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Abstract. We give a new technique for constructing presentations by generators and
relations for representations of groups like SLn(Z) and Sp2g(Z). Our results play an
important role in recent work of the authors calculating H2 of the Torelli group.

1. Introduction

In this paper, we give a new approach to constructing presentations by generators and
relations for representations1 of groups like SLn(Z) and Sp2g(Z). The representations we
have in mind are finite-dimensional. However, their presentations have infinitely many
generators and relations, so this finite-dimensionality is not obvious. Our main goal is to
identify a representation we constructed in our work on the second homology group of the
Torelli group in [4, 5]. These papers make essential use of Theorems F – G below.

1.1. Special linear group, standard representation. We start with an easy example. A
set {v1, . . . , vk} of vectors in Zn is a partial basis if it can be extended to a basis {v1, . . . , xn}.
For v ∈ Zn, the set {v} is partial basis precisely when v is a primitive vector, i.e., is not
divisible by any integer d ≥ 2.

Definition 1.1. Define Qn to be the Q-vector space with the following presentation:

• Generators. A generator [v] for all primitive vectors v ∈ Zn. Here [v] should be
interpreted as a formal symbol associated to v.

• Relations. For a partial basis {v1, v2} of Zn, the relation [v1] + [v2] = [v1 + v2]. □

The group SLn(Z) acts on the set of primitive vectors in Zn. This induces an action of
SLn(Z) on Qn, so Qn is a representation of SLn(Z). Since Qn has infinitely many generators
and relations, it is not a priori clear if it is finite-dimensional.

Define Φ: Qn → Qn via the formula Φ([v]) = v. This takes relations to relations, and
thus gives a well-defined map that we call the linearization map. Similar maps we will define
in other contexts will also be called linearization maps. We will prove:

Theorem A. For n ≥ 2, the linearization map Φ: Qn → Qn is an isomorphism.

For the proof, let B = {e1, . . . , en} be the standard basis for Zn and let S = {[e1], . . . , [en]}.
The map Φ takes S bijectively to the basis B for Qn, so the restriction of Φ to ⟨S⟩ is an
isomorphism. To prove Theorem A, we must prove that ⟨S⟩ = Qn. For this, let v ∈ Zn be a
primitive vector. Write v = λ1e1 + · · ·+ λnen with λ1, . . . , λn ∈ Z. We must prove that

[v] = λ1[e1] + · · ·+ λn[en].

We will prove this by studying the action of SLn(Z) on Qn.

Remark 1.2. That ⟨S⟩ = Qn can be also be proved directly, and to help the reader appreciate
the efficiency of our proof we encourage them to work this out. Our approach is the only
one we are aware of that can be adapted to prove the other results in this paper. □

AP was supported by NSF grant DMS-2305183. DM was supported by NSF grant DMS-2402060.
1In this paper, representations are always defined over the field Q, so a representation of a group G is a

Q-vector space V equipped with a linear action of G.
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Remark 1.3. Theorem A implies not only that Qn is finite-dimensional, but also that the
SLn(Z)-action on it extends to GLn(Q). This is not obvious from the definition of Qn. □

Remark 1.4. Theorem A is false for n = 1. Indeed, Z1 has two primitive vectors ±1, so Q1

has two generators [1] and [−1] and no relations. It follows that Q1
∼= Q2. □

Remark 1.5. The technique we use to prove Theorem A is very flexible, and for instance can
also prove appropriate versions of Theorem A with Z replaced by a field.2 Similar remarks
apply to our other theorems. Since this paper is already long and technical, we chose to not
attempt to state our results in maximal generality. □

1.2. Adjoint representation. The proof technique we use for Theorem A can also be
used to construct presentations of things like tensor powers, symmetric powers, and exterior
powers of Qn. There are numerous possibilities for the exact form of the relations, so rather
than try to prove a general theorem we will give one interesting variant. Recall that the
adjoint representation of SLn(Q) is the kernel sln(Q) of the trace map

tr : (Qn)∗ ⊗Qn −→ Q

defined by tr(f, v) = f(v). The dual space (Qn)∗ = Hom(Qn,Q) contains the lattice
(Zn)∗ = Hom(Zn,Z). Define the following:

Definition 1.6. Define An to be the Q-vector space with the following presentation:

• Generators. A generator [f, v]0 for all primitive vectors f ∈ (Zn)∗ and v ∈ Zn such
that f(v) = 0.

• Relations. The following two families of relations:
– For all primitive vectors f ∈ (Zn)∗ and all partial bases {v1, v2} of ker(f), the

relation [f, v1 + v2]0 = [f, v1]0 + [f, v2]0.
– For all primitive vectors v ∈ Zn and all partial bases {f1, f2} of

ker(v) = {f ∈ (Zn)∗ | f(v) = 0} ,

the relation [f1 + f2, v]0 = [f1, v]0 + [f2, v]0. □

Define Φ: An → (Qn)∗ ⊗Qn via the formula Φ([f, v]0) = f ⊗ v. This takes relations to
relations, and thus gives a well-defined linearization map with Im(Φ) ⊂ sln(Q). We will
prove:

Theorem B. For n ≥ 3, the linearization map Φ: An → sln(Q) is an isomorphism.

Remark 1.7. Theorem B is trivial for n = 1 since A1 = sl1(Q) = 0. It is false for n = 2 since
for primitive f ∈ (Z2)∗ and v ∈ Z2 we have ker(f), ker(v) ∼= Z1. This implies that A2 has
no relations, and thus is an infinite-dimensional vector space with basis the set of all its
generators [f, v]0. □

1.3. Symplectic group, standard representation. We next turn to the symplectic group
Sp2g(Z). Set H = Q2g and HZ = Z2g. Let ω : H×H −→ Q be the standard symplectic form,
so Sp2g(Z) consists of all M ∈ GL2g(Z) such that ω(M·v,M·w) = ω(v, w) for all v, w ∈ H.
The following is an Sp2g(Z)-analogue of Qn:

Definition 1.8. Define Hg to be the Q-vector space with the following presentation:

• Generators. A generator [v]Sp for all primitive vectors v ∈ HZ.
• Relations. For a partial basis {v1, v2} of HZ with ω(v1, v2) = 0, the relation
[v1]Sp + [v2]Sp = [v1 + v2]Sp. □

2Though for general fields the relations would need to be expanded slightly.
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The action of Sp2g(Z) on HZ induces an action of Sp2g(Z) on Hg. Given Theorem A,

it is natural to expect that Hg ∼= H. However, identifying H with Q2g this would imply
that Hg ∼= Q2g. The vector spaces Hg and Q2g have the same generators, but Hg has fewer
relations. It seems hard to directly write each relation in Q2g in terms of the relations in
Hg. Nevertheless, define Φ: Hg → H via the formula Φ([v]Sp) = v. This takes relations to
relations, and thus gives a well-defined linearization map. We will prove:

Theorem C. For g ≥ 2, the linearization map Φ: Hg → H is an isomorphism.

The proof is similar to that of Theorem A, though the details are harder since the group
theory of Sp2g(Z) is less uniform than SLn(Z).

Remark 1.9. Theorem C implies that the action of Sp2g(Z) on Hg extends to an action of
Sp2g(Q). In fact, it even extends to an action of GL2g(Q). This seems hard to see directly
from the presentation. □

Remark 1.10. Theorem C is false for g = 1. Indeed, H1 has infinitely many generators but
no relations, so H1 is infinite-dimensional. □

1.4. Symplectic kernel. We now discuss another representation of Sp2g(Z) that is similar

to the adjoint representation sln(Q). The symplectic form ω induces a map ∧2H → Q. Let
Za
g be its kernel.3 Say that v1, v2 ∈ H are orthogonal if ω(v1, v2) = 0. For v ∈ H, let v⊥ be

the set of all elements of H that are orthogonal to v. For v ∈ HZ, let v
⊥
Z be the set of all

element of HZ that are orthogonal to v.

Definition 1.11. Define Zag to be the Q-vector space with the following presentation:

• Generators. A generator Lv1, v2Ma for all orthogonal primitive vectors v1, v2 ∈ HZ.
• Relations. The following two families of relations:

– For all generators Lv1, v2Ma, the relation Lv2, v1Ma = −Lv1, v2Ma.
– For all primitive vectors v ∈ HZ and all partial bases {w1, w2} of v⊥Z , the relation

Lv, w1 + w2Ma = Lv, w1Ma + Lv, w2Ma. □

The group Sp2g(Z) acts on Zag via its action on HZ. Define Φ: Zag → ∧2H via the formula
Φ(Lw1, w2Ma) = w1 ∧ w2. This takes relations to relations, and thus gives a well-defined
linearization map with Im(Φ) ⊂ Za

g . We will prove:

Theorem D. For g ≥ 1, the linearization map Φ: Zag → Za
g is an isomorphism.

1.5. Symmetric square. It is also interesting to replace the anti-symmetric relation in Zag
with the corresponding symmetric relation:4

Definition 1.12. Define Zsg to be the Q-vector space with the following presentation:

• Generators. A generator Lv1, v2Ms for all orthogonal primitive vectors v1, v2 ∈ HZ.
• Relations. The following two families of relations:

– For all generators Lv1, v2Ms, the relation Lv2, v1Ms = Lv1, v2Ms.
– For all primitive vectors v ∈ HZ and all partial bases {w1, w2} of v⊥Z , the relation

Lv, w1 + w2Ms = Lv, w1Ms + Lv, w2Ms. □

Again, Sp2g(Z) acts on Zsg. Define Φ: Zsg → Sym2(H) via the formula Φ(Lw1, w2Ms) =
w1·w2. This takes relations to relations, and thus gives a well-defined linearization map.
Since Sym2(H) is an irreducible representation of Sp2g(Z), it is surjective. We will prove:

Theorem E. For g ≥ 2, the linearization map Φ: Zsg → Sym2(H) is an isomorphism.

3The “a” in Za
g stands for “alternating”.

4The “s” in Zs
g stands for “symmetric”.
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1.6. Quotient representation. Our final theorems5 are about a subrepresentation of the
Sp2g(Q)-representation (Za

g )
⊗2. Above we defined Za

g as the kernel of the map ∧2H → Q
given by ω. For our final theorems, it is more natural to view it as a quotient of ∧2H. The
symplectic form ω on H identifies H with its dual. Using this, we can identify alternating
forms on H with elements of ∧2H. If {a1, b1, . . . , ag, bg} is a symplectic basis for H, then

ω = a1 ∧ b1 + · · · ag ∧ bg.

The span of ω in ∧2H is a copy of Q. The quotient (∧2H)/Q is isomorphic to Za
g . Since ω

lies in ∧2HZ, the quotient (∧2H)/Q has a lattice (∧2HZ)/Z.

Remark 1.13. Except for a few places where clarity will demand we be more careful, our
notation will not distinguish elements of ∧2H from their images in (∧2H)/Q. For instance,
for x, y ∈ H we will often write x ∧ y for the corresponding element of (∧2H)/Q. □

1.7. Symmetric contraction. The symmetric contraction is the alternating bilinear map

(1.1) c : ((∧2H)/Q)× ((∧2H)/Q) −→ Sym2(H)

defined as follows. Start by letting

ĉ : (∧2H)× (∧2H) → Sym2(H)

be the alternating bilinear map defined by the formula

ĉ(x ∧ y, z ∧ w) = ω(x, z)y·w − ω(x,w)y·z − ω(y, z)x·w + ω(y, w)x·z for x, y, z, w ∈ H.

This makes sense since the right hand side is alternating in x and y and also alternating in
z and w. Regarding ω as an element of ∧2H, we have ĉ(ω,−) = 0 and ĉ(−, ω) = 0. Indeed:

• Both ĉ(ω,−) and ĉ(−, ω) are maps ∧2H → Sym2(H). The representation Sym2(H)
of Sp2g(Q) is irreducible and is not isomorphic to either of the two irreducible factors

Q and (∧2H)/Q of ∧2H. Thus the only map ∧2H → Sym2(H) is the zero map.
• Alternatively, this can be seen directly using the fact that for a symplectic basis
{a1, b1, . . . , ag, bg} of H we have ω = a1 ∧ b1 + · · ·+ ag ∧ bg.

Either way, this implies that ĉ induces a map c as in (1.1).

1.8. Symmetric kernel. The symmetric kernel, denoted Ka
g , is the kernel of the map

∧2((∧2H)/Q) −→ Sym2(H)

associated to c. Say that κ1, κ2 ∈ (∧2H)/Q are sym-orthogonal if c(κ1, κ2) = 0, in which
case κ1 ∧ κ2 ∈ Ka

g . For κ ∈ (∧2H)/Q, the symmetric orthogonal complement of κ, denoted

κ⊥, consists of all κ′ ∈ (∧2H)/Q that are sym-orthogonal to κ.

1.9. Symplectic pairs. A symplectic pair is an element of (∧2HZ)/Z of the form a ∧ b,
where a, b ∈ HZ are such that ω(a, b) = 1. Equivalently, there exists a symplectic basis
{a1, b1, . . . , ag, bg} for HZ with a1 = a and b1 = b. For X ⊂ ∧2H, let X be its image in
(∧2H)/Q. Also, for V ⊂ HZ let VQ = V ⊗Q ⊂ H. We will later prove that for a symplectic

pair a ∧ b we have (a ∧ b)⊥ = ∧2⟨a, b⟩⊥Q. See Lemma 10.1.

Remark 1.14. A symplectic pair is an element of (∧2HZ)/Z, and can be expressed in many
ways as a∧ b with a, b ∈ HZ satisfying ω(a, b) = 1. For instance, if a∧ b is a symplectic pair,
then a ∧ b = (2a+ b) ∧ (a+ b). □

5These are the theorems that are needed for our work on the Torelli group in [4, 5], and thus in some
sense are the main point of this paper.
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1.10. Symmetric kernel presentation. We now make the following definition:

Definition 1.15. Define Kag to be the Q-vector space with the following presentation:

• Generators. A generator Jκ1, κ2Ka for all sym-orthogonal κ1, κ2 ∈ (∧2H)/Q such
that either κ1 or κ2 (or both) is a symplectic pair in (∧2HZ)/Z.

• Relations. The following two families of relations:
– For all generators Jκ1, κ2Ka, the relation Jκ2, κ1Ka = −Jκ1, κ2Ka.
– For all symplectic pairs a ∧ b ∈ (∧2HZ)/Z and all κ1, κ2 ∈ (∧2H)/Q that are

sym-orthogonal to a ∧ b and all λ1, λ2 ∈ Q, the relation

Ja ∧ b, λ1κ1 + λ2κ2Ka = λ1Ja ∧ b, κ1Ka + λ2Ja ∧ b, κ2Ka. □

The group Sp2g(Z) acts on Kag via its action on HZ. Define Φ: Kag → ∧2(∧2H)/Q via
the formula Φ(Jκ1, κ2Ka) = κ1 ∧ κ2. This takes relations to relations, and thus gives a
well-defined linearization map. Since the κi are sym-orthogonal, the image of Φ lies in the
symmetric kernel Ka

g . We will prove:

Theorem F. For g ≥ 4, the linearization map Φ: Kag → Ka
g is an isomorphism.

Theorem F plays a key role in our work on H2 of the Torelli group in [4, 5].

Remark 1.16. Just like in our previous theorems, it is not obvious from the definitions that
Kag is finite-dimensional or that the Sp2g(Z)-action on it extends to Sp2g(Q). We will only see
these two facts at the very end of our proof. It is unclear if either fact holds for g ≤ 3. □

1.11. Symmetric square, II. Just like we did for Zg in §1.5, it is also interesting to replace
the anti-symmetric relation in Kag with the corresponding symmetric relation:

Definition 1.17. Define Ksg to be the Q-vector space with the following presentation:

• Generators. A generator Jκ1, κ2Ks for all sym-orthogonal κ1, κ2 ∈ (∧2H)/Q such
that either κ1 or κ2 (or both) is a symplectic pair in (∧2HZ)/Z.

• Relations. The following two families of relations:
– For all generators Jκ1, κ2Ks, the relation Jκ2, κ1Ks = Jκ1, κ2Ks.
– For all symplectic pairs a ∧ b ∈ (∧2HZ)/Z and all κ1, κ2 ∈ (∧2H)/Q that are

sym-orthogonal to a ∧ b and all λ1, λ2 ∈ Q, the relation

Ja ∧ b, λ1κ1 + λ2κ2Ks = λ1Ja ∧ b, κ1Ks + λ2Ja ∧ b, κ2Ks. □

Define a linearization map Φ: Ksg → Sym2((∧2H)/Q) via the formula Φ(Jκ1, κ2Ks) = κ1·κ2.
Unlike Sym2(H), the representation Sym2((∧2H)/Q) of Sp2g(Z) is not irreducible. However,
it turns out that Φ is surjective. In fact:

Theorem G. For g ≥ 4, the linearization map Φ: Ksg → Sym2((∧2H)/Q) is an isomorphism.

Theorem G is also important for our work on the Torelli group.

1.12. Final remarks. Innumerable variants and generalizations of Theorems A – G can
be proved using our techniques. While these theorems are proved via a common core proof
technique, applying this technique requires calculations that seem special to each theorem.
Theorems F and G in particular require very elaborate calculations. There should be a
common generalization of all these results:

Question 1.18. Does there exist a general abstract theorem that specializes to Theorems A –
G, as well as their natural generalizations?

1.13. Notation and conventions. Throughout this paper, we will let H = Q2g and
HZ = Z2g, and also let ω : H ×H → Q be the standard symplectic form on H.
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1.14. Outline. We prove Theorems A – E in Part 1. Next, in Part 2 we expand the
presentations for Kag and Ksg to ones with a larger set of generators. We remark that this
expansion uses the same proof technique as our other theorems. We use this expanded
presentation to prove Theorems F – G in Parts 3 and 4. We close with Appendix A, which
adjusts the presentations given in Theorem F – G to make them match up better with our
companion papers [4, 5] on the Torelli group.

Part 1. Five easy examples

In this part of the paper, we prove Theorems A – E. The proof of Theorem A is in §2. We
then extract from that proof an outline of our proof method in §3. We then use this proof
technique to prove Theorem B in §4. This is followed by §5 and §6, which prove variants
of Theorems A and B that will be needed for our work on symmetric kernel. After the
preliminary §7 on generators for Sp2g(Z), we then prove Theorems C – E in §8 – §9.

2. Special linear group I: standard representation

Recall that Qn is the Q-vector space with the following presentation:

• Generators. A generator [v] for all primitive vectors v ∈ Zn.
• Relations. For a partial basis {v1, v2}, the relation [v1] + [v2] = [v1 + v2].

Define a linearization map Φ: Qn → Qn via the formula Φ([v]) = v. This takes relations to
relations, and thus gives a well-defined map. Our goal is to prove:

Theorem A. For n ≥ 2, the linearization map Φ: Qn → Qn is an isomorphism.

Proof. Let B = {e1, . . . , en} be the standard basis for Zn. Set S = {[e1], . . . , [en]}. The map
Φ takes S bijectively to B. This implies that the restriction of Φ to ⟨S⟩ is an isomorphism.
To prove that Φ is an isomorphism, we must prove that ⟨S⟩ = Qn.

The group SLn(Z) acts on Qn. Since SLn(Z) acts transitively on primitive vectors,6 it
acts transitively on the generators for Qn. It follows that the SLn(Z)-orbit of S spans Qn.
To prove that ⟨S⟩ = Qn, it is therefore enough to prove that SLn(Z) takes ⟨S⟩ to itself.

For distinct 1 ≤ i, j ≤ n, let Eij ∈ SLn(Z) be the elementary matrix obtained from the
identity by placing a 1 at position (i, j). These generate SLn(Z). Fixing some distinct
1 ≤ i, j ≤ n and some ϵ = ±1, it is enough to prove that Eϵij takes ⟨S⟩ to itself. Consider

some [ek] ∈ S. We must prove that [Eϵij(ek)] can be written as a linear combination of

elements of S. If k ̸= j, then Eϵij(ek) = ek and there is nothing to prove. If k = j, there are
two cases:

• ϵ = 1. In this case, [Eij(ej)] = [ej + ei] = [ej ] + [ei] ∈ ⟨S⟩.
• ϵ = −1. In this case, [E−1

ij (ej)] = [ej − ei]. We would like to prove that this equals

[ej ]− [ei] ∈ ⟨S⟩. For this, since {ej − ei, ei} is a partial basis we have

[ej − ei] + [ei] = [(ej − ei) + ei] = [ej ]. □

Remark 2.1. Let n ≥ 2 and let v ∈ Zn be a primitive vector. The above implies that
[−v] = −[v]. Here is how to prove directly that this holds. Pick w ∈ Zn such that {v, w} is
a partial basis for Zn. For a, b, c, d ∈ Z, the pair {av+ bw, cv+ dw} forms a partial basis for
Zn precisely when

det

(
a b
c d

)
= ±1.

6This is where we use the fact that n ≥ 2.
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Using this, we prove that [v] + [−v] = 0 as follows:

[v] + [−v] = [v] + ([v + w]− [v + w]) + [−v] + ([−w]− [−w])
= ([v] + [v + w]) + ([−v] + [−w])− ([v + w] + [−w])
= [2v + w] + [−v − w]− [v]

= [v]− [v] = 0. □

3. Outline of proof technique

We now abstract a general proof technique from the proof of Theorem A. Let G be a
group and let V be a representation of G that we understand well. Let V be a representation
of G given by generators and relations that we suspect is isomorphic to V and let Φ: V → V
be a G-equivariant map. The following steps will prove that Φ is an isomorphism:

Step 1. Construct a subset S of V such that the restriction of Φ to ⟨S⟩ is an isomorphism.

One way for this to hold is for Φ to take S bijectively to a basis for V . However, sometimes
it is more natural to use a larger S whose image is a generating set satisfying some relations.

Step 2. Prove that the G-orbit of S spans V.

Since V is given by generators and relations, this is done by making sure that this G-orbit
contains all the generators.

Step 3. Prove that G takes ⟨S⟩ to itself. By Step 2, this will imply that ⟨S⟩ = V, and thus
by Step 1 that Φ is an isomorphism.

We do this as follows. Let Λ be a generating set for G. Then it is enough to check
that for f ∈ Λ and s ∈ S the elements f(x) ∈ V and f−1(x) ∈ V can be written as linear
combinations of elements of S. When we proved Theorem A this step only required the easy
identities

[e1 + e2] = [e1] + [e2],

[e1 − e2] = [e1]− [e2].

However, for our other theorems this will be the most calculation heavy step, and the key
will be verifying that a large number of explicit elements of V lie in ⟨S⟩.

4. Special linear group II: adjoint representation

Recall that the adjoint representation of SLn(Q) is the kernel sln(Q) of the trace map

tr : (Qn)∗ ⊗Qn −→ Q

defined by tr(f, v) = f(v). Also, recall that An is the Q-vector space with the following
presentation:

• Generators. A generator [f, v]0 for all primitive vectors f ∈ (Zn)∗ and v ∈ Zn such
that f(v) = 0.

• Relations. The following two families of relations:
– For all primitive vectors f ∈ (Zn)∗ and all partial bases {v1, v2} of ker(f), the

relation [f, v1 + v2]0 = [f, v1]0 + [f, v2]0.
– For all primitive vectors v ∈ Zn and all partial bases {f1, f2} of

ker(v) = {f ∈ (Zn)∗ | f(v) = 0} ,

the relation [f1 + f2, v]0 = [f1, v]0 + [f2, v]0.
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Define Φ: An → (Qn)∗ ⊗ Qn via the formula Φ([f, v]0) = f ⊗ v. This takes relations to
relations, and thus gives a well-defined linearization map with Im(Φ) ⊂ sln(Q). Our goal is
to prove:

Theorem B. For n ≥ 3, the linearization map Φ: An → sln(Q) is an isomorphism.

Proof. We start with the following, which we will use freely throughout the proof:

Claim. In An, the following relations hold for all m ≥ 1:

(i) For all primitive vectors f ∈ (Zn)∗ and all primitive vectors v1, . . . , vm ∈ ker(f) and
all λ1, . . . , λm ∈ Z such that

∑m
i=1 λivi is primitive, we have

[f,
m∑
i=1

λivi]0 =
m∑
i=1

λi[f, vi]0.

(ii) For all primitive vectors v ∈ Zn and all primitive vectors f1, . . . , fm ∈ ker(v) and all
λ1, . . . , λm ∈ Z such that

∑m
i=1 λifi is primitive, we have

[
m∑
i=1

λifi, v]0 =
m∑
i=1

λi[fi, v]0.

Proof. Both are proved the same way, so we will give the details for (i). Let f ∈ (Zn)∗
be primitive and let v1, . . . , vm ∈ ker(f) and λ1, . . . , λm ∈ Z be as in the claim. Choose
an isomorphism µ : Zn−1 → ker(f), and let wi = µ−1(vi). Recall that we defined Qn−1 in
Definition 1.1. Define a map ψ : Qn−1 → An via the formula

ψ([x]) = [f, µ(x)]0 for a primitive x ∈ Zn−1.

This takes relations to relations, and thus gives a well-defined map. Recall that Theorem A
says that Qn−1

∼= Qn−1. It follows from this theorem that

[

m∑
i=1

λiwi] =

m∑
i=1

λi[wi].

Plugging this into ψ, we see that

[f,
m∑
i=1

λivi]0 = ψ

(
[
m∑
i=1

λiwi]

)
=

m∑
i=1

λiψ ([wi]) =
m∑
i=1

λi[f, vi]0. □

Let B = {e1, . . . , en} be the standard basis for Zn and let B∗ = {e∗1, . . . , e∗n} be the
corresponding dual basis for (Zn)∗. We follow the outline from §3, though for readability we
divide Step 3 into Steps 3.A and 3.B.

Step 1. Let S = S1 ∪ S2, where the Si are:

S1 = {[e∗i , ej ]0 | 1 ≤ i, j ≤ n distinct} ,
S2 =

{
[e∗i + e∗i+1, ei − ei+1]0 | 1 ≤ i < n

}
.

Like we did here, we will write elements of S in blue. Then the restriction of Φ to ⟨S⟩ is an
isomorphism.

Let T = T1 ∪ T2, where the Ti are:

T1 = {e∗i ⊗ ej | 1 ≤ i, j ≤ n distinct} ,
T2 =

{
e∗i ⊗ ei − e∗i+1 ⊗ ei+1 | 1 ≤ i < n

}
.
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The set T is a basis for the codimension-1 subspace sln(Q) of (Qn)∗ ⊗Qn. The map Φ takes
S1 bijectively to T1. As for T2, observe that for 1 ≤ i < n we have

Φ([e∗i + e∗i+1, ei − ei+1]0) = (e∗i + e∗i+1)⊗ (ei − ei+1)

= e∗i ⊗ ei − e∗i+1 ⊗ ei+1 − e∗i ⊗ ei+1 + e∗i+1 ⊗ ei.

Here we have written elements of T1 in orange. This calculation implies that modulo T1,
the map Φ takes S2 bijectively to T2. Since T is a basis for sln(Q), we deduce that Φ
takes S bijectively to a basis for sln(Q). This implies that the restriction of Φ to ⟨S⟩ is an
isomorphism.

Step 2. We prove that the SLn(Z)-orbit of S spans An.

Immediate from the fact that SLn(Z) acts transitively on the basis elements of An.

Step 3.A. In preparation for proving that SLn(Z) takes ⟨S⟩ to ⟨S⟩, we prove that all
elements of 7

E =
{
[e∗i + e∗j , ei − ej ]0 | 1 ≤ i, j ≤ n distinct

}
∪
{
[e∗i − e∗j , ei + ej ]0 | 1 ≤ i, j ≤ n distinct

}
∪
{
[e∗i + 2e∗j , 2ei − ej ]0 | 1 ≤ i, j ≤ n distinct

}
.

lie in ⟨S⟩. Like we did here, we will write elements of E in green.

Above we wrote elements of S1 in blue. We extend this to certain elements that “obviously”
lie in ⟨S1⟩ as follows:

• Consider a generator [f, v]0. Assume there exist B∗
1 ⊂ B∗ and B2 ⊂ B such that

f ∈ ⟨B∗
1⟩ and v ∈ ⟨B2⟩ and such that g(w) = 0 for all g ∈ B∗

1 and w ∈ B2. It is then
immediate that [f, v]0 ∈ ⟨S1⟩. This is most easily seen by example:

[7e∗1 + 3e∗3, 2e2 − 5e4]0 = 2[7e∗1 + 3e∗3, e2]0 − 5[7e∗1 + 3e∗3, e4]0

= 14[e∗1, e2]0 + 21[e∗3, e1]0 − 35[e∗1, e4]0 − 15[e∗3, e4]0.

Previously we were only writing elements of S1 in blue, but now we will write these
elements in blue as well. For instance, we will write [7e∗1 + 3e∗3, 2e2 − 5e4]0.

Let ≡ denote equality modulo ⟨S⟩. During the proof, we will underline elements of E that
we have not yet proven lie in ⟨S⟩. We divide the proof into three claims.

Claim 3.A.1. For distinct 1 ≤ i, j ≤ n, we have [e∗i + e∗j , ei − ej ]0 ≡ [e∗i − e∗j , ei + ej ]0.

Since n ≥ 3, we can pick some 1 ≤ k ≤ n that is distinct from i and j. For ϵ ∈ {±1}, let
xϵ = [e∗i + ϵe∗k, ei − ϵek]0. For c ∈ {±1}, we have

xϵ ≡[e∗i + ϵe∗k, ei − ϵek]0 + [ce∗j , ei − ϵek]0 = [e∗i + ce∗j + ϵe∗k, ei − ϵek]0

=[e∗i + ce∗j + ϵe∗k, (ei − cej) + (cej − ϵek)]0

=[e∗i + ce∗j + ϵe∗k, ei − cej ]0 + [e∗i + ce∗j + ϵe∗k, cej − ϵek]0

=[e∗i + ce∗j , ei − cej ]0 + [ϵe∗k, ei − cej ]0 + [e∗i , cej − ϵek]0 + c[e∗j + ϵce∗k, cej − ϵek]0

≡[e∗i + ce∗j , ei − cej ]0 + [e∗j + ϵce∗k, ej − ϵcek]0.

We can equate these expressions for x1 for c = 1 and c = −1 to get

(4.1) [e∗i + e∗j , ei − ej ]0 + [e∗j + e∗k, ej − ek]0 ≡ [e∗i − e∗j , ei + ej ]0 + [e∗j − e∗k, ej + ek]0.

7The letter E stands for “extra elements”.
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Similarly, equating these expressions for x−1 for c = 1 and c = −1 we get

(4.2) [e∗i + e∗j , ei − ej ]0 + [e∗j − e∗k, ej + ek]0 ≡ [e∗i − e∗j , ei + ej ]0 + [e∗j + e∗k, ej − ek]0.

Combining (4.1) and (4.2), we conclude that [e∗i + e∗j , ei − ej ]0 ≡ [e∗i − e∗j , ei + ej ]0.

Claim 3.A.2. For distinct 1 ≤ i, j ≤ n, we have [e∗i + e∗j , ei − ej ]0 ∈ ⟨S⟩. In light of Claim

3.A.1, this will imply that [e∗i − e∗j , ei + ej ]0 ∈ ⟨S⟩ as well.

Swapping i and j multiplies [e∗i + e∗j , ei − ej ]0 by −1, so we can assume without loss of

generality that i < j. The proof will be by induction on j − i. The base case is when
j − i = 1, in which case [e∗i + e∗j , ei − ej ]0 lies in S and there is nothing to prove. Assume,

therefore, that j − i > 1 and that the claim is true whenever j − i is smaller. Pick k with
i < k < j. The element [e∗i + e∗k + e∗j , ei − ej ]0 equals

[e∗i + e∗j , ei − ej ]0 + [e∗k, ei − ej ]0 ≡ [e∗i + e∗j , ei − ej ]0.

On the other hand, it also equals

[e∗i + e∗k + e∗j , (ei − ek) + (ek − ej)]0

= [e∗i + e∗k + e∗j , ei − ek]0 + [e∗i + e∗k + e∗j , ek − ej ]0

= [e∗i + e∗k, ei − ek]0 + [e∗j , ei − ek]0 + [e∗k + e∗j , ek − ej ]0 + [e∗i , ek − ej ]0 ≡ 0.

Here the non-underlined green terms lie in ⟨S⟩ by our inductive hypothesis. Combining
these, we conclude that [e∗i + e∗j , ei − ej ]0 ≡ 0.

Claim 3.A.3. For distinct 1 ≤ i, j ≤ n, we have [e∗i + 2e∗j , 2ei − ej ]0 ∈ ⟨S⟩.

Since n ≥ 3, we can pick some 1 ≤ k ≤ n that is distinct from i and j. The element
[e∗i + 2e∗j + e∗k, 2ei − ej ]0 equals

[e∗i + 2e∗j , 2ei − ej ]0 + [e∗k, 2ei − ej ]0 ≡ [e∗i + 2e∗j , 2ei − ej ]0.

On the other hand, it also equals

[e∗i + 2e∗j + e∗k, (ei − ek) + (ei + ek − ej)]0

= [e∗i + 2e∗j + e∗k, ei − ek]0 + [e∗i + 2e∗j + e∗k, ei + ek − ej ]0

= [e∗i + e∗k, ei − ek]0 + 2[e∗j , ei − ek]0 + [e∗i + e∗j , ei + ek − ej ]0 + [e∗j + e∗k, ei + ek − ej ]0

≡ [e∗i + e∗j , ei − ej ]0 + [e∗i + e∗j , ek]0 + [e∗j + e∗k, ek − ej ]0 + [e∗j + e∗k, ei]0 ≡ 0.

Combining these, we conclude that [e∗i + 2e∗j , 2ei − ej ]0 ≡ 0.

Step 3.B. We prove that SLn(Z) takes ⟨S⟩ to itself. By Step 2 this will imply that ⟨S⟩ = An,
and thus by Step 1 that Φ is an isomorphism.

For distinct 1 ≤ i, j ≤ n, let Eij ∈ SLn(Z) be the elementary matrix obtained from the
identity by placing a 1 at position (i, j). These generate SLn(Z). Fixing some distinct
1 ≤ i, j ≤ n and some ϵ = ±1, it is enough to prove that Eϵij takes ⟨S⟩ to itself. To do this,

we must prove that for all s ∈ S the image Eϵij(s) can be written as a linear combination of
elements of S. The matrix Eij satisfies

Eij(e
∗
i ) =e

∗
i − e∗j Eij(ej)=ej + ei,

E−1
ij (e∗i ) =e

∗
i + e∗j E∗

ij(ej)=ej − ei.

It fixes all other elements of B and B∗. Consider s ∈ S. If Eϵij(s) = s, there is nothing to

prove. We can therefore assume that Eijϵ(s) ̸= s. There are two cases.
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Case 3.B.1. s ∈ S1 = {[e∗i , ej ]0 | 1 ≤ i, j ≤ n distinct}.

The matrix Eϵij fixes all elements of S1 except for the following:

• [e∗i , ek]0 with k ̸= i, j. For these, we have

Eij([e
∗
i , ek]0) = [e∗i − e∗j , ek]0 = [e∗i , ek]0 − [e∗j , ek]0 ∈ ⟨S1⟩,

E−1
ij ([e∗i , ek]0) = [e∗i + e∗j , ek]0 = [e∗i , ek]0 + [e∗j , ek]0 ∈ ⟨S1⟩.

• [e∗k, ej ]0 with k ̸= i, j. For these, we have

Eij([e
∗
k, ej ]0) = [e∗k, ej + ei]0 = [e∗k, ej ]0 + [e∗k, ei]0 ∈ ⟨S1⟩,

E−1
ij ([e∗k, ej ]0) = [e∗k, ej − ei]0 = [e∗k, ej ]0 − [e∗k, ei]0 ∈ ⟨S1⟩.

• [e∗j , ei]0. For this, we have

Eij([e
∗
j , ei]0) = [e∗j − e∗i , ei + ej ]0 ∈ E ⊂ ⟨S⟩,

E−1
ij ([e∗j , ei]0) = [e∗j + e∗i , ei − ej ]0 ∈ E ⊂ ⟨S⟩.

