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Abstract. We calculate the second rational homology group of the Torelli group for g ≥ 6.

1. Introduction

Let Σb
g,p be an oriented genus g surface with p marked points and b boundary components.

We often omit p or b if they vanish. The mapping class group Modbg,p is the group of isotopy

classes of orientation-preserving diffeomorphisms of Σb
g,p that fix each marked point and

boundary component pointwise. Deleting the marked points and gluing discs to the boundary
components, we get an action of Modbg,p on H1(Σg) that fixes the algebraic intersection form.

This gives a surjection Modbg,p → Sp2g(Z) whose kernel Ibg,p is the Torelli group:

1 Ibg,p Modbg,p Sp2g(Z) 1.

Johnson [23, 24] proved that Ibg,p is finitely generated for g ≥ 3 and calculated H1(Ibg,p). The
conjugation action of Modbg,p on Ibg,p induces an action of Sp2g(Z) on each Hd(Ibg,p). Let

H = H1(Σg;Q). For g ≥ 3, it follows from Johnson’s work (see [15, Theorem 3.5]) that there
is an Sp2g(Z)-equivariant isomorphism1

H1(Ibg,p;Q) ∼= H⊕(p+b) ⊕ (∧3H)/H.

In particular, H1(Ibg,p;Q) is a finite-dimensional algebraic representation2 of Sp2g(Z).

1.1. Main theorem. A long-standing folk conjecture says that H2(Ibg,p;Q) is also a finite-

dimensional3 algebraic representation of Sp2g(Z) for g ≫ 0. We prove this for g ≥ 6. When

p + b ≤ 1, we actually compute H2(Ibg,p;Q). The irreducible algebraic representations of
Sp2g(Z) are indexed by partitions σ with at most g parts (see [11, §17]). Let Vσ be the

representation corresponding to σ, so V1 = H and V13 = (∧3H)/H. We prove:

Theorem A. For g ≥ 6, we have

H2(Ig;Q) ∼= V12 ⊕V14 ⊕V22,12 ⊕V16 ,

H2(I1g ;Q) ∼= V⊕2
12
⊕V2,12 ⊕V⊕2

14
⊕V22,12 ⊕V16 ,

H2(Ig,1;Q) ∼= V0⊕V⊕2
12
⊕V2,12 ⊕V⊕2

14
⊕V22,12 ⊕V16 .

In all three cases, these cohomology groups are spanned by cup products of elements of H1.

To explain the origin of the representations in Theorem A, consider the cup product
pairing ∧2H1(Ibg,p;Q)→ H2(Ibg,p;Q). We have

∧2H1(Ig;Q) ∼= ∧2((∧3H)/H) and ∧2 H1(I1g ;Q) ∼= ∧2H1(Ig,1;Q) ∼= ∧2(∧3H).

AP was supported by NSF grant DMS-2305183. DM was supported by NSF grant DMS-2402060.
1In this, the inclusion H ↪→ ∧3H takes h ∈ H to h ∧ ω, where ω ∈ ∧2H is the algebraic intersection form.
2A representation V of Sp2g(Z) over a field k of characteristic 0 is algebraic if the action of Sp2g(Z) on V

extends to a polynomial representation of the k-points Sp2g(k) of the algebraic group Sp2g. Since Sp2g(Z) is
Zariski dense in Sp2g(k), such an extension is unique if it exists.

3We emphasize that even finite-dimensionality was unknown before our work.
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These decompose as4

∧2 ((∧3H)/H) ∼= V0 ⊕V12 ⊕V22 ⊕V14 ⊕V22,12 ⊕V16 ,(1.1)

∧2 (∧3H) ∼= V⊕2
0 ⊕V⊕3

12
⊕V22 ⊕V2,12 ⊕V⊕2

14
⊕V22,12 ⊕V16 .

Hain [17] proved that the kernel of the cup product pairing on Ig is isomorphic to V0 ⊕
V22 . Habegger–Sorger [14] extended this, proving that for I1g the kernel is isomorphic to

V⊕2
0 ⊕V12 ⊕V22 . From this, it is easy to prove that the kernel for Ig,1 is isomorphic to

V0 ⊕V12 ⊕V22 . Deleting these kernels from (1.1) gives the representations in Theorem A.
Kupers–Randal-Williams [26] showed that in the above cases the image of the cup product

pairing is the maximal algebraic subrepresentation of H2(Ibg,p;Q). To prove Theorem A, we

must show that this is all of H2(Ibg,p;Q). We actually prove more:5

Theorem B. Let b, p ≥ 0. Then H2(Ibg,p;Q) is finite dimensional for g ≥ 5 and an algebraic
representation of Sp2g(Z) for g ≥ 6.

Remark 1.1. Our proof only works over Q. It is not known if H2(Ibg,p) is finitely generated. □

Remark 1.2. This paper supersedes a paper of of Minahan [35] that uses a primitive version
of our argument to prove that H2(Ig;Q) is finite-dimensional for g ≥ 51. □

1.2. Representation stability. Theorem A implies the following:6

Corollary C. The sequence of Sp2g(Z)-representations {H2(I1g ;Q)}∞g=1 is uniformly repre-
sentation stable starting at g = 6.

This was conjectured by Church–Farb [9, Conjecture 6.1]. It means that for g ≥ 6 the maps

(1.2) H2(I1g ;Q) H2(I1g+1;Q)

induced by embedding Σ1
g into Σ1

g+1 and extending mapping classes lying in I1g to Σ1
g+1 by

the identity are injective and (roughly speaking) match up the decompositions of H2(I1g ;Q)

and H2(I1g+1;Q) into irreducible representations of the symplectic groups. Partial results in

this direction were previously proven by Boldsen–Dollerup [4] and Miller–Patzt–Wilson [33].
However, before our work it was not even known if the maps (1.2) were injective for g ≫ 0.

Remark 1.3. Since the representation V16 appears in H2(I16 ;Q) and is not the stabilization
of a representation of Sp2g(Z) for g = 5, the g = 6 in Corollary C is optimal. □

1.3. Previous work. Questions about H•(Ibg,p) can generally be reduced to questions about
H•(Ig) (see, e.g., §6.1), so we mostly focus on this.

1.3.1. Low genus. As we said, for g ≥ 3 Johnson [23, 24] proved that Ig is finitely generated
and computed H1(Ig). In contrast, McCullough–Miller [30] proved that I2 is not finitely
generated, and later Mess [32] proved that I2 is an infinite rank free group. Johnson–
Millson (cf. [32]) and Hain [16] proved that H3(I3;Q) and H4(I3;Q) are infinite dimensional.
Spiridonov [51] later calculated H4(I3;Q). Some evidence that H2(I3) might not be finitely
generated was given by Gaifullin [13].

4This calculation can easily be done using the program “LiE”; see [27].
5In this theorem, we switch to homology since that is more natural for our proofs.
6This requires not only the formula for H2(I1g ;Q) from Theorem A, but also the explicit isomorphism

underlying it. A version of Corollary C without the explicit starting value g = 6 also follows from Theorem B
along with [38, Theorem B] and [4].



THE SECOND RATIONAL HOMOLOGY OF THE TORELLI GROUP 3

1.3.2. Second homology. For g ≥ 3, the only earlier finiteness result about H2(Ig) was a
theorem of Kassabov–Putman [25] saying that H2(Ig) is spanned by the Sp2g(Z)-orbit of
a finite set. In other words, it is finitely generated as a module over Z[Sp2g(Z)]. Boldsen–
Dollerup [4] also proved a related theorem that roughly speaking says that H2(I1g ) is spanned
by classes supported on genus 6 subsurfaces for g ≥ 6.

The torsion in H2(Ig) remains mysterious. The group H1(Ig) calculated by Johnson [24]
contains 2-torsion coming from the Birman–Craggs–Johnson (BCJ) homomorphism. This
was constructed by Johnson [21] using work of Birman–Craggs [3] on the Rochlin invariant
of homology 3-spheres. Though they were unable to compute it completely, Brendle–Farb
[6] constructed large parts of H2(Ig;F2) that are detected by the BCJ homomorphism.

1.3.3. High degree. Akita [1] proved that for each g ≥ 7 there exists some d such that
Hd(Ig;Q) is infinite dimensional. Bestvina–Bux–Margalit [2] sharpened this and proved that
Ig has cohomological dimension 3g − 5 and that H3g−5(Ig;Q) is infinite dimensional. Later
Gaifullin [12] proved for g ≥ 2 that Hd(Ig;Q) is infinite dimensional for 2g− 3 ≤ d ≤ 3g− 5.
For g = 3, this recovers the infinite dimensionality results discussed in §1.3.1 above. Other
work constructing high-dimensional classes can be found in [8].

1.4. Stability. We prove Theorem B via a criterion with a representation stability flavor.
A coherent sequence of representations of Sp2g(Z) over a field k is a sequence

V1 V2 V3 · · ·f1 f2 f3

of k-vector spaces connected by linear maps such that the following hold:

• each Vg is a representation of Sp2g(Z); and
• the maps fg : Vg ⊠ k→ Vg+1 are Sp2g(Z)× Sp2(Z)-equivariant7 where Sp2g(Z)×
Sp2(Z) acts on Vg+1 via the standard inclusion Sp2g(Z)× Sp2(Z) ↪→ Sp2(g+1)(Z).

Example 1.4. Let ιg : Σ
1
g ↪→ Σ1

g+1 be the following embedding:

Σg
1
...

The induced map on homology (ιg)∗ : H1(Σ
1
g;k)→ H1(Σ

1
g+1;k) fits into a coherent sequence

H1(Σ
1
1;k) H1(Σ

1
2;k) H1(Σ

1
3;k) · · ·(ι1)∗ (ι2)∗ (ι3)∗

of representations of Sp2g(Z). □

Example 1.5. The map ιg : Σ
1
g ↪→ Σ1

g+1 from Example 1.4 induces a map tg : I1g → I1g+1 that

extends mapping classes lying in I1g to Σ1
g+1 by the identity. For a fixed d ≥ 0, the map tg

induces a map fg : Hd(I1g ;k)→ Hd(I1g+1;k). These fit into a coherent sequence

Hd(I11 ;k) Hd(I12 ;k) Hd(I13 ;k) · · ·f1 f2 f3

of representations of Sp2g(Z). □

We will use the following theorem to prove our results about the Torelli group:

7Here Vg ⊠ k denotes the Sp2g(Z)× Sp2(Z)-representation that equals the tensor product of the Sp2g(Z)-
representation Vg and the trivial Sp2(Z)-representation k. As a vector space, it is isomorphic to Vg.
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Theorem D (Stability Theorem). Consider a coherent sequence of representations of
Sp2g(Z) over a field k of characteristic 0:

V1 V2 V3 · · ·f1 f2 f3

For some g0 ≥ 2, assume that the following hold for g ≥ g0:
(i) the cokernel of fg−1 : Vg−1 → Vg is a finite dimensional algebraic representation of 8

Sp2(g−1)(Z); and
(ii) the coinvariants9 (Vg)Sp2g(Z) are finite dimensional.

Then Vg is finite dimensional for g ≥ g0 and an algebraic representation of Sp2g(Z) for
g ≥ g0 + 1.

Remark 1.6. If in (i) the cokernel of fg−1 is just assumed to be finite dimensional for g ≥ g0,
then our proof shows that Vg is finite dimensional for g ≥ g0. □

Remark 1.7. We have stated Theorem D for coherent sequences of representations of Sp2g(Z),
but the same proof works for many other kinds of representations (possibly with worse
bounds). For instance, it also works for coherent sequences of representations of SLn(Z). □

1.5. Commentary. Consider a coherent sequence of representations {Vg} as in Theorem
D. One way to view Theorem D is that it allows finiteness results for Vg to be proved by
induction, but without a base case. In a traditional proof by induction, to prove that Vg is
finite-dimensional for g ≥ g0 you would need to prove two things:

• as a base case, that Vg0 is finite-dimensional; and
• for the inductive step, that the cokernel of fg−1 : Vg−1 → Vg is finite-dimensional
for g ≥ g0 + 1.

Without some further hypothesis, a finiteness assumption about the cokernels of the fg
implies nothing about the Vg themselves. For instance:

Example 1.8. For all g ≥ 1, let Vg = k∞ with the trivial Sp2g(Z)-action and let fg : Vg →
Vg+1 be the identity map. Then

V1 V2 V3 · · ·f1 f2 f3

is a coherent sequence of infinite-dimensional representations of Sp2g(Z). However, the
cokernel of each fg−1 : Vg−1 → Vg is 0. □

It is a little surprising that the weak finiteness assumption about the coinvariants in
Theorem D allows such strong conclusions. Since the coinvariants are the largest trivial
quotient representation, this assumption essentially just rules out things like Example 1.8.

1.6. Torelli proof outline. As we will show in §6, it is easy to deduce that H2(Ibg,p;Q) is

a finite dimensional algebraic representation of Sp2g(Z) from the special case of H2(I1g ;Q),

so we will focus our proof outline on I1g . We will apply Theorem D to the coherent sequence

H2(I11 ;k) H2(I12 ;k) H2(I13 ;k) · · ·f1 f2 f3

of representations of Sp2g(Z) with g0 = 5.

Theorem D has two hypotheses. Hypothesis (ii) says that the coinvariants H2(I1g ;Q)Sp2g(Z)
are finite-dimensional for g ≥ 5, and is an immediate consequence of Kassabov–Putman’s

8This cokernel is a representation of Sp2(g−1)(Z)× Sp2(Z), but we are ignoring the Sp2(Z)-action.
9If W is a representation of a group G, then the coinvariants WG are the largest G-invariant quotient of

W. This can be expressed as W/⟨w⃗ − x·w⃗ | w⃗ ∈W and x ∈ G⟩.
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theorem [25] that H2(I1g ;Q) is finitely generated as a Q[Sp2g(Z)]-module for g ≥ 3. In §7 we
will give an alternate direct proof that these coinvariants are finite-dimensional.

Hypothesis (i) is more substantial. It asserts that for g ≥ 5 the cokernel of

(1.3) fg−1 : H2(I1g−1;Q) −→ H2(I1g ;Q)

is a finite dimensional algebraic representation of Sp2(g−1)(Z). Our proof of this has three
steps.

1.6.1. Step 1 (reduction to curve stabilizers). The first step uses a variety of known results
about the homology of the Torelli group to reduce what we must show to a result about
curve stabilizers on a closed surface. Let α and β be the following oriented curves on Σg:

...
α

β
Σg-1
1

The mapping class group acts on the set of isotopy classes of simple closed curves on Σg.
Let (Ig)α and (Ig)β be the Ig-stabilizers of α and β. From the above figure, it is clear that
both of these stabilizers contain I1g−1. Let

λ : H2((Ig)α;Q)⊕H2((Ig)β;Q)→ H2(Ig;Q)

be the sum of the maps induced by the inclusions (Ig)α ↪→ Ig and (Ig)β ↪→ Ig. Letting fg−1

be the map (1.3), we will prove:

• Claim: To prove that coker(fg−1) is a finite dimensional algebraic representation of
Sp2(g−1)(Z), it is enough to prove a similar result for coker(λ).

The idea behind the proof of this claim is as follows. Consider the following commutative
diagram of homology groups:

H2(I1g−1;Q) H2(I1g ;Q) H2(Ig;Q)

H2((Ig)α;Q)⊕H2((Ig)β;Q)

fg−1

hα×hβ

π

λ

Here π is induced by gluing a disc to ∂Σ1
g and extending mapping classes by id, and hα and

hβ are induced by the inclusions I1g−1 ↪→ (Ig)α and I1g−1 ↪→ (Ig)β. We will show:

• Both ker(π) and coker(π) are finite-dimensional algebraic representations of Sp2g(Z).
This is a standard argument using the Birman exact sequence.
• Both coker(hα) and coker(hβ) are finite-dimensional algebraic representations of
Sp2(g−1)(Z). This uses a recent theorem of the authors [36, Theorem A] about the

first homology group of I1g with certain infinite-dimensional twisted coefficients.

The above claim will follow easily from these two facts and a bit of algebra. This reduces
us to proving that coker(λ) is a finite-dimensional algebraic representation of Sp2(g−1)(Z).
Roughly speaking, we do this by constructing generators and relations for coker(λ).

1.6.2. Step 2 (generators of cokernel). We identify generators for coker(λ) by studying the
action of Ig on a carefully chosen space. Let a = [α] ∈ H1(Σg) and b = [β] ∈ H1(Σg). An
oriented simple closed curve is an a-curve if its homology class is a and a b-curve if its
homology class is b. Let Ca(Σg) be the simplicial complex whose p-simplices are collections
{γ0, . . . , γk} of disjoint isotopy classes of a-curves on Σg. Similarly, define Cb(Σg). Simplices



6 DANIEL MINAHAN AND ANDREW PUTMAN

of these complexes look like:10

and

The complexes Ca(Σg) and Cb(Σg) were introduced by Putman [41], who proved that they are
connected for g ≥ 3. Hatcher–Margalit [18] found an alternate proof of this, and Minahan
[34] generalized Hatcher–Margalit’s proof to show that these complexes are (g− 3)-acyclic.11

The space Cab(Σg) we use is a combination of Ca(Σg) and Cb(Σg) that is inspired by the
“handle graph” introduced by Putman [45] to find small generating sets for Ig. We call it
the handle complex. It is the union of Ca(Σg) and Cb(Σg) with certain “mixed simplices”
attached that look like:

and

Their key property is that a mixed simplex cannot contain both two a-curves and two
b-curves. We will define this carefully later. The group Ig acts on Cab(Σg). We will prove:

(a) Cab(Σg) is 1-acyclic for g ≥ 4; and
(b) the quotient Cab(Σg)/Ig is contractible.

These two results will allow us to use the action of Ig on Cab(Σg) to study H2(Ig;Q). Our
main tool is (Borel) equivariant homology, which for a group G acting on a space X mixes
together information about the topology of X/G and the group homology of the G-stabilizers
of cells in X.

Using (a), we will show that the Ig-equivariant homology of Cab(Σg) surjects onto
H2(Ig;Q). The terms H2((Ig)α;Q) and H2((Ig)β;Q) in the domain of λ appear in the
Ig-equivariant homology of Cab(Σg) since α and β are vertices of Cab(Σg). Using (b), we
will show that rest of the equivariant homology has a tractable description, from which we
will deduce generators for coker(λ).

1.6.3. Step 3 (algebraicity of cokernel). The third step identifies topologically some relations
among our generators for coker(λ). Let H = H1(Σ

1
g−1;Q). We use these relations to embed

coker(λ) into V = ((∧2H)/Q)⊗2. Since V is a finite-dimensional algebraic representation of
Sp2g(Z), this will imply that the same is true for coker(λ). This step uses recent work of the
authors [37, Theorem A.6] giving tools for identifying representations given by generators
and relations. This is difficult since coker(λ) has infinitely many generators and relations.

1.7. Outline. Theorem D is proved in Part 1. Theorem B is proved in Parts 2 – 4, which
perform the three steps outlined above.

1.8. Acknowledgments. We would like to thank Nate Harman for helpful discussions
about the material in §4 and Xiyan Zhong for corrections.

10Our convention is that a-curves are orange and b-curves are blue, and we often omit the orientations.
11This means that H̃k(Ca) = H̃k(Cb) = 0 for k ≤ g − 3. It is not clear if they are simply connected.
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Part 1. The stability theorem

The proof of Theorem D (the stability theorem) is divided into two parts: §2 addresses
finite dimensionality, and §3 – §5 addresses algebraicity.

2. A criterion for finite dimensionality

The following theorem strengthens part of Theorem D (the stability theorem). For a
commutative ring k and a group G, we call a k[G]-module V a representation of G over k.
We say that V is finite dimensional if V is finitely generated as a k-module.

Theorem 2.1 (Finite dim criterion). Let k be a commutative Noetherian ring and let g ≥ 2.
Let Vg−1 be an Sp2(g−1)(Z)-representation over k and Vg be an Sp2g(Z)-representation over

k. Let f : Vg−1 ⊠ k→ Vg be an Sp2(g−1)(Z)× Sp2(Z)-equivariant map. Assume:

(i) the cokernel of f is finite dimensional; and
(ii) the coinvariants (Vg)Sp2g(Z) are finite dimensional.

Then Vg is finite dimensional.

Proof. Let G = 1×Sp2(Z) ⊂ Sp2g(Z) and letW be the image of f . The group G acts trivially

on W, and assumption (i) says that the k-submodule W of Vg has finite codimension.12 For
m ∈ Sp2g(Z), the k-submodule m·W of Vg also has finite codimension and the subgroup

mGm−1 of Sp2g(Z) acts trivially on it. The group Sp2g(Z) is generated by finitely many

conjugates of13 G. Pick m1, . . . ,mn ∈ Sp2g(Z) such that Sp2g(Z) is generated by the

subgroups {miGm
−1
i }ni=1. Set

U =
n⋂

i=1

mi·W.

