced word that represents the
identity in π1(Σg). Then there exists a subword r1 of w and a shortening relation r1 = r2
in π1(Σg).

Theorem 0.1 leads to the following algorithm. Consider a reduced word w ∈ F (S).
Step 1. Check if w contains a subword r1 as in Theorem 0.1. If it does not, then w

does not represent the identity in π1(Σg).
Step 2. Assume now that w does contain such a subword r1, and let r1 = r2 be the

corresponding shortening relation. Replace the subword r1 of w with r2 and
freely reduce.

Step 3. If w = 1, then w represented the identity in π1(Σg). If w 6= 1, then go back
to Step 1.

Since Step 2 shortens w, this algorithm always terminates.
The goal of this note is to give a proof of Theorem 0.1 using hyperbolic geometry that is

similar to Dehn’s original proof. The idea here has been very influential in geometric group
theory and formed part of the inspiration for Gromov’s theory of hyperbolic groups; see [C]
and [GH].

A regular 4g-gon. Identify Σg in the standard way with a 4g-gon with sides identified
in pairs according to the surface relation [a1, b1] · · · [ag, bg] (see Figure 1). Endow Σg with
a hyperbolic metric by realizing this 4g-gon as a regular hyperbolic 4g-gon whose interior
angles are all 1

2gπ (this angle is need to ensure that there is precisely 2π worth of angle
around the vertex, so no singularity occurs there). The following argument shows that such
a hyperbolic 4g-gon exists. Use the unit disc model for H2. For 0 < R ≤ 1, let DR be
the hyperbolic 4g-gon whose vertices are the points (R cos(kπ/2g), R sin(kπ/2g)) ∈ H2 for
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Figure 1: On the left is a genus 2 surface obtained by identifying sides of an octagon in pairs. On
the right is a schematic drawing of part of a tiling of the hyperbolic plane by regular octagons.

0 ≤ k < 4g. For R = 1, the vertices of DR are on the boundary at infinity, so the interior
angles of DR are 0. For R very close to 0, the hyperbolic metric on DR is very close to the
Euclidean metric on DR, so the interior angles are very close to those of a regular Euclidean
4g-gon, namely 4g−2

4g π. Since 4g−2
4g π > 1

2gπ, the intermediate value theorem says that there
is some 0 < R < 1 such that the interior angles of DR are precisely 1

2gπ.

The corresponding tiling of hyperbolic space. The identification of Σg with a 4g-
gon whose sides are identified in pairs leads to a CW-complex structure on Σg with a
single zero cell ∗, a single two-cell (the interior of the 4g-gon), and 2g one-cells (the loops
corresponding the boundary edges of the 4g-gon). Using the hyperbolic metric on Σg from
the previous paragraph, we can identify the universal cover of Σg with H2. Endow H2 with
the CW-complex structure obtained by pulling back the one on Σg. Each two-cell of this
CW-complex structure is a regular 4g-gon, so we obtain a tiling of H2 by regular 4g-gons
with 4g tiles arranged around each vertex (see Figure 1).

Reformulation of theorem. Fixing a base vertex ∗̃ in H2, the one-skeleton of our CW-
complex structure on H2 (i.e. the edges in our tiling) can be identified with the Cayley
graph of π1(Σg) with respect to the generating set S = {a1, b1, . . . , ag, bg}. A reduced word
in F (S) corresponds to a edge-path in this Cayley graph starting at ∗̃ that never backtracks
(i.e. that never goes along an edge and then backwards along the same edge). The reduced
word represents the identity in π1(Σg) if and only if the corresponding path is a loop. The
following assertion is therefore equivalent to Theorem 0.1:

(†) Every non-backtracking edge loop based at ∗̃ in the 1-skeleton of H2 traverses more
than half of the boundary of one of the 4g-gons in the tiling.

The structure of the tiling. Inductively define polygonal subspaces

X1 ⊂ X2 ⊂ X3 ⊂ · · · ⊂ H2

as follows. Let X1 be the tile that contains ∗̃ and whose boundary corresponds to the
surface relation [a1, b1] · · · [ag, bg]. Next, if Xn−1 has been constructed, let Xn be the union
of Xn−1 and all tiles that intersect Xn−1. These new tiles share either an edge or a vertex
with a tile in Xn−1. As is shown in Figure 2, the polygon Xn can be built from Xn−1 in
two stages:
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Figure 2: In genus 2, the two possibilities for how we add type I and type II outermost tiles around
a vertex of ∂Xn−1 to form Xn

1. First, add a tile adjacent to each edge of ∂Xn−1. Call these the type I outermost tiles
of Xn.

2. Next, consider a vertex of ∂Xn−1. This vertex lies in either one or two tiles of Xn−1.
Add enough tiles to fill in the space between the two type I outermost tiles of Xn that
we have just added. Since there are 4g tiles around each vertex, we add 4g − 3 tiles
if our vertex lies in one tile of Xn−1 and 4g − 4 tiles if our vertex lies in two tiles of
Xn−1. Call these new tiles the type II outermost tiles of Xn.

From the above description, it is clear that ∂Xn is a simple polygonal loop. It has alternating
sections where it first traverses part of the boundary of a type I outermost tile and then
tranverses parts of the boundaries of several type II outermost tiles (either 4g− 3 or 4g− 4
of them). Call the portions of ∂Xn that are contained in a single outermost tile of Xn the
segments of ∂Xn. Here is the key observation:

(∗) Each segment of ∂Xn traverses more than half of the boundary of one of the tiles.
To see this, observe that if the segment in question is the intersection of ∂Xn with an
outermost tile of type I, then the segment contains all but 3 edges of the outermost tile, so
it has length 4g − 3 > 2g. If instead it is the intersection of ∂Xn with an outermost tile
of type II, then the segment contains all but 2 edges of the outermost tile, so it has length
4g − 2 > 2g.

Completing the proof. We now verify (†) as follows. Let γ be a non-backtracking edge
loop based at ∗̃ in the 1-skeleton of H2. Let n ≥ 1 be the smallest integer such that γ ⊂ Xn.
It follows that γ traverses part of ∂Xn. The portion of ∂Xn that is traversed by γ must be
a union of segments, so by (∗) the path γ must traverse more than half of the boundary of
one of the tiles, as desired.
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