Case 3.B.2. s ∈ S2 =
{
[e∗i + e∗i+1, ei − ei+1]0 | 1 ≤ i < n

}
.

To decrease the number of special cases, we will deal more generally with elements of the
form [e∗a + e∗b , ea − eb]0 for distinct 1 ≤ a, b ≤ n. The matrix Eϵij fixes these except when:

• (a, b) = (i, k) or (a, b) = (k, i) for some 1 ≤ k ≤ n with k ̸= i, j. Swapping a and b
multiplies [e∗a + e∗b , ea − eb]0 by a sign, so it is enough to deal with (a, b) = (i, k):

Eij([e
∗
i + e∗k, ei − ek]0) = [e∗i − e∗j + e∗k, ei − ek]0 = [e∗i + e∗k, ei − ek]0 − [e∗j , ei − ek]0 ∈ ⟨S⟩,

E−1
ij ([e∗i + e∗k, ei − ek]0) = [e∗i + e∗j + e∗k, ei − ek]0 = [e∗i + e∗k, ei − ek]0 + [e∗j , ei − ek]0 ∈ ⟨S⟩.

• (a, b) = (j, k) or (a, b) = (k, j) for some 1 ≤ k ≤ n with k ̸= i, j. Again, it is enough
to deal with (a, b) = (j, k):

Eij([e
∗
j + e∗k, ej − ek]0) = [e∗j + e∗k, ej + ei − ek]0 = [e∗j + e∗k, ej − ek]0 + [e∗j + e∗k, ei]0 ∈ ⟨S⟩,

E−1
ij ([e∗j + e∗k, ej − ek]0) = [e∗j + e∗k, ej − ei − ek]0 = [e∗j + e∗k, ej − ek]0 − [e∗j + e∗k, ei]0 ∈ ⟨S⟩.

• (a, b) = (i, j) or (a, b) = (j, i). Again it is enough to deal with (a, b) = (i, j):

Eij([e
∗
i + e∗j , ei − ej ]0) = [e∗i + 2e∗j , 2ei − ej ]0 ∈ E,

E−1
ij ([e∗i + e∗j , ei − ej ]0) = [e∗i ,−ej ]0 =∈ ⟨S1⟩. □

5. Special linear group I′: variant presentation of standard representation

Before proceeding with proofs of our main results, this section and the next give alternate
presentations of the standard and adjoint representations of SLn(Q) that are needed in
Part 3 for our work on the symmetric kernel. We start with the standard representation.
Let B = {e1, . . . , en} be the standard basis for Zn. Say that v ∈ Zn is ei-standard (resp.
ei-vanishing) if the ei-coordinate of v lies in {−1, 0, 1} (resp. is 0). If v1 ∈ Zn is ei-standard
and v2 ∈ Zn is ei-vanishing, then v1 + v2 is ei-standard. Define the following:

Definition 5.1. Define Q′
n to be the Q-vector space with the following presentation:

• Generators. A generator [v]′ for all primitive vectors v ∈ Zn that are e1-standard.
• Relations. For a partial basis {v1, v2} of Zn such that v1 is e1-standard and e2 is
e1-vanishing, the relation [v1]

′ + [v2]
′ = [v1 + v2]

′. □

Define a linearization map Φ: Q′
n → Qn via the formula Φ([v]′) = v. This takes relations

to relations, and thus gives a well-defined map. Our goal is to prove:

Theorem A′. For n ≥ 3, the linearization map Φ: Q′
n → Qn is an isomorphism.
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Proof. Recall that B = {e1, . . . , en} is the standard basis for Zn. Let B∗ = {e∗1, . . . , e∗n} be
the corresponding dual basis. Let SLn(Z, e∗1) be the stabilizer of e∗1 in SLn(Z). The action of
SLn(Z, e∗1) on Zn takes e1-standard vectors to e1-standard vectors. It follows that SLn(Z, e∗1)
acts on Q′

n, and we will use this action to prove our theorem. We follow the outline from §3.

Step 1. Let S = {[e1]′, . . . , [en]′}. Like we did here, we will write elements of S in blue.
Then the restriction of Φ to ⟨S⟩ is an isomorphism.

Immediate from the fact that Φ takes S to a basis for Qn.

Step 2. We prove that the SLn(Z, e∗1)-orbit of S spans Q′
n.

Let W be the span of the SLn(Z, e∗1)-orbit of S. The action of SLn(Z, e∗1) on the set of
generators for Q′

n has three orbits:8

O−1 =
{
[v]′ | v ∈ Zn is primitive and the e1-coordinate of v is −1

}
,

O0 =
{
[v]′ | v ∈ Zn is primitive and the e1-coordinate of v is 0

}
,

O1 =
{
[v]′ | v ∈ Zn is primitive and the e1-coordinate of v is 1

}
.

It is enough to prove that W contains elements from all three of these orbits. We have
[e1]

′ ∈ O1 and [e2]
′ ∈ O0, so the only nontrivial case is O−1. Since W contains [e1]

′ ∈ O1

and [e2]
′ ∈ O0, it follows that W contains all elements of O0 and O1. In Q′

n, we have the
relation

[e1 + e2]
′ + [−e1]′ = [e2]

′.

Since W contains [e1 + e2]
′ ∈ O1 and [e2]

′ ∈ O0, it also contains [−e1]′ ∈ O−1. The step
follows.

Step 3. We prove that SLn(Z, e∗1) takes ⟨S⟩ to itself. By Step 2 this will imply that ⟨S⟩ = Q′
n,

and thus by Step 1 that Φ is an isomorphism.

For distinct 1 ≤ i, j ≤ n, let Eij ∈ SLn(Z) be the elementary matrix obtained from the
identity by placing a 1 at position (i, j). The matrix Eij lies in SLn(Z, e∗1) if i ̸= 1, and the
set

Λ = {Eij | 1 ≤ i, j ≤ n distinct, i ̸= 1}
generates SLn(Z, e∗1). Fixing some Eij ∈ Λ and some ϵ = ±1, it is enough to prove that Eϵij
takes ⟨S⟩ to itself. Consider some [ek]

′ ∈ S. We must prove that [Eϵij(ek)]
′ can be written as

a linear combination of elements of S. If k ̸= j, then Eϵij(ek) = ek and there is nothing to
prove. If k = j, there are two cases:

• ϵ = 1. In this case, since i ̸= 1 it follows that ei is e1-vanishing, so [Eij(ej)]
′ =

[ej + ei]
′ = [ej ]

′ + [ei]
′ ∈ ⟨S⟩.

• ϵ = −1. In this case, [E−1
ij (ej)]

′ = [ej − ei]
′. We would like to prove that this equals

[ej ]− [ei] ∈ ⟨S⟩. For this, since i ≠ 1 the set {ej − ei, ei} is a partial basis such that
ej − ei is e1-standard and ei is e1-vanishing. We have

[ej − ei] + [ei] = [(ej − ei) + ei] = [ej ]. □

8For instance, to see that SLn(Z, e∗1) acts transitively on O1, consider some primitive v ∈ Zn with
e1-coordinate 1. We must find M ∈ SLn(Z, e∗1) with M([e1]

′) = [v]′. Since v is primitive, we can find a basis
{v1, . . . , vn} for Zn with v1 = v. Adding multiples of v1 to the other vi, we can assume that the e1-coordinate
of vi is 0 for 2 ≤ i ≤ n. Let M ∈ GLn(Z) be the matrix whose columns are {v1, . . . , vn}. Multiplying v2 by
−1 if necessary, we can assume that det(M) = 1. Since the e1-coordinate of v1 is 1 and the e1-coordinate of
vi is 0 for 2 ≤ i ≤ n, we have M ∈ SLn(Z, e∗1). By construction, M([e1]

′) = [v1]
′ = [v]′, as desired.
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6. Special linear group II′: variant presentation of adjoint representation

We now give a variant of our presentation for the adjoint representation. Let B =
{e1, . . . , en} be the standard basis for Zn and let B∗ = {e∗1, . . . , e∗n} be the corresponding
dual basis. As in §5, an element f ∈ (Zn)∗ is e∗i -standard (resp. e∗i -vanishing) if the e∗i -
coordinate of f lies in {−1, 0, 1} (resp. is 0). We define v ∈ Zn being ei-standard and
ei-vanishing similarly. Define:

Definition 6.1. Define A′
n to be the Q-vector space with the following presentation:

• Generators. A generator [f, v]′0 for all primitive vectors f ∈ (Zn)∗ and v ∈ Zn such
that f(v) = 0 and such that f is e∗1-standard and v is e2-standard.

• Relations. The following two families of relations:
– For all e∗1-primitive vectors f ∈ (Zn)∗ and all partial bases {v1, v2} of ker(f)

such that v1 is e2-standard and v2 is e2-vanishing, the relation [f, v1 + v2]
′
0 =

[f, v1]
′
0 + [f, v2]

′
0.

– For all e2-standard primitive vectors v ∈ Zn and all partial bases {f1, f2} of

ker(v) = {f ∈ (Zn)∗ | f(v) = 0} ,

such that f1 is e∗1-standard and f2 is e∗1-vanishing, the relation [f1 + f2, v]0 =
[f1, v]0 + [f2, v]0. □

Define Φ: A′
n → (Qn)∗ ⊗Qn via the formula Φ([f, v]′0) = f ⊗ v. This takes relations to

relations, and thus gives a well-defined linearization map with Im(Φ) ⊂ sln(Q). Our goal is
to prove:

Theorem B′. For n ≥ 4, the linearization map Φ: A′
n → sln(Q) is an isomorphism.

Proof. We start with the following, which we will use freely throughout the proof:

Claim. In A′
n, the following relations hold for all m ≥ 1:

(i) For all e∗1-standard primitive vectors f ∈ (Zn)∗ and all e2-standard primitive vectors
v1, . . . , vm ∈ ker(f) and all λ1, . . . , λm ∈ Z such that

∑m
i=1 λivi is primitive and

e2-standard, we have

[f,
m∑
i=1

λivi]
′
0 =

m∑
i=1

λi[f, vi]
′
0.

(ii) For all e2-standard primitive vectors v ∈ Zn and all e∗1-standard primitive vectors
f1, . . . , fm ∈ ker(v) and all λ1, . . . , λm ∈ Z such that

∑m
i=1 λifi is primitive and

e∗1-standard, we have

[
m∑
i=1

λifi, v]
′
0 =

m∑
i=1

λi[fi, v]
′
0.

Proof. Both are proved the same way, so we will give the details for (i). Let f ∈ (Zn)∗ and
v1, . . . , vm ∈ ker(f) and λ1, . . . , λm ∈ Z be as in the claim. There are now two cases.

The first is that the restriction of e∗2 to ker(f) is surjective. This implies that ker(f)
contains e2-standard vectors that are not e2-vanishing. We can then choose an isomorphism
µ : Zn−1 → ker(f) with the following property:

• Let {x1, . . . , xn−1} be the standard basis for Zn−1 and let {x∗1, . . . , x∗n−1} be the

corresponding dual basis. Then the induced map µ∗ : ker(f)∗ → (Zn−1)∗ takes the
restriction of e∗2 to x∗1. This condition ensures that µ gives a bijection between
x1-standard vectors in Zn−1 and e2-standard vectors in ker(f).
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Let ui = µ−1(vi). Recall that we definedQ′
n−1 in Definition 5.1. Define a map ψ : Q′

n−1 → A′
n

via the formula

ψ([w]′) = [f, µ(w)]′0 for an x1-standard primitive w ∈ Zn−1.

This takes relations to relations, and thus gives a well-defined map. Since n ≥ 3, Theorem
A′ says that Q′

n−1
∼= Qn−1. It follows from this theorem that

[
m∑
i=1

λiui]
′ =

m∑
i=1

λi[ui]
′.

Plugging this into ψ, we see that

[f,
m∑
i=1

λivi]
′
0 = ψ

(
[
m∑
i=1

λiui]
′

)
=

m∑
i=1

λiψ
(
[ui]

′) = m∑
i=1

λi[f, vi]
′
0,

as desired.
The second case is that the restriction of e∗2 to ker(f) is not surjective, so all e2-standard

vectors in ker(f) are e2-vanishing. In particular, all the vi are e2-vanishing. Letting
U = ker(e∗2) ∩ ker(f), this implies that all the vi lie in U . Since U is the intersection of two
direct summands of Zn, it follows that U is also a direct summand of Zn. Let r be the rank
of U . Since n ≥ 4, we have r ≥ 2. Choose an isomorphism µ : Zr → U . Let ui = µ−1(vi).
Recall that we defined Qr in Definition 1.1. Define a map ψ : Qr → A′

n via the formula

ψ([w]) = [f, µ(w)]′0 for a primitive w ∈ Zn−1.

This makes sense since each µ(w) is e2-vanishing, and hence also e2-standard. The map ψ
takes relations to relations, and thus gives a well-defined map. Since r ≥ 2, Theorem A says
that Qn−1

∼= Qr. It follows from this theorem that

[
m∑
i=1

λiui] =
m∑
i=1

λi[ui].

Plugging this into ψ, we see that

[f,

m∑
i=1

λivi]
′
0 = ψ

(
[

m∑
i=1

λiui]

)
=

m∑
i=1

λiψ ([ui]) =

m∑
i=1

λi[f, vi]
′
0,

as desired. □

Recall that B = {e1, . . . , en} is the standard basis for Zn and B∗ = {e∗1, . . . , e∗n} is the
corresponding dual basis for (Zn)∗. Let Γ = SLn(Z, e1, e∗2) be the stabilizer of e1 and e∗2 in
SLn(Z). The action of Γ on (Zn)∗ fixes the e∗1-coordinate, and the action of Γ on Zn fixes
the e2-coordinate. It follows that Γ acts on on A′

n, and we will use this action to prove our
theorem. We follow the outline from §3, though for readability we divide Step 3 into Steps
3.A and 3.B.

Step 1. Let S = S1 ∪ S2, where the Si are:

S1 =
{
[e∗i , ej ]

′
0 | 1 ≤ i, j ≤ n distinct

}
,

S2 =
{
[e∗i + e∗i+1, ei − ei+1]

′
0 | 1 ≤ i < n

}
.

Note that all of these are generators of A′
n. Like we did here, we will write elements of S in

blue. Then the restriction of Φ to ⟨S⟩ is an isomorphism.

The proof is identical to that of Step 1 in the proof of Theorem B, so we omit the details.

Step 2. Recall that Γ = SLn(Z, e1, e∗2). We prove that the Γ-orbit of S spans A′
n.
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Consider a generator [f, v]′0 of A′
n, so:

• f ∈ (Zn)∗ is primitive and e∗1-standard; and
• v ∈ Zn is primitive and e2-standard; and
• f(v) = 0.

We want to prove that [f, v]′0 is in the span of the Γ-orbit of S. There are three (nonexclusive)
cases:

Case 2.1. The e∗1-coordinate of f is ±1.

Using the claim from the beginning of the proof, we have [f, v]′0 = −[−f, v]′0, so replacing
[f, v]′0 with [−f, v]′0 if necessary we can assume that the e∗1-coordinate of f is 1. LetM be the
matrix whose rows are {f, e∗2, . . . , e∗n}. Since the e∗1-coordinate of f is 1, we have det(M) = 1.
By construction we have have M ∈ Γ = SLn(Z, e1, e∗2) and M(e∗1) = f . Replacing [f, v]′0 by
M−1([f, v]′0), we can assume that f = e∗1. Write

v = λ1e1 + · · ·+ λnen with λ1, . . . , λn ∈ Z.

Since v is in the kernel of f = e∗1, we have λ1 = 0. Using the claim from the beginning of
the proof, we have

[f, v]′0 = [e∗1, λ2e2 + · · ·+ λnen]
′
0 = λ2[e

∗
1, e2]

′
0 + · · ·+ λn[e

∗
1, en]

′
0 ∈ ⟨S⟩,

as desired.

Case 2.2. The e2-coordinate of v is ±1.

Similar to Case 2.1 except that after possibly replacing [f, v]′0 with [f,−v]′0 we apply an
element of Γ = SLn(Z, e1, e∗2) to change v to e2.

Case 2.3. The e∗1-coordinate of f is 0 and the e2-coordinate of v is 0.

Write f = pe∗2 + qg with p, q ∈ Z and g ∈ ⟨e∗3, . . . , e∗n⟩ primitive. Since f is primitive,
we have gcd(p, q) = 1. Since n ≥ 4, it follows that the action of SL(⟨e∗3, . . . , e∗n⟩) on
⟨e∗3, . . . , e∗n⟩ is transitive on primitive vectors. Using this, we can find M ∈ SLn(Z) such
that M(g) = e∗3 and such that M acts as the identity on ⟨e∗1, e∗2⟩ and ⟨e1, e2⟩. It follows that
M ∈ Γ = SLn(Z, e1, e∗2). Replacing [f, v]′0 = [pe∗2 + qg, v]′0 with M([f, v]′0), we can assume
that f = pe∗2 + qe∗3. Write

v = λ1e1 + · · ·+ λnen with λ1, . . . , λn ∈ Z.

By assumption, we have λ2 = 0. Since f(v) = 0 and f = pe∗2 + qe∗3, we have

pλ2 + qλ3 = qλ3 = 0.

It follows that either q or λ3 must vanish. If q = 0, then since f = pe∗2 + qe∗3 is primitive we
must have p ∈ {±1} and we can use the claim from the beginning of the proof to see that

[f, v]′0 = [pe∗2, λ1e1 + λ3e3 + · · ·+ λnen]
′
0

= pλ1[e
∗
2, e1]

′
0 + pλ3[e

∗
2, e3]

′
0 + · · ·+ pλn[e

∗
2, en]

′
0 ∈ ⟨S⟩,

as desired. If instead λ3 = 0, then we can again use the claim from beginning of the proof
to see that

[f, v]′0 = [pe∗2 + qe∗3, λ1e1 + λ4e4 + · · ·+ λnen]
′
0

=
∑

1≤i≤n
i ̸=2,3

λi[pe
∗
2 + qe∗3, ei]

′
0 =

∑
1≤i≤n
i ̸=2,3

(
pλi[e

∗
2, ei]

′
0 + qλi[e

∗
3, ei]

′
0

)
∈ ⟨S⟩,

again as desired.
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Step 3.A. In preparation for proving that Γ = SLn(Z, e1, e∗2) takes ⟨S⟩ to ⟨S⟩, we prove
that all elements of 9

E =
{
[e∗i + e∗j , ei − ej ]

′
0 | 1 ≤ i, j ≤ n distinct

}
∪
{
[e∗i − e∗j , ei + ej ]

′
0 | 1 ≤ i, j ≤ n distinct

}
∪
{
[e∗i + 2e∗j , 2ei − ej ]

′
0 | 1 ≤ i, j ≤ n distinct, j ̸= 1, i ̸= 2

}
.

lie in ⟨S⟩. Like we did here, we will write elements of E in green.

The proof is identical to that of Step 3.A of the proof of Theorem B; indeed, a careful
examination of that proof shows that every term [f, v]′0 that appears when handling the
elements of E listed above has the property that f is e∗1-standard and v is e2-standard. We
therefore omit the details.

Step 3.B. We prove that Γ = SLn(Z, e1, e∗2) takes ⟨S⟩ to itself. By Step 2 this will imply
that ⟨S⟩ = A′

n, and thus by Step 1 that Φ is an isomorphism.

For distinct 1 ≤ i, j ≤ n, let Eij ∈ SLn(Z) be the elementary matrix obtained from the
identity by placing a 1 at position (i, j). The matrix Eij lies in Γ if j ̸= 1 and i ̸= 2, and the
set

Λ = {Eij | 1 ≤ i, j ≤ n distinct, j ̸= 1, i ̸= 2}
generates Γ. Fixing some Eij ∈ Λ and some ϵ = ±1, it is enough to prove that Eϵij takes ⟨S⟩
to itself. The proof of this is identical to that of Step 3.B of the proof of Theorem B. We
therefore omit the details. □

7. Generating the symplectic group

To prove our theorems about Sp2g(Z), we need generators for Sp2g(Z). The most con-
venient generating set was constructed by Hua–Reiner [3], which we now describe. Recall
from §1.13 that H = Q2g and HZ = Z2g, which are equipped with the standard symplectic
form ω. Let B = {a1, b1, . . . , ag, bg} be a symplectic basis for HZ.

Define SymSpg to be the subgroup of Sp2g(Z) consisting of all f ∈ Sp2g(Z) such that for
all x ∈ B, we have either f(x) ∈ B or −f(x) ∈ B. This is a finite group. Associated to each
f ∈ Sp2g(Z) is a permutation p of {1, . . . , g} such that for all 1 ≤ i ≤ g the pair (f(ai), f(bi))
is one of the following:

(ap(i), bp(i)), or (−ap(i),−bp(i)), or (bp(i),−ap(i)), or (−bp(i), ap(i)).

Next, for 1 ≤ i ≤ g let Xi ∈ Sp2g(Z) be the element defined by

Xi(ai) = ai + bi and Xi(x) = x for x ∈ B \ {ai}.

Finally, for distinct 1 ≤ i, j ≤ g let Yij ∈ Sp2g(Z) be the element defined by

Yij(ai) = ai + bj and Yij(aj) = aj + bi and Yij(x) = x for x ∈ B \ {ai, aj}.

It follows from the calculations in [3] that:10

Theorem 7.1 (Hua–Reiner, [3]). For all g ≥ 1, the group Sp2g(Z) is generated by SymSpg
and X1 and Y12.

9Note that all of these lie in A′
n; indeed, the only [f, v]′0 ∈ E where there is any possibility that either f is

not e∗1-standard or v is not e2-standard are those of the form [e∗i + 2e∗j , 2ei − ej ]
′
0, and our assumptions that

j ̸= 1 and i ̸= 2 ensure that indeed [f, v]′0 ∈ A′
n.

10This is not identical to the generating set from [3], but it is easily seen to be equivalent to it and fits
better into our calculations.
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Remark 7.2. The other Xi are not needed since they are all conjugate to X1 by elements of
SymSpg. Similarly, the other Yij are not needed. □

The most complicated generator is Y12. The following observation will simplify our
calculations by allowing us to not worry about Y −1

12 :

Corollary 7.3. For all g ≥ 1, the group Sp2g(Z) is generated as a monoid by SymSpg and

{X1, X
−1
1 , Y12}.

Proof. Let σ ∈ SymSp2g be the element that multiplies a1 and b1 by −1 while fixing all

other elements of B. We then have Y −1
12 = σY12σ. The corollary follows. □

8. Symplectic group I: standard representation

Recall that Hn is the Q-vector space with the following presentation:

• Generators. A generator [v]Sp for all primitive vectors v ∈ HZ.
• Relations. For a partial basis {v1, v2} of HZ with ω(v1, v2) = 0, the relation
[v1]Sp + [v2]Sp = [v1 + v2]Sp.

Define a linearization map Φ: Hg → H via the formula Φ([v]Sp) = v. This takes relations to
relations, and thus gives a well-defined map. Our goal is to prove:

Theorem C. For g ≥ 2, the linearization map Φ: Hg → H is an isomorphism.

Proof. Let B = {a1, b1, . . . , ag, bg} be a symplectic basis for HZ. We follow the outline from
§3, though for readability we divide Step 3 into Steps 3.A and 3.B.

Step 1. Let S = {[x]Sp | x ∈ B}. Then the restriction of Φ to ⟨S⟩ is an isomorphism.

Immediate.

Step 2. We prove that the Sp2g(Z)-orbit of S spans Hg.

Since Sp2g(Z) acts transitively on primitive vectors, it acts transitively on the generators
for Hg. It follows that the Sp2g(Z)-orbit of S spans Hg.

Step 3.A. In preparation for proving that Sp2g(Z) takes ⟨S⟩ to ⟨S⟩, we prove that all
elements of E = {[−x]Sp | x ∈ B} ∪ {[a1 + b1]Sp, [a1 − b1]Sp} lie in ⟨S⟩.

We divide this into three claims:

Claim 3.A.1. For all primitive v ∈ HZ, we have [−v]Sp = −[v]Sp. In particular, all elements
of {[−x]Sp | x ∈ B} lie in S.

Since g ≥ 2, we can find w ∈ HZ with ω(v, w) = 0 such that ⟨v, w⟩ is a rank-2 direct
summand of Z2g. Let µ : Z2 → ⟨v, w⟩ be the isomorphism taking the standard basis {e1, e2}
of Z2 to {v, w}. Recall that we defined Qn in Definition 1.1. Define a map ψ : Q2 → Hg via
the formula

ψ([x]) = [µ(x)]Sp for a primitive x ∈ Z2.

Since ω(−,−) vanishes identically on ⟨v, w⟩, this formula takes generators to generators.
Theorem A says that Q2

∼= Q2. This implies that [−x] = −[x] for all primitive x ∈ Z2. In
particular,

[−v]Sp = [−µ(e1)]Sp = ψ([−e1]) = ψ(−[e1]) = −[v]Sp.

Claim 3.A.2. We have [a1 + b1]Sp ∈ ⟨S⟩.
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The element [(a1 + b1) + (a2 + b2)]Sp equals [a1 + b1]Sp + [a2 + b2]Sp. It also equals

[(a1 + b2) + (a2 + b1)]Sp = [a1 + b2]Sp + [a2 + b1]Sp = [a1]Sp + [b2]Sp + [a2]Sp + [b1]Sp.

We deduce that

(8.1) [a1 + b1]Sp + [a2 + b2]Sp = [a1]Sp + [b2]Sp + [a2]Sp + [b1]Sp.

Similarly, the element [(a1 + b1)− (a2 + b2)]Sp equals [a1 + b1]Sp − [a2 + b2]Sp. It also equals

[(a1 − b2) + (−a2 + b1)]Sp = [a1 − b2]Sp + [−a2 + b1]Sp = [a1]Sp − [b2]Sp − [a2]Sp + [b1]Sp.

We deduce that

(8.2) [a1 + b1]Sp − [a2 + b2]Sp = [a1]Sp − [b2]Sp − [a2]Sp + [b1]Sp.

Adding (8.1) and (8.2) and dividing by 2 yield the claim.

Claim 3.A.3. We have [a1 − b1]Sp ∈ ⟨S⟩.

The element [(a1 − b1) + (a2 − b2)]Sp equals [a1 − b1]Sp + [a2 − b2]Sp. It also equals

[(a1 − b2) + (a2 − b1)]Sp = [a1 − b2]Sp + [a2 − b1]Sp

= [a1]Sp − [b2]Sp + [a2]Sp − [b1]Sp.

We deduce that

(8.3) [a1 − b1]Sp + [a2 − b2]Sp = [a1]Sp − [b2]Sp + [a2]Sp − [b1]Sp.

Similarly, the element [(a1 − b1)− (a2 − b2)]Sp equals [a1 − b1]Sp − [a2 − b2]Sp. It also equals

[(a1 + b2) + (−a2 − b1)]Sp = [a1 + b2]Sp + [−a2 − b1]Sp

= [a1]Sp + [b2]Sp − [a2]Sp − [b1]Sp.

We deduce that

(8.4) [a1 − b1]Sp − [a2 − b2]Sp = [a1]Sp + [b2]Sp − [a2]Sp − [b1]Sp.

Adding (8.3) and (8.4) and dividing by 2 yields the claim.

Step 3.B. We prove that Sp2g(Z) takes ⟨S⟩ to itself. By Step 2 this will imply that ⟨S⟩ = Hg,
and thus by Step 1 that Φ is an isomorphism.

Corollary 7.3 says that Sp2g(Z) is generated as a monoid by SymSpg ∪{X1, X
−1
1 , Y12}.

Let f ∈ SymSpg ∪{X1, X
−1
1 , Y12} and let s ∈ S. Using Step 3.A, it is enough to check that

f(s) can both be written as a linear combination of elements of S and E.
The first case is f ∈ SymSpg. This case is easy: we have s = [x]Sp for some x ∈ B, and

for some y ∈ B the element f(s) = [f(x)]Sp is either [y]Sp ∈ S or [−y]Sp ∈ E. The second

case is f = X1 or f = X−1
1 . Recall that X1 takes a1 to a1 + b1 and fixes all other elements

of B. Both X1 and X−1
1 fix all elements of S except for [a1]Sp, and for this we have

X1([a1]Sp) = [a1 + b1]Sp ∈ E,

X−1
1 ([a1]Sp) = [a1 − b1]Sp ∈ E.

The final case is f = Y12. Recall that this takes a1 to a1 + b2 and a2 to b1 + a2 and fixes all
other elements of B. The element Y12 fixes all elements of S except for [a1]Sp and [a2]Sp, for
these we have

Y12([a1]Sp) = [a1 + b2]Sp = [a1]Sp + [b2]Sp ∈ ⟨S⟩,
Y12([a2]Sp) = [a2 + b1]Sp = [a2]Sp + [b1]Sp ∈ ⟨S⟩. □
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9. Symplectic group II: kernel and symmetric representations

We could prove Theorems D and E using our now-standard proof technique, but to
illustrate another useful tool we show how to deduce them from Theorem B.

9.1. Non-symmetric presentation. We defined Zsg and Zag in Definitions 1.12 and 1.11. We
now define the following, which is similar to these but does not include their symmetric/anti-
symmetric relations:

Definition 9.1. Define Zg to be the Q-vector space with the following presentation:

• Generators. A generator Lv1, v2M for all orthogonal primitive vectors v1, v2 ∈ HZ.
• Relations. For all primitive vectors v ∈ HZ and all partial bases {w1, w2} of v⊥Z ,
the relations

Lv, w1 + w2M = Lv, w1M + Lv, w2M, and

Lw1 + w2, vM = Lw1, vM + Lw2, vM. □

This combines Zsg and Zag in the following way. There is an involution I : Zg → Zg defined
by I(Lv1, v2M) = Lv2, v1M that we will call the canonical involution. We then have:

Lemma 9.2. We have Zg = Zsg ⊕ Zag, where Zsg and Zag are identified with the +1 and −1
eigenspaces of the canonical involution.

Proof. Define a map π : Zg → Zsg ⊕ Zag via the formula

π(Lv1, v2M) = (Lv1, v2Ms, Lv1, v2Ma).

This take relations to relations, and thus gives a well-defined map. Next, define ι : Zsg ⊕ Zag
as ι = ιs + ιa, where ιs : Z

s
g → Zg and ιa : Z

a
g → Zg are the maps defined via the formulas

ιs(Lv1, v2Ms) =
1

2
(Lv1, v2M + Lv2, v1M) ,

ιa(Lv1, v2Ma) =
1

2
(Lv1, v2M − Lv2, v1M) .

Again, these take relations to relations and thus give well-defined maps. The maps π and ι
are inverses, so both are isomorphisms. This gives the decomposition Zg = Zsg ⊕ Zag , and the
fact that Zsg and Zag are identified with the +1 and −1 eigenspaces of the canonical involution
follows from the above formulas. □

9.2. Identifying the non-symmetric presentation. Define a linearization map Φ: Zg →
H⊗2 via the formula Φ(Lv1, v2M) = v1 ⊗ v2. This takes relations to relations, and thus gives
a well-defined map. Its image lies in the kernel Zg of the map

H⊗2 ∧2H Q,ω

where the second map is the one induced by the symplectic form ω. We will prove:

Theorem 9.3. For g ≥ 2, the linearization map Φ: Zg → Zg is an isomorphism.

Proof. Pick an isomorphism µ2 : HZ → Z2g. Since ω identifies HZ with its dual H∗
Z =

Hom(H,Z), we can find a corresponding isomorphism µ1 : HZ → (Z2g)∗ such that

(9.1) ω(v1, v2) = µ1(v1)(µ2(v2)) for all v1, v2 ∈ HZ.

The map µ1 ⊗ µ2 : H
⊗2
Z → (Z2g)∗ ⊗ Z2g is then an Sp2g(Z)-equivariant isomorphism.

Recall that we defined the vector space A2g in Definition 1.6. Using µ1 and µ2, we can
define a map M : Zg → A2g via the formula M(Lv1, v2M) = [µ1(v1), µ2(v2)]0. The identity
(9.1) implies that [µ1(v1), µ2(v2)]0 is a generator for A2g. The map M takes relations to
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relations, and thus gives a well-defined map. In fact, even more is true: M is an isomorphism
with inverse the map taking [f, v]0 to Lµ−1

1 (f), µ−1
2 (v)M.

The vector space A2g is equipped with a linearization map Φ: A2g → (Q2g)∗⊗Q2g defined
via the formula Φ([f, v]0) = f ⊗ v. The image of this map is the kernel sl2g(Q) of the trace
map

tr : (Qn)∗ ⊗Qn −→ Q
defined by tr(f, v) = f(v). Theorem B says that Φ: A2g → sl2g(Q) is an isomorphism.

Abusing notation slightly, we will identify the isomorphism µ1 ⊗ µ2 : H
⊗2
Z → (Zn)∗ ⊗ Zn

with the corresponding isomorphism µ1 ⊗ µ2 : H
⊗2 → (Qn)∗ ⊗Qn. By (9.1), this takes Zg

to sl2g(Q). This all fits into a commutative diagram

Zg A2g

Zg sl2g(Q).

M
∼=

Φ Φ∼=
µ1⊗µ2

∼=

From this, we conclude that Φ: Zg → Zg is an isomorphism. □

9.3. Consequences. Let ι : H⊗2 → H⊗2 be the involution ι(v1 ⊗ v2) = v2 ⊗ v1. This
involution induces a decomposition of H⊗2 into into its +1 and −1 eigenspaces. This gives
the familiar decomposition

H⊗2 = Sym2(H)⊕ ∧2H.

Recall that Za
g is the kernel of the map ∧2H → Q given by the symplectic form. The vector

spaces Zg and Za
g fit into the above decomposition as

Zg = Sym2(H)⊕Za
g .

The involution ι lifts to the canonical involution I : Zg → Zg in the sense that diagram

Zg Zg

Zg Zg

I

Φ∼= Φ∼=
ι

commute. This implies that the isomorphism Φ: Zg → Zg from Theorem 9.3 matches up
the +1 and −1 eigenspaces of I and ι. For Zg, these eigenspaces were identified by Lemma
9.2, and the following theorems from the introduction follow:

Theorem E. For g ≥ 2, the linearization map Φ: Zsg → Sym2(H) is an isomorphism.

Theorem D. For g ≥ 1, the linearization map Φ: Zag → Za
g is an isomorphism.

Remark 9.4. One tiny issue with the above argument is that it only works for g ≥ 2, while
Theorem D is also supposed to hold for g = 1. However, for g = 1 this theorem is trivial
since Za1 = 0 and Za

1 = 0. □

Part 2. Improving the presentation for the symmetric kernel

We now turn to our theorems on the symmetric kernel. In this part of the paper, we
enlarge its purported presentation by adding some additional generators. The key result
needed to add these generators (Proposition 13.1 below) uses the proof technique from §3
that we have already used to prove Theorems A – E. See the introductory §10 for a more
detailed discussion of what we will do. Our main theorems will be proved in Parts 3 and 4,
again using the proof technique from §3.
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To avoid having to constantly impose genus hypotheses, we make the following blanket
assumption:

Assumption 9.5. Throughout Part 2, we assume that g ≥ 4. □

10. Introduction to Part 2

Recall from §1.13 that H = Q2g and HZ = Z2g and ω : H × H → Q is the standard
symplectic form on H. We start by recalling some definitions and notation from the
introduction and proving some preliminary results, and then we will outline the rest of this
part.

10.1. Quotient representation. The symplectic form ω on H identifies H with its dual.
Using this, we can identify alternating forms onH with elements of ∧2H. If {a1, b1, . . . , ag, bg}
is a symplectic basis for H, then

ω = a1 ∧ b1 + · · · ag ∧ bg.
The Q-span of ω in ∧2H is a copy of Q. The quotient (∧2H)/Q will always mean the
quotient by the Q-span of ω. Similarly, (∧2HZ)/Z will always mean the quotient of ∧2HZ
by the Z-span of ω.