Each miGm
−1
i acts trivially on U, so Sp2g(Z) itself acts trivially on U. Moreover, since

the intersection of finitely many finite codimension submodules is a finite codimension
submodule, the submodule U has finite codimension. To prove that Vg is finite dimensional,
it is therefore enough to prove that U is finite dimensional.

Consider the short exact sequence of Sp2g(Z)-representations

(2.1) 0 U Vg Vg/U 0.

Since Sp2g(Z) acts trivially on U, we have

H0(Sp2g(Z);U) = USp2g(Z) = U,

where the subscript indicates that we are taking coinvariants. The long exact sequence in
Sp2g(Z)-homology associated to (2.1) thus contains the segment

H1(Sp2g(Z);Vg/U) U H0(Sp2g(Z);Vg).

Since Sp2g(Z) is finitely generated and the quotient Vg/U is finite dimensional, it follows14

that H1(Sp2g(Z);Vg/U) is finite dimensional. Also, by assumption (ii) the coinvariants

H0(Sp2g(Z);Vg) = (Vg)Sp2g(Z)

are finite dimensional. It follows that U is finite dimensional, as desired. □

12This simply means that Vg/W is a finitely generated k-module.
13One way to see this is to observe that G contains the transvection along a primitive element of

0 × Z2 ⊂ Z2g, all transvections along primitive elements of Z2g are conjugate in Sp2g(Z), and Sp2g(Z) is

generated by finitely many transvections along primitive elements of Z2g.
14This uses the fact that our base ring k is Noetherian.
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3. A criterion for algebraicity I: statement and motivation for proof

Theorem 2.1 from §2 is a strengthening of one part of Theorem D (the stability theorem).
We now turn to the following, which is a strengthening of the other part:

Theorem 3.1 (Algebraicity criterion). Let k be a field of characteristic 0 and let g ≥ 3. Let
Vg−2 be an Sp2(g−2)(Z)-representation over k and Vg be an Sp2g(Z)-representation over k.

Let f : Vg−2 ⊠ k→ Vg be an Sp2(g−2)(Z)× Sp4(Z)-equivariant map. Assume:

(a) the representation Vg is finite dimensional; and
(b) the cokernel of f is an algebraic representation of Sp2(g−2)(Z).

Then Vg is an algebraic representation of Sp2g(Z).

Theorem D is an immediate consequence15 of Theorems 2.1 and 3.1.

3.1. Motivation for proof. To motivate what we do, let us consider one way a coun-
terexample to Theorem 3.1 might arise. Fix some ℓ ≥ 2. The prototypical non-algebraic
representations of Sp2g(Z) are those that factor through the finite group Sp2g(Z/ℓ). The
group Sp2g(Z/ℓ) contains the subgroup Sp2(g−2)(Z/ℓ)× Sp4(Z/ℓ). Via the projections

Sp2(g−2)(Z/ℓ)× Sp4(Z/ℓ)→ Sp2(g−2)(Z/ℓ) and Sp2(g−2)(Z/ℓ)× Sp4(Z/ℓ)→ Sp4(Z/ℓ),

we can regard representations of Sp2(g−2)(Z/ℓ) and Sp4(Z/ℓ) as representations of the product
Sp2(g−2)(Z/ℓ)× Sp4(Z/ℓ). Assume there exists a nontrivial finite-dimensional representation

V of the finite group Sp2g(Z/ℓ) over k with the following property:

• The restriction of V to Sp2(g−2)(Z/ℓ) × Sp4(Z/ℓ) decomposes as W ⊕W′ with

Sp4(Z/ℓ) acting trivially on W and Sp2(g−2)(Z/ℓ) acting trivially on W′.

Let Vg = V and Vg−2 = W, regarded as representations of Sp2g(Z) and Sp2(g−2)(Z) via
the surjections

Sp2g(Z) −→ Sp2g(Z/ℓ) and Sp2(g−2)(Z) −→ Sp2(g−2)(Z/ℓ).

Consider the map f : Vg−2 ⊠ k→ Vg coming from the inclusion W ↪→ V. We claim that
this is a counterexample to Theorem 3.1. This requires checking two things:

• The representation coker(f) = V/W ∼= W′ is an algebraic representation of
Sp2(g−2)(Z). This holds since the Sp2(g−2)(Z)-action on W′ is trivial.16

• The representation Vg = V is a non-algebraic representation of Sp2g(Z). This holds
since the (nontrivial) Sp2g(Z)-action on it factors through a finite group.

3.2. Outline. It turns out that the potential existence of such V is the main obstacle to
proving Theorem 3.1. Ruling this out requires a long detour into the representation theory
of finite groups, which we do in §4. We then prove Theorem 3.1 in §5.

15The only potentially non-obvious point here is that in Theorem D, we are given maps

Vg−2 Vg−1 Vg

fg−2 fg−1

between representations of the appropriate symplectic groups such that coker(fg−2) is a finite dimensional
algebraic representation of Sp2(g−2)(Z) and coker(fg−1) is a finite dimensional algebraic representation of

Sp2(g−1)(Z). To apply Theorem 3.1, we need for coker(fg−1 ◦ fg−2) to be a finite dimensional algebraic

representation of Sp2(g−2)(Z). This follows from the fact that algebraic representations of Sp2(g−1)(Z) restrict
to algebraic representations of Sp2(g−2)(Z) along with the fact that the collection of algebraic representations

of Sp2(g−2)(Z) is closed under extensions and subquotients.
16The group Sp2(g−2)(Z)× Sp4(Z) acts on coker(f) = W′ and this action is nontrivial since Sp4(Z) acts

nontrivially, but we only care about the action of Sp2(g−2)(Z).
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4. A criterion for algebraicity II: unmixed representations of finite groups

This section studies the restriction to product subgroups of representations of finite groups.

4.1. Mixed representations. Let G1 and G2 be finite groups. Via the projections

G1 ×G2 → G1 and G1 ×G2 → G2,

the irreducible representations of G1 and G2 over a field are irreducible representations
of G1 × G2. We will call these the unmixed irreducible representations of G1 × G2. The
other irreducible representations of G1 ×G2 are the mixed irreducible representations; they
have the property that their restrictions to G1 and G2 are both nontrivial.17 A general
representation of G1 ×G2 over a field of characteristic 0 is unmixed if all of its irreducible
factors are unmixed. If at least one of its irreducible factors is mixed, then it is mixed.

4.2. Universally mixed subgroups. Let G be a finite group and let G1×G2 be a subgroup
of G. We say that G1 ×G2 is universally mixed in G if for all all representations V of G
over algebraically closed fields of characteristic 0, the restriction ResGG1×G2

V is either mixed

or trivial.18 We remark that it is enough to check this for irreducible representations V.

4.3. GL2 over finite fields. The following gives an important example of this property:

Lemma 4.1. Let Fq be a finite field with19 q > 3. Then GL1(Fq)×GL1(Fq) is universally
mixed in GL2(Fq).

Proof. Let G = GL2(Fq), let A = GL1(Fq) × 1, and let B = 1 × GL1(Fq). Let k be an
algebraically closed field of characteristic 0 and letV be a nontrivial irreducible representation
of G over k. It is enough to prove that ResGA×B V is a mixed representation of A×B.

If V is 1-dimensional then the only way that the restriction of V to A×B can be unmixed
is if the restriction of V to either A or B is trivial. Since the normal closures in G of both
A and B are20 all of G, this would imply that V is the trivial representation of G, contrary
to our assumptions. We can thus assume without loss of generality that V has dimension
greater than 1.

If Γ is a group and χ : Γ → k× is a character, then denote by kχ the associated 1-
dimensional representation of Γ. Since A×B is abelian and k is algebraically closed, proving
that the restriction of V to A × B is mixed is equivalent to finding nontrivial characters
χ1 : A → k× and χ2 : B → k× such that letting χ1χ2 : A× B → k× be their product, the
restriction of V to A×B contains kχ1χ2 as a subrepresentation.

For a, b ∈ k× let diag(a, b) ∈ A×B be the associated diagonal matrix. Let Z < G be the
central subgroup of diagonal matrices diag(z, z). By Schur’s Lemma, there is a character
λ : Z → k× called the central character such that for all z ∈ Z, the element z acts on V as
multiplication by λ(z).

17If k is an algebraically closed field of characteristic 0, the mixed irreducible representations of G1 ×G2

over k are of the form V ⊗W with V a nontrivial irreducible representation of G1 and W a nontrivial
irreducible representation of G2.

18This implies that the same holds for representations V of G over arbitrary fields of characteristic 0.
19While the lemma is true for q = 2 for the (uninteresting) reason that GL1(F2) = 1, it is false for q = 3.

Indeed, let G = GL2(F3) and let P ⊂ G be the subgroup of upper triangular matrices. Define a character
ρ : P → C× via the formula

ρ

(
a u
0 b

)
=

{
1 if a = 1,

−1 if a = −1.
Note that we write ρ like this since 1,−1 ∈ F3 are different from 1,−1 ∈ C× despite the fact that they look
the same. Let Cρ be the associated 1-dimensional representation of P and let V = IndG

P Cρ. It is an easy
exercise to show that V restricts to an unmixed representation of GL1(F3)×GL1(F3).

20This uses the fact that q ̸= 2.
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If χ1 : A→ k× is a character and L is a subrepresentation of ResGA V with L ∼= kχ1 , then
for b ∈ F×

q and x⃗ ∈ L we have

diag(1, b)·x⃗ = diag(b−1, 1) diag(b, b)·x⃗ = χ1(diag(b, 1))
−1λ(diag(b, b))x⃗.

In other words, L is also preserved by B. Moreover, letting χ2 : B → k× be defined via the
formula

(4.1) χ2(diag(1, b)) = χ1(diag(b, 1))
−1λ(diag(b, b)) for all b ∈ F×

q ,

as an A × B-representation we have L ∼= kχ1χ2 . It follows that to prove the lemma, it is
enough to find such an L with both χ1 and χ2 nontrivial.

Let a0 ∈ F×
q be a generator of this cyclic group. Since q > 3 and A ∼= F×

q and k is

algebraically closed, we can find a nontrivial character χ1 : A→ k× with

χ1(diag(a0, 1)) ̸= λ(diag(a0, a0)).

It follows that the character χ2 : B → k× defined in (4.1) satisfies χ2(diag(0, a0)) ̸= 1, and
in particular is also nontrivial. It is therefore enough to prove that ResGA V contains a
subrepresentation L with L ∼= kχ1 . In fact, we will prove the following:

Claim. For all irreducible representations V of G of dimension greater than 1, the repre-
sentation ResGA V contains a copy of the left regular representation k[A] of A. In particular,
it contains a copy of every irreducible representation of A.

Let U < G be the unipotent subgroup consisting of matrices(
1 u
0 1

)
with u ∈ Fq

and let M < G be the mirabolic (“miraculous parabolic”) subgroup consisting of matrices(
a u
0 1

)
with a ∈ F×

q and u ∈ Fq.

The group U is isomorphic to the additive group of Fq. Let ρ : U → k× be an arbitrary

nontrivial character and let W = IndMU kρ. Then:

• W is an irreducible representation of M (see [39, Theorem 6.1]); and
• IndGM W is the direct sum of one copy of every representation of G of dimension
greater than 1 (see [39, Theorem 16.1]).

In particular, since our representation V is irreducible and has dimension greater than 1 we
can apply Frobenius reciprocity and see that

k = HomG(Ind
G
M W,V) = HomM (W,ResGM V).

Since W is an irreducible representation of M , it follows that W injects into ResGM V.
Recalling that we are trying to prove that ResGA V contains a copy of k[A], it is thus enough
to prove that ResMA W ∼= k[A]. For this, we have M = U ⋊A, so

W = IndMU kρ =
⊕
a∈F×

q

diag(a, 1)·kρ.

The action of A on W permutes these one-dimensional factors simply transitively. It follows
that the restriction of W to A is isomorphic to k[A], as desired. □
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4.4. GLn over finite fields. The following generalizes Lemma 4.1:

Proposition 4.2. Let Fq be a finite field and n1, n2 ≥ 1. Set n = n1 + n2. Assume that
q > 3 if n1 = 1 or n2 = 1. Then GLn1(Fq)×GLn2(Fq) is universally mixed in GLn(Fq).

The proof of Proposition 4.2 requires some preliminary lemmas.

Lemma 4.3. For i = 1, 2 let Γi be a finite group and let Gi < Γi be a subgroup. Let V be
a representation of Γ1 × Γ2 over a field of characteristic 0 whose restriction to G1 ×G2 is
mixed. Then V is mixed.

Proof. Let W be a mixed irreducible subrepresentation of ResΓ1×Γ2
G1×G2

V. By definition, both

G1 and G2 act nontrivially on W. Let W′ be the irreducible subrepresentation of V such
that ResΓ1×Γ2

G1×G2
W′ contains W. Since G1 and G2 act nontrivially on W, both Γ1 and Γ2

act nontrivially on W′. It follows that W′ is a mixed irreducible representation of Γ1 × Γ2,
so V is a mixed representation of Γ1 × Γ2. □

Lemma 4.4 (Poison subgroup). Let Γ be a finite group and let Γ1 × Γ2 be a subgroup of Γ.
Let G < Γ be a subgroup, and for i = 1, 2 let Gi < Γi be a subgroup such that G1 ×G2 < G.
Assume that G1 ×G2 is universally mixed in G and that the Γ-normal closure of G1 ×G2

contains Γ1 × Γ2. Then Γ1 × Γ2 is a universally mixed subgroup of Γ.

Proof. Let V be a representation of Γ over an algebraically closed field of characteristic
0. We must prove that ResΓΓ1×Γ2

V is either trivial or mixed. Since G1 ×G2 is universally
mixed in G, the restriction

ResGG1×G2
ResΓGV = ResΓG1×G2

V

is either trivial or mixed.
If ResΓG1×G2

V is trivial, then the kernel of the action of Γ on V contains G1 ×G2. Since
the Γ-normal closure of G1 ×G2 contains Γ1 × Γ2, this implies that the kernel of the action
of Γ on V contains Γ1 × Γ2, i.e., that Res

Γ
Γ1×Γ2

V is trivial. If instead ResΓG1×G2
V is mixed,

then Lemma 4.3 implies that ResΓΓ1×Γ2
V is also mixed. □

Proof of Proposition 4.2. We divide the proof into two cases.

Case 1. q > 3.

Lemma 4.1 says that GL1(Fq) × GL1(Fq) is universally mixed in GL2(Fq). Embed
GL2(Fq) into GLn(Fq) such that GL1(Fq) × 1 ⊂ GL2(Fq) maps to GLn1(Fq) × 1 and
1 × GL1(Fq) ⊂ GL2(Fq) maps to 1 × GLn2(Fq). Since q ≠ 2, the normal closure of
GL1(Fq) × GL1(Fq) in GLn(Fq) is GLn(Fq), so this embedding satisfies the conditions of
the poison subgroup lemma (Lemma 4.4). This lemma implies that GLn1(Fq)×GLn2(Fq) is
universally mixed in GLn(Fq), as desired.

Case 2. q ∈ {2, 3}. Our hypotheses thus say that n1, n2 ≥ 2.

Since q2 > 3, Lemma 4.1 says that GL1(Fq2)×GL1(Fq2) is universally mixed in GL2(Fq2).

Embed the group GL2(Fq2) of Fq2-linear automorphisms of F2
q2 in the group GL4(Fq) of

Fq-linear automorphisms of F4
q by regarding Fq2 as a 2-dimensional vector space over Fq.

This maps GL1(Fq2)× 1 to GL2(Fq)× 1 and 1×GL1(Fq2) to 1×GL2(Fq).
We can now embed GL4(Fq) into GLn(Fq) such that GL2(Fq)× 1 maps to GLn1(Fq)× 1

and 1 × GL2(Fq) maps to 1 × GLn2(Fq). The normal closure of GL1(Fq2) × GL1(Fq2) in
GLn(Fq) is GLn(Fq), so this embedding satisfies the conditions of the poison subgroup lemma
(Lemma 4.4). We conclude that GLn1(Fq)×GLn2(Fq) is universally mixed in GLn(Fq). □
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4.5. GLn over integers mod ℓ. Here is another example of a universally mixed subgroup:

Proposition 4.5. Let ℓ ≥ 2 and n1, n2 ≥ 2. Set n = n1+n2. Then GLn1(Z/ℓ)×GLn2(Z/ℓ)
is universally mixed in GLn(Z/ℓ).

Proof. Write ℓ as a product of powers of distinct primes: ℓ = pd11 · · · pdmm . By the Chinese
remainder theorem, we have

GLn(Z/ℓ) ∼= GLn(Z/pd11 )× · · · ×GLn(Z/pdmm ).

Lemma 4.6 below says that GLn1(Z/p
di
i )×GLn2(Z/p

di
i ) is universally mixed in GLn(Z/pdii ).

Assuming this, let V be a representation of GLn(Z/ℓ) over an algebraically closed field of
characteristic 0.

Since GLn1(Z/p
di
i )×GLn2(Z/p

di
i ) is universally mixed in GLn(Z/pdii ), it is also universally

mixed in GLn(Z/ℓ). The restriction of V to each GLn1(Z/p
di
i ) × GLn2(Z/p

di
i ) is thus

either trivial or mixed. If all these restrictions are trivial, then the restriction of V to
GLn1(Z/ℓ) × GLn2(Z/ℓ) is trivial. If one of these restrictions is mixed, then Lemma 4.3
implies that the restriction of V to GLn1(Z/ℓ)×GLn2(Z/ℓ) is mixed. □

The above proof required:21

Lemma 4.6. Let pd be a prime power and n1, n2 ≥ 1. Set n = n1 + n2. If n1 = 1 or
n2 = 1, then assume that p > 3. Then GLn1(Z/pd)×GLn2(Z/pd) is universally mixed in
GLn(Z/pd).

Proof. The proof is by induction on d. The base case d = 1 is Proposition 4.2. For the
inductive step, assume that d ≥ 2 and that the lemma holds for GLn(Z/pd−1). For m ≥ 1,
define

(4.2) KLm(Z/pd) = ker(GLm(Z/pd)→ GLm(Z/pd−1)).

We will prove in Lemma 4.7 below that KLn1(Z/pd)×KLn2(Z/pd) is universally mixed in
GLn(Z/pd). To see that this implies the lemma, consider a representation V of GLn(Z/pd)
over an algebraically closed field of characteristic 0. Since KLn1(Z/pd) × KLn2(Z/pd) is
universally mixed in GLn(Z/pd), the restriction of V to KLn1(Z/pd)×KLn2(Z/pd) is either
trivial or mixed.

If it is mixed, then Lemma 4.3 implies that the restriction of V to GLn1(Z/pd) ×
GLn2(Z/pd) is mixed. If it is trivial, then the kernel of the action of GLn(Z/pd) on V contains
KLn1(Z/pd) × KLn2(Z/pd). The GLn(Z/pd)-normal closure of KLn1(Z/pd) × KLn2(Z/pd)
is KLn(Z/pd), so we deduce that the kernel of the action of GLn(Z/pd) on V contains
KLn(Z/pd). This implies that the action of GLn(Z/pd) on V factors through GLn(Z/pd−1).

Regarding V as a representation of GLn(Z/pd−1), our inductive hypothesis implies that
the restriction of V to GLn1(Z/pd−1)×GLn2(Z/pd−1) is either trivial or mixed. This implies
the analogous result for GLn1(Z/pd)×GLn2(Z/pd), finishing the proof. □

The following lemma was invoked during the proof of Lemma 4.6. It uses the notation
KLm(Z/pd) from (4.2).

Lemma 4.7. Let pd be a prime power with d ≥ 2 and let n1, n2 ≥ 1. Set n = n1 + n2. If
n1 = 1 or n2 = 1, then assume that22 p ≥ 3. Then KLn1(Z/pd)×KLn2(Z/pd) is universally
mixed in GLn(Z/pd).

21The hypotheses of Lemma 4.6 are more general than is needed for Proposition 4.5, but are exactly what
is needed for the proof of Lemma 4.6.

22The condition p ≥ 3 is not a typo. Lemma 4.6 required p > 3 here, but Lemma 4.7 is true when p ≥ 3
and the proof naturally gives the more general statement.
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Proof. Let m ≥ 1. We start by clarifying the nature of KLm(Z/pd). Elements of KLm(Z/pd)
can be written as Im + pd−1A with A an m×m matrix over Z/pd. The value of Im + pd−1A
only depends on the image of A in the set of matrices over Z/p ∼= Fp. Since

(In + pd−1A)(In + pd−1B) = In + pd−1(A+B) + p2d−2AB = In + pd−1(A+B),

we deduce that KLm(Z/pd) is isomorphic to the additive group Matm(Fp) of m×m matrices

over Fp. Under this isomorphism, the conjugation action of GLm(Z/pd) on its normal

subgroup KLm(Z/pd) is identified with the conjugation action of GLm(Z/p) on Matm(Fp)

via the surjection GLm(Z/pd) ↠ GLm(Z/p).
We return to proving that KLn1(Z/pd)×KLn2(Z/pd) is universally mixed in GLn(Z/pd).

