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Abstract

We give an efficient proof that the symplectic representation of the mapping class
group is surjective.

Let Σg be a closed oriented genus g surface and let Modg be its mapping class group,
that is, the group of isotopy classes of orientation-preserving diffeomorphisms of Σg. The
action of Modg on H1(Σg;Z) ∼= Z2g preserves the algebraic intersection pairing i(·, ·), which
by Poincaré duality is a symplectic form. We thus get a representation Modg → Sp2g(Z).
In this note, we prove the following theorem.

Theorem 0.1. The representation Modg → Sp2g(Z) is surjective.

Theorem 0.1 was originally proved by Burkhardt in 1890 [B, pp. 209–212], who wrote down
mapping classes that map to generators of Sp2g(Z) that were previously found by Clebsch–
Gordan [CG]. The first modern proof is due to Meeks–Patrusky [MePa, Theorem 2], and
our proof is a variant of theirs.

We first introduce some notation. A symplectic basis for H1(Σg;Z) is an ordered sequence
(a1, b1, . . . , ag, bg) of elements of H1(Σg;Z) that form a basis for this free abelian group and
satisfy

i(ai, bi) = δij and i(ai, aj) = i(bi, bj) = 0

for 1 ≤ i, j ≤ g, where δij is the Dirac delta function. For an oriented closed curve γ on Σg,
let [γ] ∈ H1(Σg;Z) be the associated homology class. A geometric realization of a symplectic
basis (a1, b1, . . . , ag, bg) is an ordered sequence (α1, β1, . . . , αg, βg) of oriented simple closed
curves satisfying the following two conditions:
• [αi] = ai and [βi] = bi for 1 ≤ i ≤ g, and
• #|αi ∩ βj | = δij and αi ∩ αj = βi ∩ βj = ∅ for 1 ≤ i, j ≤ g.

See Figure 1. The main technical result that goes into proving Theorem 0.1 is as follows.

Lemma 0.2. Every symplectic basis for H1(Σg;Z) has a geometric realization.

Before we prove Lemma 0.2, we will use it to derive Theorem 0.1.

Proof of Theorem 0.1. Consider some M ∈ Sp2g(Z). We will produce a mapping class
f ∈ Modg that induces M as follows. Let (a1, b1, . . . , ag, bg) be a symplectic basis for
H1(Σg;Z). The sequence (M(a1),M(b1), . . . ,M(ag),M(bg)) is also a symplectic basis. Us-
ing Lemma 0.2, we can find geometric realizations (α1, β1, . . . , αg, βg) and (α′1, β′1, . . . , α′g, β′g)
of (a1, b1, . . . , ag, bg) and (M(a1),M(b1), . . . ,M(ag),M(bg)). Since the intersection pattern
of the αi and βi is the same as that of the α′i and β′i, the standard “change of coordi-
nates” principle from [FMa, Chapter 1.3] implies that we can find some f ∈ Modg such
that f(αi) = α′i and f(βi) = β′i for 1 ≤ i ≤ g. By construction, the action of the mapping
class f on H1(Σg;Z) has the same effect on the symplectic basis (a1, b1, . . . , ag, bg) as M , so
f induces M , as desired.
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Figure 1: A geometric realization of a symplectic basis.

Proof of Lemma 0.2. The proof will be by induction on g. The base case g = 0 is trivial, so
assume that g ≥ 1 and that the result is true for all smaller genera. Let (a1, b1, . . . , ag, bg) be
a symplectic basis for H1(Σg;Z). The heart of our proof is the construction of oriented sim-
ple closed curves α1 and β1 that intersect once and satisfy [α1] = a1 and [β1] = b1. Assume
that we have constructed α1 and β1. Let S be the complement of a regular neighborhood of
α1∪β1. Thus S is a genus g−1 subsurface of Σg with one boundary component and the map
H1(S;Z) → H1(Σg;Z) is an injection; identify H1(S;Z) with its image in H1(Σg;Z). The
subspace H1(S;Z) of H1(Σg;Z) is the orthogonal complement of 〈a1, b1〉 with respect to the
algebraic intersection pairing. This orthogonal complement is precisely 〈a2, b2, . . . , ag, bg〉.
Let S′ ∼= Σg−1 be the result of gluing a disc D to ∂S. The map H1(S;Z) → H1(S′;Z) is
an isomorphism. Let (a′2, b2, . . . , a