10.2. Symmetric contraction. As we discussed in the introduction, the symmetric con-
traction is the bilinear map

c : ((∧2H)/Q)× ((∧2H)/Q) −→ Sym2(H)

defined by the formula

c(x ∧ y, z ∧ w) = ω(x, z)y·w − ω(x,w)y·z − ω(y, z)x·w + ω(y, w)x·z for x, y, z, w ∈ H.

The bilinear form c is alternating:

c(κ2, κ1) = −c(κ1, κ2) for all κ1, κ2 ∈ (∧2H)/Q.
It induces a map

((∧2H)/Q)⊗2 −→ Sym2(H)

whose kernel Kg is the symmetric kernel. We say that κ1, κ2 ∈ (∧2H)/Q are sym-orthogonal
if

c(κ1, κ2) = −c(κ2, κ1) = 0,

or equivalently if κ1⊗κ2 and κ2⊗κ1 lie in Kg. For κ ∈ (∧2H)/Q, the symmetric orthogonal

complement of κ, denoted κ⊥, is the subspace of all κ′ ∈ (∧2H)/Q that are sym-orthogonal
to κ.

10.3. Symplectic pairs. A symplectic pair is an element of (∧2HZ)/Z of the form a ∧ b,
where a, b ∈ HZ are such that ω(a, b) = 1. Equivalently, there exists a symplectic basis
{a1, b1, . . . , ag, bg} for HZ with a1 = a and b1 = b. For X ⊂ ∧2H, let X be its image in
(∧2H)/Q. Also, for V ⊂ HZ let VQ = V ⊗Q ⊂ H. We have:

Lemma 10.1. Let a ∧ b be a symplectic pair and let V = ⟨a, b⟩. Then (a ∧ b)⊥ = ∧2V ⊥
Q .

Proof. Let {a1, b1, . . . , ag, bg} be a symplectic basis for H with a1 = a and b1 = b, so

V ⊥
Q = ⟨a2, b2, . . . , ag, bg⟩. It is immediate from the formula for c in §10.2 that c(a1∧b1, κ) = 0

for κ ∈ ∧2V ⊥
Q , so ∧2V ⊥

Q ⊂ (a1 ∧ b1)
⊥. We must show the other inclusion. Via the

decomposition

∧2H = ∧2(VQ ⊕ V ⊥
Q ) =

(
∧2VQ

)
⊕
(
∧2V ⊥

Q

)
⊕
(
VQ ∧ V ⊥

Q

)
,
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this is equivalent to showing that the intersection of (a1 ∧ b1)⊥ and

(10.1) (∧2VQ)⊕
(
VQ ∧ V ⊥

Q

)
= ⟨a1 ∧ b1⟩ ⊕

(
VQ ∧ V ⊥

Q

)
is contained in ∧2V ⊥

Q .

Note that (10.1) is spanned by a1∧b1 and a1∧z and b1∧z as z ranges over {a2, b2, . . . , ag, bg}.
For such z, we have

c(a1 ∧ b1, a1 ∧ z) = −a1·z,
c(a1 ∧ b1, b1 ∧ z) = b1·z,
c(a1 ∧ b1, a1 ∧ b1) = −b1·a1 + a1·b1 = 0.

Other than 0, the elements of Sym2(H) appearing on the right hand side of this equation as
z ranges over {a2, b2, . . . , ag, bg} are linearly independent. It follows that the intersection of

(a1 ∧ b1)⊥ with (10.1) is spanned by

a1 ∧ b1 = −(a2 ∧ b2 + · · ·+ ag ∧ bg) ∈ ∧2V ⊥
Q ,

as desired. Note that here we are using the fact that we are working in (∧2H)/Q, so ω ∈ ∧2H
equals 0. □

10.4. Isotropic pairs. An isotropic pair is an element of (∧2HZ)/Z of the form a ∧ a′,
where a, a′ ∈ HZ are linearly independent elements such that ω(a, a′) = 0. The following is
the analogue for isotropic pairs of Lemma 10.1:

Lemma 10.2. Let a ∧ a′ be an isotropic pair and let I = ⟨a, a′⟩. Then (a ∧ a′)⊥ = ∧2I⊥Q .

Proof. We can find a symplectic basis {a1, b1, . . . , ag, bg} for H with a1 = a and a2 = a′, so

I⊥Q = ⟨a1, a2, a3, b3, . . . , ag, bg⟩. Note that we might not be able to find such a basis for HZ
since {a, a′} might not span a direct summand of HZ (see §10.5 below). It is immediate

from the formula for c in §10.2 that c(a1 ∧ a2, κ) = 0 for κ ∈ ∧2I⊥Q , so ∧2I⊥Q ⊂ (a1 ∧ a2)⊥.
We must show the other inclusion. Via the decomposition

∧2H = ∧2(I⊥Q ⊕ ⟨b1, b2⟩) =
(
∧2I⊥Q

)
⊕
(
b1 ∧ I⊥Q

)
⊕
(
b2 ∧ I⊥Q

)
⊕ ⟨b1 ∧ b2⟩,

this is equivalent to showing that the intersection of (a1 ∧ a2)⊥ and

(10.2)
(
b1 ∧ I⊥Q

)
⊕
(
b2 ∧ I⊥Q

)
⊕ ⟨b1 ∧ b2⟩.

is contained in ∧2I⊥Q . For z ∈ {a1, a2, a3, b3, . . . , ag, bg}, we have

c(a1 ∧ a2, b1 ∧ z) = a2·z,
c(a1 ∧ a2, b2 ∧ z) = −a1·z,
c(a1 ∧ a2, b1 ∧ b2) = a2·b2 + a1·b1.

The only linear dependence among the elements of Sym2(H) appearing on the right hand
side of this equation as z ranges over {a1, a2, a3, b3, . . . , ag, bg} is

c(a1 ∧ a2, b1 ∧ a1) + c(a1 ∧ a2, b2 ∧ a2) = a2·a1 − a1·a2 = 0.

It follows that the intersection of (a1 ∧ a2)⊥ with (10.2) is spanned by

b1 ∧ a1 + b2 ∧ a2 = −(a1 ∧ b1 + a2 ∧ b2) = a3 ∧ b3 + · · ·+ ag ∧ bg ∈ ∧2I⊥Q ,

as desired. □
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10.5. Strong isotropic pairs. A strong isotropic pair is an isotropic pair a ∧ a′ such
that {a, a′} forms a basis for a rank-2 direct summand of HZ. Equivalently, there exists a
symplectic basis {a1, b1, . . . , ag, bg} for HZ with a1 = a and a2 = a′. We will prove that every
isotropic pair is a multiple of a strong isotropic pair. This requires the following lemma:

Lemma 10.3. Let V be a subspace of Qn. Then VZ = V ∩ Zn is a direct summand of Zn.
Proof. The short exact sequence

0 V Qn Qn/V 0π

restricts to a short exact sequence

(10.3) 0 VZ Zn π(Zn) 0.π

The subgroup π(Zn) of Qn/V ∼= Qn−dim(V ) is finitely generated and torsion-free, and hence
free abelian. The short exact sequence (10.3) thus splits, so VZ is a direct summand of
Zn. □

For a subspace V of HZ, the saturation of V in HZ is VQ ∩HZ. By Lemma 10.3, this is a
direct summand of HZ. We have:

Lemma 10.4. Let a ∧ a′ be an isotropic pair. Then there exists a strong isotropic pair
a0 ∧ a′0 and n ∈ Z such that a ∧ a′ = na0 ∧ a′0. Moreover, ⟨a0, a′0⟩ is the saturation in HZ of
⟨a, a′⟩.
Proof. Set I = ⟨a, a′⟩ and let I be the saturation of I in HZ. Let {a0, a′0} be a basis
for I. Regarding a ∧ a′ and a0 ∧ a′0 as elements of ∧2H, they correspond to the same
2-dimensional subspace of H, namely IQ = IQ. It follows that there exists some n ∈ Q such
that a ∧ a′ = na0 ∧ a′0. Since a ∧ a′ ∈ ∧2HZ and a0 ∧ a′0 is a primitive element of ∧2HZ, we
must have n ∈ Z, as desired. □

10.6. Symmetric kernel presentation. We defined Zsg and Zag in Definitions 1.17 and
1.15. Just like we did for Zsg and Zag in §9.1, we now define a version of them that does not
include their symmetric/anti-symmetric relations:

Definition 10.5. Define Kg to be the Q-vector space with the following presentation:

• Generators. A generator Jκ1, κ2K for all sym-orthogonal κ1, κ2 ∈ (∧2H)/Q such
that either κ1 or κ2 (or both) is a symplectic pair in (∧2HZ)/Z.

• Relations. For all symplectic pairs a ∧ b ∈ (∧2HZ)/Z and all κ1, κ2 ∈ (∧2H)/Q
that are sym-orthogonal to a ∧ b and all λ1, λ2 ∈ Q, the relations

Ja ∧ b, λ1κ1 + λ2κ2K = λ1Ja ∧ b, κ1K + λ2Ja ∧ b, κ2K and

Jλ1κ1 + λ2κ2, a ∧ bK = λ1Jκ1, a ∧ bK + λ2Jκ2, a ∧ bK. □

There is an involution I : Kg → Kg defined by I(Jκ1, κ2K) = Jκ2, κ1K that we will call the
canonical involution. We have:

Lemma 10.6. We have Kg = Ksg ⊕ Kag, where Ksg and Kag are identified with the +1 and −1
eigenspaces of the canonical involution.

Proof. Identical to the proof of Lemma 9.2. □

There is a linearization map Φ: Kg → ((∧2H)/Q)⊗2 defined by Φ(Jκ1, κ2K) = κ1 ⊗ κ2.
This takes relations to relations, and thus gives a well-defined map. Since in the generator
Jκ1, κ2K the elements κ1 and κ2 are sym-orthogonal, the image of Φ lies in Kg. In light of
Lemma 10.6, Theorems F and G are equivalent to:

Theorem 10.7. For g ≥ 4, the linearization map Φ: Kg → Kg is an isomorphism.
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10.7. Goal of Part 2. Our goal in the rest of this paper is to prove Theorem 10.7. Actually,
it will turn out that it is more convenient to prove Theorems F and G separately. We
introduced the representation Kg from Theorem 10.7 for the sake of the calculations in this
part of the paper, which later will give results about Kag and Ksg that will be needed for the
proofs of Theorems F and G.

Our goal in this part is to enhance Kg by showing that in the above presentation we can
add generators Jκ1, κ2K such that κ1, κ2 ∈ (∧2H)/Q are sym-orthogonal elements with either
κ1 or κ2 (or both) a symplectic pair or an isotropic pair.11 Lemma 10.6 will then imply a
corresponding result about Ksg and Kag . We accomplish this in §15. This is preceded by a
series of preliminary results in §11 – §14.

11. Isotropic pairs I: setup

This section contains the basic framework for constructing our new generators.

11.1. Generation by symplectic pairs. We start with a technical lemma. Let X be a
direct summand of HZ. Define ker(X) to be the subspace of all x0 ∈ X such that ω(x0, x) = 0
for all x ∈ X. The rank of ker(X) is the kernel rank of X.

The restriction of ω to X induces an alternating bilinear form ι on X/ ker(X), and
we say that X is a near symplectic summand of HZ if ι is a symplectic form. This is
equivalent to requiring that there be a symplectic basis {a1, b1, . . . , ag, bg} for HZ such that
X = ⟨a1, b1, . . . , ah, bh, ah+1, . . . , ah+k⟩ for some h ≤ g and k ≤ g − h. The integer k is the
kernel rank of X, and we call h the genus of X. Here is an example of this:

Lemma 11.1. Let I be a rank-k subgroup of HZ on which ω vanishes identically. Then I⊥

is a near symplectic summand of genus g − k and kernel rank k.

Proof. Let I be the saturation of I in HZ. Since IQ = IQ we have that I⊥ = I
⊥
. Lemma

10.3 implies that I is a direct summand of HZ. We can therefore find a symplectic basis
{a1, b1, . . . , ag, bg} for HZ such that I = ⟨a1, a2, . . . , ak⟩. It follows that

I⊥ = I
⊥
= ⟨a1, a2, . . . , ak, ak+1, bk+1, . . . , ag, bg⟩.

The lemma follows. □

Our main result about near symplectic summands is:

Lemma 11.2. Let X be a near symplectic summand of HZ of genus h ≥ 1. Then ∧2XQ is

spanned by symplectic pairs σ with σ ∈ ∧2XQ.

Proof. Let k be the kernel rank of X and let {a1, b1, . . . , ag, bg} be a symplectic basis for

HZ such that X = ⟨a1, b1, . . . , ah, bh, ah+1, . . . , ah+k⟩. The vector space ∧2XQ is spanned by
elements of the form x ∧ y with x, y ∈ {a1, b1, . . . , ah, bh, ah+1, . . . , ah+k} distinct. We must

write each of these as a linear combination of symplectic pairs σ with σ ∈ ∧2XQ.
Up to flipping x and y, there are several cases. In each of them, we will use blue to denote

symplectic pairs σ with σ ∈ ∧2XQ.

• If ω(x, y) = 1, then we have x = ai and y = bi for some 1 ≤ i ≤ h and x ∧ y is
already of the desired form.

• If ω(x, y) = 0 and x ∈ {a1, b1, . . . , ah, bh} and y ∈ {a1, b1, . . . , ah, bh, ah+1, . . . , ah+k},
then for 1 ≤ i ≤ h we have either:

x ∧ y = ai ∧ y = ai ∧ (bi + y)− ai ∧ bi, or
x ∧ y = bi ∧ y = −(ai + y) ∧ bi + ai ∧ bi.

11We will actually prove something slightly more general.
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• If x, y ∈ {ah+1, . . . , ah+k}, then we have

x ∧ y = (a1 + x) ∧ (b1 + y)− a1 ∧ (b1 + y)− (a1 + x) ∧ b1 + a1 ∧ b1. □

11.2. Right compatible subspaces. Let a∧a′ be an isotropic pair. Define Kg[−, a∧a′] to
be the subspace of Kg spanned by elements of the form Jσ, a ∧ a′K with σ a symplectic pair
that is sym-orthogonal to a ∧ a′. Let Φ: Kg → ((∧2H)/Q)⊗2 be the linearization map. Our

main technical result will be that Φ takes Kg[−, a∧a′] isomorphically onto (a∧a′)⊥⊗ (a∧a′).
The proof of this is spread over §11 – §13, with the result being Proposition 13.1. In §14, we
use this to construct our new generators.

Remark 11.3. We could also define Kg[a ∧ a′,−] similarly, and all of our results would have
analogues for Kg[a ∧ a′,−]. To avoid repetition, we will focus on Kg[−, a ∧ a′] and then at
the very end formally derive these analogues; see §14.2. □

11.3. Calculating the image. We start by proving:

Lemma 11.4. Let a∧a′ be an isotropic pair and let Φ: Kg → ((∧2H)/Q)⊗2 be the lineariza-

tion map. Then Φ takes Kg[−, a ∧ a′] onto (a ∧ a′)⊥ ⊗ (a ∧ a′).

Proof. By definition, Kg[−, a ∧ a′] is spanned by elements of the form Jσ, a ∧ a′K with σ a

symplectic pair such that σ ∈ (a ∧ a′)⊥. Since Φ(Jσ, a ∧ a′K) = σ ⊗ (a ∧ a′), this implies that

Φ(Kg[−, a ∧ a′]) ⊂ (a ∧ a′)⊥ ⊗ (a ∧ a′).

To see that this is an equality, let I = ⟨a, a′⟩. Lemma 10.2 says that (a ∧ a′)⊥ = ∧2I⊥Q .

Lemma 11.1 says that I⊥ is a near symplectic summand of genus12 g − 2 ≥ 1. Lemma 11.2

therefore implies that ∧2I⊥Q is spanned by symplectic pairs σ such that σ ∈ ∧2I⊥Q . The
desired equality follows. □

12. Isotropic pairs II: lifting orthogonal elements

Let a∧ a′ be an isotropic pair and let κ ∈ (a∧ a′)⊥. In this section, for certain κ we show
how to find specific elements of Kg[−, a ∧ a′] projecting to κ⊗ (a ∧ a′).

12.1. Separating classes. A subgroup X of HZ is said to separate κ from a ∧ a′ if:
• X ⊂ ⟨a, a′⟩⊥; and
• κ ∈ ∧2XQ; and
• X is a near symplectic summand of HZ of positive genus. This implies in particular
that X is a direct summand of HZ.

Let X be a direct summand of HZ separating κ from a ∧ a′. Use Lemma 11.2 to write

(12.1) κ =

n∑
i=1

λiσi with λi ∈ Q and σi a symplectic pair with σi ∈ ∧2XQ.

12.2. Constructing the lift. We would like to define

J(κ;X), a ∧ a′K =
n∑
i=1

λiJσi, a ∧ a′K ∈ Kg.

This is in orange to emphasize that it is not one of our generators. It appears to depend on
the expression (12.1), but below we will prove that under favorable circumstances it does
not depend on this expression.

12Here we are using our standing assumption that g ≥ 4; see Assumption 9.5.
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To state our result, recall that a Lagrangian in HZ is a direct summand L with L⊥ = L.
Equivalently, we can find a symplectic basis {a1, b1, . . . , ag, bg} for HZ with L = ⟨a1, . . . , ag⟩.
We say that X is Lagrangian-free if X does not contain a Lagrangian of HZ. Then:

Lemma 12.1. Let the notation be as above, and assume that X is Lagrangian-free. Then
J(κ;X), a ∧ a′K does not depend on (12.1).

Proof. Let

κ =
m∑
j=1

λ′jσ
′
j with λ′j ∈ Q and σ′j a symplectic pair with σ′j ∈ ∧2XQ

be another expression. We must prove that

(12.2)

n∑
i=1

λiJσi, a ∧ a′K =
m∑
j=1

λ′jJσ
′
j , a ∧ a′K.

Let h ≥ 1 be the genus of X and let k be the kernel rank of X. Pick a symplectic basis
{a1, b1, . . . , ag, bg} for HZ with X = ⟨a1, b1, . . . , ah, bh, ah+1, . . . , ah+k⟩. We then have

X⊥ = ⟨ah+1, . . . , ah+k, ah+k+1, bh+k+1, . . . , ag, bg⟩.

Since X is Lagrangian-free, we have h + k < g. It follows that X⊥ is a near symplectic
summand of HZ of positive genus. By assumption, a, a′ ∈ X⊥. Using Lemma 11.2, we can
write

a ∧ a′ =
p∑
ℓ=1

cℓsℓ with cℓ ∈ Q and sℓ a symplectic pair with sℓ ∈ ∧2X⊥
Q .

We have the following relation in Kg:

Jσi, a ∧ a′K =
p∑
ℓ=1

cℓJσi, sℓK.

Using the relations in Kh again, it follows that

n∑
i=1

λiJσi, a ∧ a′K =
p∑
ℓ=1

(
cℓ

n∑
i=1

λiJσi, sℓK

)
=

p∑
ℓ=1

(
cℓJ

n∑
i=1

λiσi, sℓK

)
=

p∑
ℓ=1

cℓJκ, sℓK.

Similarly, we have
m∑
j=1

λ′jJσ
′
j , a ∧ a′K =

p∑
ℓ=1

cℓJκ, sℓK.

The equality (12.2) follows. □

12.3. Properties of the lift. We now give three properties of our lifts. The first is linearity:

Lemma 12.2 (Linearity of the lifts). Let a ∧ a′ be an isotropic pair, let κ1, κ2 ∈ (a ∧ a′)⊥,
and let λ1, λ2 ∈ Q. Let X be a direct summand of HZ that is Lagrangian-free and separates
both κ1 and κ2 from a ∧ a′. Then

J(λ1κ1 + λ2κ2;X), a ∧ a′K = λ1J(κ1;X), a ∧ a′K + λ2J(κ2;X), a ∧ a′K.

Proof. By taking the corresponding linear combination of the expressions in Kg[−, a ∧ a′]
that we used to write J(κ1;X); a ∧ a′K and J(κ2;X), a ∧ a′K, we obtain an expression that
can be used to write J(λ1κ1 + λ2κ2;X), a ∧ a′K. The lemma follows. □
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The second is equivariance. For a strong isotropic pair a ∧ a′ and f ∈ Sp2g(Z), note that
f(a)∧ f(a′) is another strong isotropic pair. The group Sp2g(Z) also acts on Kg, and f takes
Kg[−, a ∧ a′] to Kg[−, f(a) ∧ f(a′)]. We have:

Lemma 12.3 (Equivariance of the lifts). Let a∧a′ be an isotropic pair and let κ ∈ (a∧a′)⊥.
Let X be a direct summand of HZ that is Lagrangian-free and separates κ from a ∧ a′. Then
for all f ∈ Sp2g(Z) we have f(J(κ;X), a ∧ a′K) = J(f(κ); f(X)), f(a) ∧ f(a′)K.

Proof. The map f takes the expression in Kg[−, a ∧ a′] we used to write J(κ;X), a ∧ a′K to
one that can be used to write J(f(κ); f(X)), f(a) ∧ f(a′)K. The lemma follows. □

Our final lemma lets us change X:

Lemma 12.4 (Changing the separator in the lifts). Let a ∧ a′ be an isotropic pair and
let κ ∈ (a ∧ a′)⊥. Let X and X ′ be direct summands of HZ that are Lagrangian-free and
separate κ from a ∧ a′. Assume that X ⊂ X ′. Then J(κ;X), a ∧ a′K = J(κ;X ′), a ∧ a′K.

Proof. Since X ⊂ X ′, the expression in Kg[−, a ∧ a′] we used to write J(κ;X), a ∧ a′K can
also be used to write J(κ;X ′), a ∧ a′K. The lemma follows. □

12.4. Symplectic automorphism group. We pause now to prove a lemma about the
symplectic group. Let I be a rank-k direct summand of HZ on which ω vanishes identically.
Let Sp2g(Z, I) be the subgroup of all f ∈ Sp2g(Z) such that f fixes I pointwise. The group

Sp2g(Z, I) acts on I⊥. Let Sp2g(Z, I)|I⊥ be the image of Sp2g(Z, I) in Aut(I⊥). Lemma 11.1

says that I⊥ is a near symplectic summand of HZ of genus g− k, so we can find a symplectic
summand X of HZ of genus g − k such that I⊥ = X ⊕ I. We have:

Lemma 12.5. Let X and I be as above. We then have a semidirect product decomposition

Sp2g(Z, I)|I⊥ = Hom(X, I)⋉ Sp(X),

where for λ ∈ Hom(X, I) the associated element f ∈ Sp2g(Z, I)|I⊥ satisfies f(x) = x+ λ(x)
for all x ∈ X.

Proof. Set Γ = Sp2g(Z, I)|I⊥ . The action of Γ on I⊥ descends to an action on I⊥/I. The

symplectic form on HZ induces a symplectic form on I⊥/I. We thus get a homomorphism

ρ : Γ −→ Sp(I⊥/I).

The map I⊥ → I⊥/I restricts to an isomorphism X ∼= I⊥/I. Identifying Sp(X) with the
subgroup of Γ consisting of automorphisms that act trivially on X⊥, the homomorphism ρ
splits via the map

Sp(I⊥/I) ∼= Sp(X) Γ.

We therefore get a semidirect product decomposition

Γ = ker(ρ)⋉ Sp(X).

To identify ker(ρ) with Hom(X, I), consider f ∈ ker(ρ). By definition, for x ∈ X we
have f(x)− x ∈ I. We can therefore define a homomorphism λf : X → I via the formula

λf (x) = f(x)− x. If λf = 0, then f fixes both X and I, so it fixes I⊥ = X ⊕ I and is the
identity.

The map f 7→ λf is thus an injective homomorphism from ker(ρ) to Hom(X, I). We remark
that the fact that is a homomorphism uses the fact that f(y) = y for all y ∈ I. To see that
it is a surjection and thus an isomorphism, consider λ ∈ Hom(X, I). Let {a1, b1, . . . , ak, bk}
be a symplectic basis for X⊥ such that I = ⟨a1, a2, . . . , ak⟩. Set J = ⟨b1, b2, . . . , bk⟩. Since ω
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restricts to a symplectic form on X, it identifies X with Hom(X,Z). There is thus a unique
homomorphism δ : J → X such that

ω(x, δ(z)) = −ω(λ(x), z) for all x ∈ X and z ∈ J.

Since X and J are orthogonal to each other, for x ∈ X and z ∈ J we have

ω(x+ λ(x), z + δ(z)) = ω(λ(x), z) + ω(x, δ(z)) = 0.

In other words, the map f : HZ → HZ defined by f(x) = x+ λ(x) for x ∈ X and

f(ai) = ai and f(bi) = bi + δ(bi)

for 1 ≤ i ≤ k is an element of Sp2g(Z, I) whose restriction to I⊥ satisfies λ = λf . The lemma
follows. □

12.5. Fixed lift. Let a ∧ a′ be a strong isotropic pair, so I = ⟨a, a′⟩ is a direct summand
of HZ. There is a special element (a ∧ a′)⊗ (a ∧ a′) in (a ∧ a′)⊥ ⊗ (a ∧ a′) that is fixed by
Sp2g(Z, I). We close this section by showing that we can lift this to an element of Kg[−, a∧a′]
that is fixed by Sp2g(Z, I). To state our result, let {a1, b1, . . . , ag, bg} be a symplectic basis

for HZ with13 ag−1 = a and ag = a′. For 1 ≤ i ≤ g − 2, let Wi = ⟨ai, bi, ag−1, ag⟩. We then
have:

Lemma 12.6. Let ag−1 and ag and Wi be as above. The following then hold:

• For 1 ≤ i, j ≤ g − 2 we have

J(ag−1 ∧ ag;Wi), ag−1 ∧ agK = J(ag−1 ∧ ag;Wj), ag−1 ∧ agK.

• For 1 ≤ i ≤ g − 2, the group Sp2g(Z, I) fixes J(ag−1 ∧ ag;Wi), ag−1 ∧ agK.

Proof. For κ ∈ (a ∧ a′)⊥ and a summand X of HZ that is Lagrangian-free and separates κ
from ag−1 ∧ ag, we will drop the ag−1 ∧ ag from our notation and write Jκ;XK instead of
J(κ;X), ag−1 ∧ agK. We encourage the reader to verify that all the summands appearing in

our calculations are Lagrangian-free and separate the appropriate elements of (a∧ a′)⊥ from
ag−1 ∧ ag. In particular, they all have positive genus. We have:

Claim. For 1 ≤ i, j ≤ g − 2, we have Jag−1 ∧ ag;WiK = Jag−1 ∧ ag;WjK.

Using Lemma 12.2 (linearity of the lifts), we have

Jag−1 ∧ ag;WiK = J(ai + ag−1) ∧ ag;WiK − Jai ∧ ag;WiK,
Jag−1 ∧ ag;WjK = J(aj + ag−1) ∧ ag;WjK − Jaj ∧ ag;WjK.

To prove that these are equal, we must show that

(12.3) J(ai + ag−1) ∧ ag;WiK + Jaj ∧ ag;WjK = J(aj + ag−1) ∧ ag;WjK + Jai ∧ ag;WiK.

Using Lemma 12.4 (changing the separator in the lifts), we have

J(ai + ag−1) ∧ ag;WiK = J(ai + ag−1) ∧ ag; ⟨ai + ag−1, bi, ag⟩K
= J(ai + ag−1) ∧ ag; ⟨ai + ag−1, bi, aj , bj , ag⟩K,

Jaj ∧ ag;WjK = Jaj ∧ ag; ⟨aj , bj , ag⟩K
= Jaj ∧ ag; ⟨ai + ag−1, bi, aj , bj , ag⟩K.

13Indexing it like this rather than a1 = a and a2 = a′ will simplify our notation later.
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Adding these and using Lemmas 12.2 (linearity of the lifts) and 12.4 (changing the separator
in the lifts), we see that14

J(ai + ag−1) ∧ ag;WiK + Jaj ∧ ag;WjK = J(ai + aj + ag−1) ∧ ag; ⟨ai + ag−1, bi, aj , bj , ag⟩K
= J(ai + aj + ag−1) ∧ ag; ⟨ai + aj + ag−1, bi, bj , ag⟩K.

Similarly, we have

J(aj + ag−1) ∧ ag;WjK + Jai ∧ ag;WiK = J(ai + aj + ag−1) ∧ ag; ⟨ai + aj + ag−1, bi, bj , ag⟩K.
The identity (12.3) follows.

Claim. For 1 ≤ i ≤ g − 2, the group Sp2g(Z, I) fixes Jag−1 ∧ ag;WiK.

As we noted in §12.4, the action of Sp2g(Z, I) on our lifts factors through Γ = Sp2g(Z, I)|I⊥ .
Lemma 12.5 says that

Γ = Hom(Z2(g−2), I)⋉ Sp2(g−2)(Z).
We must prove that the subgroups Hom(Z2(g−2), I) and Sp2(g−2)(Z) both fix Jag−1 ∧ ag;WiK.

We start with Sp2(g−2)(Z). It is classical that Sp2(g−2)(Z) is generated by the stabilizer

of a1 and the stabilizer of a2. For instance,15 the mapping class group Modg−2 surjects
onto Sp2(g−2)(Z), and choosing a basis for H1(Σg−2) appropriately the usual Dehn twist

generators for Modg−2 from [1, Theorem 4.13] each fix either a1 or a2. It is thus enough to
prove that both of these stabilizers fix Jag−1 ∧ ag;WiK.

The proofs for both are similar, so we will give the details for the stabilizer of a2 and leave
the other case to the reader. Consider f ∈ Sp2(g−2)(Z) with f(a2) = a2. By the previous

claim, it is enough to prove that f fixes Jag−1 ∧ ag;W2K. Using Lemma 12.2 (linearity of the
lifts), we have

Jag−1 ∧ ag;W2K = J(a2 + ag−1) ∧ ag;W2K − Ja2 ∧ ag;W2K.

We will prove that f fixes J(a2 + ag−1) ∧ ag;W2K and Ja2 ∧ ag;W2K.
For the first, Lemma 12.4 (changing the separator in the lifts) says that

J(a2 + ag−1) ∧ ag;W2K = J(a2 + ag−1) ∧ ag; ⟨a2 + ag−1, b2, ag⟩K
= J(a2 + ag−1) ∧ ag; ⟨a1, b1, a2 + ag−1, b2, ag⟩K.

Lemma 12.3 (equivariance of the lifts) says that f takes this to

J(f(a2) + f(ag−1)) ∧ f(ag); f(⟨a1, b1, a2 + ag−1, b2, ag⟩)K
= J(a2 + ag−1) ∧ ag; ⟨a1, b1, a2 + ag−1, b2, ag⟩K,

as desired.
For the second, Lemma 12.4 (changing the separator in the lifts) says that

Ja2 ∧ ag;W2K = Ja2 ∧ ag; ⟨a2, b2, ag⟩K
= Ja2 ∧ ag; ⟨a1, b1, a2, b2, ag⟩K.

Lemma 12.3 (equivariance of the lifts) says that f takes this to

Jf(a2) ∧ f(ag); f(⟨a1, b1, a2, b2, ag⟩)K = Ja2 ∧ ag; ⟨a1, b1, a2, b2, ag⟩K,
as desired.

It remains to prove that the subgroup Hom(Z2(g−2), I) of Γ fixes our lift. Observe

that Hom(Z2(g−2), I) is generated by elements that fix all but one element of the basis

14The term ⟨ai + aj + ag−1, bi, bj , ag⟩ appearing here is a near symplectic summand even though the given
basis does not reflect this.

15This could also be deduced from the generating set of Hua–Reiner [3] discussed in §7, but be warned
that their generating set does not consist of elements that fix either a1 or a2.
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{a1, b1, . . . , ag−2, bg−2}. It is enough to prove that such elements fix our lift. Consider

f ∈ Hom(Z2(g−2), I) that fixes all elements of {a1, b1, . . . , ag−2, bg−2} except for x ∈ {aj , bj}.
Letting 1 ≤ i ≤ g − 2 be such that i ̸= j, it is enough to prove that f fixes Jag−1 ∧ ag;WiK.
But this is immediate from the fact that f fixes ag−1 and ag and Wi = ⟨ai, bi, ag−1, ag⟩. □

13. Isotropic pairs III: isomorphism theorem

We now prove the following theorem using the proof outline from §3.

Proposition 13.1. Let a ∧ a′ be an isotropic pair and let Φ: Kg → ((∧2H)/Q)⊗2 be the

linearization map. Then Φ takes Kg[−, a ∧ a′] isomorphically to (a ∧ a′)⊥ ⊗ (a ∧ a′).

Proof. By Lemma 10.4, there exists a strong isotropic pair a0 ∧ a′0 and n ∈ Z such that
a ∧ a′ = na0 ∧ a′0. Moreover, ⟨a0, a′0⟩Q = ⟨a, a′⟩Q, so by Lemma 10.2 we have (a ∧ a′)⊥ =
(a0 ∧ a′0)⊥. Using the linearity relations in Kg, multiplication by n gives an isomorphism
Kg[−, a0 ∧ a′0] ∼= Kg[−, a ∧ a′] taking a generator Jσ, a0 ∧ a′0K with σ a symplectic pair in

(a0 ∧ a′0)⊥ to a generator Jσ, a ∧ a′K. It is thus enough to prove the proposition for a0 ∧ a′0.
Replacing a ∧ a′ with a0 ∧ a′0, we can therefore assume that a ∧ a′ is a strong isotropic pair.

To simplify our notation, we will drop a ∧ a′ from our notation in two places:

• For κ ∈ (a ∧ a′)⊥ and X a Lagrangian-free direct summand of HZ that separates κ
from a ∧ a′, we will drop the a ∧ a′ from our notation and write Jκ;XK instead of
J(κ;X), a ∧ a′K.

• We will also drop the a ∧ a′ from our notation for the codomain of the restriction
of Φ to Kg[−, a ∧ a′]. Thus for Jκ;XK as in the previous bullet point, we will write
Φ(Jκ;XK) = κ rather than Φ(Jκ;XK) = κ⊗ (a ∧ a′).

The proof has three steps.

Step 1. We construct a set S ⊂ Kg[−, a ∧ a′] such that the restriction of Φ to ⟨S⟩ is an

isomorphism to (a ∧ a′)⊥ ⊗ (a ∧ a′).

Let B = {a1, b1, . . . , ag, bg} be a symplectic basis for HZ with ag−1 = a and ag = a′.
Letting I = ⟨a, a′⟩, we have

I⊥Q = ⟨a1, b1, . . . , ag−2, bg−2, ag−1, ag⟩.

Set

B′ = {a1, b1, . . . , ag−2, bg−2},
with the total order ≺ as indicated in this list. Lemma 10.2 says that

(a ∧ a′)⊥ = ∧2I⊥Q .

This vector space has the basis16

T =
{
x ∧ y | x, y ∈ B′, x ≺ y

}
∪
{
x ∧ ag−1, x ∧ ag | x ∈ B′} ∪ {ag−1 ∧ ag}.

Define

X = ⟨B′⟩ and Y = ⟨B′, ag−1⟩ and Z = ⟨B′, ag⟩
and

Wi = ⟨ai, bi, ag−1, ag⟩ for 1 ≤ i ≤ g − 2.

16This clearly forms a basis for ∧2I⊥Q , and since the restriction of the map ∧2H → (∧2H)/Q to ∧2I⊥Q is

an injection the image of T in (∧2H)/Q also forms a basis for ∧2I⊥Q .
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These are all Lagrangian-free near symplectic summands of HZ of positive genus. Finally,
define

S =
{
Jx ∧ y;XK | x, y ∈ B′, x ≺ y

}
∪
{
Jx ∧ ag−1;Y K, Jx ∧ ag;ZK | x ∈ B′} ∪ {Jag−1 ∧ ag;W1K}.

By construction, Φ takes S bijectively to T . Since T is a basis for (a ∧ a′)⊥, it follows that
the restriction of Φ to ⟨S⟩ is an isomorphism.

Step 2. We prove that the Sp2g(Z)-orbit of S spans Kg[−, ag−1 ∧ ag].