Arguing via the poison subgroup lemma (Lemma 4.4) as in the proof of Case 1 of the proof
of Proposition 4.2, to prove that

KLn1(Z/pd)×KLn2(Z/pd) ∼= Matn1(Fp)×Matn2(Fp)

is universally mixed in GLn(Z/pd), it is enough handle the following small ni cases:

Case 1. p ≥ 3 and n1 = n2 = 1, so n = 2.

Consider a representation W of GL2(Z/pd) over an algebraically closed field k of charac-
teristic 0. If the restriction of W to KL1(Z/pd)×KL1(Z/pd) is trivial, we are done. Assume,
therefore, that this restriction is nontrivial. We must prove that it is mixed. For this, we will
study it as a representation of the larger group KL2(Z/pd). Let U be the restriction of W
to KL2(Z/pd). We know that the restriction of U to KL1(Z/pd)×KL1(Z/pd) is nontrivial,
and our goal is to prove that this restriction is mixed.

Since KL2(Z/pd) ∼= Mat2(Fp) is abelian and k is algebraically closed, the irreducible

representations of KL2(Z/pd) over k are the one-dimensional representations associated
to characters χ ∈ Hom(KL2(Z/pd),k×). For χ ∈ Hom(KL2(Z/pd),k×), let Uχ denote the
χ-eigenspace:

Uχ =
{
x ∈ U | m·x = χ(m)x for all m ∈ KL2(Z/pd)

}
.

We thus have

U =
⊕

χ∈Hom(KL2(Z/pd),k×)

Uχ.

To prove that the restriction of U to KL1(Z/pd)×KL1(Z/pd) is mixed, we must find some
χ ∈ Hom(KL2(Z/pd),k×) such that:

• Uχ ̸= 0; and

• χ restricts to a nontrivial character on both KL1(Z/pd)× 1 and 1×KL1(Z/pd).
Since the restriction of U to KL1(Z/pd) × KL1(Z/pd) is nontrivial, we can find some
χ0 ∈ Hom(KL2(Z/pd),k×) such that Uχ0 ̸= 0 and χ0 restricts to a nontrivial character on

either KL1(Z/pd) × 1 or 1 × KL1(Z/pd). We will assume that χ0 restricts to a nontrivial
character on KL1(Z/pd)× 1; the other case is identical up to changes in notation.

The conjugation action of GL2(Z/pd) on its normal subgroup KL2(Z/pd) induces an action
of GL2(Z/pd) on Hom(KL2(Z/pd),k×). What is more, the action of GL2(Z/pd) on

U = Res
GL2(Z/pd)
KL2(Z/pd)

W

permutes the Uχ with g ∈ GL2(Z/pd) taking Uχ to Ug·χ. Since Uχ0 ̸= 0, we also have

Ug·χ0 ̸= 0. It follows that it is enough to find some g ∈ GL2(Z/pd) such that g·χ0 restricts

to a nontrivial character on both KL1(Z/pd)× 1 and 1×KL1(Z/pd).
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As we said when describing KLm(Z/pd) above, the action of GL2(Z/pd) on KL2(Z/pd) ∼=
Mat2(Fp) comes from the conjugation action of GL2(Fp) on Mat2(Fp) via the surjection

GL2(Z/pd) GL2(Z/p) = GL2(Fp).

Since

Mat2(Fp) ∼= Hom(F2
p,F2

p) = (F2
p)

∗ ⊗ F2
p,

we see that as a representation of GL2(Fp) the vector space Mat2(Fp) is self-dual. Since
char(k) = 0, this implies that there is an GL2(Fp)-equivariant isomorphism

Hom(KL2(Z/pd),k×) = Hom(Mat2(Fp),k
×) ∼= Mat2(Fp).

Let X0 ∈ Mat2(Fp) be the image of χ0 ∈ Hom(KL2(Z/pd),k×) under this isomorphism.

Since χ0 restricts to a nontrivial character on KL1(Z/pd)× 1, the (1, 1)-entry of the 2× 2
matrix X0 is nonzero. Our goal is to find some g ∈ GL2(Fp) such that the both the (1, 1)-
and the (2, 2)-entries of gX0g

−1 are nonzero.
If the (2, 2)-entry of X0 is already nonzero, there is nothing to prove, so we can assume it

is zero. Write

X0 =

(
a b
c 0

)
with a, b, c ∈ Fp and a ̸= 0.

It is enough to deal with the following three cases:

• b = c = 0. Since p ≥ 3, what we want follows from(
2 1
1 1

)(
a 0
0 0

)(
2 1
1 1

)−1

=

(
2a 0
a 0

)(
1 −1
−1 2

)
=

(
2a −2a
a −a

)
.

• b ̸= 0. Since p ≥ 3, we can find some x ∈ Fp with x ̸= 0 and a− bx ̸= 0 and what we
want follows from(
1 0
x 1

)(
a b
c 0

)(
1 0
x 1

)−1

=

(
a b

ax+ c bx

)(
1 0
−x 1

)
=

(
a− bx b

ax+ c− bx2 bx

)
.

• c ̸= 0. Since p ≥ 3, we can find some x ∈ Fp with x ≠ 0 and a+ cx ̸= 0 and what we
want follows from(

1 x
0 1

)(
a b
c 0

)(
1 x
0 1

)−1

=

(
a+ cx b
c 0

)(
1 −x
0 1

)
=

(
a+ cx −ax− cx2 + b
c −cx

)
.

Case 2. p = 2 and either (n1, n2) = (1, 2) or (n1, n2) = (2, 1), so n = 3.

For F2, the argument in Case 1 fails only at the last step, and in fact keeping in mind
that 1 is the only nonzero element of F2 one can check for instance that there does not exist(

x y
z w

)
∈ GL2(F2) such that

(
x y
z w

)(
1 0
0 0

)(
x y
z w

)−1

=

(
1 r
s 1

)
with r, s ∈ F2.

This is why we must go up to 3× 3 matrices.
The cases (n1, n2) = (1, 2) and (n1, n2) = (2, 1) are identical up to changes in notation, so

we will explain what to do for (n1, n2) = (1, 2). An argument identical to the one in in Case
1 shows that it is enough to prove the following:

• Consider

X0 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ∈ Mat3(F2) with either a11 ̸= 0 or

(
a22 a23
a32 a33

)
̸= 0.
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Then there exists some g ∈ GL3(F2) such that

gX0g
−1 =

a′11 a′12 a′13
a′21 a′22 a′23
a′31 a′32 a′33

 ∈ Mat3(F2) with both a′11 ̸= 0 and

(
a′22 a′23
a′32 a′33

)
̸= 0.

Since Mat3(F2) has 29 = 512 elements there are finitely many cases to check, and since
GL3(F2) has 168 elements this is easily done with a computer. We omit the details. □

4.6. Sp2g over integers mod ℓ. Our final example of a universally mixed subgroup is:

Proposition 4.8. Let ℓ ≥ 2 and g1, g2 ≥ 2. Set g = g1 + g2. Then Sp2g1(Z/ℓ)× Sp2g2(Z/ℓ)
is universally mixed in Sp2g(Z/ℓ).

Proof. Proposition 4.5 says that GLg1(Z/ℓ)×GLg2(Z/ℓ) is universally mixed in GLg(Z/ℓ).
We will prove the proposition by embedding GLg(Z/ℓ) into Sp2g(Z/ℓ) and applying the
poison subgroup lemma (Lemma 4.4).

Let {a1, b1, . . . , ag, bg} be a symplectic basis for (Z/ℓ)2g. Let I ∼= (Z/ℓ)g be the span of
{a1, . . . , ag} and let J ∼= (Z/ℓ)g be the span of {b1, . . . , bg}, so (Z/ℓ)2g = I ⊕ J . Embed
GLg(Z/ℓ) into Sp2g(Z/ℓ) by letting a matrixM ∈ GLg(Z/ℓ) act on I ∼= (Z/ℓ)g via the action

of M ∈ GLg(Z/ℓ) on (Z/ℓ)g and on J via the action of (M t)−1 ∈ GLg(Z/ℓ) on (Z/ℓ)g.
Under this embedding, GLg1(Z/ℓ)× 1 maps to Sp2g1(Z/ℓ)× 1 and 1×GLg2(Z/ℓ) maps

to 1× Sp2g2(Z/ℓ). Moreover, the normal closure of GLg1(Z/ℓ)×GLg2(Z/ℓ) in Sp2g(Z/ℓ) is
Sp2g(Z/ℓ). The conditions of the poison subgroup lemma (Lemma 4.4) are thus satisfied, so
using it we conclude that Sp2g1(Z/ℓ)× Sp2g2(Z/ℓ) is universally mixed in Sp2g(Z/ℓ). □

5. A criterion for algebraicity III: proof of algebraicity criterion

We finally use our results to prove our algebraicity criterion (Theorem 3.1):

Theorem 3.1 (Algebraicity criterion). Let k be a field of characteristic 0 and let g ≥ 3. Let
Vg−2 be an Sp2(g−2)(Z)-representation over k and Vg be an Sp2g(Z)-representation over k.

Let f : Vg−2 ⊠ k→ Vg be an Sp2(g−2)(Z)× Sp4(Z)-equivariant map. Assume:

(a) the representation Vg is finite dimensional; and
(b) the cokernel of f is an algebraic representation of Sp2(g−2)(Z).

Then Vg is an algebraic representation of Sp2g(Z).

Proof. Whether an Sp2g(Z)-representation is algebraic is unchanged under field extensions,
so we can assume that k is algebraically closed. We now appeal to a theorem of Lubotzky
[28] that says the following:23

• the finite-dimensional representations of Sp2g(Z) over k are semisimple, i.e., they
decompose as direct sums of irreducible representations; and
• the finite-dimensional irreducible representations of Sp2g(Z) over k are precisely
those of the form U ⊗W, where U is an irreducible algebraic representation of
Sp2g(Z) and W is an irreducible representation of24 Sp2g(Z/ℓ) for some ℓ ≥ 2. Here
Sp2g(Z) acts on W via the surjection Sp2g(Z) ↠ Sp2g(Z/ℓ).

Applying this to Vg, we can decompose it as a direct sum of irreducible representations.
By projecting everything onto an irreducible subrepresentation of Vg, we can assume that
Vg is an irreducible representation, and thus is of the form U⊗W with U an irreducible

23This uses the fact that g ≥ 2. See [49] for an expository account of the related case of SLn(Z).
24For g ≥ 2, the congruence subgroup property [31] says that all finite quotients of Sp2g(Z) factor through

Sp2g(Z/ℓ) for some ℓ ≥ 2.
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algebraic representation of Sp2g(Z) and W an irreducible representation of Sp2g(Z/ℓ) for
some ℓ ≥ 2. Our goal is to prove that W is a trivial representation.

We will prove below that the restriction of W to Sp2(g−2)(Z/ℓ)× Sp4(Z/ℓ) is unmixed.

Assuming this, since by Proposition 4.8 the subgroup Sp2(g−2)(Z/ℓ)×Sp4(Z/ℓ) is universally
mixed in Sp2g(Z/ℓ) we deduce that the restriction of W to Sp2(g−2)(Z/ℓ)× Sp4(Z/ℓ) trivial.
Since the normal closure of Sp2(g−2)(Z/ℓ)× Sp4(Z/ℓ) in Sp2g(Z/ℓ) is Sp2g(Z/ℓ), this implies

that W is a trivial representation of Sp2g(Z/ℓ), as desired.
It remains to prove that the restriction of W to Sp2(g−2)(Z/ℓ)×Sp4(Z/ℓ) is unmixed. Let

Res
Sp2g(Z/ℓ)
Sp2(g−2)(Z/ℓ)×Sp4(Z/ℓ)

W =

n⊕
i=1

Wi

be a decomposition into irreducible representations of Sp2(g−2)(Z/ℓ)× Sp4(Z/ℓ) and let

Res
Sp2g(Z)
Sp2(g−2)(Z)×Sp4(Z)

U =

m⊕
j=1

Uj

be a decomposition into irreducible algebraic representations of Sp2(g−2)(Z)× Sp4(Z). We
thus have

Res
Sp2g(Z)
Sp2(g−2)(Z)×Sp4(Z)

Vg =

n⊕
i=1

m⊕
j=1

Uj ⊗Wi.

Each Uj ⊗Wi is an irreducible representation25 of Sp2(g−2)(Z)× Sp4(Z/ℓ).
For each 1 ≤ i ≤ n and 1 ≤ j ≤ m, assumption (b) implies that one of the following two

things happens:

• Uj ⊗Wi is in the image of f : Vg−2 ⊠ k → Vg, so 1 × Sp4(Z) acts trivially on
Uj ⊗Wi and hence on Wi; or
• Uj ⊗Wi survives in coker(f), so its restriction to Sp2(g−2)(Z) is an algebraic

representation of Sp2(g−2)(Z). This implies that Sp2(g−2)(Z)× 1 acts trivially on Wi.

Let W′ be the direct sum of the Wi such that 1× Sp4(Z) acts trivially on Wi and let W′′

be the direct sum of the Wi such that Sp2(g−2)(Z)× 1 acts trivially on Wi. The restriction

of W to Sp2(g−2)(Z/ℓ)×Sp4(Z/ℓ) decomposes as W′⊕W′′, showing that it is unmixed. □

Part 2. Homology of Torelli, step 1: reduction to curve stabilizers

Recall from §1 that the Torelli group Ibg,p on a genus g surface Σb
g,p with p marked points

and b boundary components is the kernel of the action of the mapping class group Modbg,p
on H1(Σg). Each Hd(Ibg,p;Q) is a representation of Sp2g(Z). Our goal is to prove Theorem

B, which says that H2(Ibg,p;Q) is finite dimensional for g ≥ 5 and an algebraic representation
of Sp2g(Z) for g ≥ 6. In this part of the paper, we reduce this to a theorem about curve
stabilizers. This reduction occurs in §7, which is preceded by the preliminary §6.

6. Step 1.1: preliminary results about the homology of Torelli

This section contains some preliminary results about the homology of the Torelli group.

25This follows from the Jacobson density theorem (cf. the proof of the first Claim of [49, Theorem C]).
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6.1. Deleting boundary components and marked points. If f : V→W is an equi-
variant map between Sp2g(Z)-representations V and W over Q, then say that f is an
isomorphism mod fin dim alg reps if both ker(f) and coker(f) are finite-dimensional al-
gebraic representations of Sp2g(Z). If this holds, then V is a finite-dimensional algebraic
representation of Sp2g(Z) if and only if W is.

The following two lemmas imply that for a fixed g ≥ 3, to prove that H2(Ibg,p;Q) is either
finite-dimensional or an algebraic representation of Sp2g(Z) for all p, b ≥ 0 it is enough to

prove this for any single choice of p or b. This will reduce us to only considering H2(I1g ;Q).

Lemma 6.1 (Cap boundary). Let b, p ≥ 0 and g ≥ 3. Let ∂ be a component of ∂Σb+1
g,p and

let Ib+1
g,p → Ibg,p+1 be the map that glues a disc containing a marked point to ∂ and extends

mapping classes in Ib+1
g,p over it by the identity. Then the induced map H2(Ib+1

g,p ;Q) →
H2(Ibg,p+1;Q) is an isomorphism mod fin dim alg representations.

The proofs of this and many other results will use the following fact:

the collection of finite-dimensional algebraic representations of Sp2g(Z) is a Serre(♠)
class, i.e., it is closed under subquotients and extensions.

Proof. By [10, Proposition 3.19], there is a central extension

(6.1) 1 Z Modb+1
g,p Modbg,p+1 1,

f

where the central Z is generated by the Dehn twist T∂ and f glues a disc containing a
marked point to ∂ and extends mapping classes over it by the identity. Since the action
of Modb+1

g,p on H1(Σg) factors through Modbg,p+1, an element ϕ ∈ Modb+1
g,p acts trivially on

H1(Σg) if and only if f(ϕ) does. It follows that (6.1) restricts to a similar central extension

1 Z Ib+1
g,p Ibg,p+1 1

of Torelli groups. The Hochschild–Serre spectral sequence of this extension induces a long
exact Gysin sequence that contains the segment

H1(Ibg,p+1;Q) H2(Ib+1
g,p ;Q) H2(Ibg,p+1;Q) H0(Ibg,p+1;Q)

It follows from Johnson’s work [24] that H1(Ibg,p+1;Q) is a finite-dimensional algebraic

representation of Sp2g(Z) for g ≥ 3. Also, H0(Ing,p+1;Q) = Q is an algebraic representation

of Sp2g(Z). The lemma now follows from (♠). □

Lemma 6.2 (Delete marked point). Let b, p ≥ 0 and g ≥ 3. Let p0 be a marked
point of Σb

g,p+1 and let Ibg,p+1 → Ibg,p be the map that deletes p0. Then the induced map

H2(Ibg,p+1;Q)→ H2(Ibg,p;Q) is an isomorphism mod fin dim alg reps.

Proof. There is a Birman exact sequence [10, Theorem 4.6]

(6.2) 1 π1(Σ
b
g,p, p0) Modbg,p+1 Modbg,p 1,

f

where26 π1(Σ
b
g,p, p0) is the point-pushing subgroup of Modbg,p+1 and f deletes p0. Since the

action of Modbg,p+1 on H1(Σg) factors through Modbg,p, an element ϕ ∈ Modbg,p+1 acts trivially

26Here by π1(Σ
b
g,p, p0) we mean the fundamental group of a genus g surface with p punctures (not marked

points) and b boundary components. Throughout this proof, we will continue to let context indicate whether
p means “punctures” or “marked points”.



18 DANIEL MINAHAN AND ANDREW PUTMAN

on H1(Σg) if and only if f(ϕ) does. It follows that (6.2) restricts to an exact sequence

1 π1(Σ
b
g,p, p0) Ibg,p+1 Ibg,p 1.

f

The associated Hochschild–Serre spectral sequence takes the form

(6.3) E2
pq = Hp(Ibg,p; Hq(π1(Σ

b
g,p);Q))⇒ Hp+q(Ibg,p+1;Q).

The terms of this spectral sequence are representations of Sp2g(Z), and the differentials are
Sp2g(Z)-equivariant. We will use this spectral sequence to prove that the kernel and cokernel

of H2(Ibg,p+1;Q)→ H2(Ibg,p;Q) are finite-dimensional algebraic representations of Sp2g(Z).
We start with the cokernel. We have E2

20 = H2(Ibg,p;Q), and the image of the map

H2(Ibg,p+1;Q)→ H2(Ibg,p;Q) is

E∞
20 = E3

20 = ker(E2
20 → E2

01) = ker(H2(Ibg,p;Q)→ E2
01).

This implies that cokernel of H2(Ibg,p+1;Q)→ H2(Ibg,p;Q) embeds into E2
01. Using (♠), to

prove that the cokernel of H2(Ibg,p+1;Q) → H2(Ibg,p;Q) is a finite dimensional algebraic

representation of Sp2g(Z) it is enough to prove that

E2
01 = H0(Ibg,p; H1(Σ

b
g,p;Q)) = H1(Σ

b
g,p;Q)Ib

g,p

is a finite-dimensional algebraic representation of Sp2g(Z), where the subscript indicates

that we are taking coinvariants. Though Ibg,p acts trivially on H1(Σg;Q), it might not act

trivially on H1(Σ
b
g,p;Q). However, letting m = max(p+ q − 1, 0) we do have an extension

(6.4) 0 Qm H1(Σ
b
g,p;Q) H1(Σg;Q) 0

with Ibg,p acting trivially on the kernel and cokernel. This induces a right-exact sequence

Qm H1(Σ
b
g,p;Q)Ib

g,p
H1(Σg;Q) 0.

Since Qm is a trivial representation of Sp2g(Z) and H1(Σg;Q) is a finite-dimensional al-

gebraic representation of Sp2g(Z), using (♠) it follows that E2
01 = H1(Σ

b
g,p;Q)Ib

g,p
is a

finite-dimensional algebraic representation of Sp2g(Z), as desired.
We now handle the kernel. In terms of the spectral sequence (6.3), the kernel of the map

H2(Ibg,p+1;Q)→ H2(Ibg,p;Q) has a filtration whose associated graded terms are E∞
02 and E∞

11.

These are subquotients of E2
02 and E2

11. Using (♠), it is enough to prove that E2
02 and E2

11

are finite-dimensional algebraic representations of Sp2g(Z).
The term E2

02 is a finite-dimensional algebraic representation of Sp2g(Z) since

E2
02 = H0(Ibg,p; H2(Σ

b
g,p;Q)) = H2(Σ

b
g,p;Q)Ib

g,p
=

{
Q if p = b = 0,

0 otherwise.

For E2
11 = H1(Ibg,p; H1(Σ

b
g,p;Q)), note that the long exact sequence in homology associated

to the extension (6.4) of Ibg,p-representations contains the segment

H1(Ibg,p;Qm) H1(Ibg,p; H1(Σ
b
g,p;Q)) H1(Ibg,p; H1(Σg;Q)).

