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In this note, I will describe two proofs of the following theorem of Dehn [2]. All rectangles
and squares in this note lie in the plane and have sides parallel to the x and y axes.

Theorem 0.1. Let R be a rectangle with side lengths a and b. Then R can be tiled by
squares if and only if a/b € Q.

If a/b € Q, then it is trivial to tile R by squares; indeed, scaling R we can ensure that
its side length are integers, so it can be tiles by 1 x 1 squares. What is more interesting is
the converse.

1 Proof 1: linear algebra

I learned this proof from [3], which indicates that the author does not know its source.
The idea is to give a strange definition of “area” that is always nonnegative for rectangles
that are tiled by squares. This “area” depends on a parameter, and we will show that if a
rectangle has noncommensurable side lengths, then this parameter can be chosen such that
the rectangle’s “area” is —1.

Let ¢: R — R be a Q-linear map. For a rectangle X with sides ¢ and d, define the
¢-area of X to be

Ag(X) = é(c) - o(d).
More generally, if Y is a region in the plane that can be tiled by rectangles Xy,..., X,

(where the X; only overlap along their edges, but where an edge of one of the X; can
contain segments of the edges of several of the X;), then define

Ap(Y) = Ap(Xy) + - + Ag(Xn).

We now prove that this does not depend on the choice of tiling. Any two tilings have a
common subdivision into rectangles whose sides exactly match up (i.e. an edge of one of the
X; either lies in the boundary of Y or is exactly equal to an edge of another X;). It is thus
enough to show that if we take one of our rectangles X; and decompose it into rectangles
whose sides exactly match up, then its ¢-area is unchanged, which is immediate from the
Q-bilinearity of the map R x R — R defined by (¢, d) — ¢(c) - ¢(d).

The key observation now is that if X is a square with side-length ¢, then

Ay(X) = ¢(c) - o(c) = 0.

It follows that if Y can be decomposed into squares, then A4(Y") > 0.

We now turn to our theorem. Assume that R is a rectangle with side lengths a and b,
and that a/b ¢ Q. It follows that we can find a Q-linear map ¢: R — R such that ¢(a) =1
and ¢(b) = —1, so Ay(R) = —1. By what we said above, if R could be decomposed into
squares, then we would have A,(R) > 0, so this must not be possible.



2 Proof 2: harmonic functions on graphs

We now give an alternate proof that first appeared in [1]. This proof is a little more
complicated than the previous one, but it gives more. First, it shows that the squares that
appear a tiling of a rectangle whose side lengths are rational all have rational side lengths.
Second, it gives a nice way of constructing and studying examples.

Assume that R is a rectangle that can be tiled by squares Sy, ..., S,. Scaling everything,
we can assume that the length of the vertical side of R is an integer. Our goal is to prove
that the length of the horizontal side is a rational number.

Define a graph G in the following way. Let H C R be the subspace of R consisting of
points that lie on a horizontal edge of some S; (thus in particular both the top and bottom of
R lie in H). The vertices of G are then the connected components o of H, and two vertices
o and ¢’ of G are connected by an edge precisely when there exists some S; whose top is
contained in one of o and ¢’ and whose bottom is contained in the other. Here is an example:
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We now define a function h: V(G) — R as follows (the vertices of the above example are
labeled by the values of this function). Place R in the plane such that its bottom edge lies
on the z-axis. For a vertex o of G, define h(o) to be the height of o, i.e. the value of the
y-coordinate of the points of o.

There are two special vertices of GG, the vertex 8 corresponding to the bottom edge of
R and the vertex 7 corresponding to the top edge of R. By construction, we have

h(B) =0 and h(7) € Z.

All the other vertices of G will be called the interior vertices. Let Z be the set of interior
vertices of G.

We now come to the key observation. Consider some o € Z, and let o’ be a vertex
joined to o by an edge. The value |h(o) — h(o”)| is precisely the side-length of the square
connecting o to ¢’. The side-lengths of the squares lying above o must add up to the length
£ of the segment o, and similarly for the side-lengths of the squares lying below o. It follows
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Rearranging this sum, we see that

ho) = degl(g) S ).

o’ adjacent to o

In other words, h is a harmonic function on G at o. See [4] for some basic results about
harmonic functions on finite graphs.

We now appeal to two facts:

e If G is a finite graph, W C V(G) is a set of vertices of G, and f: W — R is any
function, then there exists a unique extension f: V(G) — R that is harmonic on
V(G)\ W (the “Dirichlet problem” for harmonic functions on graphs). In fact, all we
need is uniqueness, which follows from an easy maximum-principle type argument.

e If G is a finite graph, W C V(G) is a set of vertices of G, and f: V(G) — R is a
function that is harmonic on V(G) \ W and satisfies F(W) C Q, then f(V(G)) C
Q. The reason for this is that the equations defining a function being harmonic on
V(G) \ W and having the desired values on W are precisely a set of linear equations
with rational coefficients. By the previous part, these have a unique real solution, and
since their coefficients are rational this must in fact be rational.

The horizontal edge length of R equals the sum of h(o) for the o that are joined to the
bottom vertex (3, and is thus a rational number.
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