By definition, Kg[−, ag−1 ∧ ag] is spanned by elements of the form Jσ, ag−1 ∧ agK, where σ
is a symplectic pair with σ ∈ (a ∧ a′)⊥. The image of Φ contains some elements of this form;
for instance, it contains

Ja1 ∧ b1;XK = Ja1 ∧ b1, ag−1 ∧ agK.

Since Sp2g(Z, I) acts transitively on symplectic pairs lying in (a ∧ a′)⊥ = ∧2I⊥Q , it follows

that the Sp2g(Z)-orbit of S spans Kg[−, ag−1 ∧ ag]..

Step 3. We prove that Sp2g(Z) takes ⟨S⟩ to itself. By Step 2 this will imply that ⟨S⟩ =
Kg[−, ag−1 ∧ ag], and thus by Step 1 that Φ is an isomorphism.

The action of Sp2g(Z, I) on Kg[−, ag−1 ∧ ag] factors through Γ = Sp2g(Z, I)|I⊥ , and by
Lemma 12.5 we have

Γ = Hom(X, I)⋉ Sp2(g−2)(Z).
We must prove that Hom(X, I) and Sp2(g−2)(Z) both take ⟨S⟩ to itself. We divide this into
two claims:

Claim 3.1. The action of Sp2(g−2)(Z) on Kg[−, ag−1 ∧ ag] takes ⟨S⟩ to itself.

Consider f ∈ Sp2(g−2)(Z) and s ∈ S. We must prove that f(s) is a linear combination of

elements of S. This is trivial for s = Jag−1 ∧ ag;W1K since Lemma 12.6 implies that f fixes
s. The other s fall into three cases.

The first is s = Jx ∧ y;XK with

x, y ∈ B′ = {a1, b1, . . . , ag−2, bg−2} such that x ≺ y.

Since f(X) = X, Lemma 12.3 (equivariance of the lifts) implies that

f(Jx ∧ y;XK) = Jf(x) ∧ f(y); f(X)K = Jf(x) ∧ f(y);XK.

The element f(x) ∧ f(y) ∈ ∧2XQ is a linear combination of terms of the form x′ ∧ y′

with x′, y′ ∈ B′ such that x′ ≺ y′, and by Lemma 12.2 (linearity of the lifts) the ele-
ment Jf(x) ∧ f(y);XK equals the corresponding linear combination of elements of the form
Jx′ ∧ y′;XK ∈ S, as desired.

The second is s = Jx ∧ ag−1;Y K with x ∈ B′. Since f(ag−1) = ag−1 and f(Y ) = Y ,
Lemma 12.3 (equivariance of the lifts) implies that

f(Jx ∧ ag−1;Y K) = Jf(x) ∧ f(ag−1); f(Y )K = Jf(x) ∧ ag−1;Y K.

The element f(x) ∧ ag−1 ∈ ∧2YQ is a linear combination of terms of the form x′ ∧ ag−1 with
x′ ∈ B′, and by Lemma 12.2 (linearity of the lifts) the element Jf(x) ∧ ag−1;Y K equals the
corresponding linear combination of elements of the form Jx′ ∧ ag−1;Y K ∈ S, as desired.

The third is s = Jx ∧ ag;ZK with x ∈ B′. This is handled in the same way as the previous
case, so we omit the details.

Claim 3.2. The action of Hom(X, I) on Kg[−, ag−1 ∧ ag] takes ⟨S⟩ to itself.
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Recall that X = ⟨a1, b1, . . . , ag−2, bg−2⟩ and I = {ag−1, ag}. The group Hom(X, I) is
generated by Hom(X, ⟨ag−1⟩) and Hom(X, ⟨ag⟩). It is enough to check that all λ lying in
one of these two subgroups take ⟨S⟩ to itself. For concreteness, we will explain how to do
this for λ ∈ Hom(X, ⟨ag−1⟩). The other case is similar. The corresponding f ∈ Sp2g(Z, I)|I⊥
satisfies

f(ag−1) = ag−1 and f(ag) = ag and f(x) = x+ λ(x) for all x ∈ X.

Consider s ∈ S. We must prove that f(s) is a linear combination of elements of S. This
is trivial for s = Jag−1 ∧ ag;W1K since in this case Lemma 12.6 implies that f fixes s. The
other s fall into three cases.

The first is s = Jx ∧ y;XK with x, y ∈ B′ such that x ≺ y. By Lemma 12.4 (changing the
separator in the lifts), this equals Jx ∧ y;Y K. The reason for doing this is that f(Y ) = Y .
Write f(x) = x+ cag−1 and f(y) = y + dag−1 with c, d ∈ Z. Using all three properties of
our lifts from §12.3, we have

f(Jx ∧ y;Y K) = J(x+ cag−1) ∧ (y + dag−1);Y K
= Jx ∧ y;Y K + dJx ∧ ag−1;Y K − cJy ∧ ag−1;Y K
= Jx ∧ y;XK + dJx ∧ ag−1;Y K − cJy ∧ ag−1;Y K.

This is a linear combination of elements of S, as desired.
The second is s = Jx ∧ ag−1;Y K with x ∈ B′. Write f(x) = x + cag−1 with c ∈ Z. We

then have

f(x ∧ ag−1) = (x+ cag−1) ∧ ag−1 = x ∧ ag−1.

Since f fixes x ∧ ag−1 and Y , by Lemma 12.3 (equivariance of the lifts) the map f also fixes
Jx ∧ ag−1;Y K and there is nothing to prove.

The third is s = Jx ∧ ag;ZK with x ∈ B′. Write f(x) = x+ cag−1 with c ∈ Z. Pick i such
that x ∈ {ai, bi}. By Lemma 12.4 (changing the separator in the lifts), we have

Jx ∧ ag;ZK = Jx ∧ ag; ⟨ai, bi, ag⟩K = Jx ∧ ag;WiK.

The reason for doing is that f(Wi) =Wi. Using all three properties of our lifts from §12.3
along with Lemma 12.6, we have

f(Jx ∧ ag;WiK) = J(x+ cag−1) ∧ ag;WiK = Jx ∧ ag;WiK + cJag−1 ∧ ag;WiK
= Jx ∧ ag;ZK + cJag−1 ∧ ag;W1K.

This is a linear combination of elements of S, as desired. □

14. Isotropic pairs IV: refining the presentation I

We now bring all our work together to add new generators to Kg involving isotropic pairs.
Let a ∧ a′ be an isotropic pair and let Φ: Kg → ((∧2H)/Q)⊗2 be the linearization map.

14.1. Right elements. Proposition 13.1 says that for all κ ∈ (a ∧ a′)⊥, there is a unique
element Jκ, a ∧ a′KR ∈ Kg[−, a ∧ a′] satisfying

Φ(Jκ, a ∧ a′KR) = κ⊗ (a ∧ a′).

For λ1, λ2 ∈ Q and κ1, κ2 ∈ (a ∧ a′)⊥, Proposition 13.1 implies that

Jλ1κ1 + λ2κ2, a ∧ a′KR = λ1Jκ1, a ∧ a′KR + λ2Jκ2, a ∧ a′KR.
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14.2. Left elements. Define Kg[a ∧ a′,−] to be the subspace of Kg spanned by elements of

the form Ja ∧ a′, σK with σ a symplectic pair such that σ ∈ (a ∧ a′)⊥. There is an involution
ι : Kg → Kg taking a generator Jκ1, κ2K to Jκ2, κ1K, and ι takes Kg[a ∧ a′,−] isomorphically

to Kg[−, a ∧ a′]. For κ ∈ (a ∧ a′)⊥, define
Ja ∧ a′, κKL = ι(Jκ, a ∧ a′KR).

The element Ja ∧ a′, κKL is then the unique element of Kg[a ∧ a′,−] satisfying

Φ(Ja ∧ a′, κKL) = (a ∧ a′)⊗ κ.

For λ1, λ2 ∈ Q and κ1, κ2 ∈ (a ∧ a′)⊥, we have

Ja ∧ a′, λ1κ1 + λ2κ2KL = λ1Ja ∧ a′, κ1KL + λ2Ja ∧ a′, κ2KL.

14.3. Ambiguity. We would like to drop the L and R from Ja ∧ a′, κKL and Jκ, a ∧ a′KR.
To do this, we must first show that this does not introduce ambiguity into our notation.
The issue is that there exist isotropic pairs a1 ∧ a′1 and a2 ∧ a′2 that are sym-orthogonal to
each other. In this case, we have elements Ja1 ∧ a′1, a2 ∧ a′2KL and Ja1 ∧ a′1, a2 ∧ a′2KR, and
we need to prove that they are equal:

Lemma 14.1. Let a1 ∧ a′1 and a2 ∧ a′2 be isotropic pairs that are sym-orthogonal. Then
Ja1 ∧ a′1, a2 ∧ a′2KL = Ja1 ∧ a′1, a2 ∧ a′2KR.

Proof. The proof uses the same idea as the proof of Lemma 12.1. Set I1 = ⟨a1, a′1⟩ and

I2 = ⟨a2, a′2⟩. By Lemma 10.2, we have a1 ∧ a′1 ∈ ∧2(I2)⊥Q and a2 ∧ a′2 ∈ ∧2(I1)⊥Q. This

implies that I1 ⊂ I⊥2 and I2 ⊂ I⊥1 . Recall that from §12.2 that a Lagrangian in HZ is a
direct summand L of HZ with L⊥ = L. We start with:

Claim. There exists a Lagrangian L in HZ such that I1, I2 ⊂ L.

Proof of claim. Recall that a subspace J of H is isotropic if J ⊂ J⊥ and is a Lagrangian if
J = J⊥. It is standard that J being a Lagrangian is equivalent to J being isotropic and
g-dimensional, and also that every isotropic subspace is contained in a Lagrangian. The
subspace ⟨(I1)Q, (I2)Q⟩ of H is isotropic, so it is contained in a Lagrangian LQ. Define
L = LQ ∩HZ. Lemma 10.3 implies that L is a direct summand of HZ, and by construction
it is a Lagrangian containing I1 and I2. □

Using this, we will prove:

Claim. There exists a Lagrangian-free near symplectic summand X of HZ of genus 1 such
that I1 ⊂ X ⊂ I⊥2 .

Proof of claim. By the previous claim, we can find a Lagrangian L in HZ with I1, I2 ⊂ L.
Since I2 ∼= Z2 is a subspace of L ∼= Zg and g ≥ 4 (see Assumption 9.5), the quotient L/I2
cannot consist entirely of torsion. It follows that there exists a surjection π : L → Z with
I2 ⊂ ker(π). Since the symplectic form ω identifies HZ with its dual, we can find y1 ∈ HZ
with

ω(z, y1) = π(z) for all z ∈ L.

In particular, y1 ∈ (I2)
⊥. Pick x1 ∈ L with ω(x1, y1) = 1. Define J = ⟨(I1)Q, ⟨x1⟩Q⟩ ∩ L, so

by Lemma 10.3 the subgroup J is a direct summand of L with I1 ⊂ J and x1 ∈ J . Let r be
the rank of J . Since the rank of I1 is 2, we have 2 ≤ r ≤ 3. We can now extend x1 to a
basis {x1, . . . , xr} for J such that ω(xi, y1) = 0 for 2 ≤ i ≤ r. Set X = ⟨x1, y1, x2, . . . , xr⟩.
By construction, X is a near-symplectic summand of HZ of genus 1 such that I1 ⊂ X ⊂ I⊥2 .
Since r ≤ 3, our standing assumption that g ≥ 4 (see Assumption 9.5) implies that X is
Lagrangian-free. □
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Let X be as in the previous claim. We have:

Claim. The subspace X⊥ of HZ is a near symplectic summand of positive genus.

Proof of claim. Since X is a near-symplectic summand of genus 1, we can find a symplectic
basis {x1, y1, . . . , xg, yg} for HZ such that X = ⟨x1, y1, x2, . . . , xr⟩. Since X is Lagrangian-

free, we have r < g. We have X⊥ = ⟨x2, . . . , xr, xr+1, yr+1, . . . , xg, yg⟩. This is a near
symplectic summand, and since r < g its genus is positive. □

Since I1 ⊂ X and I2 ⊂ X⊥, we can use Lemma 11.2 to write

a1 ∧ a′1 =
n∑
i=1

λiσi and a2 ∧ a′2 =
m∑
j=1

cjsj

with λi, cj ∈ Q and with each σi and sj a symplectic pair with σi ∈ ∧2XQ and sj ∈ ∧2X⊥
Q ,

respectively. The element Ja1 ∧ a′1, a2 ∧ a′2KR then equals

n∑
i=1

λiJσi, a2 ∧ a′2K =
n∑
i=1

λi

 m∑
j=1

cjJσi, sjK

 =

m∑
j=1

cj

(
n∑
i=1

λiJσi, sjK

)

=
m∑
j=1

cjJa1 ∧ a′1, sjK = Ja1 ∧ a′1, a2 ∧ a′2KL. □

14.4. New generators. Let a∧ a′ be an isotropic pair and let κ ∈ (a∧ a′)⊥. We then have
elements Jκ, a ∧ a′KR and Ja ∧ a′, κKL of Kg. By Lemma 14.1, we can unambiguously drop
the “L” and “R” from our notation. Since everything is now canonical, we will also stop
writing our elements in orange and define

Jκ, a ∧ a′K = Jκ, a ∧ a′KR and Ja ∧ a′, κK = Ja ∧ a′, κKL.

14.5. Summary. The following summarizes what we have accomplished in Proposition 13.1
and Lemma 14.1:

Theorem 14.2. The vector space Kg has the following presentation:

• Generators. A generator Jκ1, κ2K for all sym-orthogonal κ1, κ2 ∈ (∧2H)/Q such
that either κ1 or κ2 (or both) is a symplectic pair or an isotropic pair.

• Relations. For all ζ ∈ (∧2H)/Q that are symplectic pairs or strong isotropic pairs
and all κ1, κ2 ∈ (∧2H)/Q that are sym-orthogonal to ζ and all λ1, λ2 ∈ Q, the
relations

Jζ, λ1κ1 + λ2κ2K = λ1Jζ, κ1K + λ2Jζ, κ2K and

Jλ1κ1 + λ2κ2, ζK = λ1Jκ1, ζK + λ2Jκ2, ζK.

15. Isotropic pairs V: refining the presentation II

In Theorem 14.2, we added generators involving isotropic pairs. In this section, we add a
few more generators and verify some additional relations. A special pair is an element x ∧ y
of (∧2HZ)/Z such that ω(x, y) ∈ {−1, 0, 1}. These fall into four classes:

• ω(x, y) = 1, so x ∧ y is a symplectic pair; and
• ω(x, y) = 0 with x and y linearly independent, so x ∧ y is an isotropic pair;17 and
• ω(x, y) = 0 with x and y linearly dependent, so x ∧ y = 0; and
• ω(x, y) = −1, so y ∧ x = −x ∧ y is a symplectic pair.

Our main result is:

17They are strong isotropic pairs if x and y also span a direct summand of HZ; see §10.4.
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Theorem 15.1. For18 g ≥ 4, the vector space Kg has the following presentation:

• Generators. A generator Jκ1, κ2K for all sym-orthogonal κ1, κ2 ∈ (∧2H)/Q such
that either κ1 or κ2 (or both) is a special pair.

• Relations. The following two families of relations:
– For all special pairs ζ ∈ (∧2H)/Q and all κ1, κ2 ∈ (∧2H)/Q that are sym-
orthogonal to ζ and all λ1, λ2 ∈ Q, the linearity relations

Jζ, λ1κ1 + λ2κ2K = λ1Jζ, κ1K + λ2Jζ, κ2K and

Jλ1κ1 + λ2κ2, ζK = λ1Jκ1, ζK + λ2Jκ2, ζK.

– For all special pairs ζ ∈ (∧2H)/Q and all κ ∈ (∧2H)/Q that are sym-orthogonal
to ζ and all n ∈ Z such that nζ is a special pair,19 the relations

Jnζ, κK = nJζ, κK and

Jκ, nζK = nJκ, ζK.

Proof. We divide the proof into three steps: we first define our new generators in terms of
the generators given by Theorem 14.2, and then we check the two families of relations.

Step 1. We define our new generators.

Consider a special pair x ∧ y ∈ (∧2H)/Q and κ ∈ (∧2H)/Q that is sym-orthogonal to
x ∧ y. We will express Jx ∧ y, κK and Jκ, x ∧ yK in terms of the generators given by Theorem
14.2. By definition, we have ω(x, y) ∈ {−1, 0, 1}. There are four cases:

• If ω(x, y) = 1, then x∧ y is a symplectic pair and Jx∧ y, κK and Jκ, x∧ yK are already
defined.

• If ω(x, y) = 0 and x and y are linearly independent, then x ∧ y is an isotropic pair
and Jx ∧ y, κK and Jκ, x ∧ yK are already defined.

• If ω(x, y) = 0 and x and y are linearly dependent, then x ∧ y = 0. We define
J0, κK = 0 and Jκ, 0K = 0.

• If ω(x, y) = −1, then x ∧ y = −y ∧ x and y ∧ x is a symplectic pair. We define
Jx ∧ y, κK = −Jy ∧ x, κK and Jκ, x ∧ yK = −Jκ, y ∧ xK.

The only issue with this definition is that if κ = z ∧ w is also a special pair, then in a few
cases we have two different definitions of Jx ∧ y, z ∧ wK. We must check that they give the
same element of Kg. If both x ∧ y and z ∧ w are symplectic or isotropic pairs, then there is
no ambiguity. Also, if one of them is 0, then both definitions give 0. The only potential
issue is therefore when either ω(x, y) or ω(z, w) (or both) is −1.

There are several cases. All are handled the same way, so we will give the details for when
ω(x, y) = ω(z, w) = −1, which is slightly harder. Our two definitions are

Jx ∧ y, z ∧ wK = −Jy ∧ x, z ∧ wK and Jx ∧ y, z ∧ wK = −Jx ∧ y, w ∧ zK.
We appeal to the linearity relations from Theorem 14.2 to see these are equal:

−Jy ∧ x, z ∧ wK = −Jy ∧ x,−w ∧ zK = Jy ∧ x,w ∧ zK = J−x ∧ y, w ∧ zK = −Jx ∧ y, w ∧ zK.

Step 2. Let ζ ∈ (∧2H)/Q be a special pair, let κ1, κ2 ∈ (∧2H)/Q be sym-orthogonal to ζ,
and let λ1, λ2 ∈ Q. Then:

Jζ, λ1κ1 + λ2κ2K = λ1Jζ, κ1K + λ2Jζ, κ2K and

Jλ1κ1 + λ2κ2, ζK = λ1Jκ1, ζK + λ2Jκ2, ζK.

18This is our standing assumption in this part of the paper; see Assumption 9.5.
19If ζ = x ∧ y with ω(x, y) = 0, then any n works. However, if ζ = x ∧ y with ω(x, y) ∈ {−1, 1} then we

must take n ∈ {−1, 0, 1}.
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These are trivial if ζ = 0, so we can assume that ζ ≠ 0. Also, these are special cases of
the linearity relations from Theorem 14.2 if ζ is either a symplectic pair or an isotropic pair.
The remaining case is where ζ = x ∧ y with ω(x, y) = −1. In that case, using the linearity
relations from Theorem 14.2 we have that Jx ∧ y, λ1κ1 + λ2κ2K equals

−Jy ∧ x, λ1κ1 + λ2κ2K = −λ1Jy ∧ x, κ1K − λ2Jy ∧ x, κ2K = λ1Jx ∧ y, κ1K + λ2Jx ∧ y, κ2K,

and similarly for Jλ1κ1 + λ2κ2, x ∧ yK.

Step 3. Let ζ ∈ (∧2H)/Q be a special pair, let κ ∈ (∧2H)/Q be sym-orthogonal to ζ, and
let m ∈ Z be such that such that mζ is a special pair. Then:

Jmζ, κK = mJζ, κK and

Jκ,mζK = mJκ, ζK.

This is trivial if ζ = 0 or if m = 0, so assume that both are nonzero. This is immediate
from the definitions if ζ = x ∧ y with ω(x, y) ∈ {±1}, in which case we necessarily also have
m ∈ {±1}. The remaining case is when ζ = x ∧ y is an isotropic pair. Write κ =

∑n
i=1 λiζi

with ζi a symplectic pair in (x ∧ y)⊥. We also have ζi ∈ (mx ∧ y)⊥ for 1 ≤ i ≤ n. By
definition, we therefore have

Jx ∧ y, κK =
n∑
i=1

λiJx ∧ y, ζiK and Jmx ∧ y, κK =
n∑
i=1

λiJmx ∧ y, ζiK.

The linearity relations from Theorem 14.2 imply that for 1 ≤ i ≤ n we have Jmx ∧ y, ζiK =
mJx ∧ y, ζiK. Plugging this into the above formulas, we therefore have

Jmx ∧ y, κK =
n∑
i=1

λimJx ∧ y, ζiK = m

n∑
i=1

λiJx ∧ y, ζiK = mJx ∧ y, κK.

A similar argument shows that Jκ,mζK = mJκ, ζK. □

Part 3. Verifying the presentation for the symmetric kernel, alternating version

Our goal in the rest of the paper is to prove Theorems F and G. This part of the paper
proves Theorem F, while Part 4 proves Theorem G. See the introductory §16 for an outline
of what we do in this part. Throughout, we make the following genus assumption:

Assumption 15.2. Throughout Part 3, unless otherwise specified we assume that g ≥ 4. □

16. Symmetric kernel, alternating version: introduction

We start by recalling some results and definitions from earlier in the paper, and then
outline what we prove in this part.

16.1. Symmetric kernel and contraction. Recall that ω is the symplectic form on
H. The symmetric contraction is the alternating Sym2(H)-valued alternating form c on
(∧2H)/Q defined via the formula

c(x ∧ y, z ∧ w) = ω(x, z)y·w − ω(x,w)y·z − ω(y, z)x·w + ω(y, w)x·z for x, y, z, w ∈ H.

It induces a map ∧2((∧2H)/Q) → Sym2(H) whose kernel Ka
g is the symmetric kernel.

Elements κ1, κ2 ∈ (∧2H)/Q are sym-orthogonal if c(κ1, κ2) = 0, or equivalently if κ1∧κ2 ∈ Ka
g .

The sym-orthogonal complement of κ ∈ (∧2H)/Q is the subspace κ⊥ consisting of all elements
that are sym-orthogonal to κ.
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16.2. Special pairs. A special pair in (∧2HZ)/Z is an element of the form x ∧ y with
ω(x, y) ∈ {−1, 0, 1}. Examples include symplectic pairs and isotropic pairs. Lemmas 10.1
and 10.2 say that the sym-orthogonal complements in (∧2H)/Q of these are:

• for a symplectic pair a ∧ b, we have (a ∧ b)⊥ = ∧2⟨a, b⟩⊥Q; and
• for an isotropic pair a ∧ a′, we have (a ∧ a′)⊥ = ∧2⟨a, a′⟩⊥Q.

16.3. Non-symmetric presentation. We will use the generators and relations for Kg from
Theorem 15.1, whose statement we recall:

Theorem 15.1. For g ≥ 4, the vector space Kg has the following presentation:

• Generators. A generator Jκ1, κ2K for all sym-orthogonal κ1, κ2 ∈ (∧2H)/Q such
that either κ1 or κ2 (or both) is a special pair.

• Relations. The following two families of relations:
– For special pairs ζ ∈ (∧2H)/Q and all κ1, κ2 ∈ (∧2H)/Q that are sym-orthogonal
to ζ and all λ1, λ2 ∈ Q, the linearity relations

Jζ, λ1κ1 + λ2κ2K = λ1Jζ, κ1K + λ2Jζ, κ2K and

Jλ1κ1 + λ2κ2, ζK = λ1Jκ1, ζK + λ2Jκ2, ζK.

– For all special pairs ζ ∈ (∧2H)/Q and all κ ∈ (∧2H)/Q that are sym-orthogonal
to ζ and all n ∈ Z such that nζ is a special pair, the relations

Jnζ, κK = nJζ, κK and

Jκ, nζK = nJκ, ζK.

Remark 16.1. Our standing assumption is that g ≥ 4 (Assumption 15.2). However, in a few
places we will need to work with g = 3 for inductive proofs. In those cases, Theorem 15.1
does not apply. To fix this, in this part of the paper we will redefine K3 to be the vector
space given by the presentation from Theorem 15.1. Note that we will not extend Theorem
F to g = 3, and we do not know if this K3 is isomorphic to K3. □

16.4. Anti-symmetrizing. Recall from Lemma 10.6 that Kag is the −1-eigenspace of the
involution of Kg that takes a generator Jκ1, κ2K to Jκ2, κ1K. We anti-symmetrize a generator
Jκ1, κ2K of Kg to

Jκ1, κ2Ka =
1

2
(Jκ1, κ2K − Jκ2, κ1K) ∈ Kag .

The anti-symmetrized generators generate Kag . They satisfy the same relations as the
generators of Kg, and also the anti-symmetry relation Jκ2, κ1Ka = −Jκ1, κ2Ka.

16.5. Goal and outline. We have a linearization map Φ: Kag → ∧2((∧2H)/Q). On genera-
tors, it satisfies

Φ(Jκ1, κ2Ka) = κ1 ∧ κ2 ∈ ∧2((∧2H)/Q).

Its image is contained in the symmetric kernel Ka
g . Our goal in this part of the paper is to

prove Theorem F, which says that Φ is an isomorphism from Kag to Ka
g . The proof uses the

proof technique described in §3, and is modeled on the proofs of Theorems A–E. However,
since the calculations are lengthy we spread them out over nine sections:

• In the preliminary §17, we identify some important subspaces of Kag .
• In §18 – §20, we construct a subset S of Kag and prove that ⟨S⟩ = Kag . The proof
of this uses the action of Sp2g(Z) on Kag : we first prove that the Sp2g(Z)-orbit of S
spans Kag , and then we prove that Sp2g(Z) takes ⟨S⟩ to itself. This corresponds to
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Steps 2 and 3 of the proof outline from §3. We do these steps first because they are
easier than Step 1.20

• The set S is the union of sets S12 and S3. In §21 – §24, we prove that Φ is an
isomorphism by first proving that its restriction to S12 is an isomorphism onto its
image (§21 – §22) and then extending this to S3 and hence all of ⟨S⟩ = Kag (§23 –
§25). This roughly speaking corresponds to Step 1.

Throughout the following nine sections, Φ will always mean the linearization map Φ: Kag →
∧2((∧2H)/Q). Also, c will always mean the symmetric contraction.

17. Symmetric kernel, alternating version I: fixing the 1st coordinates of
generators

In this preliminary section, we identify some important subspaces of Kag and their images

in ∧2((∧2H)/Q) under the linearization map. Throughout this section, we relax our standing
assumption that g ≥ 4 (Assumption 15.2), so our results include explicit genus ranges when
they are necessary. See Remark 16.1.

Warning 17.1. The vector space ∧2((∧2H)/Q) is not a quotient of ∧4H. Because of this,
for x, y, z, w ∈ H care must be taken when working with elements like (x ∧ y) ∧ (z ∧ w) ∈
∧2((∧2H)/Q). The wedges ∧ cannot be rearranged like in ∧4H; for instance, (x∧y)∧ (z∧w)
is not equal to −(x ∧ z) ∧ (y ∧ w). □

17.1. Setup. Let a, a′ ∈ HZ satisfy ω(a, a′) = 0. Define F[a, a′] to be the subspace of Kag
spanned by elements Ja ∧ x, a′ ∧ yKa where x, y ∈ HZ satisfy the following two conditions:

(i) We have ω(a, y) = ω(a′, x) = ω(x, y) = 0. This ensures that c(a ∧ x, a′ ∧ y) = 0.
(ii) Both a ∧ x and a′ ∧ y are special pairs, so in particular Ja ∧ x, a′ ∧ yKa is defined.

Equivalently, ω(a, x) ∈ {−1, 0, 1} and ω(a′, y) ∈ {−1, 0, 1}.
We will call these Ja ∧ x, a′ ∧ yKa the generators of F[a, a′]. Here are some easy properties of
these subspaces:

Lemma 17.2. Let g ≥ 3 and let a, a′ ∈ HZ satisfy ω(a, a′) = 0. Then:

(a) F[a′, a] = F[a, a′].
(b) F[−a, a′] = F[a,−a′] = F[−a,−a′] = F[a, a′].

Proof. Conclusion (a) follows from the fact that for all generators Ja ∧ x, a′ ∧ yKa of F[a, a′],
the element Ja′ ∧ y, a ∧ xKa is a generator of F[a′, a] satisfying

Ja′ ∧ y, a ∧ xKa = −Ja ∧ x, a′ ∧ yKa.
In light of (a), to prove (b) it is enough to prove that F[−a, a′] = F[a, a′]. For this, note that
if Ja ∧ x, a′ ∧ yKa is a generator of F[a, a′] then J−a ∧ x, a′ ∧ yKa is a generator of F[−a, a′]
and we have

J−a ∧ x, a′ ∧ yKa = −Ja ∧ x, a′ ∧ yKa. □

17.2. Image. Define F [a, a′] to be the subspace of ∧2((∧2H)/Q) spanned by elements of
the form (a ∧ x) ∧ (a′ ∧ y) such that Ja ∧ x, a′ ∧ yKa is a generator of F[a, a′]. We thus have
F [a, a′] ⊂ Ka

g and

Φ(F[a, a′]) ⊂ F [a, a′].

Our goal in the rest of this section is to prove that in two important cases the map Φ takes
F[a, a′] isomorphically to F [a, a′].

20Though S will be infinite, it will follow from our results in these sections that ⟨S⟩ is finite-dimensional.
At the end of §20, we will therefore already know that Ka

g is a finite-dimensional representation of Sp2g(Z).
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Before we do this, we introduce one further piece of notation. Define F̂ [a, a′] to be the
subspace of ∧2((∧2H)/Q) spanned by elements of the form (a ∧ x) ∧ (a′ ∧ y) such that:

• We have ω(a, y) = ω(a′, x) = 0. Note that we are not requiring that ω(x, y) = 0.

For such an element, we have

c(a ∧ x, a′ ∧ y) = ω(a, a′)x·y − ω(a, y)x·a′ − ω(x, a′)a·y + ω(x, y)a·a′ = ω(x, y)a·a′.
It follows that c takes F̂ [a, a′] to the 1-dimensional subspace of Sym2(H) spanned by a·a′.
It is easy to see that we can find elements (a ∧ x) ∧ (a′ ∧ y) as above with ω(x, y) ̸= 0,

so in fact the kernel Ka
g ∩ F̂ [a, a′] of c restricted to F̂ [a, a′] has codimension 1. We have

F [a, a′] ⊂ Ka
g ∩ F̂ [a, a′], and later in this section we will prove that in two cases we have

F [a, a′] = Ka
g ∩ F̂ [a, a′].

17.3. Identification I. We now commence with identifying our subspaces. For the first,
let a ∈ HZ be primitive. We will identify F[a, a]. In a generator Ja ∧ x, a ∧ yKa of F[a, a],
both x and y are orthogonal to a and also are only well-defined up to multiples of a. This
suggests defining U(a) = ⟨a⟩⊥Q/⟨a⟩. We can embed U(a) into (∧2H)/Q by taking x ∈ U(a)
to a ∧ x ∈ (∧2H)/Q. Using this, we have

F̂ [a, a] = ∧2U(a).

The symplectic form ω induces a symplectic form ω on U(a). Let K(a) be the kernel of the
map ∧2U(a) → Q induced by ω. We then have:

Lemma 17.3. Let g ≥ 3 and let a ∈ HZ be primitive. Then:

(a) F̂ [a, a] = ∧2U(a); and
(b) F [a, a] = Ka

g ∩ F̂ [a, a]; and

(c) the linearization map Φ: Kag → ∧2((∧2H)/Q) takes F[a, a] isomorphically onto K(a).

Proof. We noted that (a) held right before the lemma. We will prove (c) and then (b).

Step 1. Conclusion (c) holds: the linearization map Φ: Kag → ∧2((∧2H)/Q) takes F[a, a]
isomorphically onto K(a).

Endow Z2g−2 with the standard symplectic form. Let µ : Z2g−2 → ⟨a⟩⊥/⟨a⟩ be an
isomorphism of abelian groups equipped with symplectic forms. If v1, v2 ∈ Z2g−2 are
orthogonal vectors, then a ∧ µ(v1) and a ∧ µ(v2) are both either isotropic pairs or 0, so we
have a generator Ja ∧ µ(v1), a ∧ µ(v2)Ka of F[a, a].

Recall that we defined the vector space Zag−1 in Definition 1.11. It is generated by elements

Lv1, v2Ma with v1, v2 ∈ Z2g−2 orthogonal primitive vectors. Define a map ψ : Zag−1 → F[a, a]
via the formula

ψ(Lv1, v2Ma) = Ja ∧ µ(v1), a ∧ µ(v2)Ka for orthogonal primitive vectors v1, v2 ∈ Z2g−2.

This takes relations to relations, and thus gives a well-defined map.
We claim that ψ is surjective. To see this, consider a generator Ja ∧ x, a ∧ yKa of F[a, a].

We must check that Ja ∧ x, a ∧ yKa is in the image of ψ. Let w1, w2 ∈ Z2g−2 be such
that µ(w1) = x and µ(w2) = y. Write w1 = λ1v1 and w2 = λ2v2 with λ1, λ2 ∈ Z and
v1, v2 ∈ Z2g−2 primitive. We then have

ψ(λ1λ2Lv1, v2Ma) = λ1λ2Ja ∧ µ(v1), a ∧ µ(v2)Ka = Ja ∧ (λ1µ(v1)) , a ∧ (λ2µ(v2))Ka
= Ja ∧ µ(w1), a ∧ µ(w2)Ka = Ja ∧ x, a ∧ yKa,

as desired.
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We can identify the composition

Φ ◦ ψ : Zag−1 −→ K(a)

with the linearization map for Zag−1. Our assumption g ≥ 3 implies that g − 1 ≥ 1, so
Theorem D says that Φ ◦ ψ is an isomorphism. Since ψ is a surjection, this implies that Φ
takes F[a, a] isomorphically to K(a), as desired.

Step 2. Conclusion (b) holds: F [a, a] = Ka
g ∩ F [a, a] = K(a).

That F [a, a] = K(a) is immediate from (c). Conclusion (a) says that F̂ [a, a] = ∧2U(a).
Since Ka

g ∩ F̂ [a, a] is a codimension-1 subspace of F̂ [a, a] = ∧2U(a) containing F [a, a] and

K(a) is also a codimension-1 subspace of ∧2U(a), it follows that F [a, a] = K(a) equals

Ka
g ∩ F̂ [a, a], as desired. □

17.4. Identification II. Let (a, a′) be a pair of elements of HZ such that ω(a, a′) = 0 and
such that {a, a′} is a basis for a rank-2 direct summand of HZ. This latter condition implies
that a ∧ a′ is a strong isotropic pair. We will call such a pair (a, a′) an isotropic basis. Our
next goal is to identify F[a, a′].

In a generator Ja ∧ x, a′ ∧ yKa of F[a, a′], we have that x is orthogonal to a′ and y
is orthogonal to a. Moreover, x is only well-defined up to multiples of a and y is only
well-defined up to multiples of a′. This suggests defining

V(a, a′) = ⟨a′⟩⊥Q/⟨a⟩ and W(a, a′) = ⟨a⟩⊥Q/⟨a′⟩.

We can embed V(a, a′) and W(a, a′) into (∧2H)/Q by taking x ∈ V(a, a′) to a ∧ x and
y ∈ W(a, a′) to a′ ∧ y. Identifying V(a, a′) and W(a, a′) with the corresponding subspaces of
(∧2H)/Q, the intersection V(a, a′) ∩W(a, a′) is spanned by a ∧ a′. Here a ∧ a′ corresponds
to a′ ∈ V(a, a′) and −a ∈ W(a, a′). It follows that as subspaces of ∧2((∧2H)/Q) we have

F̂ [a, a′] = V(a, a′) ∧W(a, a′) ∼=
V(a, a′)⊗W(a, a′)

⟨a′ ⊗ a⟩
.