This can be rewritten as

H1(Ibg,p;Q)m E2
11 H1(Ibg,p;Q)⊗H1(Σg;Q).
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It follows from Johnson’s work [24] that H1(Ibg,p+1;Q) is a finite-dimensional algebraic

representation of Sp2g(Z) for g ≥ 3. Using (♠) it follows that E2
11 is a finite-dimensional

algebraic representation of Sp2g(Z), as desired. □

6.2. Curve stabilizers. Embed Σ1
g−1 in Σg and let γ be an oriented nonseparating simple

closed curve on Σg that is disjoint from Σ1
g−1:

γ
...

Σg-1
1

Let (Ig)γ be the Ig-stabilizer of the isotopy class of γ. The image of the map I1g−1 ↪→ Ig
induced by our embedding lies in (Ig)γ . Then:

Lemma 6.3. Let g ≥ 5. Embed Σ1
g−1 in Σg and let γ be a nonseparating simple closed curve

on Σg that is disjoint from Σ1
g−1. Let h : H2(I1g−1;Q)→ H2((Ig)γ ;Q) be the map induced by

the inclusion I1g−1 ↪→ (Ig)γ. Regard h as a map of Sp2(g−1)(Z)-representations. Then h is
an isomorphism mod fin dim alg reps.

The proof uses a result that we will also use several other times. For a subsurface S of Σg,
let Ig(S) be the subgroup of Ig consisting of mapping classes supported on S. For instance, if
γ1, . . . , γk are simple closed curves on Σg that intersect transversely, then (Ig)γ1,...,γk = Ig(S)
for S the complement of an open regular neighborhood of γ1 ∪ · · · ∪ γk. Then:
Theorem 6.4 (Putman, [46, Theorem B]). Let S ⊂ Σg be a connected subsurface of genus
at least 3. Then the map H1(Ig(S);Q)→ H1(Ig;Q) is injective.

Proof of Lemma 6.3. Let ∂1 and ∂2 be the components of ∂Σ2
g−1. Embed Σ1

g−1 in Σ2
g−1:

...
∂1

∂2
Σg-1
1

Let Σ2
g−1 → Σg be the map that glues ∂1 to ∂2 and maps those components to γ and

Σ1
g−1 to Σ1

g−1. Let ϕ : Mod2g−1 → Modg be the induced map on mapping class groups,

so ϕ(T∂1) = ϕ(T∂2) = Tγ . The image of ϕ is (Modg)γ , and ϕ takes Mod1g−1 < Mod2g−1

isomorphically onto Mod1g−1 < Modg. Define Ĩ2g−1 = ϕ−1(Ig). Be warned that this is a

proper subgroup of I2g−1; see [40]. The map h factors as

H2(I1g−1;Q) H2(Ĩ2g−1;Q) H2((Ig)γ ;Q),
f ϕ̃

where f is induced by the inclusion I1g−1 ↪→ Ĩ2g−1 and ϕ̃ is induced by the restriction of

ϕ : Mod2g−1 → (Modg)γ to Ĩ2g−1. To prove that h is an isomorphism mod fin dim alg reps, it

is enough to prove this for f and ϕ̃:

Step 1. The map ϕ̃ : H2(Ĩ2g−1;Q) −→ H2((Ig)γ ;Q) is an isomorphism mod fin dim alg reps.

Since ϕ(T∂1) = ϕ(T∂2) = Tγ , we have T∂1T
−1
∂2
∈ ker(ϕ). In fact, we have a central extension

1 Z Mod2g−1 (Modg)γ 1
ϕ
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whose central Z is generated by T∂1T
−1
∂2

. We have T∂1T
−1
∂2
∈ Ĩ2g−1, so this restricts to a

central extension

1 Z Ĩ2g−1 (Ig)γ 1.

The Hochschild–Serre spectral sequence of this extension induces a long exact Gysin sequence
that contains the segment

H1((Ig)γ ;Q) H2(Ĩ2g−1;Q) H2((Ig)γ ;Q) H0((Ig)γ ;Q).
ϕ̃

Since H0((Ig)γ ;Q) = Q is an algebraic representation of Sp2(g−1)(Z), by (♠) it is enough to

prove that H1((Ig)γ ;Q) is a finite-dimensional algebraic representation of Sp2(g−1)(Z).
Theorem 6.4 implies that the map H1((Ig)γ ;Q) → H1(Ig;Q) is injective. Johnson

[24] proved that H1(Ig;Q) is a finite-dimensional algebraic representation of Sp2g(Z). Its
restriction to Sp2(g−1)(Z) is also algebraic, so by (♠) its subrepresentation H1((Ig)γ ;Q) is a

finite-dimensional algebraic representation of Sp2(g−1)(Z), as desired.

Step 2. The map f : H2(I1g−1;Q)→ H2(Ĩ2g−1;Q) is an isomorphism mod fin dim alg reps.

Putman [40] constructed a version of the Birman exact sequence for27 Ĩ2g−1. Letting

π = π1(Σ
1
g−1), it takes the form

(6.5) 1 [π, π] Ĩ2g−1 I1g−1 1.

Here Ĩ2g−1 → I1g−1 is the map induced by gluing a disc to ∂1 and extending mapping classes

by the identity, and [π, π] is an appropriate subgroup of the “disc pushing group”. The

extension (6.5) splits via the map I1g−1 → Ĩ2g−1 induced by the embedding Σ1
g−1 ↪→ Σ2

g−1

discussed above.
Since [π, π] is a free group, the Hochschild–Serre spectral sequence of (6.5) has two rows,

and since this extension is split all the differentials coming out of the bottom row of this
spectral sequence vanish. We deduce that this spectral sequence degenerates to give an
extension

0 H1(I1g−1; H1([π, π];Q)) H2(Ĩ2g−1;Q) H2(I1g−1;Q) 0.

The f : H2(I1g−1;Q) → H2(Ĩ2g−1;Q) we are trying to prove is an isomorphism mod fin

dim alg reps is the splitting of this exact sequence coming from the splitting of (6.5). We
conclude that ker(f) = 1 and that coker(f) ∼= H1(I1g−1; H1([π, π];Q)). For g ≥ 5, the authors

proved in [36]28 that H1(I1g−1; H1([π, π];Q)) is a finite-dimensional algebraic representation

of Sp2(g−1)(Z). The step follows. □

7. Step 1.1: reduction to curve stabilizers

Let α and β be the following curves on Σg:

...
α

β
Σg-1
1

27In the notation of [40], the group Ĩ2g−1 is I(Σ2
g−1, {{∂1, ∂2}}).

28Earlier Putman [42] proved an analogous result for the level-ℓ subgroup of Mod1
g−1. This played an

important role in Putman’s computation of the second homology of the level-ℓ subgroup in [43, 44].
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Let
λ : H2((Ig)α;Q)⊕H2((Ig)β;Q) −→ H2(Ig;Q)

be the sum of the maps induced by the inclusions (Ig)α ↪→ Ig and (Ig)β ↪→ Ig and let Λg

be the cokernel of λ. The group Modg does not act on Λg since it does not fix α and β, but

the subgroup Mod1g−1 of Modg does act on Λg. This factors through Sp2(g−1)(Z), making

Λg into a representation of Sp2(g−1)(Z). The rest of this paper is devoted to the proof of:

Theorem B′. The representation Λg is a finite-dimensional algebraic representation of
Sp2(g−1)(Z) for g ≥ 5.

Here we will assume Theorem B′ and use it to prove Theorem B.

Theorem B. Let b, p ≥ 0. Then H2(Ibg,p;Q) is finite dimensional for g ≥ 5 and an algebraic
representation of Sp2g(Z) for g ≥ 6.

Proof of Theorem B, assuming Theorem B ′. By Lemmas 6.1 and 6.2, it is enough to prove
Theorem B for H2(I1g ;Q). Embed Σ1

g−1 into Σ1
g as in the following figure:

Σg-1
1
...

Extending mapping classes in I1g−1 to Σ1
g by the identity, we get an induced map I1g−1 → I1g .

Passing to H2 gives a coherent sequence29

H2(I11 ;Q) H2(I12 ;Q) H2(I13 ;Q) · · ·f1 f2 f3

of representations of Sp2g(Z).
We would like to apply our stability theorem (Theorem D) to this coherent sequence with

g0 = 5. If we can do this, that theorem will imply that H2(I1g ;Q) is finite dimensional for
g ≥ g0 and an algebraic representation of Sp2g(Z) for g ≥ g0+1, just like we want. Theorem
D has two hypotheses (i) and (ii) we must verify:

Step 1. Hypothesis (i) holds: coker(fg−1) is a finite-dimensional algebraic representation of
Sp2(g−1)(Z) for g ≥ g0 = 5.

Let f ′g−1 : H2(I1g−1;Q)→ H2(Ig;Q) be the composition

H2(I1g−1;Q) H2(I1g ;Q) H2(Ig;Q),
fg−1 π

where π is the map induced by gluing a disc to ∂Σ1
g and extending mapping classes by the

identity. We can factor π as

H2(I1g ;Q) H2(Ig,1;Q) H2(Ig;Q).

Lemmas 6.1 and 6.2 say that these two maps are isomorphisms mod fin dim alg reps for
g ≥ 3, so using (♠) the map π is as well. Again using (♠), this implies that to prove that
coker(fg−1) is a finite-dimensional algebraic representation of Sp2(g−1)(Z), it is enough to

prove the same result for coker(f ′g−1).

Let α and β be the curves on Σg from Theorem B′. Let

hα : H2(I1g−1;Q) −→ H2((Ig)α;Q) and hβ : H2(I1g−1;Q) −→ H2((Ig)β;Q)

29See §1.4 for the definition of a coherent sequence.
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be the maps induced by the inclusions I1g−1 ↪→ (Ig)α and I1g−1 ↪→ (Ig)β and let

λα : H2((Ig)α;Q) −→ H2(Ig;Q) and λβ : H2((Ig)β;Q) −→ H2(Ig;Q)

be the maps induced by the inclusions (Ig)α ↪→ Ig and (Ig)β ↪→ Ig. Consider the sum of
two copies of f ′g−1:

f ′g−1 + f ′g−1 : H2(I1g−1;Q)⊕H2(I1g−1;Q) −→ H2(Ig;Q).

We can factor f ′g−1 + f ′g−1 as

(7.1) H2(I1g−1;Q)⊕H2(I1g−1;Q) H2((Ig)α;Q)⊕H2((Ig)β;Q) H2(Ig;Q).
hα⊕hβ λα+λβ

Lemma 6.3 says that hα and hβ are both isomorphisms mod fin dim alg reps for g ≥ 5,
so by (♠) the map hα ⊕ hβ is as well. Theorem B′ says that Λg = coker(λα + λβ) is a
finite-dimensional algebraic representation of Sp2(g−1)(Z) for g ≥ 5. Using the factorization

(7.1) and (♠), we deduce that coker(f ′g−1 + f ′g−1) is also a finite-dimensional algebraic

representation of Sp2(g−1)(Z) for g ≥ 5. Since f ′g−1 and f ′g−1 + f ′g−1 have the same image,

the same is true for coker(f ′g−1), as desired.

Step 2. Hypothesis (ii) holds: the coinvariants H2(I1g ;Q)Sp2g(Z) are finite-dimensional for

g ≥ g0 = 5. In fact, this holds for g ≥ 3.

One quick way to see this is to appeal to [25], which says that H2(I1g ;Q) is finitely
generated as a module over the group ring Q[Sp2g(Z)]. Another more elementary approach
is to use the Hochschild–Serre spectral sequence of the extension

1 I1g Mod1g Sp2g(Z) 1,

which takes the form

E2
pq = Hp(Sp2g(Z); Hq(I1g ;Q))⇒ Hp+q(Mod1g;Q).

We want to show that

E2
02 = H0(Sp2g(Z); H2(I1g ;Q)) = H2(I1g ;Q)Sp2g(Z)

is finite-dimensional. Since the homology groups of Mod1g are all finite-dimensional, we know

that E∞
02 is finite dimensional. To go from E2

02 to E∞
02, we must kill the images of differentials

coming from

E2
21 = H2(Sp2g(Z); H1(I1g ;Q)) and

E3
30 ⊂ E2

30 = H3(Sp2g(Z);Q).

In light of Johnson’s theorem [24] saying that H1(I1g ;Q) is a finite-dimensional algebraic
representation of Sp2g(Z) and Borel–Serre’s theorem [5] saying that Sp2g(Z) has a finite-index
subgroup with a compact classifying space, these are both finite-dimensional. It follows that
E2
02 is finite-dimensional, as desired. □

Part 3. Homology of Torelli, step 2: generators for cokernel

It remains to prove Theorem B′, which says that Λg is a finite-dimensional algebraic
representation of Sp2(g−1)(Z) for g ≥ 5. In this part of the paper, we find generators for Λg.

In §8 we introduce equivariant homology, in §9 we introduce the handle complex Cab(Σg),
and then in §10 we find our generators.
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8. Step 2.1: Preliminaries on equivariant homology

We start with some preliminaries on (Borel) equivariant homology. See [7, §VII.7] for a
textbook reference. Fix a group G and a commutative ring k.

8.1. Basic definitions. A G-CW complex is a CW complex equipped with a cellular action
of G. Fix a contractible G-CW complex EG on which G acts freely. For a G-CW complex
X, the group G acts freely on EG×X. Define

EG×G X = (EG×X)/G.

This is known as the Borel construction. The G-equivariant homology groups of X, denoted
HG

• (X;k), are H•(EG×GX;k). They do not depend on the choice of EG and are functorial
under G-equivariant cellular maps. They are also functorial under group homomorphisms in
the following sense: if f : G1 → G2 is a group homomorphism and ϕ : X1 → X2 is a cellular
map from a G1-CW complex X1 to a G2-CW complex X2 such that

ϕ(g·x) = f(g)·ϕ(x) for all g ∈ G1 and x ∈ X1,

then there is an induced map (f, ϕ)∗ : HG1
• (X1;k)→ HG2

• (X2;k).

8.2. Relation to group homology. If X is a contractible G-CW complex, then EG×X
is also contractible. Since G acts freely on EG×X, we deduce that EG×G X is a K(G, 1),
so by definition30 HG

• (X;k) = H•(G;k). A basic example is X = pt equipped with the
trivial G-action, so

HG
• (pt;k) = H•(G;k).

For an arbitrary G-CW complex X, the map X → pt induces a canonical map

(8.1) HG
• (X;k) −→ HG

• (pt;k) = H•(G;k).

We then have the following:

Lemma 8.1. Let G be a group and let X be an n-connected G-CW complex. For all
commutative rings k, the map HG

d (X;k)→ Hd(G;k) from (8.1) is an isomorphism for d ≤ n
and a surjection for d = n+ 1.

Proof. We can build a contractible G-CW complex Y from X by equivariantly attaching
cells of dimension at least n+ 2. The CW complex EG×G Y is then built from EG×G X
by attaching cells of dimension at least n+ 2. Letting ι : X → Y be the inclusion, the map
we are studying factors as

HG
d (X;k) HG

d (Y ;k) Hd(G;k).
ι∗

Since Y is contractible the canonical map HG
d (Y ;k)→ Hd(G;k) is an isomorphism for all

d, and by construction ι∗ is an isomorphism for d ≤ n and a surjection for d = n+ 1. The
lemma follows. □

8.3. Spectral sequence. Let X be a G-CW complex. Assume that G acts on X without
rotations, i.e., for all cells σ of X the stabilizer Gσ fixes c pointwise. This ensures that X/G
is a CW complex whose p-cells are in bijection with the G-orbits of p-cells of X.

For a p-cell σ ∈ (X/G)(p), let σ̃ be a lift of σ to X. Consider Hq(Gσ̃;k). This appears to
depend on the choice of σ̃. However, if σ̃′ is another lift of σ to X then there exists some
g ∈ G with g·σ̃ = σ̃′ and hence gGσ̃g

−1 = Gσ̃′ . Conjugation by g thus gives an isomorphism

(8.2) Hq(Gσ̃;k) ∼= Hq(Gσ̃′ ;k).

30We use = rather than ∼= to indicate that this isomorphism is canonical.
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This isomorphism does not depend on the choice of g; indeed, any other choice of g ∈ G
with g·σ̃ = σ̃′ is of the form gh with h ∈ Gσ̃, and conjugation by h induces the trivial
automorphism of Hq(Gσ̃;k). Since the isomorphism (8.2) is canonical, we can unambiguously

write Hq(Gσ̃;k) for σ ∈ (X/G)(p). With this convention, we have:

Proposition 8.2 ([7, VII.7.7]). Let G be a group, let X be a G-CW complex, and let k be a
commutative ring. Assume that G acts on X without rotations. There is then a functorial
first quadrant spectral sequence

E1
pq =

⊕
σ∈(X/G)(p)

Hq(Gσ̃;k)⇒ HG
p+q(X;k).

In the rest of this section, we will fix a G-CW complex X on which G acts without
rotations and discuss properties of the spectral sequence E given by Proposition 8.2.

8.4. Left column. Since 0-cells are vertices, we will denote them with v instead of σ. For
a fixed q, consider the composition

(8.3)
⊕

v∈(X/G)(0)
Hq(Gṽ;k) = E1

0q E∞
0q HG

q (X;k) Hq(G;k)

whose maps are as follows:

• the surjection E1
0q ↠ E∞

0q comes from the fact that there are no nonzero differentials

coming out of E1
0q; and

• the inclusion E∞
0q ↪→ HG

q (X;k) comes from the fact that E∞
0q is the first term in the

filtration of HG
q (X;k) coming from our spectral sequence; and

• the map HG
q (X;k)→ Hq(G;k) is the canonical map.

We claim that (8.3) equals the sum of the maps induced by the inclusions Gṽ ↪→ G of vertex
stabilizers. This can be proved easily from the construction of the spectral sequence in [7,
VII.7.7], but we prefer the following less computational proof.

Consider the G-equivariant map X → pt. Letting F be the spectral sequence obtained by
applying Proposition 8.2 to pt, we get a map E→ F of spectral sequences converging to the
canonical map

HG
• (X;k) −→ HG

• (pt;k) = H•(G;k).

The spectral sequence F degenerates at F1, which is of the form

F1
pq =

{
Hq(G;k) if p = 0,

0 if p ̸= 0.

Identifying E1
0q with ⊕

v∈(X/G)(0)

Hq(Gṽ;k),

the map E1
0q → F1

0q = Hq(G;k) is exactly the sum of the maps induced by the inclusions
Gṽ ↪→ G of vertex stabilizers. The claim follows.

8.5. Bottom row. We will next need a description of the differentials of our spectral
sequence in two special case. The first is when q = 0. Observe that

E1
p0 =

⊕
σ∈(X/G)(p)

H0(Gσ̃;k) =
⊕

σ∈(X/G)(p)

k = Cp(X/G;k),
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where Cp(X/G;k) is the pth term of the cellular chain complex for X/G. The E1-differentials
E1
p0 → E1

p−1,0 thus fit into a chain complex of the form

C0(X/G;k) C1(X/G;k) C2(X/G;k) · · · .

This is exactly the cellular chain complex of X/G; see [7, §VII.8]. It follows that E2
p0 =

Hp(X/G;k).

8.6. 1-cell differentials. We also need a description of the differentials when p = 1. By
our description of the E1-page, these differentials ∂ : E1

1q → E1
0q are of the form

⊕
e∈(X/G)(1) Hq(Gẽ;k)

⊕
v∈(X/G)(0) Hq(Gṽ;k).

∂

Consider some e ∈ (X/G)(1). For our differential, we must fix some (arbitrary) orientation

on e. Let ẽ ∈ X(1) be our lift to X, which has an orientation coming from the orientation
on e. Let w0 ∈ X(0) and w1 ∈ X(0) be the initial and terminal vertices of ẽ, respectively.
We have inclusions Gẽ ↪→ Gw0 and Gẽ ↪→ Gw1 . On the summand Hq(Gẽ;k) of E1

1q, the
differential ∂ is then the difference between the two induced maps

(8.4) Hq(Gẽ;k) Hq(Gw1 ;k)
⊕

v∈(X/G)(0) Hq(Gṽ;k)

and

(8.5) Hq(Gẽ;k) Hq(Gw0 ;k)
⊕

v∈(X/G)(0) Hq(Gṽ;k).

See [7, §VII.8] for a proof.
If e is a loop, then w0 and w1 are in the same G-orbit, so there exists some s ∈ G with

s(w0) = w1. The terms Hq(Gw1 ;k) and Hq(Gw0 ;k) in (8.4) and (8.5) go to the same term in
the indicated direct sum, and Hq(Gw1 ;Q) is identified with Hq(Gw0 ;k) via conjugation by s.

Consider the special case q = 1. For g ∈ Gw0 , let g ∈ H1(Gw0 ;k) be its homology class.
Our differential is the composition

H1(Gẽ;k) H1(Gw0 ;k)
⊕

v∈(X/G)(0) H1(Gṽ;k),

where the first map take the homology class of g ∈ Gẽ to

s−1gs− g = g−1s−1gs = [g, s] ∈ H1(Gw0 ;k).