′
g, b
′
g) be the image in H1(S′;Z) of the symplectic basis

(a2, b2, . . . , ag, bg) of H1(S;Z). Using our inductive hypothesis, we can find a geometric real-
ization (α′2, β′2, . . . , α′g, β′g) for the symplectic basis (a′2, b′2, . . . , a′g, b′g) of H1(S′;Z). Isotoping
the α′i and β′i, we can assume that they are all disjoint from D, and thus are the images
of oriented simple closed curves αi and βi in S. The sequence (α1, β1, α2, β2, . . . , αg, βg) of
oriented simple closed curves on Σg is the desired geometric realization of the symplectic
basis (a1, b1, . . . , ag, bg).

It remains to construct α1 and β1. Since i(a1, b1) = 1, the element a1 ∈ H1(Σg;Z) is
primitive, that is, not equal to a nontrivial multiple of another element. Indeed, if a1 = na′1
for some n ∈ Z and a′1 ∈ H1(Σg;Z), then 1 = i(a1, b1) = i(na′1, b1) = ni(a′1, b1), so n = ±1.
A classical theorem (see [Pu] for a short proof) then says that there exists an oriented simple
closed curve α1 such that [α1] = a1. We must construct β1.

The first step is to construct a closed curve β′1 (not necessarily simple) that intersects α1
once and satisfies [β′1] = b1. The whole construction is illustrated by Figure 2. Let X ⊂ Σg

be a one-holed torus containing α1 and let Y = Σg \ Int(X), so Y is a genus g−1 subsurface
with one boundary component. We have a decomposition

H1(Σg;Z) ∼= H1(X;Z)⊕H1(Y ;Z)

that is orthogonal with respect to the algebraic intersection pairing. Let bX ∈ H1(X;Z) and
bY ∈ H1(Y ;Z) be the projections of b1 ∈ H1(Σg;Z) to these two factors, so b1 = bX +bY . Let
β′X be an arbitrary oriented simple closed curve in X that intersects α1 once with a positive
sign. We thus have a basis {a1, [β′X ]} for H1(X;Z), so we can write bX = ca1 + d[β′X ]. In
fact,

1 = i(a1, bX) = i(a1, ca1 + d[β′X ]) = d.

Letting βX be the result of Dehn twisting β′X around α1 a total of c times, we thus have
[βX ] = bX . The desired closed curve β′1 can then be obtained by band-summing βX with
an oriented closed curve in Y (not necessarily simple) whose homology class is bY .
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Figure 2: On the left is X and Y and α1 and β′
X . On the top right the result βX of twisting β′

X

around α1 enough times to ensure that [βX ] = bX . A not necessarily simple curve in Y realizing bY

is also depicted. On the bottom right is the result of band-summing the curve in Y into βX ; as is
shown here, making sure the orientations match up might require adding another self-intersection.

Figure 3: On the left is the simple closed curve α1 along with a portion of β′
1 that contains three

self-intersections. On the right is the result of “combing” these three self-intersections over α1.

The next step is to “comb” all the self-intersections of β′1 over α1 as is shown in Figure
3. The result is an oriented simple closed curve β′′1 . Every self-intersection we comb over α1
adds a copy of ±a1 to [β′1], so we have [β′′1 ] = b1 + ea1 for some e ∈ Z. The desired oriented
simple closed curve β1 can now be obtained by Dehn twisting β1 around α1 a total of −e
times.
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