The symplectic form ω induces a bilinear pairing

ω : V(a, a′)×W(a, a′) −→ Q.

Let K(a, a′) be the kernel of the map

V(a, a′)⊗W(a, a′) −→ Q

induced by ω. We have a′ ⊗ a ∈ K(a, a′), and by the previous paragraph K(a, a′)/⟨a′ ⊗ a⟩ is
a subspace of ∧2((∧2H)/Q). We then have:

Lemma 17.4. Let g ≥ 3 and let (a, a′) be an isotropic basis. Then:

(a) F̂ [a, a′] = V(a, a′) ∧W(a, a′) ∼= (V(a, a′)⊗W(a, a′)) /⟨a′ ⊗ a⟩; and
(b) F [a, a′] = Ka

g ∩ F̂ [a, a′] = K(a, a′)/⟨a′ ⊗ a⟩; and
(c) the linearization map Φ: Kag → ∧2((∧2H)/Q) takes F[a, a′] isomorphically onto

K(a, a′)/⟨a′ ⊗ a⟩.

Proof. We noted that (a) held right before the lemma, and (b) follows from (c) just like
in the proof of Lemma 17.3. We must prove (c). Since (a, a′) is an isotropic basis, we can
find a symplectic basis {a1, b1, . . . , ag, bg} for HZ such that a1 = a and a2 = a′. Define

VZ = ⟨a2⟩⊥/⟨a1⟩ and WZ = ⟨a1⟩⊥/⟨a2⟩. We can identify:

• VZ with ⟨b1, a2, a3, b3, . . . , ag, bg⟩ ∼= Z2g−2; and
• WZ with ⟨a1, b2, a3, b3, . . . , ag, bg⟩ ∼= Z2g−2.
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Under these identifications, the bilinear pairing ω between VZ and WZ induced by ω is iden-
tified with the bilinear pairing between ⟨b1, a2, a3, b3, . . . , ag, bg⟩ and ⟨a1, b2, a3, b3, . . . , ag, bg⟩
given by ω. Let {e1, . . . , e2g−2} be the standard basis for Z2g−2 and {e∗1, . . . , e∗2g−2} be the

corresponding dual basis for (Z2g−1)∗. Let µ1 : (Z2g−2)∗ → VZ and µ2 : Z2g−1 → WZ be the
isomorphisms defined by

µ1(e
∗
1) = b1, µ1(e

∗
2) = a2(17.1)

µ2(e1) = −a1, µ2(e2) = b2

and

µ1(e
∗
2i−3) = ai, µ1(e

∗
2i−2) = bi for 3 ≤ i ≤ g,

µ2(e2i−3) = bi, µ2(e2i−2) = −ai, for 3 ≤ i ≤ g.

We chose these isomorphisms in part because they ensure that

f(x) = ω(µ1(f), µ2(x)) for all f ∈ (Z2g−2)∗ and x ∈ Z2g−2.

The precise form of (17.1) will be important in the next paragraph.
Recall that we defined the vector space A′

2g−2 in Definition 6.1. It is generated by elements

[f, v]′0 with f ∈ (Z2g−2)∗ and v ∈ Z2g−2 primitive vectors such that f(v) = 0 and such that:

• f is e∗1-standard, which means that the e∗1-coordinate of f lies in {−1, 0, 1}; and
• v is e2-standard, which means that the e2-coordinate of v lies in {−1, 0, 1}.

In light of (17.1), this implies that both a1 ∧ µ1(v) and a2 ∧ µ2(v) are special pairs. We can
therefore define a map ψ : A′

2g−2 → F[a1, a2] via the formula

ψ([f, v]′0) = Ja1 ∧ µ1(f), a2 ∧ µ(v)Ka for a generator [f, v]′0 of A′
2g−2.

This takes relations to relations, and thus gives a well-defined map. We also have:

Claim. The map ψ is surjective.

Proof of claim. Consider a generator Ja1 ∧ x, a2 ∧ yKa of F[a1, a2]. We must show that
Ja1 ∧ x, a2 ∧ yKa is in the image of ψ. We can assume that our generator is nonzero, so x ̸= 0
and y ̸= 0. Write x = µ1(f) and y = µ2(v) with f ∈ (Z2g−2)∗ and v ∈ Z2g−2. By definition,
f is e∗1-standard and v is e2-standard. Write f = λf ′ and v = ηv′ with λ, η ∈ Z and f ′ and
v′ primitive. The elements f ′ and v′ are e∗1- and e2-standard, respectively. We therefore
have a generator [f ′, v′]′0 of A′

2g−2, and

ψ(λη[f ′, v′]′0) = ληJa1 ∧ µ1(f ′), a2 ∧ µ2(v′)Ka = λJa1 ∧ µ1(f ′), a2 ∧
(
ηµ2(v

′)
)
Ka

= λJa1 ∧ µ1(f ′), a2 ∧ yKa = Ja1 ∧
(
λµ1(f

′)
)
, a2 ∧ yKa = Ja1 ∧ x, a2 ∧ yKa,

as desired. □

Since g ≥ 3, we have 2g − 2 ≥ 4. Theorem B′ thus gives a linearization map Φ̃ : A′
2g−2 →

sl2g−2(Q) that is an isomorphism. Here sl2g(Q) is the kernel of the trace map (Q2g−2)∗ ⊗
Q2g−2 → Q. Recall that K(a1, a2) is the kernel of the symplectic pairing V(a1, a2) ⊗
W(a1, a2) → Q. Identifying µ1 and µ2 with maps (Q2g−2)∗ → V(a1, a2) and Q2g−2 →
W(a1, a2), this all fits into a commutative diagram

A′
2g−2 sl2g−2(Q) K(a1, a2)

F[a1, a2] K(a1, a2)/⟨a2 ⊗ a1⟩.

ψ

Φ̃
∼=

µ1⊗µ2
∼=

Φ
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By (17.1), we have ψ([e∗2,−e1]′0) = Ja1 ∧ a2, a2 ∧ a1Ka = 0. Since the isomorphism on the top
row of this diagram takes [e∗2,−e1]′0 to a2 ⊗ a1, we conclude that the map Φ on the bottom
row is an isomorphism, as desired. □

18. Symmetric kernel, alternating version II: the set S and SymSpg

In the next three sections, we construct a set S ⊂ Kag with ⟨S⟩ = Kag . This section defines
S and studies its symmetries. In §19 we will construct a large number of elements in ⟨S⟩,
and then finally in §20 we will prove that ⟨S⟩ = Kag . Throughout this section, like in the
last section we relax our standing assumption that g ≥ 4 (Assumption 15.2), so our results
include explicit genus ranges when they are necessary. See Remark 16.1.

18.1. The set S. Fix a symplectic basis B = {a1, b1, . . . , ag, bg} for HZ. Define S = S12∪S3,
where21

S12 =
⋃

a,a′∈B
ω(a,a′)=0

F[a, a′] and S3 =
⋃

1≤i,j≤g
i ̸=j

F[ai − bj , bi − aj ].

Just like we did here, we will write elements of ⟨S12⟩ in purple and elements of ⟨S3⟩ in
orange; for instance,

Ja1 ∧ a3, a2 ∧ (a3 − b4)Ka ∈ S12,

J(a1 − b2) ∧ (a3 + a4), (b1 − a2) ∧ (b3 − b4)Ka ∈ S3.

The sets S12 and S3 are not disjoint, so some elements could be written in either color; for
instance,

Ja1 ∧ (a2 − b3), a1 ∧ (b2 − a3)Ka ∈ S12,

Ja1 ∧ (a2 − b3), a1 ∧ (b2 − a3)Ka = J(a2 − b3) ∧ a1, (b2 − a3) ∧ a1Ka ∈ S3.

18.2. Signed symmetric group. Recall that SymSpg consists of all f ∈ Sp2g(Z) such that
for all x ∈ B, we have either f(x) ∈ B or −f(x) ∈ B. This is a finite group. Associated
to each f ∈ Sp2g(Z) is a permutation p of {1, . . . , g} such that for all 1 ≤ i ≤ g the pair
(f(ai), f(bi)) is one of the following:

(ap(i), bp(i)), or (−ap(i),−bp(i)), or (bp(i),−ap(i)), or (−bp(i), ap(i)).
Our main goal in this section is to prove:

Lemma 18.1. For all g ≥ 3, the action of SymSpg on Kag takes ⟨S⟩ to ⟨S⟩.

The proof of Lemma 18.1 is at the end of this section after some preliminaries.

18.3. Symmetric group. Embed the symmetric group Sg on g generators into Sp2g(Z)
by letting p ∈ Sg act as p(ai) = ap(i) and p(bi) = bp(i) for 1 ≤ i ≤ g. The group Sg is a
subgroup of SymSpg. We start with:

Lemma 18.2. For all g ≥ 3, the action of Sg on Kag takes ⟨S⟩ to ⟨S⟩.

Proof. For p ∈ Sg, we have

p(F[a, a′]) = F[p(a), p(a′)] ⊂ S12 for a, a ∈ B with ω(a, a′) = 0,

p(F[ai − bj , bi − aj ]) = F[ap(i) − bp(j), bp(i) − ap(j)] ⊂ S3 for 1 ≤ i, j ≤ g distinct.

The lemma follows. □

21The reason for calling this set S12 is that later it will be expressed as the union of sets S1 and S2, which
also explains why the other set is S3.
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18.4. Some elements, I. To extend Lemma 18.2 to SymSpg, we need to construct some
elements in ⟨S⟩. We start with:

Lemma 18.3. Let g ≥ 3. For 1 ≤ i ≤ g, we have F[ai + bi, ai + bi] ⊂ ⟨S⟩.
Proof. By Lemma 18.2, we can apply any element of Sg to F[ai+bi, ai+bi] without changing
whether or not it lies in ⟨S⟩. Applying an appropriate such element, we reduce to showing
that F[a1 + b1, a1 + b1] ⊂ ⟨S⟩. Following the notation in §17.3, define

U = ⟨a1 + b1⟩⊥Q/⟨a1 + b1⟩ ∼= ⟨A⟩Q with A = {a2, b2, . . . , ag, bg}.
We proved in Lemma 17.3 that F[a1 + b1, a1 + b1] is isomorphic to the kernel of the
map ∧2U → Q induced by the symplectic form ω. Under this isomorphism, a generator
J(a1 + b1) ∧ x, (a1 + b1) ∧ yKa of F[a1 + b1, a1 + b1] maps to x ∧ y ∈ ∧2U .

The kernel of ∧2U → Q is spanned by X = {x ∧ y | x, y ∈ A, ω(x, y) = 0} and Y =
{ai ∧ bi − aj ∧ bj | 2 ≤ i < j ≤ g}. Since for 2 ≤ i < j ≤ g we have

(ai − bj) ∧ (bi − aj) = ai ∧ bi − aj ∧ bj + an element of ⟨X⟩,
we can replace Y by {(ai − bj) ∧ (bi − aj) | 2 ≤ i < j ≤ g}. It follows that F[a1+ b1, a1+ b1]
is generated by the following elements:

Case 1. J(a1 + b1) ∧ x, (a1 + b1) ∧ yKa for x, y ∈ A with ω(x, y) = 0.

These equal Jx ∧ (a1 + b1), y ∧ (a1 + b1)Ka ∈ S12.

Case 2. J(a1 + b1) ∧ (ai − bj), (a1 + b1) ∧ (bi − aj)Ka for 2 ≤ i < j ≤ g.

These equal J(ai − bj) ∧ (a1 + b1), (bi − aj) ∧ (a1 + b1)Ka ∈ S3. □

18.5. Some elements, II. We next handle the following variants of the elements of S3:

Lemma 18.4. Let g ≥ 3. For all distinct 1 ≤ i, j ≤ g and ϵ, ϵ′ ∈ {±1}, both F[ϵai+ϵ
′bj , ϵbi+

ϵ′aj ] and F[ϵai + ϵ′aj , ϵbi − ϵ′bj ] are subsets of ⟨S⟩.
Proof. Since F[−,−] is not changed when its entries are multiplied by −1 (Lemma 17.2), it
is enough to prove this for ϵ = 1. Also, using Lemma 18.2 we can multiply our elements by
appropriate elements of the symmetric group Sg and assume that (i, j) = (1, 2). Since we
already know that F[a1 − b2, b1 − a2] ⊂ S3, this reduces us to proving that F[a1+ b2, b1+ a2]
and F[a1 + a2, b1 − b2] and F[a1 − a2, b1 + b2] are contained in ⟨S⟩. We do this in Lemmas
18.5 and 18.6 and 18.5 below. □

Lemma 18.5. Let g ≥ 3. We have F[a1 + b2, b1 + a2] ⊂ ⟨S⟩.
Proof. Following the notation in §17.4, define

V =⟨b1 + a2⟩⊥Q/⟨a1 + b2⟩ ∼= ⟨AV ⟩Q with AV = {b1, a2, a3, b3, . . . , ag, bg},

W =⟨a1 + b2⟩⊥Q/⟨b1 + a2⟩ ∼=⟨AW ⟩Q with AW = {a1, b2, a3, b3, . . . , ag, bg}.
We proved in Lemma 17.4 that F[a1 + b2, b1 + a2] is isomorphic to a quotient of the kernel
of the map V ⊗ W → Q induced by the symplectic form ω. Under this isomorphism, a
generator J(a1 + b2) ∧ x, (b1 + a2) ∧ yKa of F[a1 + b2, b1 + a2] maps to x⊗ y ∈ V ⊗W.

The kernel of V ⊗W → Q is spanned by X ∪ Y where22

X = {x⊗ y | x ∈ AV , y ∈ AW , ω(x, y) = 0} ,
Y = {ai ⊗ bi + bj ⊗ aj | 3 ≤ i, j ≤ g}

∪ {a3 ⊗ b3 + b1 ⊗ a1, a2 ⊗ b2 + b3 ⊗ a3}.

22The first part of Y along with the portion of X lying in it spans the kernel of the map
⟨a3, b3, . . . , ag, bg⟩⊗2 → Q. Indeed, quotienting ⟨a3, b3, . . . , ag, bg⟩⊗2 by the portion of X lying in it results in

U = ⟨a3 ⊗ b3, b3 ⊗ a3, . . . , ag ⊗ bg, bg ⊗ ag⟩.
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Since for 1 ≤ i, j ≤ g distinct with either i, j ≥ 3 or (i, j) ∈ {(3, 1), (2, 3)} and for 3 ≤ k ≤ g
we have

(ai − bj)⊗ (bi − aj) = ai ⊗ bi + bj ⊗ aj + an element of ⟨X⟩,
(ak + bk)⊗ (ak + bk) = ak ⊗ bk + bk ⊗ ak + an element of ⟨X⟩,

we can replace Y by the set

{(ai − bj)⊗ (bi − aj) | 1 ≤ i, j ≤ g distinct, either i, j ≥ 3 or (i, j) ∈ {(3, 1), (2, 3)}}
∪ {(ai + bi)⊗ (ai + bi) | 3 ≤ i ≤ g} .

From this, we see that F[a1 + b2, b1 + a2] is generated by the following elements:23

Case 1. J(a1 + b2) ∧ x, (b1 + a2) ∧ yKa for x ∈ AV and y ∈ AW with ω(x, y) = 0.

These equal Jx ∧ (a1 + b2), y ∧ (b1 + a2)Ka ∈ S12.

Case 2. J(a1 + b2) ∧ (ai − bj), (b1 + a2) ∧ (bi − aj)Ka for 1 ≤ i, j ≤ g distinct with either
i, j ≥ 3 or (i, j) ∈ {(3, 1), (2, 3)}.

These equal J(ai − bj) ∧ (a1 + b2), (bi − aj) ∧ (b1 + a2)Ka ∈ S3.

Case 3. J(a1 + b2) ∧ (ai + bi), (b1 + a2) ∧ (ai + bi)Ka for 3 ≤ i ≤ g.

These equal J(ai+ bi)∧ (a1 + b2), (ai+ bi)∧ (b1 + a2)Ka, which lie in ⟨S⟩ by Lemma 18.3. □

Lemma 18.6. Let g ≥ 3. We have F[a1 + a2, b1 − b2] ⊂ ⟨S⟩.

Proof. This is similar to Lemma 18.5, so we just sketch the argument. Like in that lemma,
define

V =⟨b1 − b2⟩⊥Q/⟨a1 + a2⟩ ∼= ⟨AV ⟩Q with AV = {b1, b2, a3, b3, . . . , ag, bg},

W =⟨a1 + a2⟩⊥Q/⟨b1 − b2⟩ ∼=⟨AW ⟩Q with AW = {a1, a2, a3, b3, . . . , ag, bg}.

Elements of F[a1 + a2, b1 − b2] correspond to elements of a quotient of the kernel of the map
V ⊗W → Q induced by the symplectic form ω. Using this, just like in Lemma 18.5 we can
reduce to the following three cases, each of which is handled just like in Lemma 18.5.

• J(a1 + a2) ∧ x, (b1 − b2) ∧ yKa for x ∈ AV and y ∈ AW with ω(x, y) = 0.
• J(a1+a2)∧ (ai− bj), (b1− b2)∧ (bi−aj)Ka for 1 ≤ i, j ≤ g distinct with either i, j ≥ 3
or (i, j) ∈ {(3, 1), (3, 2)}.

• J(a1 + a2) ∧ (ai + bi), (b1 − b2) ∧ (ai + bi)Ka for 3 ≤ i ≤ g. □

Lemma 18.7. Let g ≥ 3. We have F[a1 − a2, b1 + b2] ⊂ ⟨S⟩.

Proof. This is also similar to Lemma 18.5, so we just sketch the argument. Like in that
lemma, define

V =⟨b1 + b2⟩⊥Q/⟨a1 − a2⟩ ∼= ⟨AV ⟩Q with AV = {b1, b2, a3, b3, . . . , ag, bg},

W =⟨a1 − a2⟩⊥Q/⟨b1 + b2⟩ ∼=⟨AW ⟩Q with AW = {a1, a2, a3, b3, . . . , ag, bg}.

In Y , we have ai ⊗ bi + bi ⊗ ai for all 3 ≤ i ≤ g, and also for 3 ≤ i, j ≤ g distinct the elements

ai ⊗ bi − aj ⊗ bj = (ai ⊗ bi + bj ⊗ aj)− (aj ⊗ bj + bj ⊗ aj),

bi ⊗ ai − bj ⊗ aj = (aj ⊗ bj + bi ⊗ ai)− (aj ⊗ bj + bj ⊗ aj).

Quotienting U by these gives Q, as desired. We will silently use calculations like this in the next two sections.
23The elements J(a1 + b2)∧ z, (b1 + a2)∧wKa listed below each map to one of the generators for the kernel

of V ⊗W → Q we identified. It is important that these are indeed generators of F[a1 + b2, b1 + a2], i.e., that
both (a1 + b2) ∧ z and (b1 + a2) ∧ w are special pairs.
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Elements of F[a1 − a2, b1 + b2] correspond to elements of a quotient of the kernel of the map
V ⊗W → Q induced by the symplectic form ω. Using this, just like in Lemma 18.5 we can
reduce to the following three cases, each of which is handled just like in Lemma 18.5.

• J(a1 − a2) ∧ x, (b1 + b2) ∧ yKa for x ∈ AV and y ∈ AW with ω(x, y) = 0.
• J(a1−a2)∧ (ai− bj), (b1+ b2)∧ (bi−aj)Ka for 1 ≤ i, j ≤ g distinct with either i, j ≥ 3
or (i, j) ∈ {(3, 1), (3, 2)}.

• J(a1 − a2) ∧ (ai + bi), (b1 + b2) ∧ (ai + bi)Ka for 3 ≤ i ≤ g. □

18.6. Closure under signed symmetric group. We now prove Lemma 18.1, whose
statement we recall:

Lemma 18.1. For all g ≥ 3, the action of SymSpg on Kag takes ⟨S⟩ to ⟨S⟩.

Proof. It is enough to prove that SymSpg takes both S12 and S3 into ⟨S⟩:

Claim 1. For f ∈ SymSpg and a, a′ ∈ B with ω(a, a′) = 0, we have f(F[a, a′]) ⊂ ⟨S⟩.

Write f(a) = ϵa0 and f(a′) = ϵ′a′0 with a0, a
′
0 ∈ B and ϵ, ϵ ∈ {±1}. We have ω(a0, a

′
0) = 0,

and by Lemma 17.2 we have

f(F[a, a′]) = F[ϵa0, ϵ
′a′0] = F[a0, a

′
0] ⊂ S12.

Claim 2. For f ∈ SymSpg and 1 ≤ i < j ≤ g, we have f(F[ai − bj , bi − aj ]) ⊂ ⟨S⟩.

For some distinct 1 ≤ i0, j0 ≤ g we have

f(ai), f(bi) ∈ {±ai0 ,±bi0} and f(aj), f(bj) ∈ {±aj0 ,±bj0}.

Since

ω(f(ai − bi), f(bi − aj)) = ω(ai − bi, bi − aj) = 0,

it follows that for some distinct 1 ≤ i0, j0 ≤ g and ϵ, ϵ′ ∈ {±1} the set f(F[ai − bj , bi − aj ])
equals either

F[ϵai0 + ϵ′bj0 , ϵbi0 + ϵ′aj0 ] or F[ϵai0 + ϵ′aj0 , ϵbi0 − ϵ′bj0 ].

Lemma 18.4 says that both of these are contained in ⟨S⟩. □

One useful consequence of Lemma 18.1 is the following generalization of Lemma 18.8:

Lemma 18.8. Let g ≥ 3. For 1 ≤ i ≤ g and ϵ ∈ {±1}, we have F[ai + ϵbi, ai + ϵbi] ⊂ ⟨S⟩.

Proof. The group SymSpg can take ai + bi to ai − bi by mapping ai to −bi and bi to ai.
From this and Lemma 18.1, the lemma reduces to Lemma 18.3. □

19. Symmetric kernel, alternating version III: eight elements

We now re-impose our standing assumption g ≥ 4 (Assumption 15.2), which will remain
in place until we say otherwise. We continue using all the notation from §18. Our goal in
this section is to prove eight lemmas saying that certain elements lie in ⟨S⟩. They might
appear random, but they are exactly24 the ones needed in the next section (§20) to prove
that ⟨S⟩ = Kag , and as motivation a reader might first consult that proof.

Remark 19.1. We apologize for the repetitiveness of the proofs of our lemmas. They all
follow the same pattern, but each has small twists and it is important to prove them in the
right order so that earlier lemmas can be invoked during the proofs of later ones. □

24Except for two that are needed for the proofs of ones needed in the next section.
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19.1. Two vs one. Our first three lemmas are about F[a, a′] where a uses two generators
and a′ is a single generator. We remark that during our proofs we will frequently silently be
using the fact that g ≥ 4 (Assumption 15.2).

Lemma 19.2 (Two vs one, I). For all x ∈ B \ {a1, b1}, both F[a1 + b1, x] and F[a1 − b1, x]
are subsets of ⟨S⟩.

Proof. Using Lemma 18.1, we can apply an appropriate element of SymSpg and reduce
ourselves to proving that F[a1 + b1, a2] ⊂ ⟨S⟩. Following the notation in §17.4, define

V =⟨a2⟩⊥Q/⟨a1 + b1⟩ ∼= ⟨AV , AU ⟩Q with AV = {a1, a2, a3, b3, . . . , ag, bg},

W =⟨a1 + b1⟩⊥Q/⟨a2⟩ ∼=⟨AW , AU ⟩Q with AW = {a1 + b1, b2, a3, b3, . . . , ag, bg}.

We proved in Lemma 17.4 that F[a1 + b1, a2] is isomorphic to a quotient of the kernel of the
map V ⊗W → Q induced by the symplectic form ω. Under this isomorphism, a generator
J(a1 + b1) ∧ x, a2 ∧ yKa of F[a1 + b1, a2] maps to x⊗ y ∈ V ⊗W.

The kernel of V ⊗W → Q is spanned by X ∪ Y where25

X = {x⊗ y | x ∈ AV , y ∈ AW , ω(x, y) = 0} ,
Y = {ai ⊗ bi + bj ⊗ aj | 3 ≤ i, j ≤ g}

∪ {a2 ⊗ b2 − a1 ⊗ (a1 + b1), a2 ⊗ b2 + b3 ⊗ a3}.

Since for 1 ≤ i, j ≤ g distinct with either i, j ≥ 3 or (i, j) = (2, 3) and for 3 ≤ k ≤ g we have

(ai − bj)⊗ (bi − aj) = ai ⊗ bi + bj ⊗ aj + an element of ⟨X⟩,
(ak + bk)⊗ (ak + bk) = ak ⊗ bk + bk ⊗ ak + an element of ⟨X⟩,

(a1 − a2)⊗ (a1 + b1 + b2) = a1 ⊗ (a1 + b1)− a2 ⊗ b2 + an element of ⟨X⟩,

we can replace Y by the set

{(ai − bj)⊗ (bi − aj) | 1 ≤ i, j ≤ g distinct, either i, j ≥ 3 or (i, j) = (2, 3)}
∪ {(ai + bi)⊗ (ai + bi) | 3 ≤ i ≤ g}
∪ {(a1 − a2)⊗ (a1 + b1 + b2)}.

From this, we see that F[a1 + b1, a2] is generated by the following elements:

Case 1. J(a1 + b1) ∧ x, a2 ∧ yKa for x ∈ AV and y ∈ AW with ω(x, y) = 0.

These equal −Jx ∧ (a1 + b1), a2 ∧ yKa ∈ S12.

Case 2. J(a1 + b1) ∧ (ai − bj), a2 ∧ (bi − aj)Ka with 1 ≤ i, j ≤ g distinct and either i, j ≥ 3
or (i, j) = (2, 3).

These equal J(ai − bj) ∧ (a1 + b1), (bi − aj) ∧ a2Ka ∈ S3.

Case 3. J(a1 + b1) ∧ (ai + bi), a2 ∧ (ai + bi)Ka with 3 ≤ i ≤ g.

These equal J(ai + bi) ∧ (a1 + b1), (ai + bi) ∧ a2Ka, which lie in ⟨S⟩ by Lemma 18.3.

Case 4. J(a1 + b1) ∧ (a2 − a1), a2 ∧ (a1 + b1 + b2)Ka.

25See the footnotes in the proof of Lemma 18.5 for more on this. The elements are carefully chosen
such that all the elements J(a1 + b1) ∧ z, a2 ∧ wKa that appears in Cases 1 – 4 below are actually generators
of F[a1 + b1, a2], i.e., both (a1 + b1) ∧ z and a2 ∧ w are special pairs. The most delicate choice here is
a2 ⊗ b2 − a1 ⊗ (a1 + b1), which is also chosen to make the calculation in Case 4 easier.
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Since {a1 + b1, a2 − a1, a2, a1 + b1 + b2, a3, b3, . . . , ag, bg} is a symplectic basis for HZ, in
(∧2H)/Q we have

(a1 + b1) ∧ (a2 + a1) + a2 ∧ (a1 + b1 + b2) + a3 ∧ b3 + · · ·+ ag ∧ bg = 0.

Solving for a2 ∧ (a1 + b1 + b2) and plugging the result into the second entry of our element,
we see that J(a1 + b1) ∧ (a2 − a1), a2 ∧ (a1 + b1 + b2)Ka equals

− J(a1 + b1) ∧ (a2 − a1), (a1 + b1) ∧ (a2 − a1)Ka −
∑g

i=3
J(a1 + b1) ∧ (a2 − a1), ai ∧ biKa

=−
∑g

i=3
(Ja1 ∧ a2, ai ∧ biKa + Jb1 ∧ a2, ai ∧ biKa − Jb1 ∧ a1, ai ∧ biKa) ∈ ⟨S12⟩. □

Lemma 19.3 (Two vs one, II). Both F[a1 + b2, b2] and F[a2 + b1, b1] are subsets of ⟨S⟩.

Proof. The subsets differ by an element of SymSpg, so by Lemma 18.1 it is enough to prove
that F[a1 + b2, b2] ⊂ ⟨S⟩. Following the notation in §17.4, define

V =⟨b2⟩⊥Q/⟨a1 + b2⟩ ∼= ⟨AV ⟩Q with AV = {b1, b2, a3, b3, . . . , ag, bg},

W =⟨a1 + b2⟩⊥Q/⟨b2⟩ ∼=⟨AW ⟩Q with AW = {a1, b1 + a2, a3, b3, . . . , ag, bg}.

We proved in Lemma 17.4 that F[a1 + b2, b2] is isomorphic to a quotient of the kernel of the
map V ⊗W → Q induced by the symplectic form ω. Under this isomorphism, a generator
J(a1 + b2) ∧ x, b2 ∧ yKa of F[a1 + b2, b2] maps to x⊗ y ∈ V ⊗W.

The kernel of V ⊗W → Q is spanned by X ∪ Y where

X = {x⊗ y | x ∈ AV , y ∈ AW , ω(x, y) = 0} ,
Y = {ai ⊗ bi + bj ⊗ aj | i, j ≥ 3}

∪ {a3 ⊗ b3 + b1 ⊗ a1, b1 ⊗ a1 − b2 ⊗ (b1 + a2)}.

Just like in the proof of Lemma 19.2, we can replace Y by the set

{(ai − bj)⊗ (bi − aj) | 1 ≤ i, j ≤ g distinct, either i, j ≥ 3 or (i, j) = (3, 1)}
∪ {(ai + bi)⊗ (ai + bi) | 3 ≤ i ≤ g}
∪ {(b1 − b2)⊗ (a1 + b1 + a2)}.

From this, we see that F[a1 + b2, b2] is generated by the following elements:

Case 1. J(a1 + b2) ∧ x, b2 ∧ yKa for x ∈ AV and y ∈ AW with ω(x, y) = 0.

These equal −Jx ∧ (a1 + b2), b2 ∧ yKa ∈ S12.

Case 2. J(a1 + b2)∧ (ai − bj), b2 ∧ (bi − aj)Ka for 1 ≤ i, j ≤ g distinct with either i, j ≥ 3 or
(i, j) = (3, 1).

These equal J(ai − bj) ∧ (a1 + b2), (bi − aj) ∧ b2Ka ∈ S3.

Case 3. J(a1 + b2) ∧ (ai + bi), b2 ∧ (ai + bi)Ka for 3 ≤ i ≤ g.

These equal J(ai + bi) ∧ (a1 + b2), (ai + bi) ∧ b2Ka, which lie in ⟨S⟩ by Lemma 18.3.

Case 4. J(a1 + b2) ∧ (b1 − b2), b2 ∧ (a1 + b1 + a2)Ka.

This equals J(a1 + b1)∧ (b1 − b2), b2 ∧ (a1 + b1 + a2)Ka, which lies in ⟨S⟩ by Lemma 19.2. □

Lemma 19.4 (Two vs one, III). The following hold:

• For a′ ∈ B \ {a1, b1, a2, b2}, we have F[a1 + b2, a
′] ⊂ ⟨S⟩.

• For a′ ∈ B \ {a1, a2, a2, b2}, we have F[a2 + b1, a
′] ⊂ ⟨S⟩.



48 DANIEL MINAHAN AND ANDREW PUTMAN

Proof. The two sets differ by an element of SymSpg, so by Lemma 18.1 it is enough to deal
with F[a1+ b2, a

′]. Applying a further element of SymSpg, we can reduce to the case a′ = a3,
i.e., to F[a1 + b2, a3]. In fact, to simplify our notation we will apply yet another element
of SymSpg and transform our goal into proving that F[a1 + a3, a2] ⊂ ⟨S⟩. Following the
notation in §17.4, define

V =⟨a2⟩⊥Q/⟨a1 + a3⟩ ∼= ⟨AV ⟩Q with AV = {b1, a1, a2, b3, a4, b4, . . . , ag, bg},

W =⟨a1 + a3⟩⊥Q/⟨a2⟩ ∼=⟨AW ⟩Q with AW = {a1, b1 − b3, b2, a3, a4, b4, . . . , ag, bg}.

We proved in Lemma 17.4 that F[a1 + a3, a2] is isomorphic to a quotient of the kernel of the
map V ⊗W → Q induced by the symplectic form ω. Under this isomorphism, a generator
J(a1 + a3) ∧ x, a2 ∧ yKa of F[a1 + a3, a2] maps to x⊗ y ∈ V ⊗W.

The kernel of V ⊗W → Q is spanned by X ∪ Y where

X = {x⊗ y | x ∈ AV , y ∈ AW , ω(x, y) = 0} ,
Y = {ai ⊗ bi + bj ⊗ aj | 4 ≤ i, j ≤ g}

∪ {a4 ⊗ b4 + b1 ⊗ a1, b1 ⊗ a1 + a1 ⊗ (b1 − b3), a2 ⊗ b2 + b4 ⊗ a4, a4 ⊗ b4 + b3 ⊗ a3}.
Just like in the proof of Lemma 19.2, we can replace Y by

{(ai − bj)⊗ (bi − aj) | 1 ≤ i, j ≤ g distinct, either i, j ≥ 4 or (i, j) ∈ {(4, 1), (2, 4), (4, 3)}}
∪ {(ai + bi)⊗ (ai + bi) | 4 ≤ i ≤ g}
∪ {(a1 + b1)⊗ (a1 + b1 − b3)}.

From this, we see that F[a1 + a3, a2] is generated by the following elements:

Case 1. J(a1 + a3) ∧ x, a2 ∧ yKa for x ∈ AV and y ∈ AW with ω(x, y) = 0.

These equal −Jx ∧ (a1 + a3), a2 ∧ yKa ∈ S12.

Case 2. J(a1 + a3) ∧ (ai − bj), a2 ∧ (bi − aj)Ka for 1 ≤ i, j ≤ g distinct with either i, j ≥ 4
or (i, j) ∈ {(4, 1), (2, 4), (4, 3)}.

These equal J(ai − bj) ∧ (a1 + a3), (bi − aj) ∧ a2Ka ∈ S3.

Case 3. J(a1 + a3) ∧ (ai + bi), a2 ∧ (ai + bi)Ka for 4 ≤ i ≤ g.

These equal J(ai + bi) ∧ (a1 + a3), (ai + bi) ∧ a2Ka, which lie in ⟨S⟩ by Lemma 18.3.

Case 4. J(a1 + a3) ∧ (a1 + b1), a2 ∧ (a1 + b1 − b3)Ka.

This equals −J(a1+b1)∧ (a1+a3), a2∧ (a1+b1−b3)Ka, which lies in ⟨S⟩ by Lemma 19.2. □

19.2. Two vs two. Our next three lemmas are about F[a, a′] where both a and a′ involve
two generators. Note that we already proved many such results in Lemma 18.4.

Lemma 19.5 (Two vs two, I). Both F[a1 + b2, a1 + b2] and F[a2 + b1, a2 + b1] are subsets of
⟨S⟩.

Proof. The pairs (a1 + b2, a1 + b2) and (a2 + b1, a2 + b1) differ by an element of SymSpg, so
by Lemma 18.1 it is enough to prove that F[a1 + b2, a1 + b2] ⊂ ⟨S⟩. Following the notation
in §17.3, define

U = ⟨a1 + b2⟩⊥Q/⟨a1 + b2⟩ ∼= ⟨A⟩Q with A = {b1 + a2, b2, a3, b3, . . . , ag, bg}.

We proved in Lemma 17.3 that F[a1 + b2, a1 + b2] is isomorphic to the kernel of the
map ∧2U → Q induced by the symplectic form ω. Under this isomorphism, a generator
J(a1 + b2) ∧ x, (a1 + b2) ∧ yKa of F[a1 + b2, a1 + b2] maps to x ∧ y ∈ ∧2U .
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The kernel of ∧2U → Q is spanned by X ∪ Y with

X = {x ∧ y | x, y ∈ A distinct, ω(x, y) = 0} ,
Y = {ai ∧ bi − aj ∧ bj | 3 ≤ i < j ≤ g} ∪ {(b1 + a2) ∧ b2 − a3 ∧ b3}.