9. Step 2.2: the handle complex

We now introduce a space on which Ig acts.

9.1. Complex of homologous curves. Let v ∈ H1(Σg) be a primitive element, i.e., one
that is only divisible by ±1. Let Cv(Σg) be the following simplicial complex:

• vertices: isotopy classes of oriented simple closed curves γ on Σg with [γ] = v.
• p-simplices: sets σ = {γ0, . . . , γp} of distinct vertices such that the γi can be
isotoped to be pairwise disjoint.
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For instance, the following is a 2-simplex of Cv(Σg) for v = [γ0]:
31

γ0

γ1

γ2

Putman [41] introduced Cv(Σg) and proved it was connected for g ≥ 3. Hatcher–Margalit
[18] gave an alternate proof of this that Minahan [34] generalized to show:32

Theorem 9.1 (Minahan, [34]). Let g ≥ 2 and let v ∈ H1(Σg) be a primitive element. Then

Cv(Σg) is (g − 3)-acyclic, i.e., H̃k(Cv(Σg)) = 0 for k ≤ g − 3.

9.2. Handle complex. Let a, b ∈ H1(Σg) be primitive elements with algebraic intersection
number 1. An a-curve (resp. a b-curve) is an oriented simple closed curve γ with [γ] = a
(resp. [γ] = b). The handle complex, denoted Cab(Σg), is the following simplicial complex:

• vertices: isotopy classes of a-curves and b-curves.
• p-simplices: sets σ = {γ0, . . . , γp} of distinct vertices such that either:

– σ is a p-simplex of Ca(Σg) or Cb(Σg); or
– for some γi0 ∈ σ, the set σ \ {γi0} is a (p − 1)-simplex of Ca(Σg) and γi0 is a
b-curve that can be isotoped to intersect each curve in σ \ {γi0} once; or

– for some γi0 ∈ σ, the set σ \ {γi0} is a (p− 1)-simplex of Cb(Σg) and γi0 is an
a-curve that can be isotoped to intersect each curve in σ \ {γi0} once.

We will call the simplices of Ca(Σg) and Cb(Σg) the pure simplices of Cab(Σg) and the other
simplices the mixed simplices. If in the following figure the orange curves are a-curves and
the blue curves are b-curves,33 then the indicated curves form mixed simplices of Cab(Σg):

and

The 1-skeleton of Cab(Σg) is the handle graph defined by Putman [45], who proved it is
connected for g ≥ 3. Proposition 9.9 below says that Cab(Σg) is 1-acyclic

34 for g ≥ 4.

9.3. Rotations. The group Ig acts on Cab(Σg). This action is without rotations:

Lemma 9.2. Let g ≥ 1 and let a, b ∈ H1(Σg) be primitive elements with algebraic intersection
number 1. Then Ig acts on Cab(Σg) without rotations.

Proof. This is immediate from the fact that every simplex of Cab(Σg) is the join of a simplex
of Ca(Σg) and a simplex of Cb(Σg) along with the fact that Ig acts on Ca(Σg) and Cb(Σg)
without rotations (see [19, Theorem 1.2] for a more general result). □

31To avoid cluttering our figures, they will often not indicate the orientations on the curves.
32It is not known if π1(Cv(Σg)) = 1 for g ≥ 4, which would let us conclude it is (g − 3)-connected.
33We will use this coloring convention in the rest of the paper.
34Presumably it could be made more highly acyclic by allowing mixed simplices that contain more a- and

b-curves. We defined Cab(Σg) like we did to ensure that Cab(Σg)/Ig is contractible; see Proposition 9.7.
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9.4. Mixing pure simplices. The following shows that every pure simplex of Cab(Σg) can
be extended to a mixed simplex, and this extension is unique up to the action of Ig:

Lemma 9.3. Let g ≥ 1 and let a, b ∈ H1(Σg) be primitive elements with algebraic intersection
number 1. Let σ be a pure simplex of Cab(Σg). Then there is a vertex δ of Cab(Σg) such that
σ ∪ {δ} is a mixed simplex. Moreover, if δ′ is another vertex of Cab(Σg) such that σ ∪ {δ′} is
a mixed simplex, then there exists f ∈ Ig with f(σ) = σ and f(δ) = δ′.

Proof. We will give the proof for σ a simplex of Ca(Σg). The case where it is a simplex of
Cb(Σ) is identical. Let σ = {γ0, . . . , γp}, so the γi are disjoint a-curves. They divide Σg into
(p+ 1) components T0, . . . , Tp with Ti ∼= Σ2

gi for some gi ≥ 1 with 1 +
∑
gi = g:

γ0

γ1
γ2

T0T1

T2

As in this figure, we order the γi and Ti such that ∂Ti = γi ⊔ γi+1, where the indices are
taken modulo p. We now divide the proof into two steps.

Step 1. There exists a b-curve δ that intersects each γi once, so σ ∪ {δ} is a mixed simplex.

Let ζ be an arbitrary oriented simple closed curve that intersects each γi once such
that the intersection number of γi with ζ is +1. Let S0, . . . , Sp be the components of the
complement of a regular neighborhood of ζ ∪ γ0 ∪ · · · ∪ γp, ordered such that Si ⊂ Ti:

ζ

S0
S1

S2

We then have

H1(Σg) = ⟨[γ0], [ζ]⟩ ⊕
p⊕

i=0

H1(Si).

Write

b = c[γ0] + d[ζ] +

p∑
i=0

xi with c, d ∈ Z and xi ∈ H1(Si).

Since the algebraic intersection numbers of b and [ζ] with a = [γ0] are 1, we have d = 1.
Replacing ζ with T−c

γ0 (ζ), we can also assume that c = 0, so b = [ζ] +
∑p

i=0 xi. For 0 ≤ i ≤ p,
let qi be the intersection point of ζ with γi and let ζi be the subarc of ζ lying in Ti, so ζi
goes from qi to qi+1. By [45, Lemma 3.2], there exist a properly embedded arc δi in Ti
going from qi to qi+1 such that in the relative homology group H1(Ti, {qi, qi+1}), we have
[δi] = [ζi] + xi. We can then take δ to be the loop made up of the δi.

Step 2. Let δ and δ′ be b-curves such that σ ∪ {δ} and σ ∪ {δ′} are mixed simplices. Then
there exists f ∈ Ig with f(σ) = σ and f(δ) = δ′.

Let S0, . . . , Sp be the components of the complement of a regular neighborhood of δ ∪
γ0 ∪ · · · ∪ γp, ordered such that Si ⊂ Ti. The span of H1(Si) and a = [γi] equals H1(Ti), so
H1(Si) is the intersection of H1(Ti) with the orthogonal complement of b = [δ].
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Similarly, let S′
1, . . . , S

′
p be the components of the complement of a regular neighborhood

of δ′ ∪ γ0 ∪ · · · ∪ γp, ordered such that S′
i ⊂ Ti. Just like above, H1(S

′
i) is the intersection of

H1(Ti) with the orthogonal complement of b = [δ′]. In other words, as subgroups of H1(Σg)
we have H1(Si) = H1(S

′
i) for 0 ≤ i ≤ p. Let Vi = H1(Si) = H1(S

′
i).

By the change of coordinates principle from [10], we can find ϕ ∈ Modg with ϕ(δ) = δ′

and ϕ(γi) = γi for 0 ≤ i ≤ p. By construction ϕ fixes a = [γ0] and b = [δ], and it takes
Vi = H1(Si) to Vi = H1(S

′
i) for 0 ≤ i ≤ p. Since mapping classes on the 1-holed surface

Si can realize any symplectic automorphism of Vi = H1(Si), we can find some ψi ∈ Modg
supported on Si such that ψi induces ϕ∗|Vi : Vi → Vi on Vi = H1(Si). Define

f = ϕψ−1
0 · · ·ψ

−1
p ∈ Modg .

We have f(σ) = σ and f(δ) = δ′. By construction f fixes a = [γ0] and b = [δ] as well as each
Vi. Since these span H1(Σg), we conclude that f acts trivially on H1(Σg), i.e., f ∈ Ig. □

9.5. Description of action. We now prove several results about the action of Ig on Cab(Σ).

Lemma 9.4. Let g ≥ 1 and let a, b ∈ H1(Σg) be primitive elements with algebraic intersection
number 1. Then Ig acts transitively on:

(i) vertices of Cab(Σg) that are a-curves; and
(ii) vertices of Cab(Σg) that are b-curves; and
(iii) mixed 1-simplices of Cab(Σg).

Proof. Johnson [22, Lemma 5] proved that for any oriented nonseparating simple closed
curves γ and γ′ on Σg with [γ] = [γ′], there exists f ∈ Ig with f(γ) = γ′. This implies that
Ig acts transitively on a-curves and b-curves, as in (i) and (ii).

To prove (iii), for i = 1, 2 let ei be a mixed 1-simplex joining an a-curve αi to a b-curve
βi. By the previous paragraph, there exists f ∈ Ig with f(α1) = α2. Both f(β1) and
β2 are b-curves intersecting f(α1) = α2 once, so by Lemma 9.3 there exists f ′ ∈ Ig with
f ′(f(α1)) = f(α1) = α2 and f

′(f(β1)) = β2. It follows that f
′f takes e1 to e2, as desired. □

This immediately implies:

Corollary 9.5. Let g ≥ 1 and let a, b ∈ H1(Σg) be primitive elements with algebraic
intersection number 1. Then the 1-skeleton of Cab(Σg)/Ig consists of:

• two vertices va and vb, with va (resp. vb) the image of any a-curve (resp. b-curve).
• loops based at va and vb, each the image of a pure 1-simplex.
• a single 1-simplex eab joining va and vb, with eab the image of any mixed 1-simplex.

The following puts edges of Cab(Σg) into a normal form up to the action of Ig:

Lemma 9.6. Let g ≥ 1, let a, b ∈ H1(Σg) be primitive elements with algebraic intersection
number 1, and let {α, β} be a mixed 1-simplex of Cab(Σg) with [α] = a and [β] = b. Then:

(i) for all oriented 1-simplices e of Ca(Σg), there exists some f,B ∈ Ig with B(β) = β
such that f(e) goes from α to B(α); and

(ii) for all oriented 1-simplices e of Cb(Σg), there exists some f,A ∈ Ig with A(α) = α
such that f(e) goes from β to A(β).

α
β

α

B(α)

β

A(β)
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Proof. The proofs of (i) and (ii) are similar, so we prove (i) and leave (ii) to the reader. Write
e = {α1, α2}. Our goal is to find f,B ∈ Ig such that B(β) = β and f(e) = {f(α1), f(α2)} =
{α,B(α)}.

By Lemma 9.4, there is an f1 ∈ Ig with f1(α1) = α, so f1(e) = {α, f1(α2)}. By Lemma
9.3, there is a b-curve β′ with {α, f1(α2), β

′} a mixed simplex. Since {α, β} and {α, β′}
are mixed 1-simplices, by Lemma 9.4 there is an f2 ∈ Ig with f2(α) = α and f2(β

′) = β.
Let f = f2f1, so f(e) = {α, f(α2)} and {α, f(α2), β} is a mixed simplex. Since {α, β} and
{f(α2), β} are mixed 1-simplices, by Lemma 9.3 there is a B ∈ Ig with B(α) = f(α2) and
B(β) = β, so f(e) = {α,B(α)}, as desired. □

9.6. Contractability of quotient. Below we will prove that Cab(Σg) is 1-acyclic. First,
however, we note that our results quickly imply that Cab(Σg)/Ig is contractible:

Proposition 9.7. Let g ≥ 1 and let a, b ∈ H1(Σg) be primitive elements with algebraic
intersection number 1. Then Cab(Σg)/Ig is contractible.

Proof. Let X = Cab(Σg)/Ig. Let A and B be the images in X of Ca(Σg) and Cb(Σg),
respectively. Let va and vb be the vertices of Cab(Σg)/Ig discussed in Corollary 9.5, so va ∈ A
and vb ∈ B. Let eab be the 1-simplex of X connecting va to vb from Corollary 9.5. Lemma
9.3 implies that for every cell σ of A, there is a unique cell of X obtained by coning σ off
with vb. It follows that X contains the cone Conevb(A) of A with cone point vb. Similarly,
X also contains the cone Coneva(B) of B with cone point va. Thus

X = Coneva(B) ∪ Conevb(A) and Coneva(B) ∩ Conevb(A) = eab.

Since Coneva(B) and Conevb(A) and eab are contractible, X is also contractible. □

9.7. Strips. To understand the topology of Cab(Σg) itself, we need some preliminaries. For
mixed 1-simplices e0 and e1 of Cab(Σg), an ab-strip connecting e0 to e1 is a triangulation S
of [0, 1]2 equipped with a simplicial map f : S → Cab(Σg) such that:

• for i = 0, 1, the subspace i× [0, 1] of S is a 1-simplex mapping to ei; and
• f maps each vertex in [0, 1]×0 to an a-curve and each vertex in [0, 1]×1 to a b-curve.

e0 e1

Every two mixed 1-simplices can be connected by an ab-strip:

Lemma 9.8. Let g ≥ 3 and let a, b ∈ H1(Σg) be primitive elements with algebraic intersection
number 1. Let e0 and e1 be mixed 1-simplices of Cab(Σg). Then there exists an ab-strip
f : S → Cab(Σg) connecting e0 to e1.
Proof. 35 For mixed 1-simplices e′0 and e′1 of Cab(Σg), write e

′
0 ∼ e′1 if there exists an ab-strip

f : S → Cab(Σg) connecting e
′
0 and e′1. This is an equivalence relation, and our goal is to

prove that e0 ∼ e1. Using the change of coordinates principle from [10], we can assume that
e0 is the edge connecting the curves α and β in the following:

α

β
...

35This proof is similar to the proof in [41] that Cv(Σg) is connected for g ≥ 3.
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Lemma 9.4 says that the group Ig acts transitively on the set of mixed 1-simplices of Cab(Σg),
so we can find f ∈ Ig with f(e0) = e1.

Let ∆ ⊂ Ig be the finite generating set for Ig constructed by Johnson [23]. Using the
notation from [23], this generating set is defined using a set of curves36 {c1, . . . , c2g, cβ},
and matching up our figures these satisfy c1 = α and c2 = β. All the other curves in
{c1, . . . , c2g, cβ} are disjoint from α and β. We will say more about ∆ during the proof of
the claim below.

Below we will prove that for s ∈ ∆±1 we have e0 ∼ s(e0). This implies the lemma via the
trick from the second author’s paper [41]. Here are more details: writing f = s1 · · · sk with
si ∈ ∆±1, the fact that e0 ∼ si(e0) for all 1 ≤ i ≤ k implies that

e0 ∼ s1(e0) ∼ s1s2(e0) ∼ s1s2s3(e0) ∼ · · · ∼ s1 · · · sk(e0) = e1.

Here we are using the fact that ∼ is invariant under Ig, and thus for instance if e0 ∼ s2(e0)
then s1(e0) ∼ s1s2(e0). It remains to prove:

Claim. For s ∈ ∆±1, we have e0 ∼ s(e0).
The generators for Ig from [23] are all bounding pair maps, i.e., products TxT

−1
y with x

and y disjoint simple closed curves on Σg such that x ∪ y separates Σg. Since the inverse of
a bounding pair map is a bounding pair map, we can therefore write s = TxT

−1
y with x and

y as above. If x ∪ y is disjoint from α ∪ β, then s(e0) = e0 and there is nothing to prove.
We can therefore assume that x ∪ y intersects α ∪ β.

Let T be a regular neighborhood of α ∪ β, so T is a torus with one boundary component.
Since α and β are the curves pictured above and x∪ y intersects α∪ β, it is immediate from
the construction in [23] that:

• both x and y intersect T in single arcs x1 and y1; and
• both x1 and y1 intersect α at most once and β at most once.

Since x is homologous to y, it follows37 that x1 is homologous to y1 in H1(T, ∂T ). This
implies that x1 and y1 are parallel properly embedded arcs in T . There thus exists an
embedded U ↪→ T with U ∼= [0, 1]2 such that ∂U consists of x1 ∪ y1 along with two subarcs
of ∂T .

There are now two possibilities. The first is that x and y intersect one of α or β and are
disjoint from the other. For concreteness, assume that they intersect α. We can then find a
small ball around these intersections that looks like the following figure:

β
α

U

Depending on whether x is the top or bottom arc of the depicted portion of U , the loop
s(α) = TxT

−1
y (α) looks like the following figure:

s(α) s(α)α= or s(α) s(α) α=
ββ

In either case, s(α) is disjoint from α and intersects β once. Using this, we can then use the

36Be warned that cβ has nothing to do with our curve β.
37This uses the fact that ∂T is a separating curve, and in particular is null-homologous.
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ab-strip

α

β

s(α)

s(β)=β

to show that e0 ∼ s(e0).
The second possibility is that x and y intersect both α and β. We can then find a small

open ball in T that looks like the following figure:38

β

α
U

Depending on whether x is the top or bottom arc of the depicted portion of U , the loop
s(α) = TxT

−1
y (α) looks like the following figure:

or=s(α) s(α)

α

β
 =s(α)

β

α
s(α)

In either case, s(α) is disjoint from α and intersects β once. Similarly, s(β) is disjoint from
β, and since α and β intersect once, s(α) intersects s(β) once. The ab-strip

α

β

s(α)

s(β)

then witnesses the fact that e0 ∼ s(e0). □

9.8. Connectivity. We can now prove:

Proposition 9.9. Let g ≥ 4 and let a, b ∈ H1(Σg) be primitive elements with algebraic
intersection number 1. Then Cab(Σg) is 1-acyclic.

Proof. Let γ be a loop in Cab(Σg). We must prove that γ is homologous to a constant loop.
Homotoping γ, we can assume that it is a simplicial loop in the 1-skeleton. Theorem 9.1
says that Ca(Σg) is 1-acyclic, so it is enough to prove that γ is homologous to a loop lying in
Ca(Σg), i.e., to a loop taking all vertices to a-curves.

Assume that some vertices of γ are mapped to b-curves. If two adjacent vertices are
mapped to b-curves β and β′, then by Lemma 9.3 we can find an a-curve α that intersects β
and β′ once. This can be used to homotope γ to make β and β′ the images of non-adjacent
vertices:

β β'

α

Repeating this, we can can ensure that no adjacent vertices of γ are mapped to b-curves.

38This picture might not preserve orientations, but this does not matter for our argument.
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To complete the proof, we must show how to eliminate vertices mapping to b-curves.
Consider such a vertex, and let e0 and e1 be the images of the edges on either side of it.
Both e0 and e1 are mixed 1-simplices, so by Lemma 9.8 there exists an ab-strip connecting
e0 to e1. Attach this strip to γ as follows:

γ''

γ'

e0 e1

As is shown in this figure, the result is that γ is homologous to a sum of two loops: a loop
γ′ with one fewer vertex mapping to a b-curve, and another loop γ′′ mapping entirely to
Cb(Σg). Another application of Theorem 9.1 shows that γ′′ is null-homologous, so we deduce
that γ is homologous to γ′, as desired. □

10. Step 2.3: generators for cokernel

We first recall some notation. Let α and β be these curves on Σg:

...
α

β

Let λ : H2((Ig)α;Q) ⊕ H2((Ig)β;Q) → H2(Ig;Q) be the sum of the maps induced by the
inclusions (Ig)α ↪→ Ig and (Ig)β ↪→ Ig and let Λg = coker(λ). Recall that our goal is to
prove Theorem B′, which says that Λg is a finite-dimensional algebraic representation of
Sp2(g−1)(Z) for g ≥ 5. This section constructs generators for Λg.

10.1. Commutator and Dehn twist conventions. For a group G and x, y ∈ G, our
conventions are [x, y] = x−1y−1xy and xy = y−1xy. For a simple closed curve η on a surface,
Tη denotes the right Dehn twist about η.

10.2. Surface relations. To construct generators for Λg, we need a formalism for describing
elements of Λg. Let G be a group. A surface relation in G is a relation of the form

[x1, y1] · · · [xk, yk] = 1 with x1, y1, . . . , xk, yk ∈ G.

Write this r = [x1, y1] · · · [xk, yk]. We emphasize that r is a formal product of commu-
tators, not an element of G. Let ϕr : π1(Σk) → G be the map taking the standard
generators of π1(Σk) to the xi and yi. Define h(r) ∈ H2(G;Q) to be the image under
(ϕr)∗ : H2(π1(Σk);Q)→ H2(G;Q) of the fundamental class of H2(π1(Σk);Z) = Z.

Writing G = F/R for a free group F and R◁ F , Hopf’s formula says that

(10.1) H2(G;Z) =
[F, F ] ∩R
[R,F ]

.

Each element in the numerator of this gives a surface relation r in G, and h(r) ∈ H2(G;Q)
is the associated element of homology. See [48] for a discussion of Hopf’s formula in these
terms. From (10.1), we see that the h(r) satisfy several basic identities. These will be used
repeatedly throughout the remainder of the paper without citation.

