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In this note, I will describe two proofs of the following theorem of Dehn [2]. All rectangles
and squares in this note lie in the plane and have sides parallel to the x and y axes.

Theorem 0.1. Let R be a rectangle with side lengths a and b. Then R can be tiled by
squares if and only if a/b ∈ Q.

If a/b ∈ Q, then it is trivial to tile R by squares; indeed, scaling R we can ensure that
its side length are integers, so it can be tiles by 1× 1 squares. What is more interesting is
the converse.

1 Proof 1: linear algebra

I learned this proof from [3], which indicates that the author does not know its source.
The idea is to give a strange definition of “area” that is always nonnegative for rectangles
that are tiled by squares. This “area” depends on a parameter, and we will show that if a
rectangle has noncommensurable side lengths, then this parameter can be chosen such that
the rectangle’s “area” is −1.

Let φ : R → R be a Q-linear map. For a rectangle X with sides c and d, define the
φ-area of X to be

Aφ(X) = φ(c) · φ(d).

More generally, if Y is a region in the plane that can be tiled by rectangles X1, . . . , Xn

(where the Xi only overlap along their edges, but where an edge of one of the Xi can
contain segments of the edges of several of the Xj), then define

Aφ(Y ) = Aφ(X1) + · · ·+Aφ(Xn).

We now prove that this does not depend on the choice of tiling. Any two tilings have a
common subdivision into rectangles whose sides exactly match up (i.e. an edge of one of the
Xi either lies in the boundary of Y or is exactly equal to an edge of another Xj). It is thus
enough to show that if we take one of our rectangles Xi and decompose it into rectangles
whose sides exactly match up, then its φ-area is unchanged, which is immediate from the
Q-bilinearity of the map R× R→ R defined by (c, d) 7→ φ(c) · φ(d).

The key observation now is that if X is a square with side-length c, then

Aφ(X) = φ(c) · φ(c) ≥ 0.

It follows that if Y can be decomposed into squares, then Aφ(Y ) ≥ 0.
We now turn to our theorem. Assume that R is a rectangle with side lengths a and b,

and that a/b /∈ Q. It follows that we can find a Q-linear map φ : R→ R such that φ(a) = 1
and φ(b) = −1, so Aφ(R) = −1. By what we said above, if R could be decomposed into
squares, then we would have Aφ(R) ≥ 0, so this must not be possible.
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2 Proof 2: harmonic functions on graphs

We now give an alternate proof that first appeared in [1]. This proof is a little more
complicated than the previous one, but it gives more. First, it shows that the squares that
appear a tiling of a rectangle whose side lengths are rational all have rational side lengths.
Second, it gives a nice way of constructing and studying examples.

Assume that R is a rectangle that can be tiled by squares S1, . . . , Sn. Scaling everything,
we can assume that the length of the vertical side of R is an integer. Our goal is to prove
that the length of the horizontal side is a rational number.

Define a graph G in the following way. Let H ⊂ R be the subspace of R consisting of
points that lie on a horizontal edge of some Si (thus in particular both the top and bottom of
R lie in H). The vertices of G are then the connected components σ of H, and two vertices
σ and σ′ of G are connected by an edge precisely when there exists some Si whose top is
contained in one of σ and σ′ and whose bottom is contained in the other. Here is an example:
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We now define a function h : V (G) → R as follows (the vertices of the above example are
labeled by the values of this function). Place R in the plane such that its bottom edge lies
on the x-axis. For a vertex σ of G, define h(σ) to be the height of σ, i.e. the value of the
y-coordinate of the points of σ.

There are two special vertices of G, the vertex β corresponding to the bottom edge of
R and the vertex τ corresponding to the top edge of R. By construction, we have

h(β) = 0 and h(τ) ∈ Z.

All the other vertices of G will be called the interior vertices. Let I be the set of interior
vertices of G.

We now come to the key observation. Consider some σ ∈ I, and let σ′ be a vertex
joined to σ by an edge. The value |h(σ) − h(σ′)| is precisely the side-length of the square
connecting σ to σ′. The side-lengths of the squares lying above σ must add up to the length
` of the segment σ, and similarly for the side-lengths of the squares lying below σ. It follows
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that ∑
σ′ adjacent to σ

(h(σ)− h(σ′)) =
∑

σ′ below σ

(h(σ)− h(σ′))−
∑

σ′ above σ

(h(σ′)− h(σ))

= `− `
= 0.

Rearranging this sum, we see that

h(σ) =
1

deg(σ)

∑
σ′ adjacent to σ

h(σ′).

In other words, h is a harmonic function on G at σ. See [4] for some basic results about
harmonic functions on finite graphs.

We now appeal to two facts:
• If G is a finite graph, W ⊂ V (G) is a set of vertices of G, and f : W → R is any

function, then there exists a unique extension f : V (G) → R that is harmonic on
V (G) \W (the “Dirichlet problem” for harmonic functions on graphs). In fact, all we
need is uniqueness, which follows from an easy maximum-principle type argument.
• If G is a finite graph, W ⊂ V (G) is a set of vertices of G, and f : V (G) → R is a

function that is harmonic on V (G) \W and satisfies F (W ) ⊂ Q, then f(V (G)) ⊂
Q. The reason for this is that the equations defining a function being harmonic on
V (G) \W and having the desired values on W are precisely a set of linear equations
with rational coefficients. By the previous part, these have a unique real solution, and
since their coefficients are rational this must in fact be rational.

The horizontal edge length of R equals the sum of h(σ) for the σ that are joined to the
bottom vertex β, and is thus a rational number.
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