Just like in the proof of Lemma 19.2, we can replace Y by

{(ai − bj) ∧ (bi − aj) | 3 ≤ i < j ≤ g} ∪ {(b1 + a2 + b3) ∧ (b2 + a3)}.
It follows that F[a1 + b2, a1 + b2] is generated by the following elements:

Case 1. J(a1 + b2) ∧ x, (a1 + b2) ∧ yKa for x, y ∈ A with ω(x, y) = 0.

If x, y ∈ {b2, a3, b3, . . . , ag, bg}, then
J(a1 + b2) ∧ x, (a1 + b2) ∧ yKa = Jx ∧ (a1 + b2), y ∧ (a1 + b2)Ka ∈ S12.

If instead one of x and y equals b1 + a2, then swapping x and y if necessary we can assume
that y = b1 + a2. In this case, using Lemma 18.4 we have

J(a1 + b2) ∧ x, (a1 + b2) ∧ (b1 + a2)Ka = −J(a1 + b2) ∧ x, (b1 + a2) ∧ (a1 + b2)Ka ∈ ⟨S⟩.
Case 2. J(a1 + b2) ∧ (ai − bj), (a1 + b2) ∧ (bi − aj)Ka for 3 ≤ i < j ≤ g.

These equal J(ai − bj) ∧ (a1 + b2), (bi − aj) ∧ (a1 + b2)Ka ∈ S3.

Case 3. J(a1 + b2) ∧ (b1 + a2 + b3), (a1 + b2) ∧ (b2 + a3)Ka.

This element equals

(19.1) Ja1∧ (b1+a2+ b3), (a1+ b2)∧ (b2+a3)Ka+ Jb2∧ (b1+a2+ b3), (a1+ b2)∧ (b2+a3)Ka.

This is the sum of an element of F[a1, a1+b2] = F[a1+b2, a1] and an element of F[b2, a1+b2] =
F[a1 + b2, b2]. Lemma 19.3 says that F[a1 + b2, b2] ⊂ ⟨S⟩. The set F[a1 + b2, a1] differs from
F[a1 + b2, b2] by an element of SymSpg, so by Lemma 18.1 it also lies in ⟨S⟩. We conclude
that (19.1) also lies in ⟨S⟩, as desired. □

The next two lemmas are not needed in the next section, but will be invoked during
proofs later in this section.

Lemma 19.6 (Two vs two, II). We have F[a1 + a2, a1 + a3] ⊂ ⟨S⟩.
Proof. Following the notation in §17.4, define

V =⟨a1 + a3⟩⊥Q/⟨a1 + a2⟩ ∼= ⟨AV ⟩Q with AV = {a1, b1 − b3, b2, a3, a4, b4, . . . , ag, bg},

W =⟨a1 + a2⟩⊥Q/⟨a1 + a3⟩ ∼=⟨AW ⟩Q with AW = {b1 − b2, a1, a2, b3, a4, b4, . . . , ag, bg}.
We proved in Lemma 17.4 that F[a1 + a2, a1 + a3] is isomorphic to a quotient of the kernel
of the map V ⊗ W → Q induced by the symplectic form ω. Under this isomorphism, a
generator J(a1 + a2) ∧ x, (a1 + a3) ∧ yKa of F[a1 + a2, a1 + a3] maps to x⊗ y ∈ V ⊗W.

The kernel of V ⊗W → Q is spanned by X ∪ Y where

X = {x⊗ y | x ∈ AV , y ∈ AW , ω(x, y) = 0} ,
Y = {ai ⊗ bi + bj ⊗ aj | 4 ≤ i, j ≤ g}

∪ {a1 ⊗ (b1 − b2) + b2 ⊗ a2, a3 ⊗ b3 + (b1 − b3)⊗ a1,

a4 ⊗ b4 + b2 ⊗ a2, a3 ⊗ b3 + b4 ⊗ a4}.
Just like in the proof of Lemma 19.2, we can replace Y by

{(ai − bj)⊗ (bi − aj) | 1 ≤ i, j ≤ g distinct, either i, j ≥ 4 or (i, j) ∈ {(4, 2), (3, 4))}
∪ {(ai + bi)⊗ (ai + bi) | 4 ≤ i ≤ g}
∪ {(a1 + b2)⊗ (b1 + a2 − b2), (b1 + a3 − b3)⊗ (a1 + b3)}.
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From this, we see that F[a1 + a2, a1 + a3] is generated by the following elements:

Case 1. J(a1 + a2) ∧ x, (a1 + a3) ∧ yKa for x ∈ AV and y ∈ AW with ω(x, y) = 0.

There are three cases:

• If y = b1 − b2, then this equals −J(a1 + a2) ∧ x, (b1 − b2) ∧ (a1 + a3)Ka, which lies in
⟨S⟩ by Lemma 18.4.

• If x = b1 − b3, then this equals J(a1 + a3) ∧ y, (b1 − b3) ∧ (a1 + a2)Ka, which lies in
⟨S⟩ by Lemma 18.4.

• If neither equality holds, then this equals Jx ∧ (a1 + a2), y ∧ (a1 + a3)Ka ∈ S12.

Case 2. J(a1 + a2) ∧ (ai − bj), (a1 + a3) ∧ (bi − aj)Ka for 1 ≤ i, j ≤ g distinct with either
i, j ≥ 4 or (i, j) ∈ {(4, 2), (3, 4)).

These equal J(ai − bj) ∧ (a1 + a2), (bi − aj) ∧ (a1 + a3)Ka ∈ S3.

Case 3. J(a1 + a2) ∧ (ai + bi), (a1 + a3) ∧ (ai + bi)Ka for 4 ≤ i ≤ g.

These equal J(ai + bi) ∧ (a1 + a2), (ai + bi) ∧ (a1 + a3)Ka, which lie in ⟨S⟩ by Lemma 18.3.

Case 4. The following elements:

(a) J(a1 + a2) ∧ (a1 + b2), (a1 + a3) ∧ (b1 + a2 − b2)Ka
(a) J(a1 + a2) ∧ (b1 + a3 − b3), (a1 + a3) ∧ (a1 + b3)Ka

The element in (a) equals

(19.2) J(a1+a2)∧ (a1+ b2), a1∧ (b1+a2− b2)Ka+ J(a1+a2)∧ (a1+ b2), a3∧ (b1+a2− b2)Ka
The first term lies in F[a1+a2, a1], which differs from F[a1+ b2, b2] by an element of SymSpg.
Lemma 19.3 says that F[a1 + b2, b2] ⊂ ⟨S⟩, so by Lemma 18.1 the set F[a1 + a2, a1] lies in
⟨S⟩ too. The same argument (but using Lemma 19.4 instead of Lemma 19.3) shows that
the second term in (19.2) also lies in ⟨S⟩, so (19.2) lies in ⟨S⟩.

The element in (b) equals

Ja1 ∧ (b1 + a3 − b3), (a1 + a3) ∧ (a1 + b3)Ka + Ja2 ∧ (b1 + a3 − b3), (a1 + a3) ∧ (a1 + b3)Ka.

Using the fact that F[−,−] is symmetric in its inputs, this can be shown to lie in ⟨S⟩ just
like in the previous paragraph. □

Lemma 19.7 (Two vs two, III). We have F[a1 + a2, a3 + a4] ⊂ ⟨S⟩.

Proof. Following the notation in §17.4, define

V =⟨a3 + a4⟩⊥Q/⟨a1 + a2⟩ ∼= ⟨AV ⟩Q with AV = {a1, b1, b2, a3, a4, b3 − b4, a5, b5, . . . , ag, bg},

W =⟨a1 + a2⟩⊥Q/⟨a3 + a4⟩ ∼=⟨AW ⟩Q with AW = {b1 − b2, a1, a2, b3, b4, a3, a5, b5, . . . , ag, bg}.
We proved in Lemma 17.4 that F[a1 + a2, a3 + a4] is isomorphic to a quotient of the kernel
of the map V ⊗ W → Q induced by the symplectic form ω. Under this isomorphism, a
generator J(a1 + a2) ∧ x, (a3 + a4) ∧ yKa of F[a1 + a2, a3 + a4] maps to x⊗ y ∈ V ⊗W.

Recall that g ≥ 4 (Assumption 15.2). The argument is slightly different when g = 4 and
when g ≥ 5. Assume first that g = 4. The kernel of V ⊗W → Q is spanned by X ∪Y4 where

X = {x⊗ y | x ∈ AV , y ∈ AW , ω(x, y) = 0} ,
Y4 ={a1 ⊗ (b1 − b2) + b1 ⊗ a1, b1 ⊗ a1 − b2 ⊗ a2, a3 ⊗ b3 + b2 ⊗ a2,

a3 ⊗ b3 − a4 ⊗ b4, (b3 − b4)⊗ a3 + a4 ⊗ b4}.
When g ≥ 5, you instead take X ∪ Y4 ∪ Y5 with

Y5 = {ai ⊗ bi + bj ⊗ aj | 5 ≤ i, j ≤ g} ∪ {a4 ⊗ b4 + b5 ⊗ a5}.
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Just like in the proof of Lemma 19.2, you can replace Y4 with

{(a1 + b1)⊗ (a1 + b1 − b2), (b1 − b2)⊗ (a1 + a2), (b2 + a3)⊗ (a2 + b3),

(a3 + a4)⊗ (b3 − b4), (b3 + a4 − b4)⊗ (a3 + b4)}
and Y5 by

{(ai − bj)⊗ (bi − aj) | 4 ≤ i, j ≤ g distinct, either i, j ≥ 5 or (i, j) = (4, 5)}
∪ {(ai + bi)⊗ (ai + bi) | 5 ≤ i ≤ g} .

From this, we see that F[a1 + a2, a3 + a4] is generated by the following elements:

Case 1. J(a1 + a2) ∧ x, (a3 + a4) ∧ yKa for x ∈ AV and Y ∈ AW with ω(x, y) = 0.

There are three cases:

• If y = b1 − b2, then this equals −J(a1 + a2) ∧ x, (b1 − b2) ∧ (a3 + a4)Ka, which lies in
⟨S⟩ by Lemma 18.4.

• If x = b3 − b4, then this equals J(a3 + a4) ∧ y, (b3 − b4) ∧ (a1 + a2)Ka, which lies in
⟨S⟩ by Lemma 18.4.

• If neither equality holds, then this equals Jx ∧ (a1 + a2), y ∧ (a3 + a4)Ka ∈ S12.

Case 2. When g ≥ 5, elements J(a1 + a2) ∧ (ai − bj), (a3 + a4) ∧ (bi − aj)Ka for either
5 ≤ i, j ≤ g distinct or (i, j) = (4, 5).

These equal J(ai − bj) ∧ (a1 + a2), (bi − aj) ∧ (a3 + a4)Ka ∈ S3.

Case 3. When g ≥ 5, elements J(a1 + a2) ∧ (ai + bi), (a3 + a4) ∧ (ai + bi)Ka for 5 ≤ i ≤ g.

These equal J(ai + bi) ∧ (a1 + a2), (ai + bi) ∧ (a3 + a4)Ka, which lie in ⟨S⟩ by Lemma 18.3.

Case 4. The following elements:

(a) J(a1 + a2) ∧ (a1 + b1), (a3 + a4) ∧ (a1 + b1 − b2)Ka
(b) J(a1 + a2) ∧ (b3 + a4 − b4), (a3 + a4) ∧ (a3 + b4)Ka
(c) J(a1 + a2) ∧ (b1 − b2), (a3 + a4) ∧ (a1 + a2)Ka
(d) J(a1 + a2) ∧ (a3 + a4), (a3 + a4) ∧ (b3 − b4)Ka
(e) J(a1 + a2) ∧ (b2 + a3), (a3 + a4) ∧ (a2 + b3)Ka

The element in (a) equals

(19.3) J(a1+a2)∧ (a1+b1), a3∧ (a1+b1−b2)Ka+ J(a1+a2)∧ (a1+b1), a4∧ (a1+b1−b2)Ka.
The first term of (19.3) lies in F[a1+a2, a3], which differs from F[a1+b2, a3] by an element of
SymSpg. Lemma 19.4 says that F[a1 + b2, a3] ⊂ ⟨S⟩, so by Lemma 18.1 the set F[a1 + a2, a3]
lies in ⟨S⟩ too. The same argument shows that the second term in (19.3) also lies in ⟨S⟩, so
(19.3) lies in ⟨S⟩.

The element in (b) equals

Ja1 ∧ (b3 + a4 − b4), (a3 + a4) ∧ (a3 + b4)Ka + Ja2 ∧ (b3 + a4 − b4), (a3 + a4) ∧ (a3 + b4)Ka.

Since J−,−Ka is anti-symmetric, the same argument from the previous paragraph applies
here too.

For the elements in (c) and (d), note that they equal

−J(a1 + a2) ∧ (a3 + a4), (b1 − b2) ∧ (a1 + a2)Ka and

J(a3 + a4) ∧ (a1 + a2), (b3 − b4) ∧ (a3 + a4)Ka
Lemma 18.4 says that both of these lie in ⟨S⟩.

Finally, the element in (e) equals −J(a2 + b3) ∧ (a3 + a4), (b2 + a3) ∧ (a1 + a2)Ka. Lemma
18.4 says that this lies in ⟨S⟩. □
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19.3. Three vs two. Our final two results are about F[a, a′] where a uses three generators
and a′ uses two:

Lemma 19.8 (Three vs two, I). For all j ≥ 2, both F[a1 + b1 − bj , b1 − aj ] and F[a1 − b1 −
bj , b1 − aj ] are subsets of ⟨S⟩.

Proof. These two subsets do not differ by an element of SymSpg, but the proofs that they are
contained in ⟨S⟩ are almost identical. We will therefore give the details for F[a1+b1−bj , b1−aj ]
and leave the other case to the reader. By Lemma 18.1, we can apply an appropriate element
of SymSpg and reduce ourselves to proving that F[a1 + b1 − b2, b1 − a2] ⊂ ⟨S⟩. Following
the notation in §17.4, define

V =⟨b1 − a2⟩⊥Q/⟨a1 + b1 − b2⟩ ∼= ⟨AV ⟩Q with AV = {b1, a2, a3, b3, . . . , ag, bg},

W =⟨a1 + b1 − b2⟩⊥Q/⟨b1 − a2⟩ ∼=⟨AW ⟩Q with AW = {a1 + b1, b2, a3, b3, . . . , ag, bg}.

We proved in Lemma 17.4 that F[a1 + b1 − b2, b1 − a2] is isomorphic to a quotient of the
kernel of the map V ⊗W → Q induced by the symplectic form ω. Under this isomorphism, a
generator J(a1+ b1− b2)∧x, (b1− a2)∧ yKa of F[a1+ b1− b2, b1− a2] maps to x⊗ y ∈ V ⊗W .

The kernel of V ⊗W → Q is spanned by X ∪ Y where

X = {x⊗ y | x ∈ AV , y ∈ AW , ω(x, y) = 0} ,
Y = {ai ⊗ bi + bj ⊗ aj | 3 ≤ i, j ≤ g}

∪ {a3 ⊗ b3 + b1 ⊗ (a1 + b1), a2 ⊗ b2 + b3 ⊗ a3}.

Just like in the proof of Lemma 19.2, we can replace Y by

{(ai − bj)⊗ (bi − aj) | 1 ≤ i, j ≤ g distinct, either i, j ≥ 3 or (i, j) = (2, 3)}
∪ {(ai + bi)⊗ (ai + bi) | 3 ≤ i ≤ g}
∪ {(b1 + a3)⊗ (a1 + b1 + b3)}.

From this, we see that F[a1 + b1 − b2, b1 − a2] is generated by the following elements:

Case 1. J(a1 + b1 − b2) ∧ x, (b1 − a2) ∧ yKa for x ∈ AV and y ∈ AW with ω(x, y) = 0.

These equal J(b1 − a2) ∧ y, x ∧ (a1 + b1 − b2)Ka ∈ F[b1 − a2, x]. There are three cases:

• x = b1. In this case, F[b1−a2, b1] differs from F[a1+ b2, b2] by an element of SymSpg.
Lemma 19.3 says that F[a1 + b2, b2] ⊂ ⟨S⟩, so by Lemma 18.1 so does F[b1 − a2, b1].

• x = a2. In this case, F[b1 − a2, a2] = F[b1 − a2,−a2] by Lemma 17.2. The set
F[b1 − a2,−a2] differs from F[a1 + b2, b2] by an element of SymSpg, so just like in
the case x = b1 it follows that F[b1 − a2,−a2] lies in ⟨S⟩.

• x ∈ {a3, b3, . . . , ag, bg}. In this case, F[b1 − a2, x] differs from F[a1 + b2, a3] by an
element of SymSpg. Lemma 19.4 says that F[a1 + b2, a3] ⊂ ⟨S⟩, so by Lemma 18.1
so does F[b1 − a2, x].

Case 2. J(a1 + b1 − b2)∧ (ai− bj), (b1 − a2)∧ (bi− aj)Ka for 1 ≤ i, j ≤ g distinct with either
i, j ≥ 3 or (i, j) = (2, 3).

These equal J(ai − bj) ∧ (a1 + b1 − b2), (bi − aj) ∧ (b1 − a2)Ka ∈ S3.

Case 3. J(a1 + b1 − b2) ∧ (ai + bi), (b1 − a2) ∧ (ai + bi)Ka for 3 ≤ i ≤ g.

These equal J(ai+ bi)∧ (a1 + b1 − b2), (ai+ bi)∧ (b1 − a2)Ka, which lie in ⟨S⟩ by Lemma 18.3.

Case 4. J(a1 + b1 − b2) ∧ (b1 + a3), (b1 − a2) ∧ (a1 + b1 + b3)Ka.
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This equals J(b1 + a3) ∧ (a1 + b1 − b2), (b1 − a2) ∧ (a1 + b1 + b3)Ka ∈ F[b1 + a3, b1 − a2] The
set F[b1 + a3, b1 − a2] differs from F[a1 + a2, a1 + a3] by an element of SymSpg. Lemma 19.6
says that F[a1 + a2, a1 + a3] is contained in ⟨S⟩, so by Lemma 18.1 the set F[b1 + a3, b1 − a2]
is as well. □

Lemma 19.9 (Three vs two, II). For 3 ≤ j ≤ g, both F[b1 + a2 − bj , b2 − aj ] and F[a1 +
b2 − bj , b1 − aj ] are subsets of ⟨S⟩.
Proof. The two sets differ by an element of SymSpg, so by Lemma 18.1 it is enough to deal
with F[b1+a2−bj , b2−aj ]. Applying a further element of SymSpg, we can reduce to the case
j = 3, i.e., to F[b1+a2−b3, b2−a3]. In fact, to simplify our notation we will apply yet another
element of SymSpg and transform our goal into proving that F[a1 + a2 + b3, b1 + a3] ⊂ ⟨S⟩.
Following the notation in §17.4, define

V =⟨b1 + a3⟩⊥Q/⟨a1 + a2 + b3⟩ ∼= ⟨AV ⟩Q with AV = {b1, a2, b2, a3, a4, b4, . . . , ag, bg},

W =⟨a1 + a2 + b3⟩⊥Q/⟨b1 + a3⟩ ∼=⟨AW ⟩Q with AW = {a1, b2 − b1, a2, b3, a4, b4, . . . , ag, bg}.
We proved in Lemma 17.4 that F[a1 + a2 + b3, b1 + a3] is isomorphic to a quotient of the
kernel of the map V ⊗W → Q induced by the symplectic form ω. Under this isomorphism, a
generator J(a1+a2+ b3)∧x, (b1+a3)∧ yKa of F[a1+a2+ b3, b1+a3] maps to x⊗ y ∈ V ⊗W .

The kernel of V ⊗W → Q is spanned by X ∪ Y where

X = {x⊗ y | x ∈ AV , y ∈ AW , ω(x, y) = 0} ,
Y = {ai ⊗ bi + bj ⊗ aj | 4 ≤ i, j ≤ g}

∪ {a4 ⊗ b4 + b1 ⊗ a1, a2 ⊗ (b2 − b1) + b4 ⊗ a4, a4 ⊗ b4 + b2 ⊗ a2, a3 ⊗ b3 + b4 ⊗ a4}.
Just like in the proof of Lemma 19.2, we can replace Y by

{(ai − bj)⊗ (bi − aj) | 1 ≤ i, j ≤ g distinct, either i, j ≥ 4 or (i, j) ∈ {(4, 1), (4, 2), (3, 4)}}
∪ {(ai + bi)⊗ (ai + bi) | 4 ≤ i ≤ g}
∪ {(a2 + b4)⊗ (b2 − b1 + a4)}.
From this, we see that F[a1 + a2 + b3, b1 + a3] is generated by the following elements:

Case 1. J(a1 + a2 + b3) ∧ x, (b1 + a3) ∧ yKa for x ∈ AV and y ∈ AW with ω(x, y) = 0.

These equal J(b1 + a3) ∧ y, x ∧ (a1 + a2 + b3)Ka ∈ F[b1 + a3, x]. There are two cases:

• x = b1 or x = a3. In this case, F[b1 + a3, x] differs from F[a1 + b2, b2] by an element
of SymSpg. Lemma 19.3 says that F[a1 + b2, b2] ⊂ ⟨S⟩, so by Lemma 18.1 so does
F[b1 + a3, x].

• x ∈ {a2, b2, a4, b4, . . . , ag, bg}. In this case, F[b1 + a3, x] differs from F[a1 + b2, a3] by
an element of SymSpg. Lemma 19.4 says that F[a1 + b2, a3] ⊂ ⟨S⟩, so by Lemma
18.1 so does F[b1 + a3, x].

Case 2. J(a1 + a2 + b3)∧ (ai− bj), (b1 + a3)∧ (bi− aj)Ka for 1 ≤ i, j ≤ g distinct with either
i, j ≥ 4 or (i, j) ∈ {(4, 1), (4, 2), (3, 4)}.
These equal J(ai − bj) ∧ (a1 + a2 + b3), (bi − aj) ∧ (b1 + a3)Ka ∈ S3.

Case 3. J(a1 + a2 + b3) ∧ (ai + bi), (b1 + a3) ∧ (ai + bi)Ka for 4 ≤ i ≤ g.

These equal J(ai+ bi)∧ (a1 + a2 + b3), (ai+ bi)∧ (b1 + a3)Ka, which lie in ⟨S⟩ by Lemma 18.3.

Case 4. J(a1 + a2 + b3) ∧ (a2 + b4), (b1 + a3) ∧ (b2 − b1 + a4)Ka.
This equals −J(a2 + b4)∧ (a1 + a2 + b3), (b1 + a3)∧ (b2 − b1 + a4)Ka ∈ F[a2 + b4, b1 + a3] The
set F[a2 + b4, b1 + a3] differs from F[a1 + a2, a3 + a4] by an element of SymSpg. Lemma 19.7
says that F[a1 + a2, a3 + a4] is contained in ⟨S⟩, so by Lemma 18.1 the set F[a2 + b4, b1 + a3]
is as well. □
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20. Symmetric kernel, alternating version IV: the set S spans Kag

We continue using all the notation from §18 – §19. Recall that S = S12 ∪ S3, where

S12 =
⋃

a,a′∈B
ω(a,a′)=0

F[a, a′] and S3 =
⋃

1≤i,j≤g
i ̸=j

F[ai − bj , bi − aj ].

Our goal in this section is to prove the following lemma:

Lemma 20.1. The set S spans Kag.

Proof. We first claim that the Sp2g(Z)-orbit of S spans Kag . Indeed, using our original
generating set for Kag from Definition 1.15 together with Lemma 11.2, we see that Kag is
generated by elements of the form Ja ∧ b, a′ ∧ b′Ka, where a ∧ b and a′ ∧ b′ are symplectic
pairs such that ⟨a, b⟩ and ⟨a′, b′⟩ are orthogonal. The group Sp2g(Z) acts transitively on
such elements. The set S contains many elements of this form; for instance, it contains
Ja1 ∧ b1, a2 ∧ b2Ka ∈ F[a1, a2]. It follows that Sp2g(Z)-orbit of S spans Kag , as claimed.

To prove the lemma, therefore, we must prove that the action of Sp2g(Z) on Kag takes
⟨S⟩ to itself. By Corollary 7.3, the group Sp2g(Z) is generated as a monoid by the set

Λ = SymSpg ∪{X1, X
−1
1 , Y12}. We will recall the definitions of these elements as we use

them. We must prove that for f ∈ Λ and s ∈ S = S12 ∪ S3 we have f(s) ∈ ⟨S⟩. We already
did this for SymSpg in Lemma 18.1, so we must handle the other generators. We divide this
into four claims.

Claim 1. Recall that X1 ∈ Sp2g(Z) takes a1 to a1 + b1 and fixes all other generators in B.
For ϵ ∈ {±1} and

s ∈ S12 =
⋃

a,a′∈B
ω(a,a′)=0

F[a, a′],

we have Xϵ
1(s) ∈ ⟨S⟩.

We have s ∈ F[a, a′] for some a, a′ ∈ B with ω(a, a′) = 0, so Xϵ
1(s) ∈ F[Xϵ

1(a), X
ϵ
1(a

′)]. We
must show that F[Xϵ

1(a), X
ϵ
1(a

′)] ⊂ ⟨S⟩. There are three cases:

• If a, a′ ̸= a1, then

F[Xϵ
1(a), X

ϵ
1(a

′)] = F[a, a′] ⊂ ⟨S⟩.
• If one of a and a′ equals a1 and the other is not a1, then since F[−,−] is symmetric
in its entries (Lemma 17.2) we can assume without loss of generality that a = a1
and a′ ̸= a1. Since ω(a1, a

′) = 0, we also have a′ ̸= b1. By Lemma 19.2,

F[Xϵ
1(a1), X

ϵ
1(a

′)] = F[a1 + ϵb1, a
′] ⊂ ⟨S⟩.

• If both a and a′ equal a1 then we can apply Lemma 18.8 to see that

F[Xϵ
1(a1), X

ϵ
1(a1)] = F[a1 + ϵb1, a1 + ϵb1] ⊂ ⟨S⟩.

The claim follows.

Claim 2. For ϵ ∈ {±1} and

s ∈ S3 =
⋃

1≤i<j≤g
F[ai − bj , bi − aj ],

we have Xϵ
1(s) ∈ ⟨S⟩.

We have s ∈ F[ai − bj , bi − aj ] for some 1 ≤ i < j ≤ g, so Xϵ
1(s) ∈ F[Xϵ

1(ai − bj), X
ϵ
1(bi −

aj)]. We must show that F[Xϵ
1(ai − bj), X

ϵ
1(bi − aj)] ⊂ ⟨S⟩. There are two cases:
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• If i ≥ 2, then j ≥ 2 as well, so Xϵ
1 fixes both ai − bj and bi − aj . It follows that

F[Xϵ
1(ai − bj), X

ϵ
1(bi − aj)] = F[ai − bj , bi − aj ] ⊂ ⟨S⟩.

• If i = 1, then j ≥ 2, so Xϵ
1 fixes both aj and bj . By Lemma 19.8,

F[Xϵ
1(a1 − bj), X

ϵ
1(b1 − aj)] = F[a1 + ϵb1 − bj , b1 − aj ] ⊂ ⟨S⟩.

The claim follows.

Claim 3. Recall that Y12 ∈ Sp2g(Z) takes a1 to a1 + b2 and a2 to a2 + b1 and fixes all other
generators in B. For

s ∈ S12 =
⋃

a,a′∈B
ω(a,a′)=0

F[a, a′],

we have Y12(s) ∈ ⟨S⟩.

We have s ∈ F[a, a′] for some a, a′ ∈ B with ω(a, a′) = 0, so Y12(s) ∈ F[Y12(a), Y12(a
′)].

We must show that F[Y12(a), Y12(a
′)] ⊂ ⟨S⟩. There are six cases:

• If a, a′ ∈ B \ {a1, a2}, then both a and a′ are fixed by Y12, so

F[Y12(a), Y12(a
′)] = F[a, a′] ⊂ ⟨S⟩.

• If one of a and a′ is a1 and the other lies in B \ {a1, a2}, then since F[−,−] is
symmetric in its entries (Lemma 17.2) we can assume without loss of generality that
a = a1 and a′ ∈ B \ {a1, a2}. Since ω(a1, a′) = 0, we also have a′ ̸= b1. By Lemmas
19.3 and 19.4,

F[Y12(a1), Y12(a
′)] = F[a1 + b2, a

′] ⊂ ⟨S⟩.
• If one of a and a′ is a2 and the other lies in B \ {a1, a2}, then since F[−,−] is
symmetric in its entries (Lemma 17.2) we can assume without loss of generality that
a = a2 and a′ ∈ B \ {a1, a2}. Since ω(a1, a′) = 0, we also have a′ ̸= b2. By Lemmas
19.3 and 19.4,

F[Y12(a2), Y12(a
′)] = F[a2 + b1, a

′] ⊂ ⟨S⟩.
• If a = a′ = a1, then by Lemma 19.5

F[Y12(a1), Y12(a1)] = F[a1 + b2, a1 + b2] ⊂ ⟨S⟩.
• If a = a′ = a2, then by Lemma 19.5

F[Y12(a2), Y12(a2)] = F[a2 + b1, a2 + b1] ⊂ ⟨S⟩.
• If one of a and a′ is a1 and the other is a2, then since F[−,−] is symmetric in its
entries (Lemma 17.2) we can assume without loss of generality that a = a1 and
a′ = a2. By Lemma 18.4,

F[Y12(a1), Y12(a2)] = F[a1 + b2, b1 + a2] ⊂ ⟨S⟩.
The claim follows.

Claim 4. For
s ∈ S3 =

⋃
1≤i<j≤g

F[ai − bj , bi − aj ],

we have Y12(s) ∈ ⟨S⟩.

We have s ∈ F[ai − bj , bi − aj ] for some 1 ≤ i < j ≤ g, so Y12(s) ∈ F[Y12(ai− bj), Y12(bi−
aj)]. We must show that F[Y12(ai − bj), Y12(bi − aj)] ⊂ ⟨S⟩. There are four cases:

• If i ≥ 3, then j ≥ 3 as well and thus Y12 fixes ai − bj and bi − aj . Therefore,

F[Y12(ai − bj), Y12(bi − aj)] = F[ai − bj , bi − aj ] ⊂ ⟨S⟩.
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• If i = 2, then j ≥ 3 and Y12 fixes aj and bj . By Lemma 19.9, we have

F[Y12(a2 − bj), Y12(b2 − aj)] = F[b1 + a2 − bj , b2 − aj ] ⊂ ⟨S⟩.
• If i = 1 and j ≥ 3, then Y12 fixes aj and bj . By Lemma 19.9, we have

F[Y12(a1 − bj), Y12(b1 − aj)] = F[a1 + b2 − bj , b1 − aj ] ⊂ ⟨S⟩.
• If i = 1 and j = 2, then26

F[Y12(a1 − b2), Y12(b1 − a2)] = F[a1, a2] ⊂ ⟨S12⟩.
The claim follows. □

21. Symmetric kernel, alternating version V: S1 and structure of target

We will use the notation from §17 - §20, and in particular the set S = S12 ∪ S3. We now
turn to Theorem F, which says that the linearization map Φ: Kag → Ka

g is an isomorphism.
We will prove this by first handling S12 in the next two sections (§21 – §22), and then in the
final two sections (§23 – §24) extending this to S3 and hence to all of ⟨S12, S3⟩ = Kag .

The vector space Ka
g is the kernel of the symmetric contraction c : ∧2 ((∧2H)/Q) →

Sym2(H), and this section studies ∧2((∧2H)/Q) and constructs a subset S1 of S12 such that
the restriction of Φ to ⟨S1⟩ is an isomorphism onto its image.

21.1. Generators and relations for target. Let ≺ be the following total order on B:
a1 ≺ b1 ≺ a2 ≺ b2 ≺ · · · ≺ ag ≺ bg.

Using this ordering, order {x ∧ y | x, y ∈ B, x ≺ y} lexicographically, so (x1 ∧ y1) ≺ (x2 ∧ y2)
if either x1 ≺ x2 or if x1 = x2 and y1 ≺ y2. Define T = T1 ∪ T2 ∪ T3, where:

T1 = {(x ∧ y) ∧ (z ∧ w) | x, y, z, w ∈ B, x ≺ y, z ≺ w, (x ∧ y) ≺ (z ∧ w),
and ω(x, z) = ω(x,w) = ω(y, z) = ω(y, w) = 0},

T2 = {(a ∧ ai) ∧ (a′ ∧ bi) | 1 ≤ i ≤ g, a ∈ B \ {ai}, a′ ∈ B \ {bi},
and ω(a, a′) = ω(ai, a

′) = ω(bi, a) = 0},
T3 = {(ai ∧ aj) ∧ (bi ∧ bj), (ai ∧ bj) ∧ (bi ∧ aj) | 1 ≤ i < j ≤ g} .

The set T generates ∧2((∧2H)/Q), so every element of ∧2((∧2H)/Q) can be written as a
linear combination of elements of T . If we were working with ∧2(∧2H), then T would be a
basis; however, since we are working with ∧2((∧2H)/Q) there are relations between elements
of T . These relations are linear combinations of elements of T . It is often awkward to write
these linear combinations while maintaining the orderings on the terms of T , so we introduce
the following convention:

Convention 21.1. Consider an expression
n∑
i=1

λi(xi ∧ yi) ∧ (zi ∧ wi) with each λi ∈ Q and xi, yi, zi, wi ∈ B.

We regard this as a linear combination of elements of T in the following way:

• First, delete all terms where either xi = yi or where zi = wi. These terms vanish in
∧2((∧2H)/Q).

• Second, delete all terms where {xi, yi} = {zi, wi} as unordered 2-element sets. These
terms also vanish in ∧2((∧2H)/Q).

• Finally, replace each term (xi ∧ yi) ∧ (zi ∧ wi) with ϵt for some ϵ ∈ {±1} and t ∈ T .
This involves possibly flipping xi and yi, flipping zi and wi, and flipping xi ∧ yi and
zi ∧ wi. Each flip introduces a sign. □

26This is the one easy case!
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Using this convention, the relations between elements of T are generated by the set

R =
{∑g

i=1
(ai ∧ bi) ∧ (x ∧ y) | x, y ∈ B, x ≺ y

}
of linear combinations of elements of T .

21.2. Lifting elements of T1. For (x ∧ y) ∧ (z ∧ w) ∈ T1, we have

c(x ∧ y, z ∧ w) = ω(x, z)y·w − ω(x,w)y·z − ω(y, z)x·w + ω(y, w)x·z = 0.

It follows that (x ∧ y) ∧ (z ∧ w) ∈ Ka
g , and thus can be lifted to Kag . Indeed, define

S1 = {Jx ∧ y, z ∧ wKa | x, y, z, w ∈ B, x ≺ y, z ≺ w, (x ∧ y) ≺ (z ∧ w),
and ω(x, z) = ω(x,w) = ω(y, z) = ω(y, w) = 0}.

Like we did here, we will write elements of ⟨S1⟩ in blue. A generator Jx ∧ y, z ∧ wKa of S1
lies in F[x, z] ⊂ S12, so S1 ⊂ S12. For Jx ∧ y, z ∧ wKa ∈ S1, we have

Φ(Jx ∧ y, z ∧ wKa) = (x ∧ y) ∧ (z ∧ w) ∈ T1.

The map Φ restricts to a bijection between S1 and T1.

21.3. Restricting linearization to S1. Recall that our goal is to prove Theorem F, which
says that the linearization map Φ: Kag → Ka

g is an isomorphism. We now prove the following
partial result in this direction:

Lemma 21.2. The linearization map Φ takes ⟨S1⟩ isomorphically to ⟨T1⟩.

Proof. Let R1 be the subset of the relations R consisting of relations between elements of
T1. The set R1 consists of relations of the form∑g

i=1
(ai ∧ bi) ∧ (ak ∧ bk) with 1 ≤ k ≤ g.