First, consider surface relations r = [x1, y1] · · · [xk, yk] and r′ = [x′1, y
′
1] · · · [x′k′ , y′k′ ]. Define

rr′ = [x1, y1] · · · [xk, yk][x′1, y′1] · · · [x′k′ , y′k′ ].
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We then have h(rr′) = h(r) + h(r′).
Since surface relations are formal product of commutators, it does not make literal sense

to include terms in them like [x, y]−1. In the context of surface relations, we therefore
let [x, y]−1 denote the commutator39 [y, x]. If r is a surface relation and r′ is the surface
relation obtained from r by deleting an adjacent pair of inverse commutators [x, y][x, y]−1,
then h(r) = h(r′). Consequently, if r = [x1, y1] · · · [xk, yk] is a surface relation and we define
r−1 = [xk, yk]

−1 · · · [x1, y1]−1, then h(r−1) = −h(r).
For x, y, z ∈ G, we let [x, y]z denote the commutator [xz, yz]. If r is a surface relation

containing two adjacent terms [xi, yi][xi+1, yi+1] and r
′ is the surface relation obtained by

replacing these with [xi+1, yi+1][xi, yi]
[xi+1,yi+1], then h(r) = h(r′). Also, if r is a surface

relation containing a commutator [xz, y] and r′ is obtained by expanding this to [x, y]z[z, y],
then h(r) = h(r′), and similarly if r contains [x, zy].

10.3. Elements in cokernel. How might elements in Λg arise? Assume that we have

• A ∈ (Ig)α and B ∈ (Ig)β such that [A,B] fixes either α or β.

Example 10.1. Let α, α′, β, β′ be as follows, where X and Y are connected subsurfaces of Σg:

X

Y

α α'

ββ'

Letting A = TαT
−1
α′ and B = Tβ′T−1

β , the commutator [A,B] fixes both α and β. To see

this, note that A(β) is disjoint from β ∪ β′ and B(α) is disjoint from α ∪ α′:

A(β)=TαTα'
-1(β)

B(α)=Tβ'Tβ
-1(α)

X

Y

X

Y

This implies that

[A,B](α) = A−1B−1AB(α) = A−1B−1B(α) = A−1(α) = α,

and similarly that [A,B](β) = β. □

We define ⟨⟨A,B⟩⟩ ∈ Λg as follows. To simplify our notation, we will assume that [A,B]
fixes α. The case where it fixes β is similar. Let π : H2(Ig;Q) → Λg be the projection.
The element [A,B] ∈ (Ig)α vanishes in the abelianization of Ig. Theorem 6.4 says40 that
the map H1((Ig)α;Q)→ H1(Ig;Q) is injective for g ≥ 4, so [A,B] vanishes in H1((Ig)α;Q).
This implies that there exists some n ≥ 1 such that [A,B]n vanishes in the abelianization of
(Ig)α, so we can write [A,B]nc = 1 for some product c of commutators in (Ig)α. Define

⟨⟨A,B⟩⟩ = π

(
1

n
h ([A,B]nc)

)
∈ Λg.

39The reason for this is that [x, y][y, x] = 1, so [y, x] is the inverse to [x, y].
40In unpublished work, Putman has also proved that the map H1((Ig)α;Z)→ H1(Ig;Z) is injective for

g ≥ 4. Using this would allow us to take n = 1 in the argument below, simplifying several parts of our proof.
To avoid a dependence on unpublished work, we do not use this integral statement.
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This appears to depend on the choice of n and c, but the following claim shows that it is
well-defined:

Claim. This does not depend the choice of n and c.

Proof of claim. If m ≥ 1 and d is another product of commutators in (Ig)α such that
[A,B]md = 1, then

1

n
h ([A,B]nc)− 1

m
h ([A,B]md) =

1

nm

(
h (([A,B]nc)m) + h

(
([A,B]md)−n))

=
1

nm
h
(
[A,B]nmc′d′[A,B]−nm

)
=

1

nm
h
(
[A,B]nm[A,B]−nmc′′d′′

)
=

1

nm
h
(
c′′d′′

)
∈ Im (H2 ((Ig)α;Q)→ H2 (Ig;Q)) .

Here c′ and c′′ are products of commutators in (Ig)α obtained by commuting terms of the
form [A,B]±1 past terms in c, and similarly for d′ and d′′. The claim follows. □

There is one remaining ambiguity: if [A,B] fixes α and β, then our recipe gives two
potentially different definitions of ⟨⟨A,B⟩⟩ ∈ Λg. However, if [A,B] fixes α and β, then
[A,B] ∈ (Ig)α,β ∼= I1g−1. In the above procedure, we can therefore choose c to be a product

of commutators lying in (Ig)α,β ∼= I1g−1 whether we are considering [A,B] as an element of

(Ig)α or of (Ig)β.

10.4. Interlude: twisted surface groups. For n, k ≥ 1, let Γn,k be the following group:

Γn,k = ⟨z0, w0, . . . , zk, wk | [z0, w0]
n[z1, w1] · · · [zk, wk] = 1⟩ .

These arise naturally in the construction of the elements ⟨⟨A,B⟩⟩ above, which are multiples
of the homology classes associated to surface relators

[A,B]n[c1, d1] · · · [ck, dk] = 1 with A,B, ci, di ∈ Ig.

The associated maps π1(Σn+k)→ Ig factor through Γn,k. The homology of Γn,k is given by:

Lemma 10.2. For n, k ≥ 1, we have H1(Γn,k) = Z2k+2 and H2(Γn,k) = Z and Hd(Γn,k) = 0
for d ≥ 3.

Proof. The single relation in Γn,k can be rewritten as

[z0, w0]
−n = [z1, w1] · · · [zk, wk].

Letting F (S) denote the free group on a set S, this implies that Γn,k can be decomposed as

an amalgamated free product41

Γn,k = F (z0, w0) ∗Z F (z1, w1, . . . , zk, wk),

where the infinite cyclic group Z is identified with the cyclic subgroups generated by
[z0, w0]

−n ∈ F (z0, w0) and [z1, w1] · · · [zk, wk] ∈ F (z1, w1, . . . , zk, wk). Since H1(Z) = Z, the
lemma follows from the associated Mayer-Vietoris sequence in group homology whose nonzero
terms are

0 H2(Γn,k) H1(Z) H1(F (z0, w0))⊕H1(F (z1, w1, . . . , zk, wk)) H1(Γn,k) 0.0 □

41The Freiheitsatz [29, 47] for one-relator groups implies that {z0, w0} and {z1, w1, . . . , zk, wk} generate
free subgroups of Γn,k. This general result is unnecessary since our relation can be written as r1 = r2 with
r1 ∈ F (z0, w0) and r2 ∈ F (z1, w1, . . . , zk, wk), giving this decomposition as a free product with amalgamation.
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To identify our elements ⟨⟨A,B⟩⟩ ∈ H2(Ig;Q) with terms we will construct using equivariant
homology, we need a space for Γn,k to act on. For this, define

Γ′
n,k =

〈
z0, u0, z1, w1, . . . , zk, wk | (z−1

0 u0)
n[z1, w1] · · · [zk, wk] = 1

〉
.

There is a homomorphism Γ′
n,k → Γn,k taking u0 to zw0

0 = w−1
0 z0w0. The following implies

that this is injective, so henceforth we can identify Γ′
n,k with a subgroup of Γn,k:

Lemma 10.3. The group Γn,k is an HNN extension of Γ′
n,k over an infinite cyclic subgroup

with stable letter w0 conjugating z0 to u0.

Proof. This HNN extension can be written〈
w0, z0, u0, z1, w1, . . . , zk, wk | (z−1

0 u0)
n[z1, w1] · · · [zk, wk] = 1, w−1

0 z0w0 = u0
〉
.

A Tietze transformation now eliminates u0 and turns this into the presentation for Γn,k. □

By Bass–Serre theory [50], the following is an immediate corollary of Lemma 10.3:

Corollary 10.4. For n, k ≥ 1, the group Γn,k acts without rotations on a tree T such that:

• Γn,k acts transitively on the vertices and edges of T , so T/Γn,k
∼= S1; and

• there is an edge τ of T going from a vertex τ0 to a vertex τ1 such that (Γn,k)τ0 = Γ′
n,k

and (Γn,k)τ = ⟨z0⟩ ∼= Z and w0·τ0 = τ1.

We will also need the homology of Γ′
n,k:

Lemma 10.5. For n, k ≥ 1, we have H1(Γ
′
n,k)
∼= Z2k+1 ⊕ Z/n and Hd(Γ

′
n,k) = 0 for d ≥ 2.

Proof. Just like in the proof of Lemma 10.2, write Γ′
n,k as an amalgamated free product

Γ′
n,k = F (z0, u0) ∗Z F (z1, w1, . . . , zk, wk),

where the infinite cyclic group Z is identified with the cyclic subgroups generated by
(z−1

0 u0)
−n ∈ F (z0, u0) and [z1, w1] · · · [zk, wk] ∈ F (z1, w1, . . . , zk, wk). Since H1(Z) = Z, the

lemma follows from the associated Mayer-Vietoris sequence in group homology whose nonzero
terms are

0 H2(Γ
′
n,k) H1(Z) H1(F (u0, w0))⊕H1(F (z1, w1, . . . , zk, wk)) H1(Γn,k) 0.

f

Here f is the injective map taking the generator of H1(Z) = Z to

(n[u0]− n[z0], 0) ∈ H1(F (u0, w0))⊕H1(F (z1, w1, . . . , zk, wk)). □

10.5. Generators. We now return to the ⟨⟨A,B⟩⟩. How can we find A ∈ (Ig)α and B ∈ (Ig)β
such that [A,B] fixes either α or β? One way for this to hold is for A to fix B(α), in which
case [A,B] will fix α. Similarly, if B fixes A(β) then [A,B] will fix β. For instance, both of
these hold in Example 10.1. The following says that the ⟨⟨A,B⟩⟩ coming from certain A and
B of this form generate Λg:

Proposition 10.6. Let g ≥ 5, and let α and β be the curves discussed above. Then Λg is
spanned by elements of the form ⟨⟨A,B⟩⟩, where A ∈ (Ig)α and B ∈ (Ig)β satisfy either:42

• A(β) is disjoint from β, and B fixes A(β); or
• B(α) is disjoint from α, and A fixes B(α).

42The condition that A(β) is disjoint from β is equivalent to saying that {β,A(β)} is a simplex of Cab(Σg),
and similarly when B(α) is disjoint from α.
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Proof. In this proof, all homology is taken with Q coefficients.43 Let Λ′
g < Λg be the span of

the purported generators. Our goal is to prove that Λ′
g = Λg. Let a = [α] and b = [β], and

consider the Ig-equivariant homology of the handle complex Cab(Σg) from §9. Proposition
9.9 says that Cab(Σg) is 1-acyclic, so by Lemma 8.1 the canonical map

H
Ig
2 (Cab(Σg)) −→ H2(Ig)

is surjective. Lemma 9.2 says that Ig acts on Cab(Σg) without rotations, so we can study

H
Ig
2 (Cab(Σg)) using the spectral sequence from Proposition 8.2:

E1
pq =

⊕
σ∈(Cab(Σg)/Ig)(p)

Hq((Ig)σ̃)⇒ H
Ig
p+q(Cab(Σg)).

As was discussed in §8.5, the terms E1
p0 are exactly the cellular chain complex of Cab(Σg)/Ig.

As for the other entries, Corollary 9.5 says that the 1-skeleton of Cab(Σg)/Ig consists of:

(i) vertices va and vb, with va and vb the images of α and β, respectively.
(ii) loops based at va and vb, each the image of a pure 1-simplex.
(iii) a 1-simplex eab joining va and vb, with eab the image of the edge {α, β}.

It follows that the E1-page of our spectral sequence is

H2((Ig)α)⊕H2((Ig)β) ← ∗ ← ∗

H1((Ig)α)⊕H1((Ig)β) ← H1((Ig)α,β)⊕
⊕

e∈(Ca(Σg)/Ig)(1)

H1((Ig)ẽ)⊕
⊕

e∈(Cb(Σg)/Ig)(1)

H1((Ig)ẽ) ← ∗

C0(Cab(Σg)/Ig) ← C1(Cab(Σg)/Ig) ← C2(Cab(Σg)/Ig)

Proposition 9.7 says that Cab(Σg)/Ig is contractible, so

(10.2) E∞
p0 = E2

p0 = 0 for p ≥ 1.

Moreover, as we discussed in §8.4 the composition

(10.3) H2((Ig)α)⊕H2((Ig)β) = E1
02 E∞

02 H
Ig
2 (Cab(Σg)) H2(Ig)

is the sum of the maps induced by the inclusions (Ig)α ↪→ Ig and (Ig)β ↪→ Ig. It follows
that the cokernel of (10.3) is Λg. Combining this with (10.2), we deduce that the surjection

H
Ig
2 (Cab(Σg)) ↠ H2(Ig) induces a surjection

(10.4) E2
11 = E∞

11 Λg.

To prove that Λ′
g = Λg, it is enough to prove that the image of (10.4) is contained in Λ′

g.

The vector space E2
11 is a quotient of the kernel of the following differential ∂ : E1

11 → E1
01:

∂ : H1((Ig)α,β)⊕
⊕

e∈(Ca(Σg)/Ig)(1)
H1((Ig)ẽ)⊕

⊕
e∈(Cb(Σg)/Ig)(1)

H1((Ig)ẽ) −→ H1((Ig)α)⊕H1((Ig)β).

To prove that the image of (10.4) lies in Λ′
g, it is enough to prove the following two claims:

Claim 1. The kernel of the differential ∂ : E1
11 → E1

01 is

(10.5)
⊕

e∈(Ca(Σg)/Ig)(1)
H1((Ig)ẽ)⊕

⊕
e∈(Cb(Σg)/Ig)(1)

H1((Ig)ẽ).

43This is just to simplify our notation in this proof. It does not represent a change in our general
conventions for writing homology groups.
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We must prove ∂ vanishes on (10.5) and that the restriction of ∂ to H1((Ig)α,β) is an
injection. We start with the latter fact. From the description of the differentials in §8.6, we
see that on H1((Ig)α,β) our differential is the difference between the maps

H1((Ig)α,β) H1((Ig)α) H1((Ig)α)⊕H1((Ig)β)

and
H1((Ig)α,β) H1((Ig)β) H1((Ig)α)⊕H1((Ig)β)

The fact that this difference is injective follows from Theorem 6.4, which implies that
H1((Ig)α,β)→ H1((Ig)α) and H1((Ig)α,β)→ H1((Ig)β) are both injective.44

We now prove that ∂ vanishes on (10.5). We will handle the terms coming from Ca(Σg);
the other case is similar. Consider a 1-cell e of Ca(Σg)/Ig. Corollary 9.5 says that e is a
loop. Using Lemma 9.6, we can lift e to an edge ẽ of Ca(Σg) going from α to B(α) for some
B ∈ (Ig)β. As we discussed in §8.6, on H1((Ig)α,B(α)) our differential is the composition

(10.6) H1((Ig)α,B(α)) H1((Ig)α) H1((Ig)α)⊕H1((Ig)β)

where the first map takes the homology class of x ∈ (Ig)α,B(α) to the homology class
of [x,B] ∈ (Ig)α. Theorem 6.4 says that the inclusion (Ig)α ↪→ Ig induces an injection
H1((Ig)α) ↪→ H1(Ig). Since in H1(Ig) the homology class of the commutator [x,B] vanishes,
the same is true in H1((Ig)α). We conclude that (10.6) is zero, as desired.

Claim 2. Let e be a 1-simplex of either Ca(Σg)/Ig or Cb(Σg)/Ig. Then the image of the
composition H1((Ig)ẽ)→ E2

11 ↠ Λg is contained in Λ′
g.

We will assume that e is a 1-simplex of Ca(Σg)/Ig. The other case is similar. By Lemma
9.6, we can construct a lift ẽ of e to Cab(Σg) going from α to α′ = B(α) for some B ∈ (Ig)β .
Consider A ∈ (Ig)α,B(α). The element ⟨⟨A,B⟩⟩ ∈ Λg is one of our generators for Λ′

g, so it is
enough to prove that the composition

H1((Ig)α,B(α)) E2
11 Λg

takes the homology class of A to a multiple of ⟨⟨A,B⟩⟩. We divide the proof of this into 3
steps. We reiterate that during this proof all homology has Q-coefficients.

Step 2.1. For some n, k ≥ 1, we construct a homomorphism45 f : Γn,k → Ig such that the
image of the composition

(10.7) H2(Γn,k) H2(Ig) Λg
f∗

is the Q-span of ⟨⟨A,B⟩⟩.

Recall that ⟨⟨A,B⟩⟩ is the image in Λg of the element of H2(Ig) constructed as follows.
We have [A,B] ∈ (Ig)α, and we can find n ≥ 1 and x1, y2, . . . , xk, yk ∈ (Ig)α such that

[A,B]n[x1, y1] · · · [xk, yk] = 1.

Then ⟨⟨A,B⟩⟩ is the image in Λg of the homology class

1

n
h([A,B]n[x1, y1] · · · [xk, yk]) ∈ H2(Ig).

Let f : Γn,k → Ig be the map defined by

f(z0) = A and f(w0) = B and f(zi) = xi and f(wi) = yi for 1 ≤ i ≤ k.

44In fact, we only need that one of them is injective.
45Here Γn,k = ⟨z0, w0, . . . , zk, wk | [z0, w0]

n[z1, w1] · · · [zk, wk] = 1⟩ is the group defined in §10.4.
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Lemma 10.2 says that H2(Γn,k) = Q, and the image of f∗ : H2(Γn,k)→ H2(Ig) is the Q-span
of h([A,B]n[x1, y1] · · · [xk, yk]). It follows that the image of (10.7) is the Q-span of ⟨⟨A,B⟩⟩.

Step 2.2. We construct a tree T on which Γn,k acts without rotations and a commutative
diagram in equivariant homology

H
Γn,k

2 (T ) H
Ig
2 (Cab(Σg))

H2(Γn,k) H2(Ig).

∼=
f∗

Recall that Γ′
n,k is the subgroup of Γn,k generated by {z0, w−1

0 z0w0, z1, w1, . . . , zk, wk}.
Corollary 10.4 gives a tree T on which Γn,k acts without rotations such that:

• Γn,k acts transitively on the vertices and edges of T , so T/Γn,k
∼= S1; and

• there is an edge τ of T going from a vertex τ0 to a vertex τ1 such that

(10.8) (Γn,k)τ0 = Γ′
n,k and (Γn,k)τ = ⟨z0⟩ ∼= Z and w0·τ0 = τ1.

Since T is contractible, the canonical map H
Γn,k

d (T )→ Hd(Γn,k) is an isomorphism for d ≥ 0.
We claim that f(Γ′

n,k) ⊂ (Ig)α. This can be checked on generators:

• f(z0) = A fixes the initial point α and the endpoint α′ = B(α) of ẽ; and
• f(w−1

0 z0w0) = B−1AB fixes α since A fixes α and B(α); and
• for 1 ≤ i ≤ k, the elements f(zi) = xi and f(wi) = yi fix α by construction.

In light of (10.8) and the fact that Γn,k acts transitively on the vertices and edges of T , we
can therefore define a cellular map ϕ : T → Cab(Σg) via the formula

ϕ(vτ) = f(v)ẽ and ϕ(vτ0) = f(v)α for all v ∈ Γn,k.

By the functoriality of equivariant homology discussed in §8.1, the maps f and ϕ induce a

map H
Γn,k

2 (T )→ H
Ig
2 (Cab(Σg)) fitting into the claimed commutative diagram.

Step 2.3. We use these constructions to prove our goal: that under the map

H1((Ig)α,B(α)) E2
11 Λg

the homology class of A maps to a multiple of ⟨⟨A,B⟩⟩ ∈ Λg.

Proposition 8.2 gives a spectral sequence

F1
pq =

⊕
σ∈(T/Γn,k)(p)

Hq((Γn,k)σ̃)⇒ H
Γn,k

p+q (T ).

Using Lemma 10.5 to identify H•(Γ
′
n,k), the nonzero terms of the F1-page are

H1((Γn,k)τ0) ← H1((Γn,k)τ )

H0((Γn,k)τ0) ← H0((Γn,k)τ )
∼=

H1(Γ
′
n,k) ← H1(⟨z0⟩)

H0(Γ
′
n,k) ← H0(⟨z0⟩)

∼=
Q2k+1 ← Q
Q ← Q

This converges to the homology of Γn,k, which by Lemma 10.2 has H1(Γn,k) ∼= Q2k+2 and

H2(Γn,k) = Q. The differentials on F1 are thus all 0, and F degenerates at F1. In particular,

H
Γn,k

2 (T ) = F∞
11 = F1

11 .