Set R2 = R \R1. Each element of R2 involves an element of T \ T1 that appears in no other
relations in R. For instance, for 1 ≤ k < ℓ ≤ g the set R2 contains the relation

g∑
i=1

(ai ∧ bi) ∧ (ak ∧ aℓ),

and no other relation in R uses the generator27 (ak ∧ bk) ∧ (ak ∧ aℓ). This implies that the
subspace of ∧2((∧2H)/Q) spanned by T1 is generated by T1 subject to only the relations in
R1. The map Φ takes S1 bijectively to T1. The relations in R1 lift to relations between the
elements of S1 due to the bilinearity relations in Kag :

g∑
i=1

Jai ∧ bi, ak ∧ bkKa = J
g∑
i=1

ai ∧ bi, ak ∧ bkKa = J0, ak ∧ bkKa = 0.

Combining all of this, we conclude that Φ takes ⟨S1⟩ isomorphically to ⟨T1⟩, as desired. □

22. Symmetric kernel, alternating version VI: S2 and S12

We continue using all the notation from §17 – §21. Recall that our goal is to prove
Theorem F, which says that the linearization map Φ: Kag → Ka

g is an isomorphism. In the
last section, we constructed a set S1 ⊂ S12 and proved Lemma 21.2, which says that Φ
restricts to an isomorphism between ⟨S1⟩ and ⟨T1⟩. In this section, we prove that Φ restricts
to an isomorphism between ⟨S12⟩ and Ka

g ∩ ⟨T1, T2⟩.

27Though ak appears twice in (ak ∧ bk) ∧ (ak ∧ aℓ), this element is not 0. See Warning 17.1.
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22.1. The set T2. Consider an element (a ∧ ai) ∧ (a′ ∧ bi) in
T2 = {(a ∧ ai) ∧ (a′ ∧ bi) | 1 ≤ i ≤ g, a ∈ B \ {ai}, a′ ∈ B \ {bi},

and ω(a, a′) = ω(ai, a
′) = ω(bi, a) = 0},

The image of (a ∧ ai) ∧ (a′ ∧ bi) in Sym2(H) under the symmetric contraction is

c(a ∧ ai, a′ ∧ bi) = ω(a, a′)ai·bi − ω(a, bi)ai·a′ − ω(ai, a
′)a·bi + ω(ai, bi)a·a′ = a·a′.

The set {a·a′ | a, a′ ∈ B} is a basis for Sym2(H), and this calculation suggests dividing T2 into
subsets mapping to different basis elements. Define S2

0(B) = {a·a′ | a, a′ ∈ B, ω(a, a′) = 0}.
For a·a′ ∈ S2

0(B), define
T2(a·a′) = {(a ∧ ai) ∧ (a′ ∧ bi) | 1 ≤ i ≤ g, ai ̸= a, bi ̸= a′, ω(ai, a

′) = ω(bi, a) = 0}
∪ {(a′ ∧ ai) ∧ (a ∧ bi) | 1 ≤ i ≤ g, ai ̸= a′, bi ̸= a, ω(ai, a) = ω(bi, a

′) = 0} .

Note that this is symmetric in a and a′. We have

T2 =
⋃

a·a′∈S2
0(B)

T2(a·a′).

By our calculation above, c takes each element of T2(a·a′) to a·a′. Since we will need it later,
we record the following consequence the above calculations:

Lemma 22.1. The symmetric contraction c : ∧2 ((∧2H)/Q) → Sym2(H) takes ⟨T1, T2⟩
surjectively onto ⟨S2

0(B)⟩.

Proof. Immediate from the above calculation of c on generators for T2(a·a′) along with the
fact that c vanishes on T1. □

22.2. Lifting T2(a·a′). Consider a·a′ ∈ S2
0(B). Recall from §17.2 that F̂ [a, a′] is the subspace

of ∧2((∧2H)/Q) spanned by elements of the form (a∧ x)∧ (a′ ∧ y) with x, y ∈ HZ satisfying

ω(x, y) = 0. Each element of T2(a·a′) is a generator of F̂ [a, a′]. It follows that

⟨T2(a·a′)⟩ ⊂ F̂ [a, a′].

Since c takes every element of T2(a·a′) to a·a′ ∈ Sym2(H), the intersection of the symmetric
kernel Ka

g = ker(c) with ⟨T2(a·a′)⟩ has codimension 1 in ⟨T2(a·a′)⟩. Indeed, it is spanned by

elements of the form t1 − t2 with t1, t2 ∈ T2(a·a′). Letting28 F[a, a′] be as in §17.1, define

S2(a·a′) =
{
η ∈ F[a, a′] | Φ(η) ∈ ⟨T2(a·a′)⟩

}
.

By construction, this is a subspace of F[a, a′]. We will prove below that Φ takes S2(a·a′)
isomorphically onto Ka

g ∩ ⟨T2(a·a′)⟩. In fact, we will do more than this. Define

S1(a·a′) = {Ja ∧ x, a′ ∧ yKa | x ∈ B \ {a}, y ∈ B \ {a′}, {a, x} ≠ {a′, y},
and ω(a, y) = ω(x, a′) = ω(x, y) = 0}.

For each η ∈ S1(a·a′), either η or −η lies in S1. Just like for S2(a·a′), we have S1(a·a′) ⊂
F[a, a′]. We will prove:

Lemma 22.2. Consider a·a′ ∈ S2
0(B). Then:

(a) The linearization map Φ restricts to an isomorphism between S2(a·a′) and Ka
g ∩

⟨T2(a·a′)⟩.
(b) We have ⟨S1(a·a′), S2(a·a′)⟩ = F[a, a′].

Proof. Conclusion (a) is immediate from Lemmas 17.3 and 17.4, which together imply that

Φ restricts to an isomorphism between F[a, a′] and Ka
g ∩ F̂ [a, a′]. We must prove (b). There

are two cases:

28The set F[a, a′] is purple since it lies in S12.
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Case 1. a = a′.

To simplify our notation, we will assume that a ∈ B = {a1, b1, . . . , ag, bg} equals a1. The
other cases are identical up to changes in indices. Following the notation in §17.3, define

U = ⟨a1⟩⊥Q/⟨a1⟩ ∼= ⟨A⟩Q with A = {a2, b2, . . . , ag, bg}.

We proved in Lemma 17.3 that F[a1, a1] is isomorphic to the kernel of the map ∧2U → Q
induced by the symplectic form ω. Under this isomorphism, a generator Ja1 ∧ x, a1 ∧ yKa of
F[a1, a1] maps to x ∧ y ∈ ∧2U .

The kernel of ∧2U → Q is spanned by X ∪ Y where

X = {x ∧ y | x, y ∈ A, ω(x, y) = 0} ,
Y = {ai ∧ bi − aj ∧ bj | 2 ≤ i < j ≤ g} .

Since for 2 ≤ i < j ≤ g we have

(ai − bj) ∧ (bi − aj) = ai ∧ bi − aj ∧ bj + an element of ⟨X⟩,

we can replace Y by

{(ai − bj) ∧ (bi − aj) | 2 ≤ i < j ≤ g} .

It follows that F[a1, a1] is generated by the following elements:

• Ja1 ∧ x, a1 ∧ yKa for x, y ∈ A with ω(x, y) = 0. These are elements of S1(a1·a1).
• Ja1 ∧ (ai − bj), a1 ∧ (bi − aj)Ka for 2 ≤ i < j ≤ g.

It is thus enough to prove that for 2 ≤ i < j ≤ g the element Ja1 ∧ (ai − bj), a1 ∧ (bi − aj)Ka
lies in the span of S1(a1·a1) and S2(a1·a1). For this, note that

Φ(Ja1 ∧ (ai − bj), a1 ∧ (bi − aj)Ka + Ja1 ∧ ai, a1 ∧ ajKa + Ja1 ∧ bj , a1 ∧ biKa)
=(a1 ∧ (ai − bj)) ∧ (a1 ∧ (bi − aj)) + (a1 ∧ ai) ∧ (a1 ∧ aj) + (a1 ∧ bj) ∧ (a1 ∧ bi)
=(a1 ∧ ai) ∧ (a1 ∧ bi)− (a1 ∧ aj) ∧ (a1 ∧ bj) ∈ ⟨T2(a1·a1)⟩.

It follows that

Ja1 ∧ (ai − bj), a1 ∧ (bi − aj)Ka + Ja1 ∧ ai, a1 ∧ ajKa + Ja1 ∧ bj , a1 ∧ biKa ∈ S2(a1·a1).
Since

Ja1 ∧ ai, a1 ∧ ajKa + Ja1 ∧ bj , a1 ∧ biKa ∈ ⟨S1(a1·a1)⟩,
the case follows.

Case 2. a ̸= a′.

To simplify our notation, we will assume that a, a′ ∈ B = {a1, b1, . . . , ag, bg} are a = a1
and a′ = a2. The other cases are identical up to changes in indices. Following the notation
in §17.4, define

V =⟨a2⟩⊥Q/⟨a1⟩ ∼= ⟨AV ⟩Q with AV = {b1, a2, a3, b3, . . . , ag, bg},

W =⟨a1⟩⊥Q/⟨a2⟩ ∼=⟨AW ⟩Q with AW = {a1, b2, a3, b3, . . . , ag, bg}.

We proved in Lemma 17.4 that F[a1, a2] is isomorphic to a quotient of the kernel of the
map V ⊗W → Q induced by the symplectic form ω. Under this isomorphism, a generator
Ja1 ∧ x, a2 ∧ yKa of F[a1, a2] maps to x⊗ y ∈ V ⊗W.



60 DANIEL MINAHAN AND ANDREW PUTMAN

The kernel of V ⊗W → Q is spanned by X ∪ Y where29

X = {x⊗ y | x ∈ AV , y ∈ AW , ω(x, y) = 0} ,
Y = {ai ⊗ bi + bj ⊗ aj | 1 ≤ i, j ≤ g distinct, i ̸= 1, j ̸= 2} .

Since for 1 ≤ i, j ≤ g distinct with i ̸= 1 and j ̸= 2 we have

(ai − bj)⊗ (bi − aj) = ai ⊗ bi + bj ⊗ aj + an element of ⟨X⟩,

we can replace Y by the set

{(ai − bj)⊗ (bi − aj) | 1 ≤ i, j ≤ g distinct, i ̸= 1, j ̸= 2} .

From this, we see that F[a1, a2] is generated by the following elements:

• Ja1 ∧ x, a2 ∧ yKa for x ∈ AV and y ∈ AW with ω(x, y) = 0. These are elements of
S1(a1·a2).

• Ja1 ∧ (ai − bj), a2 ∧ (bi − aj)Ka for 1 ≤ i < j ≤ g distinct with i ̸= 1 and j ̸= 2.

It is thus enough to prove that for 1 ≤ i < j ≤ g distinct with i ̸= 1 and j ̸= 2, the element
Ja1 ∧ (ai − bj), a2 ∧ (bi − aj)Ka lies in the span of S1(a1·a2) and S2(a1·a2). The proof of this
is similar the argument we gave in Case 1, so we omit it. □

22.3. The set S2. Define

S2 =
⋃

a,a′∈B
S2(a·a′).

Recall that we proved in Lemma 21.2 that the linearization map Φ takes ⟨S1⟩ isomorphically
to ⟨T1⟩. We have ⟨T1⟩ ⊂ Ka

g , but ⟨T1, T2⟩ is not contained in Ka
g . We now prove:

Lemma 22.3. The linearization map Φ takes ⟨S1, S2⟩ isomorphically to Ka
g ∩ ⟨T1, T2⟩.

Proof. Recall from §21.1 that T = T1 ∪ T2 ∪ T3 where

T1 = {(x ∧ y) ∧ (z ∧ w) | x, y, z, w ∈ B, x ≺ y, z ≺ w, x ∧ y ≺ z ∧ w,
and ω(x, z) = ω(x,w) = ω(y, z) = ω(y, w) = 0},

T2 = {(a ∧ ai) ∧ (a′ ∧ bi) | 1 ≤ i ≤ g, a ∈ B \ {ai}, a′ ∈ B \ {bi},
and ω(a, a′) = ω(ai, a

′) = ω(bi, a) = 0},
T3 = {(ai ∧ aj) ∧ (bi ∧ bj), (ai ∧ bj) ∧ (bi ∧ aj) | 1 ≤ i < j ≤ g} .

Moreover, ∧2((∧2H)/Q) is the Q-vector space with generators T subject to the relations

R =
{∑g

i=1
(ai ∧ bi) ∧ (x ∧ y) | x, y ∈ B, x ≺ y

}
.

Here each element of R should be interpreted as a linear combination of elements of T
using Convention 21.1. Another way of stating this is that ∧2((∧2H)/Q) is the quotient of30

⟨T1⟩ ⊕ ⟨T2⟩ ⊕ ⟨T3⟩ by the span of elements corresponding to R. We have:

Claim 1. Each r ∈ R corresponds to an element of ⟨T1⟩ ⊕ ⟨T2⟩.

29After reading all the proofs in §18 – §19, the reader might expect the word “distinct” to not appear in
Y . To make some of the proofs in §18 – §19 work (e.g., the proof of Lemma 18.3), the set Y needs to contain
elements of the form ai ⊗ bi + bi ⊗ ai. Here, however, we can require i and j be distinct. Indeed, consider
3 ≤ i ≤ g. We want to prove that ai ⊗ bi + bi ⊗ ai is in the span of Y . For this, note that

ai ⊗ bi + bi ⊗ ai = (ai ⊗ bi + b1 ⊗ a1)− (a2 ⊗ b2 + b1 ⊗ a1) + (a2 ⊗ b2 + ai ⊗ bi).

30Here the ⟨Ti⟩ are subspaces of ∧2((∧2H)/Q), so possibly some relations in R already hold in ⟨T1⟩ ⊕
⟨T2⟩ ⊕ ⟨T3⟩; indeed, as we will see this is in fact the case.
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Proof of claim. Consider x, y ∈ B with x ≺ y, so we have an element

r =
∑g

i=1
(ai ∧ bi) ∧ (x ∧ y) ∈ R.

There are two cases. The first is that ω(x, y) ̸= 0, so (x, y) = (ak, bk) for some 1 ≤ k ≤ g. In
this case, r is actually an element of ⟨T1⟩, or rather a linear combination of elements of T1 that
vanishes in ⟨T1⟩. The point here is that our convention is that the term (ak ∧ ak) ∧ (ak ∧ bk)
is deleted, and the rest of the terms clearly lie in T1.

The second case is that ω(x, y) = 0. There are a number of cases, so we will explain how
to deal with x = ak and y = aℓ for some 1 ≤ k < ℓ ≤ g. The other cases are similar (but
with slightly different notation). We have

r =
∑g

i=1
(ai ∧ bi) ∧ (ak ∧ aℓ)

= (ak ∧ bk) ∧ (ak ∧ aℓ) + (aℓ ∧ bℓ) ∧ (ak ∧ aℓ) +
∑

1≤i≤g
i ̸=k,ℓ

(ai ∧ bi) ∧ (ak ∧ aℓ).

The blue terms lie in ⟨T1⟩, while the remaining terms lie in ⟨T2⟩ since
(ak ∧ bk) ∧ (ak ∧ aℓ) + (aℓ ∧ bℓ) ∧ (ak ∧ aℓ)

=(aℓ ∧ ak) ∧ (ak ∧ bk)− (ak ∧ aℓ) ∧ (aℓ ∧ bℓ).
The claim follows. □

The set T2 is the disjoint union of the T2(a·a′) as a·a′ ranges over elements of S2
0(B) ={

a·a′ ∈ Sym2(H) | a, a′ ∈ B, ω(a, a′) = 0
}
. Using the above claim, we deduce that ⟨T1, T2⟩

is the quotient of the direct sum

⟨T1⟩ ⊕
⊕

s∈S2
0(B)

⟨T2(s)⟩

by the subspace generated by the relations in R. The subspace Ka
g is the kernel of the

symmetric contraction c : ∧2 ((∧2H)/Q) → Sym2(H). The symmetric contraction c vanishes
on T1, and for s ∈ S2

0(B) it takes elements of T2(s) to s (see §22.1). Since S2
0(B) is a linearly

independent subset of Sym2(H), we deduce that Ka
g ∩ ⟨T1, T2⟩ is the quotient of

(22.1) ⟨T1⟩ ⊕
⊕

s∈S2
0(B)

Ka
g ∩ ⟨T2(s)⟩

by the relations in R. We remark that the relations in R must lie in the above direct sum
since otherwise they would map to nontrivial elements of Sym2(H) under c.

We proved in Lemma 21.2 that Φ restricts to an isomorphism between ⟨S1⟩ and ⟨T1⟩. For
s ∈ S2

0(B), recall that S2(s) is a vector space. We proved in Lemma 22.2 that Φ restricts
to an isomorphism between S2(s) and Ka

g ∩ ⟨T2(s)⟩. From this and in light of the previous

paragraph,31 to prove that Φ restricts to an isomorphism between ⟨S1, S2⟩ and ⟨T1, T2⟩, it is
enough to prove that each relation in R lifts to a relation in ⟨S1, S2⟩.

The relations of the form

r =
∑g

i=1
(ai ∧ bi) ∧ (ak ∧ bk)

for some 1 ≤ k ≤ g are relations between elements of T1, and since Φ restricts to an
isomorphism between ⟨S1⟩ and ⟨T1⟩ these relations lift32 to relations in ⟨S1⟩. We must
therefore only deal with the relations in the following claim:

31In particular, the decomposition (22.1).
32See the proof of Lemma 21.2 for explicit lifts.
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Claim 2. Consider x, y ∈ B with x ≺ y. Then the relation

r =
∑g

i=1
(ai ∧ bi) ∧ (x ∧ y)

lifts to a relation in Kag.

Proof of claim. We will give the details for (x, y) = (a1, a2). The other cases are similar but
require worse notation. Write our relation as

r =
∑g

i=1
(ai ∧ bi) ∧ (a1 ∧ a2)

= −(a1 ∧ b1) ∧ (a2 ∧ a1)− (a1 ∧ a2) ∧ (a2 ∧ b2) +
∑g

i=3
(ai ∧ bi) ∧ (a1 ∧ a2).

The blue sum lifts to the following element of ⟨S1⟩:∑g

i=3
Jai ∧ bi, a1 ∧ a2Ka.

We claim that the remaining part lifts to the following element of ⟨S1, S2⟩:

(22.2) −Ja1 ∧ (b1 + a2), a2 ∧ (a1 + b2)Ka + Ja1 ∧ b1, a2 ∧ b2Ka.

To see this, note that Φ maps (22.2) to33

− (a1 ∧ (b1 + a2)) ∧ (a2 ∧ (a1 + b2)) + (a1 ∧ b1) ∧ (a2 ∧ b2)
=− (a1 ∧ b1) ∧ (a2 ∧ a1)− (a1 ∧ a2) ∧ (a2 ∧ a1)− (a1 ∧ b1) ∧ (a2 ∧ b2)
− (a1 ∧ a2) ∧ (a2 ∧ b2) + (a1 ∧ b1) ∧ (a2 ∧ b2)

=− (a1 ∧ b1) ∧ (a2 ∧ a1)− (a1 ∧ a2) ∧ (a2 ∧ b2),

as desired.
Combining the above lifts, we see that the relation in Kag we must verify is

(22.3) 0 = −Ja1 ∧ (b1+ a2), a2 ∧ (a1+ b2)Ka+ Ja1 ∧ b1, a2 ∧ b2Ka+
∑g

i=3
Jai ∧ bi, a1 ∧ a2Ka.

For this, note that {a1, b1+a2, a2, a1+b2, a3, b3, . . . , ag, bg} is a symplectic basis. In (∧2H)/Q,
we therefore have

a1 ∧ (b1 + a2) + a2 ∧ (a1 + b2) + a3 ∧ b3 + · · ·+ ag ∧ bg = 0.

By plugging this into its first term, we calculate that Ja1 ∧ (b1 + a2), a2 ∧ (a1 + b2)Ka equals

− Ja2 ∧ (a1 + b2), a2 ∧ (a1 + b2)Ka −
∑g

i=3
Jai ∧ bi, a2 ∧ (a1 + b2)Ka

=−
∑g

i=3
(Jai ∧ bi, a2 ∧ a1Ka + Jai ∧ bi, a2 ∧ b2Ka)

=−
(∑g

i=3
Jai ∧ bi, a2 ∧ b2Ka

)
+
(∑g

i=3
Jai ∧ bi, a1 ∧ a2Ka

)
.

In (∧2H)/Q, we have
∑g

i=1 ai ∧ bi = 0. Plugging this into the first term of our formula, the
formula becomes

Ja1 ∧ b1, a2 ∧ b2Ka + Ja2 ∧ b2, a2 ∧ b2Ka +
∑g

i=3
Jai ∧ bi, a1 ∧ a2Ka

=Ja1 ∧ b1, a2 ∧ b2Ka +
∑g

i=3
Jai ∧ bi, a1 ∧ a2Ka.

Since this equals Ja1 ∧ (b1 + a2), a2 ∧ (a1 + b2)Ka, the relation (22.3) follows. □

This completes the proof of the lemma. □

33Part of this calculation is that (a1 ∧ a2) ∧ (a2 ∧ a1) = 0.
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22.4. Relations in T3. We extract a useful consequence of the above proof:

Lemma 22.4. The quotient of ∧2((∧2H)/Q) by ⟨T1, T2⟩ has dimension g(g − 1).

Proof. Claim 1 of the proof of Lemma 22.3 says that all relations between T = T1 ∪ T2 ∪ T3
are actually relations between T1 ∪ T2. Since T generates ∧2((∧2H)/Q), it follows that the
indicated quotient has dimension |T3|. Since

T3 = {(ai ∧ aj) ∧ (bi ∧ bj), (ai ∧ bj) ∧ (bi ∧ aj) | 1 ≤ i < j ≤ g} ,

the set T3 has cardinality 2
(
g
2

)
= g(g − 1). The lemma follows. □

22.5. The set S12. Recall that

S12 =
⋃

a·a′∈S2
0(B)

F[a, a′].

Our goal in the rest of Part 3 is to prove Theorem F, which says that Φ is an isomorphism
from Kag = ⟨S⟩ = ⟨S12, S3⟩ to

Ka
g ⊂ ∧2((∧2H)/Q) = ⟨T1, T2, T3⟩.

We close this section by proving the following partial result in this direction:

Lemma 22.5. The linearization map Φ takes ⟨S12⟩ isomorphically to Ka
g ∩ ⟨T1, T2⟩.

Proof. Lemma 22.3 says that Φ takes ⟨S1, S2⟩ isomorphically to Ka
g ∩ ⟨T1, T2⟩, so it is

enough to prove that ⟨S12⟩ = ⟨S1, S2⟩. For a·a′ ∈ S2
0(B), we proved in Lemma 22.2 that

S1(a·a′) ∪ S2(a·a′) spans F[a, a′]. For i = 1, 2, we have

Si =
⋃

a·a′∈S2
0(B)

Si(a·a′).

This is a disjoint union for i = 2, but the S1(a·a′) for different a·a′ ∈ S2
0(B) overlap.

Combining these two facts, we see that

⟨S1, S2⟩ = ⟨
⋃

a·a′∈S2
0(B)

S1(a·a′) ∪ S2(a·a′)⟩ = ⟨
⋃

a·a′∈S2
0(B)

F[a, a′]⟩ = ⟨S12⟩. □

23. Symmetric kernel, alternating version VII: structure of S3

We will continue using all the notation from §17 – §22. Having proved in Lemma 22.5
that Φ takes ⟨S12⟩ isomorphically to Ka

g ∩ ⟨T1, T2⟩, our remaining task in Part 3 is to extend
this to ⟨S⟩ = ⟨S12, S3⟩ and prove Theorem F. We will do this in §25. This section and the
next one contain some preliminary results about S3.

23.1. Quotients. Define

Tg = Kag/⟨S12⟩,
Tg = Ka

g/(Ka
g ∩ ⟨T1, T2⟩).

Lemma 22.5 says that the linearization map Φ: Kag → Ka
g takes ⟨S12⟩ isomorphically to

Ka
g ∩ ⟨T1, T2⟩. It follows that Φ descends to a map Φ: Tg → Tg. Our goal is to prove

that Φ is an isomorphism (Theorem F). Since Φ restricts to an isomorphism from ⟨S12⟩ to
Ka
g ∩ ⟨T1, T2⟩, this is equivalent to proving that Φ is an isomorphism. That Φ is surjective is

easy:

Lemma 23.1. The map Φ: Tg → Tg is surjective.
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Proof. This follows from the fact that Φ: Kag → Ka
g is surjective. This could be proved

directly, but another approach is to note that

Ka
g = ker(∧2((∧2H)/Q)

c−→ Sym2(H))

is an irreducible algebraic representation of Sp2g(Z). Such representations are indexed by
partitions with at most g parts (see [2, §17]), and Ka

g is the one corresponding to the partition
2 + 1 + 1. Since Φ is not the zero map, its image is a nonzero subrepresentation of the
irreducible representation Ka

g , and hence its image must be Ka
g . □

23.2. Dimension of target. We now prove:

Lemma 23.2. The vector space Tg is g(g − 2)-dimensional.

Proof. The vector space Ka
g is the kernel of the symmetric contraction c : ∧2 ((∧2H)/Q) →

Sym2(H). Let:

• V be be the quotient of ∧2((∧2H)/Q) by ⟨T1, T2⟩; and
• W be the quotient of Sym2(H) by c(⟨T1, T2⟩).

The symmetric contraction induces a map c : V →W , and Tg is isomorphic to ker(c).
Lemma 22.4 says that dim(V ) = g(g − 1). To calculate dim(W ), note that Lemma 22.1

implies that c(⟨T1, T2⟩) is the subspace of Sym2(H) spanned by {a·a′ | a, a′ ∈ B, ω(a, a′) = 0}.
This implies that the set {a1·b1, . . . , ag·bg} is a basis for a complement to c(⟨T1, T2⟩), so
dim(W ) = g.

The map c is surjective: this could be proved directly, but just like in the proof of Lemma
23.1 it also follows from the fact that Sym2(H) is an irreducible algebraic representation
of Sp2g(Z). The corresponding partition is simply 2. This implies that c is also surjective.
Consequently,

dim(Tg) = dim(V )− dim(W ) = g(g − 1)− g = g(g − 2). □

23.3. Proof strategy. Recall that we want to prove that Φ: Tg → Tg is an isomorphism.

Lemmas 23.1 and 23.2 say that Φ is a surjective map to a g(g − 2)-dimensional vector
space. To prove that Φ is an isomorphism, it is enough to prove that Tg is at most g(g − 2)-
dimensional. We will do this via a calculation involving generators and relations. The rest
of this section is devoted to constructing a generating set for Tg. We will then give some
relations in Tg in §24, and complete the proof in §25.

23.4. Basic elements. Recall that

S3 =
⋃

1≤i,j≤g
i ̸=j

F[ai − bj , bi − aj ].

Elements of S3 are written in orange. For η ∈ Kag , let η be its image in Tg = Kag/⟨S12⟩. For
1 ≤ i, j, k ≤ g distinct, define

∆i
jk = J(ai − bj) ∧ (ak − bi), (bi − aj) ∧ (bk − ai)Ka ∈ Tg.

We call ∆i
jk a basic element of Tg. These satisfy:

Lemma 23.3. For 1 ≤ i, j, k ≤ g distinct, we have ∆i
kj = −∆i

jk.

Proof. Immediate from the fact that

J(ai − bj) ∧ (ak − bi), (bi − aj) ∧ (bk − ai)Ka = −J(ai − bk) ∧ (bi − aj), (bi − ak) ∧ (ai − bj)Ka. □
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23.5. Generation by basic elements. We now prove:

Lemma 23.4. The vector space Tg is spanned by
{
∆i
jk | 1 ≤ i, j, k ≤ g distinct

}
.

Proof. Lemma 20.1 says that Kag is spanned by S = S12 ∪ S3. It follows that Tg = Kag/⟨S12⟩
is spanned by the image of S3. Fixing some 1 ≤ i, j ≤ g distinct, it is therefore enough to
prove that the image of F[ai − bj , bi − aj ] in Tg is contained in the span of the indicated
generating set.

In Lemma 18.2, we proved that the action of the symmetric group Sg on Kag takes ⟨S⟩ to
itself. It follows from the proof of that lemma that this action also takes ⟨S12⟩ to itself, so
we get an induced action of Sg on Tg. Applying an appropriate of Sg, we reduce ourselves
to proving that the image of F[a1 − b2, b1 − a2] is contained in the span of the indicated
generating set.

We construct generators for F[a1 − b2, b1 − a2] in the now-familiar way and then show that
their images in Tg are in the span of the indicated generating set. Following the notation in
§17.4, define

V =⟨b1 − a2⟩⊥Q/⟨a1 − b2⟩ ∼= ⟨AV ⟩Q with AV = {b1, a2, a3, b3, . . . , ag, bg},

W =⟨a1 − b2⟩⊥Q/⟨b1 − a2⟩ ∼=⟨AW ⟩Q with AW = {a1, b2, a3, b3, . . . , ag, bg}.
We proved in Lemma 17.4 that F[a1 − b2, b1 − a2] is isomorphic to a quotient of the kernel
of the map V ⊗ W → Q induced by the symplectic form ω. Under this isomorphism, a
generator J(a1 − b2) ∧ x, (b1 − a2) ∧ yKa of F[a1 − b2, b1 − a2] maps to x⊗ y ∈ V ⊗W.

The kernel of V ⊗W → Q is spanned by X ∪ Y where

X = {x⊗ y | x ∈ AV , y ∈ AW , ω(x, y) = 0} ,
Y = {ak ⊗ bk + b1 ⊗ a1, a2 ⊗ b2 + bk ⊗ ak | 3 ≤ k ≤ g}

∪ {a2 ⊗ b2 + b1 ⊗ a1}.
Since for 3 ≤ k ≤ g we have

(ak − b1)⊗ (bk − a1) = ak ⊗ bk + b1 ⊗ a1 + an element of ⟨X⟩,
(a2 − bk)⊗ (b2 − ak) = a2 ⊗ b2 + bk ⊗ ak + an element of ⟨X⟩,
(a1 − b2)⊗ (b1 − a2) = a1 ⊗ b1 + b2 ⊗ a2 + an element of ⟨X⟩,

we can replace Y by the set

{(ak − b1)⊗ (bk − a1), (a2 − bk)⊗ (b2 − ak) | 3 ≤ k ≤ g} ,
∪ {(a2 − b1)⊗ (b2 − a1)}.

From this, we see that F[a1 − b2, b1 − a2] is generated by the elements listed in the following
cases. To prove the lemma, we must prove that each of these generators maps to something
in the span of the indicated generators of Tg.

Case 1. J(a1 − b2) ∧ x, (b1 − a2) ∧ yKa for x ∈ AV and y ∈ AW with ω(x, y) = 0.

These equal Jx ∧ (a1 − b2), y ∧ (b1 − a2)Ka ∈ S12, and thus go to zero in Tg.

Case 2. J(a1 − b2) ∧ (ak − b1), (b1 − a2) ∧ (bk − a1)Ka with 3 ≤ k ≤ g.

This maps to ∆1
2k ∈ Tg.

Case 3. J(a1 − b2) ∧ (a2 − bk), (b1 − a2) ∧ (b2 − ak)Ka with 3 ≤ k ≤ g.

This equals −J(a2 − b1) ∧ (ak − b2), (b2 − a1) ∧ (bk − a2)Ka, which maps to −∆2
1k ∈ Tg.

Case 4. J(a1 − b2) ∧ (a2 − b1), (b1 − a2) ∧ (b2 − a1)Ka.
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Since J−,−K is alternating, this equals −J(a1 − b2) ∧ (a2 − b1), (a1 − b2) ∧ (a2 − b1)Ka = 0.
We remark that this is why we always insist that F[a1 − b2, b1 − a2] is a quotient of the
kernel of the map V ⊗W → Q; see Lemma 17.4. □

24. Symmetric kernel, alternating version VIII: relations between basic
elements

We will continue using all the notation from §17 – §23. This section contains three
relations involving our basic elements ∆i

jk. We will use these relations to prove Theorem F
in §25.

24.1. Relation I. The first is:

Lemma 24.1. Let 1 ≤ i, j, k, ℓ ≤ g be distinct. Then ∆k
ij +∆i

ℓk = ∆ℓ
ij +∆j

ℓk.

Proof. As in the proof of Lemma 23.4, we can apply an appropriate element of the symmetric
group and reduce ourselves to proving that ∆3

12 +∆1
43 = ∆4

12 +∆2
43. What we will prove is

that both sides of this identity equal J(a3 − b1) ∧ (a2 − b4), (b3 − a1) ∧ (b2 − a4)K:

Claim 1. ∆3
12 +∆1

43 = J(a3 − b1) ∧ (a2 − b4), (b3 − a1) ∧ (b2 − a4)K.

We have

∆3
12 = J(a3 − b1) ∧ (a2 − b3), (b3 − a1) ∧ (b2 − a3)K,

∆1
43 = J(a1 − b4) ∧ (a3 − b1), (b1 − a4) ∧ (b3 − a1)K

= J(a3 − b1) ∧ (a1 − b4), (b3 − a1) ∧ (b1 − a4)K.

We must therefore prove that

(24.1) J(a3 − b1) ∧ (a2 − b3), (b3 − a1) ∧ (b2 − a3)K + J(a3 − b1) ∧ (a1 − b4), (b3 − a1) ∧ (b1 − a4)K

equals

(24.2) J(a3 − b1) ∧ (a2 − b4), (b3 − a1) ∧ (b2 − a4)K

modulo elements of ⟨S12⟩. These both live in F[a3 − b1, b3 − a1], so we work there.
Following the notation in §17.4, define

V =⟨b3 − a1⟩⊥Q/⟨a3 − b1⟩ ∼= ⟨AV ⟩Q with AV = {b3, a1, a2, b2, a3, b3, . . . , ag, bg},

W =⟨a3 − b1⟩⊥Q/⟨b3 − a1⟩ ∼=⟨AW ⟩Q with AW = {a3, b1, a2, b2, a3, b3, . . . , ag, bg}.
We proved in Lemma 17.4 that F[a3 − b1, b3 − a1] is isomorphic to a quotient of the kernel
of the map V ⊗ W → Q induced by the symplectic form ω. Under this isomorphism, a
generator J(a3 − b1) ∧ x, (b3 − a1) ∧ yKa of F[a3 − b1, b3 − a1] maps to x⊗ y ∈ V ⊗W.

The elements of V ⊗W corresponding to elements of S12 are

X = {x⊗ y | x ∈ AV , y ∈ AW , ω(x, y) = 0} .
We can therefore work modulo ⟨X⟩. Let ≡ denote equality modulo ⟨X⟩. The element of
V ⊗W corresponding to (24.1) is

(a2 − b3)⊗ (b2 − a3) + (a1 − b4)⊗ (b1 − a4) ≡ (a2 ⊗ b2 + b3 ⊗ a3) + (a1 ⊗ b1 + b4 ⊗ a4)

= (a1 ⊗ b1 + b3 ⊗ a3) + (a2 ⊗ b2 + b4 ⊗ a4)

≡ (a1 − b3)⊗ (b1 − a3) + (a2 − b4)⊗ (b2 − a4).

The element (a2 − b4) ⊗ (b2 − a4) corresponds to (24.2), so what we must prove is that
(a1 − b3)⊗ (b1 − a3) corresponds to 0. In fact, this corresponds to

J(a3 − b1) ∧ (a1 − b3), (b3 − a1) ∧ (b1 − a3)Ka.

Since J−,−Ka is alternating, this vanishes. The claim follows.
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Claim 2. ∆4
12 +∆2

43 = J(a3 − b1) ∧ (a2 − b4), (b3 − a1) ∧ (b2 − a4)K.