The spectral sequence from Proposition 8.2 is functorial, so there is a map of spectral

sequences F → E converging to the map H
Γn,k
• (T ) → H

Ig
• (Cab(Σg)) induced by f and ϕ.
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Since f(z0) = A ∈ (Ig)α,B(α), we have a commutative diagram

H1(⟨z0⟩) F2
11

H1((Ig)α,B(α)) E2
11

∼=

and the image of F2
11 → E2

11 is the Q-span of the image of the homology class of A ∈ (Ig)α,B(α).
As we discussed in Step 2.1, the image of

F2
11 = H

Γn,k

2 (T ) = H2(Γn,k) ∼= Q

in Λg is the line spanned by ⟨⟨A,B⟩⟩. The step follows. □

Part 4. Homology of Torelli, step 3: algebraicity of cokernel

We close by proving Theorem B′, whose statement we recall in §11. To avoid having to
constantly impose genus hypotheses, we make the following standing assumption:

Assumption 10.7. Throughout Part 4, we fix some g ≥ 5. □

11. Introduction to step 3

After fixing some notation, we outline the rest of the paper.

11.1. Recollection of goal. Let α and β be the following curves on Σg:

...
α

β

Recall that we are trying to prove Theorem B′, which says that the cokernel Λg of the map
λ : H2((Ig)α;Q)⊕H2((Ig)β ;Q)→ H2(Ig;Q) is a finite-dimensional algebraic representation
of Sp2(g−1)(Z).

11.2. Homology. The action of Sp2(g−1)(Z) on Λg is induced by the conjugation action of

(Modg)α,β on Ig. Set a = [α] and b = [β]. Let HZ be the orthogonal complement in H1(Σg;Z)
of a and b with respect to the algebraic intersection form. We can identify Sp2(g−1)(Z) with
Sp(HZ). Similarly, let H be the orthogonal complement in H1(Σg;Q) of a and b.

11.3. Outline. Proposition 10.6 gives generators ⟨⟨A,B⟩⟩ for Λg. Roughly speaking, we
will find enough relations between the ⟨⟨A,B⟩⟩ to force Λg to be a subquotient of (∧2H)⊗2.
There are six steps:

• §12 establishes some terminology and notation for the ⟨⟨A,B⟩⟩.
• §13 and §14 show how to interpret the A and B in ⟨⟨A,B⟩⟩ in terms of H.
• §15 refines our generating set for Λg.
• §16 identifies some redundancies in our refined generating set.
• §17 introduces a subquotient of (∧2H)⊗2 called the symmetric kernel, and discusses a
presentation of it from the authors’ recent paper [37]. We then use this presentation
to prove that Λg is a quotient of the symmetric kernel. This implies that Λg is a
finite-dimensional algebraic representation of Sp(HZ), as claimed by Theorem B′
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11.4. Standing notation. We already fixed g ≥ 5 in Assumption 10.7. To avoid having to
re-introduce notation in each section, we fix the following notation once and for all as above:
α, β, a, b, H, HZ.

12. Step 3.1: notation for generators

We introduce some terminology for the generators of Λg given by Proposition 10.6.

12.1. Shifters and compatibility. The generators come in two families. Say that A ∈ Ig
is a β-shifter if A fixes α and A(β) is disjoint from β. In that case, say that B ∈ Ig is
compatible with A if B fixes β and A(β). We then have a generator ⟨⟨A,B⟩⟩ ∈ Λg, which for
clarity we will denote ⟨⟨A,B⟩⟩β. Similarly, say that B ∈ Ig is an α-shifter if B fixes β and
B(α) is disjoint from α. In that case, say that A ∈ Ig is compatible with B if A fixes α and
B(α). We then have a generator ⟨⟨A,B⟩⟩ ∈ Λg, which for clarity we will denote ⟨⟨A,B⟩⟩α.

Remark 12.1. It is possible for both ⟨⟨A,B⟩⟩α and ⟨⟨A,B⟩⟩β to be defined, in which case they
are identical elements of Λg. □

12.2. Left and right sides. Let A be a β-shifter, so β and A(β) are disjoint. Since we
always consider curves up to isotopy, it is possible for A(β) = β. Assume that A(β) ̸= β,
in which case we will call A a nontrivial β-shifter. The curves β ∪A(β) divide Σg into two
subsurfaces T and T ′. Order these such that T lies to the left of β and T ′ lies to the right:46

...
T T'α

β

A(β)

...

We call T the left side of β∪A(β) and T ′ the right side. An element B ∈ Ig is left-compatible
with A if B is supported on T and is right-compatible with A if B is supported on T ′.

Remark 12.2. If B is compatible with a β-shifter A, then we can write B = B1B2 with B1

left-compatible with A and B2 right-compatible with A. □

Similarly, let B be an α-shifter, so α and B(α) are disjoint. Assume that B(α) ̸= α, in
which case we call B a nontrivial α-shifter. In that case, α ∪ B(α) divides Σg into two
subsurfaces T and T ′, ordered such that T is to the left of α and T ′ is to the right. We call
T the left side of α ∪B(α) and T ′ the right side. We say that A ∈ Ig is left-compatible with
B if A is supported on T and is right-compatible with B if A is supported on T ′.

12.3. Symplectic summands and splittings. Recall that a = [α] ∈ H1(Σg) and b = [β] ∈
H1(Σg), and HZ = ⟨a, b⟩⊥. A symplectic summand of HZ is a subgroup V < HZ such that

HZ = V ⊕ V ⊥, in which case V ∼= Z2h for some h called the genus of V . If V is a symplectic
summand of HZ, then V ⊥ is too. A symplectic splitting of HZ is a splitting of the form
HZ = V ⊕ V ⊥. The terms V and V ⊥ are ordered, so HZ = V ⊥ ⊕ V is a different symplectic
splitting. We call HZ = V ⊕ V ⊥ a nontrivial symplectic splitting if V, V ⊥ ̸= 0.

12.4. Induced splittings. Let A be a nontrivial β-shifter. Let T and T ′ be the left and
right sides of β ∪A(β), respectively. Let S and S′ be the components of the complement of
a regular neighborhood of α ∪ β ∪A(β), ordered such that S ⊂ T and S′ ⊂ T ′. This is all
depicted in the following figure:

46If A(β) = β, then you can slide A(β) over β and exchange which side is the left and the right.
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S α
β

A(β)

... ...
S'

We have H1(S) ⊂ HZ and H1(S
′) ⊂ HZ, and HZ = H1(S) ⊕ H1(S

′). This is a nontrivial
symplectic splitting of HZ that we call the symplectic splitting induced by A. We call H1(S)
and H1(S

′) the left-summand and right-summand of A, respectively.
Similarly, let B be a nontrivial α-shifter. Let T and T ′ be the left and right sides of

α ∪ B(α), respectively. Let S and S′ be the components of the complement of a regular
neighborhood of β ∪ α ∪ B(α), ordered such that S ⊂ T and S′ ⊂ T ′. We then have
HZ = H1(S)⊕H1(S

′), and we call this the symplectic splitting induced by B. We call H1(S)
and H1(S

′) the left-summand and right-summand of B, respectively.

13. Step 3.2: homological interpretation of compatible elements

Our next goal is to give a homological interpretation of the compatible elements B in
⟨⟨A,B⟩⟩β and A in ⟨⟨A,B⟩⟩α. This requires first proving some relations in Λg.

Remark 13.1. In our proofs, we will freely use the identities between homology classes of
surface relations from §10.2 □

13.1. Linearity. Our first relation is:

Lemma 13.2. The following hold:

• Let A be a β-shifter and let B1 and B2 be compatible with A. Then ⟨⟨A,B1B2⟩⟩β =
⟨⟨A,B1⟩⟩β + ⟨⟨A,B2⟩⟩β.
• Let B be an α-shifter and let A1 and A2 be compatible with B. Then ⟨⟨A1A2, B⟩⟩α =
⟨⟨A1, B⟩⟩α + ⟨⟨A2, B⟩⟩α.

Proof.47 Both are proved the same way, so we will give the details for the first. We will show
that it follows from the commutator identity48 [A,B1B2] = [A,B2][A,B1]

B2 . Recall that for
i = 1, 2 we have [A,Bi] ∈ (Ig)β, and there is some ni ≥ 1 and a product of commutators ci
in (Ig)β such that [A,Bi]

nic = 1 and ⟨⟨A,Bi⟩⟩β is the image in Λg of

1

ni
h([A,Bi]

nici) ∈ H2(Ig;Q).

Set n = n1n2. The product n⟨⟨A,Bi⟩⟩β is the image in Λg of

n

ni
h([A,Bi]

nici) = h(([A,Bi]
nici)

n/ni) = h([A,Bi]
nc′i),

where c′i is the product of commutators in (Ig)β obtained by commuting all the [A,Bi]
ni

factors to the left. Since inner automorphisms act trivially on homology, we can conju-
gate our expression for ⟨⟨A,B2⟩⟩β by B1 and see that n⟨⟨A,B2⟩⟩β is also the image in Λg

of h(([A,B2]
B1)nc′′2) for some product of commutators c′′2 in (Ig)β. We then have that

n(⟨⟨A,B1⟩⟩β + ⟨⟨A,B2⟩⟩β) is the image in Λg of

h([A,B1]
nc′1([A,B2]

B1)nc′′2) = h(([A,B1][A,B2]
B1)nc′′′) = h([A,B1B2]

nc′′′),

where c′′′ is a product of commutators in (Ig)β . This maps to n⟨⟨A,B1B2⟩⟩β , as claimed. □

47This almost follows from the proof of Claim 2 of Proposition 10.6, but it takes extra work to see that
this does not e.g. give an identity of the form ⟨⟨A,B1B2⟩⟩β = λ1⟨⟨A,B1⟩⟩β + λ2⟨⟨B2⟩⟩β for some λ1, λ2 ∈ Q, so
we give a direct proof. Similar comments apply to many of our other relations. The most important relations
that cannot be derived from the proof of Proposition 10.6 even with additional work are those in §16 below.

48Recall that our conventions are [x, y] = x−1y−1xy and xy = y−1xy.
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13.2. Vanishing. We next prove:

Lemma 13.3. The following hold:

• Let A be a β-shifter and let B be compatible with A. Assume that either A(β) = β
or B(α) = α. Then ⟨⟨A,B⟩⟩β = 0.
• Let B be an α-shifter and let A be compatible with B. Assume that either B(α) = α
or A(β) = β. Then ⟨⟨A,B⟩⟩α = 0.

Proof. Both are proved the same way, so we will give the details for the first. Recall that
[A,B] ∈ (Ig)β, and there exists n ≥ 1 and a product c of commutators in (Ig)β such that
[A,B]nc = 1 and ⟨⟨A,B⟩⟩β is the image in Λg of

1

n
h([A,B]nc) ∈ H2(Ig;Q).

Assume first that A(β) = β. Then [A,B] is a commutator of two elements of (Ig)β, so
h([A,B]nc) is in the image of the map

H2((Ig)β;Q) −→ H2(Ig;Q).

By the definition of Λg, the image of h([A,B]nc) in Λg therefore vanishes.
Assume next that B(α) = α. The commutator [A,B] then fixes both α and β, and

therefore as we noted at the end of §10.3 we can make our choices such that c is a product
of commutators in (Ig)α,β ∼= I1g−1. The fact that B fixes α also implies that [A,B] is a

commutator in (Ig)α. We conclude that [A,B]nc is a product of commutators in (Ig)α, and
thus that h([A,B]nc) lies in the image of the map

H2((Ig)α;Q) −→ H2(Ig;Q).

By the definition of Λg, the image of h([A,B]nc) in Λg therefore vanishes. □

13.3. Compatible quotient. Let A be a nontrivial β-shifter and let X be either the left or
the right side of β∪A(β). Recall from §6.2 that Ig(X) denotes the subgroup of Ig consisting
of mapping classes supported on X. Each B ∈ Ig(X) is either left- or right-compatible
with A depending on which side T is on. For B ∈ Ig(X), we thus have ⟨⟨A,B⟩⟩β ∈ Λg. By
Lemma 13.2, this only depends on the image of B in the abelianization of Ig(X). In fact,
since Λg is a Q-vector space it only depends on the image of B in H1(Ig(X);Q).

Lemma 13.3 says that ⟨⟨A,B⟩⟩β = 0 for B ∈ Ig(X) with B(α) = α. We thus define:

• For a β-shifter A and X either the left or the right side of β ∪A(β), define Ωβ(A,X)
to be the quotient of H1(Ig(X);Q) by the subspace spanned by the homology classes
of elements of Ig(X) that fix α.

For κ ∈ Ωβ(A,X), the discussion above implies that we have a well-defined ⟨⟨A, κ⟩⟩β ∈ Λg.
Similarly, for B a nontrivial α-shifter and X either the left or right side of α ∪ B(α),

define Ωα(B,X) to be the quotient of H1(Ig(X);Q) by the subspace spanned by the
homology classes of elements of Ig(X) that fix β. For κ ∈ Ωα(B,X), we have a well-defined
⟨⟨κ,B⟩⟩α ∈ Λg.

13.4. Identification of compatible quotient. The above has the following description.
For a subgroup V of HZ, let VQ = V ⊗Q be the corresponding subspace of H.

Lemma 13.4. The following hold:

• Let A be a nontrivial β-shifter, let X be either the left or right side of β ∪A(β), and
let V be the summand of A on the same side49 as X. Assume that the genus of X is
at least 3. Then Ωβ(A,X) ∼= ∧2VQ.

49In other words, V is the left-summand if X is the left side and the right-summand if X is the right side.
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• Let B be a nontrivial α-shifter, let X be either the left or right side of α∪B(α), and
let V be the summand of B on the same side as X. Assume that the genus of X is
at least 3. Then Ωα(B,X) ∼= ∧2VQ.

Proof. Both bullet points are proved the same way, so we will give details for the first. Let
h ≥ 3 be the genus of X. Using the fact that h ≥ 3, Putman [46] proved that

(13.1) H1(Ig(X);Q) ∼= ∧3H1(X;Q).

This isomorphism is given by the Johnson homomorphism, which we will say more about in
§13.6 below. Let (Ig(X))α be the stabilizer of α in Ig(X). By definition, Ωβ(A,X) is the
quotient of H1(Ig(X);Q) by the image of H1((Ig(X))α;Q).

Let S be the component of the complement of a regular neighborhood of α ∪ β ∪ A(β)
that is contained in X, so S ∼= Σ1

h:

α
β

A(β)

...
S α

β

A(β)

...X

By definition, we have H1(S) = V . We have

H1(X;Q) = H1(S;Q)⊕ ⟨[β]⟩ = VQ ⊕ ⟨[β]⟩,

so

(13.2) ∧3H1(X;Q) ∼=
(
∧3VQ

)
⊕
(
(∧2VQ) ∧ [β]

)
.

It follows from the calculations in [46] that under the isomorphism (13.1), the image of
H1((Ig(X))α;Q) is the term ∧3VQ from (13.2). We conclude that

Ωβ(A,X) ∼= (∧2VQ) ∧ [β] ∼= ∧2VQ. □

13.5. Notation. In light of Lemma 13.4, if A is a nontrivial β-shifter, V is either the left-
or right-summand of A, and the genus of V is at least 3, then for κ ∈ ∧2VQ we have a
well-defined ⟨⟨A, κ⟩⟩β ∈ Λg. Similarly, if B is a nontrivial α-shifter, V is either the left-
or right-summand of B, and the genus of V is at least 3, then for κ ∈ ∧2VQ we have a
well-defined ⟨⟨κ,B⟩⟩α ∈ Λg. These elements satisfy the following linearity relations:

Lemma 13.5. The following hold:

• Let A be a nontrivial β-shifter and let V be either the left- or right-summand of A.
Assume that the genus of V is at least 3. Then for κ1, κ2 ∈ ∧2VQ and λ1, λ2 ∈ Q we
have

⟨⟨A, λ1κ1 + λ2κ2⟩⟩β = λ1⟨⟨A, κ1⟩⟩β + λ2⟨⟨A, κ2⟩⟩β.

• Let B be a nontrivial α-shifter and let V be either the left- or right-summand of B.
Assume that the genus of V is at least 3. Then for κ1, κ2 ∈ ∧2VQ and λ1, λ2 ∈ Q we
have

⟨⟨λ1κ1 + λ2κ2, B⟩⟩α = λ1⟨⟨κ1, B⟩⟩α + λ2⟨⟨κ2, B⟩⟩α.

Proof. Immediate from the linearity relations in Lemma 13.2 along with the definitions. □
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13.6. Johnson homomorphism. For later use, we give a computation involving the
Johnson homomorphism used in the proof of Lemma 13.4. To set it up, let X be a subsurface
of Σg with the following properties:

• X is a connected subsurface with two boundary components; and
• the complement Σg \ Int(X) is connected and has positive genus.

In this context, the Johnson homomorphism is a homomorphism

τ : Ig(X) −→ ∧3H1(X;Q)

that was defined by Putman [46] based on work of Johnson [20] for closed surfaces.
Consider a bounding pair TδT

−1
λ in Ig(X), so δ and λ are disjoint nonseparating curves

on Σg such that δ, λ ⊂ X and such that δ ∪ λ separates Σg. Let X
′ be the component of X

cut open along δ ∪ λ that is disjoint from ∂X. We have X ′ ∼= Σ2
k for some k ≥ 0. Let Y be

a subsurface of X ′ with Y ∼= Σ1
k:

Y
... ...

δ

λ

X X'

Let {z1, w1, . . . , zk, wk} be a symplectic basis for H1(Y ) ∼= Z2k. Orient δ arbitrarily. Then

τ(TδT
−1
λ ) = ±(z1 ∧ w1 + · · ·+ zk ∧ wk) ∧ [δ] ∈ ∧3H1(X;Q),

where the sign is +1 (resp. −1) if Y is to the left (resp. right) of δ. It is easy to see that
this does not depend on our choices (the orientation of δ and the subsurface Y ).

14. Step 3.3: homological interpretation of shifters

We now give a homological interpretation of the shifters A in ⟨⟨A, κ⟩⟩β and B in ⟨⟨κ,B⟩⟩α.

14.1. Dependence on splitting. Our main result is:

Lemma 14.1. The following hold:

• Let A and A′ be nontrivial β-shifters inducing the same symplectic splitting of HZ.
Let W be either the left- or the right-summand of A and A′. Assume that W has
genus at least 3, and let κ ∈ ∧2WQ. Then ⟨⟨A, κ⟩⟩β = ⟨⟨A′, κ⟩⟩β.
• Let B and B′ be nontrivial α-shifters inducing the same symplectic splitting of HZ.
Let W be either the left- or the right-summand of B and B′. Assume that W has
genus at least 3, and let κ ∈ ∧2WQ. Then ⟨⟨κ,B⟩⟩β = ⟨⟨κ,B′⟩⟩β.

Proof. Both are proved the same way, so we will give the details for the first. It is enough
to prove this for κ the image of an element B ∈ Ig that is either left- or right-compatible
with A. The proof has two steps:

Step 1. We have ⟨⟨A, κ⟩⟩β = ⟨⟨A′, κ⟩⟩β if A(β) = A′(β).

Since A(β) = A′(β), the element B is also left- or right-compatible with A′ and ⟨⟨A′, κ⟩⟩β =
⟨⟨A′, B⟩⟩β. Set f = (A′)−1A, so f fixes both α and β. The element f is a trivial β-shifter
such that B is left- or right-compatible with f , so Lemma 13.3 implies that ⟨⟨f,B⟩⟩β = 0.
Consider the commutator identity

[A,B] = [A′f,B] = [A′, B]f [f,B].

An argument like in the proof of Lemma 13.2 shows that this leads to the formula

⟨⟨A, κ⟩⟩β = ⟨⟨A,B⟩⟩β = ⟨⟨A′, B⟩⟩β + ⟨⟨f,B⟩⟩β = ⟨⟨A′, B⟩⟩β = ⟨⟨A′, κ⟩⟩β.
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Step 2. We have ⟨⟨A, κ⟩⟩β = ⟨⟨A′, κ⟩⟩β in general.

We claim that there exists some f ∈ (Ig)α,β such that f(A′(β)) = A(β). Indeed, since
A and A′ induce the same symplectic splitting of HZ, we can apply [22, Lemma 7] to find
f ′ ∈ Ig such that

f ′(β) = β and f ′(A′(β)) = A(β).

Both {α, β,A(β)} and

{f ′(α), f ′(β), f ′(A′(β))} = {f ′(α), β, A(β)}

are mixed simplices of Cab(Σg), so by Lemma 9.3 we can find some h ∈ Ig with

h(f ′(α)) = α and h(β) = β and h(A(β)) = A(β).

The desired f is then f = hf ′.
We have

Af (β) = f−1Af(β) = f−1A(β) = A′(β).

This implies that Af is a nontrivial β-shifter. The element Bf is left- or right-compatible
with Af , so by Step 1 and the fact that inner automorphisms act trivially on homology we
have

⟨⟨A, κ⟩⟩β = ⟨⟨A,B⟩⟩β = ⟨⟨Af , Bf ⟩⟩β = ⟨⟨A′, Bf ⟩⟩β = ⟨⟨A′, κ⟩⟩β. □

14.2. Realizing symplectic splittings. The following says that all nontrivial symplectic
splittings of HZ can be induced by a nontrivial β- and α-shifters.

Lemma 14.2. Let HZ = V ⊕ V ⊥ be a nontrivial symplectic splitting of HZ. Then:

• there exists a nontrivial β-shifter A inducing HZ = V ⊕W ; and
• there exists a nontrivial α-shifter B inducing HZ = V ⊕W .

Proof. Both are proved the same way, so we will give the details for the first. Let X ∼= Σ1
g−1

be the complement of a regular neighborhood of α ∪ β. In [22, Lemma 9], Johnson proved
that there exists a subsurface T ∼= Σ1

k of X with H1(T ) = V . We can then find an b-curve
β′ as follows:

T

β

β'

α

Lemma 9.4 gives an A ∈ Ig with A(β) = β′ and A(α) = α, i.e., a β-shifter whose left-

summand is V . The right-summand of A is then V ⊥, so A induces the symplectic splitting
HZ = V ⊕ V ⊥. □

14.3. Notation. In light of Lemmas 14.1 and 14.2, we introduce the following notation. Let
HZ = V ⊕ V ⊥ be a nontrivial symplectic splitting. Let W be either V or V ⊥, and assume
that W has genus at least 3. Choose κ ∈ ∧2WQ. Then:

• Let A be a nontrivial β-shifter inducing the symplectic splitting HZ = V ⊕ V ⊥.
Define ⟨⟨V, κ⟩⟩β = ⟨⟨A, κ⟩⟩β.
• Let B be a nontrivial α-shifter inducing the symplectic splitting HZ = V ⊕ V ⊥.
Define ⟨⟨κ, V ⟩⟩α = ⟨⟨κ,B⟩⟩α.

Here ⟨⟨A, κ⟩⟩β and ⟨⟨κ,B⟩⟩α are as defined at the end of §13.4. These elements satisfy the
following linearity relations:
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Lemma 14.3. Let HZ = V ⊕ V ⊥ be a nontrivial symplectic splitting. Let W be either V or
V ⊥, and assume that W has genus at least 3. Then for κ1, κ2 ∈ ∧2WQ and λ1, λ2 ∈ Q we
have

⟨⟨V, λ1κ1 + λ2κ2⟩⟩β = λ1⟨⟨V, κ1⟩⟩β + λ2⟨⟨V, κ2⟩⟩β,
⟨⟨λ1κ1 + λ2κ2, V ⟩⟩α = λ1⟨⟨κ1, V ⟩⟩α + λ2⟨⟨κ2, V ⟩⟩α.

Proof. Immediate from Lemma 13.5. □

14.4. Orthogonal complement. The following shows how changing V to V ⊥ in the
notation ⟨⟨V, κ⟩⟩β and ⟨⟨κ, V ⟩⟩α affects our generators:

Lemma 14.4. Let HZ = V ⊕ V ⊥ be a nontrivial symplectic splitting. Let W be either V or
V ⊥, and assume that W has genus at least 3. Let κ ∈ ∧2WQ. Then ⟨⟨V ⊥, κ⟩⟩β = −⟨⟨V, κ⟩⟩β
and ⟨⟨κ, V ⊥⟩⟩α = −⟨⟨κ, V ⟩⟩α.

Proof. Both are proved the same way, so we will give the details for the first. Let A be a
nontrivial β-shifter inducing the symplectic splitting HZ = V ⊕ V ⊥. It is enough to prove
the lemma for κ the image of some B that is compatible with A, so

(14.1) ⟨⟨V, κ⟩⟩β = ⟨⟨A,B⟩⟩β.
We must give a similar formula for ⟨⟨V ⊥, κ⟩⟩β.

Since A is a β-shifter, β is disjoint from A(β). Applying A−1 to this, we see that A−1(β)
is disjoint from β, so A−1 is a β-shifter. Let T and T ′ be the left- and right-sides of β∪A(β):

...
T T'α

β

A(β)

...

Since T lies to the right of A(β), it follows that A−1(T ) lies to the right of β. Similarly,
A−1(T ′) lies to the left of β. We have V ⊂ H1(T ) and V ⊥ ⊂ H1(T

′), so A−1(V ) ⊂
H1(A

−1(T )) and A−1(V ⊥) ⊂ H1(A
−1(T ′)). Since A ∈ Ig acts trivially on HZ, we deduce

that A−1 induces the symplectic splitting HZ = V ⊥ ⊕ V .
The fact that B is compatible with A means that B fixes β and A(β). This implies

that BA = A−1BA fixes A−1(β) and β, so BA is compatible with A−1. Since A ∈ Ig fixes
κ ∈ ∧2WQ, we have

(14.2) ⟨⟨A−1, BA⟩⟩β = ⟨⟨V ⊥, A−1(κ)⟩⟩β = ⟨⟨V ⊥, κ⟩⟩β.
In light of (14.1) and (14.2), we must prove that ⟨⟨A−1, BA⟩⟩β = −⟨⟨A,B⟩⟩β. This follows

from the commutator identity [A−1, BA] = [A,B]−1 just like in the proof of Lemma 13.2. □

The following variant on Lemma 14.4 will also be useful:

Lemma 14.5. The following hold:

• Let A be a β-shifter and let B be compatible with A. Then A−1 is a β-shifter, BA is
compatible with A, and ⟨⟨A−1, BA⟩⟩β = −⟨⟨A,B⟩⟩β.
• Let B be an α-shifter and let A be compatible with B. Then B−1 is an α-shifter, AB

is compatible with B, and ⟨⟨AB, B−1⟩⟩α = −⟨⟨A,B⟩⟩α.

Proof. The proof is similar to that of Lemma 14.4, so we omit it. □

15. Step 3.4: refined generating set

We now prove that only some of the ⟨⟨V, κ⟩⟩β and ⟨⟨κ, V ⟩⟩α are needed to generate Λg.
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15.1. Main result. Let V be a genus-1 symplectic summand of HZ. Since HZ is the
orthogonal complement in H1(Σg) of ⟨a, b⟩, it follows that HZ has genus g − 1. This implies

that V ⊥ has genus g − 2. Since g ≥ 5 (see Assumption 10.7), we deduce that V ⊥ has genus
at least 3. For κ ∈ ∧2V ⊥

Q , it follows that ⟨⟨V, κ⟩⟩β and ⟨⟨κ, V ⟩⟩α are defined. These elements
generate Λg:

Lemma 15.1. The vector space Λg is spanned by elements of the form ⟨⟨V, κ⟩⟩β and ⟨⟨κ, V ⟩⟩α
as V ranges over genus-1 symplectic summands of HZ and κ ranges over elements of ∧2V ⊥

Q .

Proof. Lemma 13.3 implies that ⟨⟨A,B⟩⟩β = 0 if A is a trivial β-shifter and that ⟨⟨A,B⟩⟩α = 0
if B is a trivial α-shifter. This allows us to restrict attention to nontrivial β- and α-shifters.
In light of this, Λg is spanned by the following elements:

• ⟨⟨A,B⟩⟩β with A a nontrivial β-shifter and B compatible with A; and
• ⟨⟨A,B⟩⟩α with B a nontrivial α-shifter and A compatible with B.

We must prove that each of these is a linear combination of our proposed generators. We
will do this for ⟨⟨A,B⟩⟩β with A a nontrivial β-shifter and B compatible with A.

For a nontrivial β-shifter A′, say that the left-genus of A′ is the genus of the left side of
β ∪A′(β). It is enough to prove that each ⟨⟨A,B⟩⟩β is a linear combination of elements of
the following form:

• ⟨⟨A′, B′⟩⟩β with A a β-shifter of left-genus 1 and B′ right-compatible with A′.

We do this in two steps. The first step ensures that the compatible element is right-compatible,
and the second that the β-shifter has left-genus 1.

Claim 1. Let A be a nontrivial β-shifter and let B be compatible with A. Then ⟨⟨A,B⟩⟩β is
a linear combination of elements of the form ⟨⟨A′, B′⟩⟩β with A′ a nontrivial β-shifter and
B′ right-compatible with A′.

Let T and T ′ be the left and right sides of β ∪A(β), respectively. Since B fixes β ∪A(β)
and lies in Ig, we can write B = B1B2 with B1 supported on T and B2 supported on T ′.
By Lemmas 13.2 and 14.5, we have

⟨⟨A,B⟩⟩β = ⟨⟨A,B1⟩⟩β + ⟨⟨A,B2⟩⟩β = −⟨⟨A−1, BA
1 ⟩⟩β + ⟨⟨A,B2⟩⟩β.

Since B2 is right-compatible with A, this reduces us to showing that BA
1 is right-compatible

with A−1. Since T is to the left of β, it is to the right of A(β). This implies that A−1(T ) is
to the right of β. Since BA

1 is supported on A−1(T ), this implies that BA
1 is right-compatible

with A−1, as desired.

Claim 2. Let A be a nontrivial β-shifter and let B be right-compatible with A. Then
⟨⟨A,B⟩⟩β is a linear combination of elements of the form ⟨⟨A′, B′⟩⟩β with A′ a β-shifter of
left-genus 1 and B′ right-compatible with A′.

Let T and T ′ be the left and right sides of β ∪ A(β), so B is supported on T ′. Let
A(β) = β0, β1, . . . , βh = β be a sequence of disjoint b-curves in T each of which intersect α
once such that βi−1 ∪ βi bounds a genus-1 subsurface of T for 1 ≤ i ≤ h:

β3=β

β0=A(β)

β2

β1

T T'

By Lemma 9.4 the group Ig acts transitively on mixed 1-simplices of Cab(Σg), so we can
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find A2, . . . , Ah ∈ Ig such that Ai(α) = α and Ai(βi) = βi−1 for 2 ≤ i ≤ h. Pick A1 ∈ Ig
such that A = A1 · · ·Ah, so A1(α) = α as well. We then have

(15.1) AiAi+1 · · ·Ah(β) = βi−1 for 1 ≤ i ≤ h.
We have a commutator identity

[A1 · · ·Ah, B] = [A1, B]A2···Ah [A2, B]A3···Ah · · · [Ah, B](15.2)

= [AA2···Ah
1 , BA2···Ah ][AA3···Ah

2 , BA3···Ah ] · · · [Ah, B].

We then have generators ⟨⟨AAi+1···Ah

i , BAi+1···Ah⟩⟩β associated to the terms in this identity.
Indeed:

• AAi+1···Ah

i is a β-shifter since

(15.3) A
Ai+1···Ah

i (β) = (Ai+1 · · ·Ah)
−1(Ai · · ·Ah)(β) = (Ai+1 · · ·Ah)

−1(βi−1)

is disjoint from

(15.4) β = (Ai+1 · · ·Ah)
−1(βi).

Both (15.3) and (15.4) use (15.1). Since βi−1 ∪ βi bounds a genus-1 subsurface of T ,

it follows that A
Ai+1···Ah

i has left-genus 1.

• The element B fixes each βj , so B
Ai+1···Ah is compatible with A

Ai+1···Ah

i since it

fixes β (cf. (15.4)) and A
Ai+1···Ah

i (β) (cf. (15.3)). In fact, by construction B is

right-compatible with BAi+1···Ah .

Using (15.2), an argument similar to the one used in the proof of Lemma 13.2 shows that

⟨⟨A,B⟩⟩β = ⟨⟨A1A2 · · ·Ah, B⟩⟩β
= ⟨⟨AA2···Ah

1 , BA2···Ah⟩⟩β + ⟨⟨AA3···Ah
2 , BA3···Ah⟩⟩β + · · ·+ ⟨⟨Ah, B⟩⟩β.

The right hand side is a sum of terms in the desired generating set, as desired. □

16. Step 3.5: identifying generators

The generating set for Λg from Lemma 15.1 has some redundancies.

16.1. Intersection form. Identifying these redundancies requires some notation. Let
W be a symplectic summand of HZ. The algebraic intersection form on W identifies W
with its dual. This allows us to identify alternating bilinear forms on W with elements of
∧2W ⊂ ∧2HZ. In particular, the algebraic intersection form on W is an element ωW of
∧2HZ. If {a1, b1, . . . , ah, bh} is a symplectic basis for W , then ωW = a1 ∧ b1 + · · ·+ ah ∧ bh.

16.2. Redundancy. With this notation, we have the following two lemmas:

Lemma 16.1. Let V and W be orthogonal genus-1 symplectic summands of HZ. Then
⟨⟨V, ωW ⟩⟩β = −⟨⟨ωV ,W ⟩⟩α.

Proof. Since V andW are orthogonal genus-1 symplectic summands of HZ, there are disjoint
subsurfaces X ∼= Σ1

1 and Y ∼= Σ1
1 of Σg that are disjoint from α ∪ β such that H1(X) = V

and H1(Y ) =W . Pick curves α′ and β′ as follows (cf. Example 10.1):

X

Y

α α'

ββ'
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Set A = TαT
−1
α′ and B = Tβ′T−1

β . Then A is a β-shifter and B is compatible with A, and

also B is an α-shifter and A is compatible with B:

A(β)=TαTα'
-1(β)

B(α)=Tβ'Tβ
-1(α)

X

Y

X

Y

When you cut Σg along β ∪ A(β) the subsurface X is to the left of β, so A induces the
symplectic splitting

HZ = H1(X)⊕H1(X)⊥ = V ⊕ V ⊥.

Similarly, when you cut Σg along α∪B(α) the subsurface Y is to the left of α, so B induces

the symplectic splitting HZ =W ⊕W⊥.
Examining our proof of Lemma 13.4 and using the computation of the Johnson homomor-

phism on a bounding pair in §13.6, we see that the fact that Y is to the left of β′ implies
that the image B = Tβ′T−1

β in ∧2V ⊥
Q is ωW . Similarly, since X is to the right of α the image

of A = TαT
−1
α′ in ∧2W⊥

Q is −ωV . Together with the previous paragraph, this implies that

(cf. Remark 12.1)

⟨⟨V, ωW ⟩⟩β = ⟨⟨A,B⟩⟩β = ⟨⟨A,B⟩⟩α = ⟨⟨−ωV ,W ⟩⟩α = −⟨⟨ωV ,W ⟩⟩α. □

Lemma 16.2. Let V be a genus-1 symplectic summand of HZ. Then ⟨⟨V, ωV ⊥⟩⟩β =
−⟨⟨ωV ⊥ , V ⟩⟩α.

Proof. The proof is similar to that of Lemma 16.1, but with a twist at the end. Recall that
HZ has genus g − 1. Pick disjoint subsurfaces X ∼= Σ1

1 and Y ∼= Σ1
g−2 of Σg that are disjoint

from α ∪ β such that H1(X) = V and H1(Y ) = V ⊥. Choose curves α′ and β′ as follows:

X

Y

α α'

ββ'

Note that unlike in the proof of Lemma 16.1, this depicts the whole surface and not just
part of it.

Set A = TαT
−1
α′ and B = Tβ′T−1

β . Then A is a β-shifter and B is compatible with A, and

also B is an α-shifter and A is compatible with B:

A(β)=TαTα'
-1(β)X

Y B(α)=Tβ'Tβ
-1(α)

X

Y

When you cut Σg along β ∪ A(β) the subsurface X is to the left of β, so A induces the
symplectic splitting

HZ = H1(X)⊕H1(X)⊥ = V ⊕ V ⊥.

Similarly, when you cut Σg along α∪B(α) the subsurface Y is to the left of α, so B induces

the symplectic splitting HZ = V ⊥ ⊕ V .
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Examining our proof of Lemma 13.4 and using the computation of the Johnson homomor-
phism on a bounding pair in §13.6, we see that the fact that Y is to the left of β′ implies
that the image B = Tβ′T−1

β in ∧2V ⊥ is ωV ⊥ . This implies that

(16.1) ⟨⟨V, ωV ⊥⟩⟩β = ⟨⟨A,B⟩⟩β.

After reading the proof of Lemma 16.1, you might think that ⟨⟨A,B⟩⟩α equals ⟨⟨−ωV , V
⊥⟩⟩α.

However, ⟨⟨−ωV , V
⊥⟩⟩α is not defined since V has genus 1 and 1 < 3 (cf. Lemma 13.4). To

fix this, observe that α′ is homotopic to B(α):

X

Y

X
Y

B(α)

α'

This implies that A = TαT
−1
α′ can be not only be realized by a mapping class supported on

the right of α ∪B(α), but also by a mapping class supported on the left. Since Y is to the
left of α, the image of A = TαT

−1
α′ in ∧2V ⊥ is ωV ⊥ . It follows that

(16.2) ⟨⟨ωV ⊥ , V ⊥⟩⟩β = ⟨⟨A,B⟩⟩β.

Combining (16.1) and (16.2) with Lemma 14.5, we see that

⟨⟨V, ωV ⊥⟩⟩β = ⟨⟨A,B⟩⟩β = ⟨⟨A,B⟩⟩α = ⟨⟨ωV ⊥ , V ⊥⟩⟩α = −⟨⟨ωV ⊥ , V ⟩⟩α. □

17. Step 3.7: proof of Theorem B′

Theorem B′ asserts that Λg is a finite-dimensional algebraic representation of Sp(HZ). As
we will show in this final section, the generators and relations for Λg we constructed in the
last few sections are enough to force this to hold.

17.1. Presentation theorem. The key is a recent theorem of the authors giving a presen-
tation for what we call the symmetric kernel representation. Make the following definition:

Definition 17.1. Define K(H) to be the vector space with the following presentation:

• Generators. For all genus-1 symplectic summands V of HZ and all κ ∈ ∧2V ⊥
Q ,

generators JV, κK and Jκ, V K.
• Relations. The following families of relations:

– For all genus-1 symplectic summands V of HZ and all κ1, κ2 ∈ ∧2V ⊥
Q and all

λ1, λ2 ∈ Q, the linearity relations

JV, λ1κ1 + λ2κ2K = λ1JV, κ1K + λ2JV, κ2K and

Jλ1κ1 + λ2κ2, V K = λ1Jκ1, V K + λ2Jκ2, V K.

– For all orthogonal genus-1 symplectic summands V and W of HZ, the relation

JV, ωW K = JωV ,W K.

– For all genus-1 symplectic summands V of HZ, the relation

JV, ωV ⊥K = JωV ⊥ , V K. □

The actions of Sp(HZ) on HZ and H induce an action of Sp(HZ) on K(H). We have:50

50This theorem requires that H has genus at least 4, which follows from our assumption that g ≥ 5
(Assumption 10.7) since H is the orthogonal complement in H1(Σg;Q) of ⟨a, b⟩.
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Theorem 17.2 ([37, Theorem A.6]). The representation K(H) is a finite-dimensional
algebraic representation of Sp(HZ).

Remark 17.3. In fact, what [37] proves is that K(H) is a subquotient of (∧2H)⊗. More
precisely, let (∧2H)/Q be the quotient of ∧2H by the one-dimensional trivial representation
spanned by the element ω representing the algebraic intersection pairing. For κ ∈ ∧2H,
let κ be its image in (∧2H)/Q. Then [37] proves that the map Φ: K(H) → ((∧2H)/Q)⊗2

defined by
Φ(JV, κK) = ωV ⊗ κ and Φ(Jκ, V K) = κ⊗ ωV

is a well-defined isomorphism onto its image K(H), which [37] calls the symmetric kernel. It
is the kernel of a contraction ((∧2H)/Q)⊗2 −→ Sym2(H). See [37] for more details. □

17.2. The proof. We close the paper by proving Theorem B′.

Theorem B′. The vector space Λg is a finite-dimensional algebraic representation of Sp(HZ).

Proof. Theorem 17.2 says that K(H) is a finite-dimensional algebraic representation of
Sp(HZ), so it is enough to construct an Sp(HZ)-equivariant surjection ρ : K(H)→ Λg.

We define ρ on generators, and then check that the corresponding map takes relations to
relations. Let V be a genus-1 symplectic summand of HZ and let κ ∈ ∧2V ⊥

Q . We then have

generators JV, κK and Jκ, V K for K(H). Define

ρ(JV, κK) = ⟨⟨V, κ⟩⟩β and ρ(Jκ, V K) = −⟨⟨κ, V ⟩⟩α.
The minus sign is there to ensure:

Claim. The map ρ takes relations to relations, and thus gives a well-defined map.

Proof of claim. It follows from Lemma 14.3 that ρ respects the linearity relations, so we
must check the other two:

• Let V and W be genus-1 symplectic summand of HZ with W ⊂ V ⊥. We can then
apply Lemma 16.1 to see that

ρ(JV, ωW K) = ⟨⟨V, ωW ⟩⟩β = −⟨⟨ωV ,W ⟩⟩α = ρ(JωV ,W K).
• Let V be a genus-1 symplectic summand of HZ. We can apply Lemma 16.2 to see
that

ρ(JV, ωV ⊥K) = ⟨⟨V, ωV ⊥⟩⟩β = −⟨⟨ωV ⊥ , V ⟩⟩α = ρ2(JωV ⊥ , V K). □

The map ρ is Sp(HZ)-equivariant by construction, and is surjective since its image contains
all the generators for Λg identified by Lemma 15.1. The theorem follows. □
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