We have

∆4
12 = J(a4 − b1) ∧ (a2 − b4), (b4 − a1) ∧ (b2 − a4)K

= J(a2 − b4) ∧ (a4 − b1), (b2 − a4) ∧ (b4 − a1)K,

∆2
43 = J(a2 − b4) ∧ (a3 − b2), (b2 − a4) ∧ (b3 − a2)K.

and

J(a3 − b1) ∧ (a2 − b4), (b3 − a1) ∧ (b2 − a4)K = J(a2 − b4) ∧ (a3 − b1), (b2 − a4) ∧ (b3 − a1)K.
We must therefore prove that

J(a2 − b4) ∧ (a4 − b1), (b2 − a4) ∧ (b4 − a1)K + J(a2 − b4) ∧ (a3 − b2), (b2 − a4) ∧ (b3 − a2)K

equals

J(a2 − b4) ∧ (a3 − b1), (b2 − a4) ∧ (b3 − a1)K

modulo elements of ⟨S12⟩. These both live in F[a2 − b4, b2 − a4]. The calculation is similar
to the one from Claim 1, so we omit it. □

24.2. Relation II. The second relation is:

Lemma 24.2. For 1 ≤ i, j, k ≤ g distinct, we have

∆i
jk = J(ai − bj) ∧ (ak + aj), (bi − aj) ∧ (bk − bj)Ka.

Proof. As in the proof of Lemma 23.4, we can apply an appropriate element of the symmetric
group and reduce ourselves to proving that

∆1
23 = J(a1 − b2) ∧ (a3 + a2), (b1 − a2) ∧ (b3 − b2)Ka.

By the definition of ∆1
23 and Tg, this lemma is asserting that

J(a1 − b2) ∧ (a3 − b1), (b1 − a2) ∧ (b3 − a1)Ka(24.3)

− J(a1 − b2) ∧ (a3 + a2), (b1 − a2) ∧ (b3 − b2)Ka
lies in the span of S12. This difference lies in F[a1 − b2, b1 − a2], so we work there.

Following the notation in §17.4, define

V =⟨b1 − a2⟩⊥Q/⟨a1 − b2⟩ ∼= ⟨AV ⟩Q with AV = {b1, a2, a3, b3, . . . , ag, bg},

W =⟨a1 − b2⟩⊥Q/⟨b1 − a2⟩ ∼=⟨AW ⟩Q with AW = {a1, b2, a3, b3, . . . , ag, bg}.
We proved in Lemma 17.4 that F[a1 − b2, b1 − a2] is isomorphic to a quotient of the kernel
of the map V ⊗ W → Q induced by the symplectic form ω. Under this isomorphism, a
generator J(a1 − b2) ∧ x, (b1 − a2) ∧ yKa of F[a1 − b2, b1 − a2] maps to x⊗ y ∈ V ⊗W.

The elements of V ⊗W corresponding to elements of S12 are

X = {x⊗ y | x ∈ AV , y ∈ AW , ω(x, y) = 0} .
We can therefore work modulo ⟨X⟩. Let ≡ denote equality modulo ⟨X⟩. The difference
(24.3) corresponds to the following element of V ⊗W:

(a3 − b1)⊗ (b3 − a1)− (a3 + a2)⊗ (b3 − b2) ≡ (a3 ⊗ b3 + b1 ⊗ a1)− (a3 ⊗ b3 − a2 ⊗ b2)

=a2 ⊗ b2 + b1 ⊗ a1 ≡ (a2 − b1)⊗ (b2 − a1).

This corresponds to the element

J(a1 − b2) ∧ (a2 − b1), (b1 − a2) ∧ (b2 − a1)Ka = −J(a1 − b2) ∧ (a2 − b1), (a1 − b2) ∧ (a2 − b1)Ka.

Since J−,−Ka is alternating, this is 0. The lemma follows. □
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24.3. Relation III. Our third and final relation is:

Lemma 24.3. Let 1 ≤ i, j, k, ℓ ≤ g be distinct. Then

∆i
jk +∆i

kℓ = ∆i
jℓ + J(aℓ + aj) ∧ (bk − bj), (bℓ − bj) ∧ (ak + aj)Ka.

Proof. As in the proof of Lemma 23.4, we can apply an appropriate element of the symmetric
group and reduce ourselves to proving that

∆1
23 +∆1

34 = ∆1
24 + J(a4 + a2) ∧ (b3 − b2), (b4 − b2) ∧ (a3 + a2)Ka.

We will prove that both sides of this equal J(a1 − b3) ∧ (a4 + a2), (b1 − a3) ∧ (b4 − b2)K.

Claim 1. ∆1
23 +∆1

34 = J(a1 − b3) ∧ (a4 + a2), (b1 − a3) ∧ (b4 − b2)K.

We have

∆1
23 = J(a1 − b2) ∧ (a3 − b1), (b1 − a2) ∧ (b3 − a1)K

= −J(a1 − b3) ∧ (b1 − a2), (b1 − a3) ∧ (a1 − b2)K,

∆1
34 = J(a1 − b3) ∧ (a4 − b1), (b1 − a3) ∧ (b4 − a1)K.

We must therefore prove that

−J(a1 − b3) ∧ (b1 − a2), (b1 − a3) ∧ (a1 − b2)K + J(a1 − b3) ∧ (a4 − b1), (b1 − a3) ∧ (b4 − a1)K

equals

J(a1 − b3) ∧ (a4 + a2), (b1 − a3) ∧ (b4 − b2)K

modulo elements of ⟨S12⟩. These both live in F[a1 − b3, b1 − a3]. The calculation is similar
to the one from Claim 1 of the proof of Lemma 24.1, so we omit it.

Claim 2. The elements

∆1
24 + J(a4 + a2) ∧ (b3 − b2), (b4 − b2) ∧ (a3 + a2)Ka

and

J(a1 − b3) ∧ (a4 + a2), (b1 − a3) ∧ (b4 − b2)K

are equal.

Lemma 24.2 says that

∆1
24 = J(a1 − b2) ∧ (a4 + a2), (b1 − a2) ∧ (b4 − b2)Ka

= J(a4 + a2) ∧ (a1 − b2), (b4 − b2) ∧ (b1 − a2)Ka.

Also,

J(a1 − b3) ∧ (a4 + a2), (b1 − a3) ∧ (b4 − b2)K = J(a4 + a2) ∧ (a1 − b3), (b4 − b2) ∧ (b1 − a3)K.

We must therefore prove that

J(a4 + a2) ∧ (a1 − b2), (b4 − b2) ∧ (b1 − a2)Ka + J(a4 + a2) ∧ (b3 − b2), (b4 − b2) ∧ (a3 + a2)Ka

equals

J(a4 + a2) ∧ (a1 − b3), (b4 − b2) ∧ (b1 − a3)K

modulo elements of ⟨S12⟩. These both live in F[a4 + a2, b4 − b2]. The calculation is similar
to the one from Claim 1 of the proof of Lemma 24.1, so we omit it. □
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25. Symmetric kernel, alternating version IX: the proof of Theorem F

We will continue using all the notation from §17 – §24. We finally prove Theorem F,
whose statement we recall.

Theorem F. For g ≥ 4, the linearization map Φ: Kag → Ka
g is an isomorphism.

Proof. Recall that Lemma 20.1 says that Kag is generated by S = S12 ∪ S3. Lemma 22.5
says that Φ takes ⟨S12⟩ isomorphically onto its image. Letting Tg = Kag/⟨S12⟩ and letting
Tg be the quotient of Ka

g by ⟨Φ(S12)⟩, it is therefore enough to prove that the induced map

Φ: Tg → Tg is an isomorphism. Lemmas 23.1 and 23.2 say that Φ is a surjective map to
a g(g − 2)-dimensional vector space. It is therefore enough to prove that Tg is at most
g(g − 2)-dimensional.

Define

Rg =
{
∆i
jk ∈ Tg | 1 ≤ i, j, k ≤ g distinct

}
.

By Lemma 23.4, the set Rg spans Tg for g ≥ 4. The key to the proof is the following smaller
generating set:

Claim. For all g ≥ 4, the vector space Tg is spanned by R′
g ∪Rg[≤ g − 1], where:

R′
g = {∆g

1i | 2 ≤ i ≤ g − 1} ∪
{
∆1
gi | 2 ≤ i ≤ g − 1

}
∪ {∆2

g1},
Rg[≤ g − 1] =

{
∆i
jk | 1 ≤ i, j, k ≤ g − 1 distinct

}
.

We will prove this claim in a moment, but let us first see why it implies that Tg is at
most g(g − 2)-dimensional. The proof is by induction on g. The base case is g = 4, where
we have to prove that T4 is at most 4(4− 2) = 8 dimensional. For this, note that

R′
4 = {∆4

12,∆
4
13,∆

1
42,∆

1
43,∆

2
41}

has 5 elements. The set

R4[≤ 3] = {∆1
23,∆

1
32,∆

2
13,∆

2
31,∆

3
12,∆

3
21}

has 6 elements, but since ∆i
kj = −∆i

jk (see Lemma 23.3) only 3 are needed to span T4. We
conclude that T4 is at most 5 + 3 = 8 dimensional, as desired.

For the inductive step, assume that g ≥ 5 and that Tg−1 is at most (g − 1)((g − 1)− 2)-
dimensional. We must prove that Tg is at most g(g − 2)-dimensional. The natural map
Kag−1 → Kag taking a generator Jκ1, κ2Ka of Kag−1 to the same generator of Kag induces a map

ι : Tg−1 → Tg. The map ι takes a basic element ∆i
jk ∈ Tg−1 to the same basic element of

Tg. It follows that the image of ι is the span of Rg[≤ g − 1]. In particular, ⟨Rg[≤ g − 1]⟩ is
at most (g − 1)((g − 1)− 2)-dimensional. The set R′

g from the above claim has

(g − 2) + (g − 2) + 1 = 2g − 3

elements, so ⟨R′
g⟩ is at most 2g− 3 dimensional. Since Tg is spanned by R′

g and Rg[≤ g− 1],
we conclude that Tg is at most

(2g − 3) + (g − 1)((g − 1)− 2) = (2g − 3) + (g2 − 4g + 3) = g2 − 2g = g(g − 2)

dimensional, as desired.
It remains to prove the above claim:

Proof of claim. It is enough to prove that every element ∆ of the generating set

Rg =
{
∆i
jk ∈ Tg | 1 ≤ i, j, k ≤ g distinct

}
.

that does not lie in Rg[≤ g − 1] can be written as a linear combination of elements of R′
g

and Rg[≤ g − 1]. There are two families of elements of Rg that do not lie in Rg[≤ g − 1].
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The first are elements of the form ∆g
ij with 1 ≤ i, j ≤ g − 1 distinct. Since ∆g

ji = −∆g
ij

(Lemma 23.3), we can assume that i < j. If i = 1, then ∆g
ij ∈ R′

g, so we can assume that
2 ≤ i < j ≤ g − 1. Lemma 24.3 gives a relation

(25.1) ∆g
i1 +∆g

1j = ∆g
ij + J(aj + ai) ∧ (b1 − bi), (bj − bi) ∧ (a1 + ai)Ka.

Set
κ = J(aj + ai) ∧ (b1 − bi), (bj − bi) ∧ (a1 + ai)Ka.

Since 1, i, j ≤ g − 1, we can view κ as an element of Kag−1. If g ≥ 5, then Lemma 23.4 says

that Tg−1 is generated by basic elements, so κ is in the span of Rg[≤ g − 1]. This argument
does not work if g = 4; however, in this case Lemma 18.4 (which does work in genus 3) says
that κ ∈ Kag−1 can be written34 as a linear combination of elements of our basis S. By the
proof of Lemma 23.4 these map to linear combinations of basic elements in Tg−1, so again
we deduce that κ is in the span of Rg[≤ g − 1].

In either case, since ∆g
i1 = −∆g

1i (Lemma 23.3) we can rearrange (25.1) and see that

∆g
ij = ∆g

1j −∆g
1i − κ

lies in the span of Rg[≤ g − 1] and R′
g, as desired.

The other family of elements of Rg that do not lie in Rg[≤ g−1] are those of the form ∆i
jg

and ∆i
gj for 1 ≤ i, j ≤ g− 1 distinct. We must show that these lie in the span of Rg[≤ g− 1]

and R′
g. Since ∆i

jg = −∆i
gj (Lemma 23.3), it is enough to deal with ∆i

gj . If i = 1 then

∆i
gj ∈ R′

g, so we can assume that i ̸= 1. Since we also have ∆2
g1 ∈ R′

g, we can assume that if
i = 2 then j ≠ 1. In other words, we can assume that 2 ≤ i, j ≤ g − 1. Lemma 24.1 gives a
relation

∆1
gj +∆g

i1 = ∆i
gj +∆j

i1.

We have ∆1
gj ∈ R′

g and ∆j
i1 ∈ Rg[≤ g − 1], and we already proved that ∆g

i1 is in the span of

R′
g and Rg[≤ g − 1]. We conclude that ∆i

gj is also in the span of R′
g and Rg[≤ g − 1], as

desired. □

This completes the proof of the theorem. □

Part 4. Verifying the presentation for the symmetric kernel, symmetric version

We now turn to Theorem G. See the introductory §26 for an outline of what we do in this
part. Throughout, we make the following genus assumption:

Assumption 25.1. Throughout Part 4, we assume that g ≥ 4. □

26. Symmetric kernel, symmetric version: introduction

We start by recalling some results and definitions from earlier in the paper, and then
outline what we prove in this part.

26.1. Symmetric contraction. Recall that ω is the symplectic form on H. The symmetric
contraction is the alternating Sym2(H)-valued alternating form c on (∧2H)/Q defined via
the formula

c(x ∧ y, z ∧ w) = ω(x, z)y·w − ω(x,w)y·z − ω(y, z)x·w + ω(y, w)x·z for x, y, z, w ∈ H.

Elements κ1, κ2 ∈ (∧2H)/Q are sym-orthogonal if c(κ1, κ2) = 0. The sym-orthogonal
complement of κ ∈ (∧2H)/Q is the subspace κ⊥ consisting of all elements that are sym-
orthogonal to κ.

34It is enlightening to go through the proof and work this out explicitly.
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26.2. Special pairs. A special pair in (∧2HZ)/Z is an element of the form x ∧ y with
ω(x, y) ∈ {−1, 0, 1}. Examples include symplectic pairs and isotropic pairs. Lemmas 10.1
and 10.2 say that the sym-orthogonal complements in (∧2H)/Q of these are:

• for a symplectic pair a ∧ b, we have (a ∧ b)⊥ = ∧2⟨a, b⟩⊥Q; and
• for an isotropic pair a ∧ a′, we have (a ∧ a′)⊥ = ∧2⟨a, a′⟩⊥Q.

26.3. Non-symmetric presentation. We will use the generators and relations for Kg from
Theorem 15.1, whose statement we recall:

Theorem 15.1. For g ≥ 4, the vector space Kg has the following presentation:

• Generators. A generator Jκ1, κ2K for all sym-orthogonal κ1, κ2 ∈ (∧2H)/Q such
that either κ1 or κ2 (or both) is a special pair.

• Relations. The following two families of relations:
– For special pairs ζ ∈ (∧2H)/Q and all κ1, κ2 ∈ (∧2H)/Q that are sym-orthogonal
to ζ and all λ1, λ2 ∈ Q, the linearity relations

Jζ, λ1κ1 + λ2κ2K = λ1Jζ, κ1K + λ2Jζ, κ2K and

Jλ1κ1 + λ2κ2, ζK = λ1Jκ1, ζK + λ2Jκ2, ζK.

– For all special pairs ζ ∈ (∧2H)/Q and all κ ∈ (∧2H)/Q that are sym-orthogonal
to ζ and all n ∈ Z such that nζ is a special pair, the relations

Jnζ, κK = nJζ, κK and

Jκ, nζK = nJκ, ζK.

26.4. Symmetrizing. Recall from Lemma 10.6 that Ksg is the +1-eigenspace of the involution
of Kg that takes a generator Jκ1, κ2K to Jκ2, κ1K. We symmetrize a generator Jκ1, κ2K of Kg
to

Jκ1, κ2Ks =
1

2
(Jκ1, κ2K + Jκ2, κ1K) ∈ Ksg.

The symmetrized generators generate Ksg. They satisfy the same relations as the generators
of Kg, and also the symmetry relation Jκ2, κ1Ks = Jκ1, κ2Ks.

26.5. Goal and outline. We have a linearization map Φ: Ksg → Sym2((∧2H)/Q). On
generators, it satisfies

Φ(Jκ1, κ2Ks) = κ1·κ2 ∈ Sym2((∧2H)/Q).

Our goal in this part of the paper is to prove Theorem G, which says that Φ is an isomorphism
from Ksg to Sym2((∧2H)/Q). The proof uses the proof technique described in §3, and is
modeled on the proofs of Theorems A–E. However, since the calculations are lengthy we
spread them out over nine sections:

• In §27 – §30, we construct a subset S of Ksg such that Φ restricted to ⟨S⟩ is an
isomorphism (Step 1). This calculation is lengthy since it depends on the construction
of three important families of elements of Ksg (the Θ-, the Λ-, and the Ω-elements),
and it takes work to prove their basic properties.

• In §31, we prove that the Sp2g(Z)-orbit of S spans Ksg (Step 2). We also outline the
proof that Sp2g(Z) takes takes ⟨S⟩ to itself (Step 3).

• Finally, in §32 – 35 we complete the outlined proof that Sp2g(Z) takes ⟨S⟩ to itself.
Together with Step 2 this implies that ⟨S⟩ = Ksg, so by Step 1 we conclude that Φ is
an isomorphism.
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Throughout the following nine sections, Φ will always mean the linearization map Φ: Ksg →
Sym2((∧2H)/Q). Also, c will always mean the symmetric contraction. Finally, we will fix a
symplectic basis B = {a1, b1, . . . , ag, bg} for HZ.

27. Symmetric kernel, symmetric version I: S1 and structure of target

We discuss the structure of Sym2((∧2H)/Q), and then begin our construction of S.

27.1. Generators and relations for target. Let ≺ be the following total order on B:
a1 ≺ b1 ≺ a2 ≺ b2 ≺ · · · ≺ ag ≺ bg.

Set
T = {(x ∧ y)·(z ∧ w) | x, y, z, w ∈ B, x ≺ y, z ≺ w} ⊂ Sym2((∧2H)/Q).

The set T generates Sym2((∧2H)/Q), and the relations between elements of T are generated
by the set

R =
{∑g

i=1
(ai ∧ bi)·(x ∧ y) | x, y ∈ B, x ≺ y

}
.

27.2. Lifting easy generators. Some elements of T are easily lifted to Ksg. Define

S1 = {Jx ∧ y, z ∧ wKs | x, y, z, w ∈ B, x ≺ y, z ≺ w, c(x ∧ y, z ∧ w) = 0} .
For Jx ∧ y, z ∧ wKs ∈ S1, we have

Φ(Jx ∧ y, z ∧ wKs) = (x ∧ y)·(z ∧ w) ∈ T.

Like we did above, we will write elements of S1 ⊂ Ksg in blue. More generally, we will use
blue to write elements of Ksg that lie in ⟨S1⟩. The set S1 consists of two kinds of elements:

• those of the form Jx ∧ y, z ∧ wKs for x, y, z, w ∈ B with x ≺ y and z ≺ w and
ω(x, z) = ω(x,w) = ω(y, z) = ω(y, w) = 0; and

• those of the form Jai ∧ bi, ai ∧ biKs for some 1 ≤ i ≤ g. These lie in S1 since c is
alternating, or more concretely due to the calculation

c(ai ∧ bi, ai ∧ bi) = −ω(ai, bi)(bi·ai)− ω(bi, ai)(ai·bi) = −(bi·ai) + (ai·bi) = 0.

Let T1 ⊂ T be the image of S1.

27.3. Lifting easy relations. Let R1 be the subset of R consisting of relations between
elements of T1. Thus R1 consists of relations of the form∑g

i=1
(ai ∧ bi)·(ak ∧ bk) with 1 ≤ k ≤ g.

These lift to relations between the elements of S1 due to the bilinearity relations in Ksg:

g∑
i=1

Jai ∧ bi, ak ∧ bkKs = J
g∑
i=1

ai ∧ bi, ak ∧ bkKs = J0, ak ∧ bkKs = 0.

27.4. Other relations do not affect T1. Set R2 = R \R1. Each element of R2 involves
an element of T that appears in no other relations in R. For instance, for 1 ≤ k < ℓ ≤ g the
set R2 contains the relation

g∑
i=1

(ai ∧ bi)·(ak ∧ aℓ),

and no other relation in R uses the generator (ak ∧ bk)·(ak ∧ aℓ). This implies that the
subspace of Sym2((∧2H)/Q) spanned by T1 is generated by T1 subject to only the relations
in R1. This implies:

Lemma 27.1. The linearization map Φ takes ⟨S1⟩ isomorphically to ⟨T1⟩.
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Proof. Immediate from the fact Φ takes S1 bijectively to T1 and each relation in R1 lifts to
a relation between the elements of S1. □

27.5. Remaining generators. Define

T2 = {(ai ∧ bi)·(x ∧ bi), (ai ∧ bi)·(ai ∧ y) | 1 ≤ i ≤ g, x, y ∈ B \ {ai, bi}} ,
T3 = {(ai ∧ y)·(x ∧ bi) | 1 ≤ i ≤ g, x, y ∈ B \ {ai, bi}, ω(x, y) = 0} ,
T4 = {(ai ∧ aj)·(bi ∧ bj), (ai ∧ bj)·(bi ∧ aj) | 1 ≤ i < j ≤ g} .

The set T2 ∪T3 ∪T4 is almost equal to T \T1. The only difference is that for some η ∈ T \T1
we have −η ∈ T2 ∪ T3 ∪ T4. For instance, we have (a1 ∧ b1)·(b1 ∧ a2) ∈ T \ T1 but

(a1 ∧ b1)·(a2 ∧ b1) = −(a1 ∧ b1)·(b1 ∧ a2) ∈ T2.

In any case, we have that Sym2((∧2H)/Q) is generated by T1 ∪ T2 ∪ T3 ∪ T4 subject to
appropriate versions of the relations in R. In the next three sections, we will construct sets
S2, S3, S4 ⊂ Ksg such that Φ takes Si bijectively to Ti, and we will prove that all relations in
R lift to relations between elements of S = S1 ∪ · · · ∪ S4. The elements of S2 and S3 and S4
are called Θ-elements, Λ-elements, and Ω-elements.

27.6. Obvious blue elements. Before we continue, we make a useful observation. Recall
that we write elements of ⟨S1⟩ in blue. One easy way to recognize these is as follows.
Consider a generator Jκ1, κ2Ks such that there exists subsets B1,B2 ⊂ B such that:

• κ1 ∈ ∧2⟨B1⟩ and κ2 ∈ ∧2⟨B2⟩; and
• ω(x, y) = 0 for all x ∈ B1 and y ∈ B2.

Note that B1 and B2 need not be disjoint. We then have that Jκ1, κ2Ks ∈ ⟨S1⟩, so we can
write Jκ1, κ2Ks. This is most easily seen by example:

J(a1 + 3b1) ∧ a2, a2 ∧ (a3 − 2b3)Ks =J(a1 + 3b1) ∧ a2, a2 ∧ a3Ks − 2J(a1 + 3b1) ∧ a2, a2 ∧ b3Ks
=Ja1 ∧ a2, a2 ∧ a3Ks + 3Jb1 ∧ a2, a2 ∧ a3Ks

− 2Ja1 ∧ a2, a2 ∧ b3Ks − 6Jb1 ∧ a2, a2 ∧ b3Ks.

We thus have J(a1 + 3b1) ∧ a2, a2 ∧ (a3 − 2b3)Ks ∈ ⟨S1⟩.

28. Symmetric kernel, symmetric version II: S2 and the Θ-elements

We continue using all the notation from §27. This section constructs the set S2 that
lifts T2. It consists of what are called Θ-elements of Ksg, and the first part of this section
constructs these in more generality than is needed for S2 alone.

28.1. Definition. Let a ∧ b be a symplectic pair in ∧2HZ and let x, y ∈ ⟨a, b⟩⊥. The
Θ-elements Θ[a ∧ b, x ∧ b]s and Θ[a ∧ b, a ∧ y]s are elements of Ksg that are taken by Φ to

(a ∧ b)·(x ∧ b) ∈ Sym2((∧2H)/Q) and (a ∧ b)·(a ∧ y) ∈ Sym2((∧2H)/Q),

respectively. To find these elements, note that

((a+ x) ∧ b) · ((a+ x) ∧ b) = (a ∧ b)·(a ∧ b) + 2(a ∧ b)·(x ∧ b) + (x ∧ b)·(x ∧ b),
(a ∧ (b+ y)) · (a ∧ (b+ y)) = (a ∧ b)·(a ∧ b) + 2(a ∧ b)·(a ∧ y) + (a ∧ y)·(a ∧ y).

Since c is alternating, for any z ∈ (∧2H)/Q we have c(z, z) = 0 and thus there exists a
generator Jz, zKs of Ksg. This suggests:
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Definition 28.1. For a symplectic pair a ∧ b in ∧2HZ and x, y ∈ ⟨a, b⟩⊥, define

Θ[a ∧ b, x ∧ b]s =
1

2
(J(a+ x) ∧ b, (a+ x) ∧ bKs − Ja ∧ b, a ∧ bKs − Jx ∧ b, x ∧ bKs) ,

Θ[a ∧ b, a ∧ y]s =
1

2
(Ja ∧ (b+ y), a ∧ (b+ y)Ks − Ja ∧ b, a ∧ bKs − Ja ∧ y, a ∧ yKs) . □

By construction, we have

Φ(Θ[a ∧ b, x ∧ b]s) = (a ∧ b)·(x ∧ b),
Φ(Θ[a ∧ b, a ∧ y]s) = (a ∧ b)·(a ∧ y).

Remark 28.2. Despite our notation Θ[a∧ b, x∧ b]s, this depends on the ordered tuple (a, b, x),
not on a ∧ b and x ∧ b. A similar remark applies to Θ[a ∧ b, a ∧ y]s. We chose to abuse
notation like this to emphasize that Θ[a ∧ b, x ∧ b]s should be regarded as the “missing”
element Ja ∧ b, x ∧ bKs of Ksg that should exist if Ksg is isomorphic to Sym2((∧2H)/Q). Later
we will prove that Θ[a ∧ b, x ∧ b]s behaves as if it only depends on a ∧ b and x ∧ b, e.g.,
Lemma 28.10 below says that Θ[(a+ nb) ∧ b, x ∧ b]s = Θ[a ∧ b, x ∧ b]s for all n ∈ Z. □

28.2. Θ-expansion I. If x, y, z ∈ HZ are pairwise orthogonal elements such that x ∧ z and
y ∧ z and (x+ y) ∧ z are isotropic pairs, then the relations in Ksg imply that

J(x+ y) ∧ z, (x+ y) ∧ zKs = Jx ∧ z, x ∧ zKs + 2Jx ∧ z, y ∧ zKs + Jy ∧ z, y ∧ zKs.
Using Θ-elements, we can similarly expand out some other elements:

Lemma 28.3 (Θ-expansion I). Let a ∧ b be a symplectic pair and let x, y ∈ ⟨a, b⟩⊥. Then

J(a+ x) ∧ b, (a+ x) ∧ bKs = Ja ∧ b, a ∧ bKs + 2Θ[a ∧ b, x ∧ b]s + Jx ∧ b, x ∧ bKs,
Ja ∧ (b+ y), a ∧ (b+ y)Ks = Ja ∧ b, a ∧ bKs + 2Θ[a ∧ b, y ∧ a]s + Jy ∧ a, y ∧ aKs.

Proof. Immediate from Definition 28.1. □

28.3. Θ-linearity. The following is a key property of the Θ-elements:

Lemma 28.4 (Θ-linearity). Let a ∧ b be a symplectic pair. Then for all z1, z2 ∈ (a ∧ b)⊥
and λ1, λ2 ∈ Z we have

Θ[a ∧ b, (λ1z1 + λ2z2) ∧ b]s = λ1Θ[a ∧ b, z1 ∧ b]s + λ2Θ[a ∧ b, z2 ∧ b]s,
Θ[a ∧ b, a ∧ (λ1z1 + λ2z2)]s = λ1Θ[a ∧ b, a ∧ z1]s + λ2Θ[a ∧ b, a ∧ z2]s.

Proof. Both formulas are proved similarly, so we will prove the first. The key calculation is
the following special case of the lemma:

Claim. For a partial basis {z1, z2} of (a ∧ b)⊥ with ω(z1, z2) = 0 and n1, n2 ∈ Z, we have

Θ[a ∧ b, (n1z1 + n2z2) ∧ b]s = Θ[a ∧ b, n1z1 ∧ b]s +Θ[a ∧ b, n2z2 ∧ b]s.

Proof of claim. Whether or not the claim holds is invariant under the action of Sp2g(Z) on
Ksg. Recall that we have our fixed symplectic basis B = {a1, b1, . . . , ag, bg} for HZ. Applying
an appropriate element of Sp2g(Z), we can assume that

a1 = a, b1 = b, a2 = z1, a3 = z2.

To make our notation easier to digest, replace n1, n2 ∈ Z by n2, n3 ∈ Z. Since the restriction
of Φ to ⟨S1⟩ is injective (Lemma 27.1) and Φ takes both

(28.1) Θ[a1 ∧ b1, (n2a2 + n3a3) ∧ b1]s
and

(28.2) Θ[a1 ∧ b1, n2a2 ∧ b1]s +Θ[a1 ∧ b1, n3a3 ∧ b1]s
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to the same element of Sym2((∧2H)/Q), it is enough to prove that (28.1) and (28.2) are
equal modulo ⟨S1⟩. Let ≡ denote equality in Ksg modulo ⟨S1⟩.

By definition, 2Θ[a1 ∧ b1, (n2a2 + n3a3) ∧ b1]s equals35

J(a1 + n2a2 + n3a3) ∧ b1, (a1 + n2a2 + n3a3) ∧ b1Ks
− Ja1 ∧ b1, a1 ∧ b1Ks − J(n2a2 + n3a3) ∧ b1, (n2a2 + n3a3) ∧ b1Ks

≡J(a1 + n2a2 + n3a3) ∧ b1, (a1 + n2a2 + n3a3) ∧ b1Ks
and 2Θ[a1 ∧ b1, n2a2 ∧ b1]s + 2Θ[a1 ∧ b1, n3a3 ∧ b1]s equals

J(a1 + n2a2) ∧ b1, (a1 + n2a2) ∧ b1Ks − Ja1 ∧ b1, a1 ∧ b1Ks − Jn2a2 ∧ b1, n2a2 ∧ b1Ks,
+ J(a1 + n3a3) ∧ b1, (a1 + n3a3) ∧ b1Ks − Ja1 ∧ b1, a1 ∧ b1Ks − Jn3a3 ∧ b1, n3a3 ∧ b1Ks

≡J(a1 + n2a2) ∧ b1, (a1 + n2a2) ∧ b1Ks + J(a1 + n3a3) ∧ b1, (a1 + n3a3) ∧ b1Ks.
Our goal, therefore, is to prove that

J(a1 + n2a2 + n3a3) ∧ b1, (a1 + n2a2 + n3a3) ∧ b1Ks(28.3)

≡J(a1 + n2a2) ∧ b1, (a1 + n2a2) ∧ b1Ks + J(a1 + n3a3) ∧ b1, (a1 + n3a3) ∧ b1Ks

In (∧2H)/Q, we have the following identities. The colors are there to help the reader match
up terms with later formulas.36

(a1 + n2a2 + n3a3) ∧ b1+a2 ∧ (b2 − n2b1)+a3 ∧ (b3 − n3b1)+
∑g

i=4
ai ∧ bi= 0,

(a1 + n2a2) ∧ b1 +a2 ∧ (b2 − n2b1)+a3 ∧ b3 +
∑g

i=4
ai ∧ bi= 0,

(a1 + n3a3) ∧ b1 +a2 ∧ b2 +a3 ∧ (b3 − n3a1)+
∑g

i=4
ai ∧ bi= 0.

We plug these into the terms of (28.3). Matching up terms of the same color, we see that
J(a1 + n2a2 + n3a3) ∧ b1, (a1 + n2a2 + n3a3) ∧ b1Ks equals

− J(a1 + n2a2 + n3a3) ∧ b1, a2 ∧ (b2 − n2b1)Ks − J(a1 + n2a2 + n3a3) ∧ b1, a3 ∧ (b3 − n3b1)Ks

−
∑g

i=4
J(a1 + n2a2 + n3a3) ∧ b1, ai ∧ biKs

≡− J(a1 + n2a2) ∧ b1, a2 ∧ (b2 − n2b1)Ks − n3Ja3 ∧ b1, a2 ∧ (b2 − n2b1)Ks
− J(a1 + n3a3) ∧ b1, a3 ∧ (b3 − n3b1)Ks − n2Ja2 ∧ b1, a3 ∧ (b3 − n3b1)Ks

≡− J(a1 + n2a2) ∧ b1, a2 ∧ (b2 − n2b1)Ks − J(a1 + n3a3) ∧ b1, a3 ∧ (b3 − n3b1)Ks

and J(a1 + n2a2) ∧ b1, (a1 + n2a2) ∧ b1Ks equals
− J(a1 + n2a2) ∧ b1, a2 ∧ (b2 − n2b1)Ks − J(a1 + n2a2) ∧ b1, a3 ∧ b3Ks

−
∑g

i=4
J(a1 + n2a2) ∧ b1, ai, biKs

≡− J(a1 + n2a2) ∧ b1, a2 ∧ (b2 − n2b1)Ks

and J(a1 + n3a3) ∧ b1, (a1 + n3a3) ∧ b1Ks equals
− J(a1 + n3a3) ∧ b1, a2 ∧ b2Ks − J(a1 + n3a3) ∧ b1, a3 ∧ (b3 − n3a1)Ks

−
∑g

i=4
J(a1 + n3a3) ∧ b1, ai ∧ biKs

≡− J(a1 + n3a3) ∧ b1, a3 ∧ (b3 − n3a1)Ks.

Combining these three equalities gives (28.3). □

35Here and in future calculations we use §27.6 to identify and then delete blue terms lying in ⟨S1⟩.
36The only color which has a definite meaning right now is blue, which is used to indicate elements of

⟨S1⟩. In later sections we will give meanings to purple and orange and green terms, but currently these colors
have no meaning and we are free to use them.
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We now return to the proof of the lemma. Define Ksg[a ∧ b,− ∧ b] to be the subspace of

Ksg spanned by the Θ[a ∧ b, x ∧ b]s as x ranges over all elements of ⟨a, b⟩⊥. The linearization

map Φ: Ksg → Sym2((∧2H)/Q) takes Ksg[a ∧ b,− ∧ b] to the subspace

(28.4)
{
(a ∧ b)·(h ∧ b) | h ∈ ⟨a, b⟩⊥Q

}
∼= ⟨a, b⟩⊥Q.

To prove the lemma, it is enough to prove that the restriction of Φ to Ksg[a ∧ b,− ∧ b] is an
isomorphism.

Let Ksg[a∧ b,−∧ b]prim be the subspace of Ksg[a∧ b,−∧ b] spanned by Θ[a∧ b, x∧ b]s with
x a primitive element of ⟨a, b⟩⊥. The case n1 = n2 = 1 of the above claim implies that we
can use Theorem C to see that Φ takes Ksg[a ∧ b,− ∧ b]prim isomorphically to (28.4).

To complete the proof, we must prove that every element of Ksg[a ∧ b,− ∧ b] equals an

element of Ksg[a ∧ b,− ∧ b]prim. For this, consider a general x ∈ ⟨a, b⟩⊥. Write x = nx′ with

x′ primitive. Let y be such that {x′, y} is a partial basis of (a ∧ b)⊥ with ω(x′, y) = 0. The
above claim then implies that

Θ[a ∧ b, (x+ y) ∧ b]s = Θ[a ∧ b, x ∧ b]s +Θ[a ∧ b, y ∧ b]s.

On the other hand, since x + y is primitive the fact that Φ takes Ksg[a ∧ b,− ∧ b]prim
isomorphically to (28.4) implies that

Θ[a ∧ b, (x+ y) ∧ b]s = Θ[a ∧ b, (nx′ + y) ∧ b]s = nΘ[a ∧ b, x′ ∧ b]s +Θ[a ∧ b, y ∧ b]s.

Combining these two identities, we conclude that

Θ[a ∧ b, x ∧ b]s = nΘ[a ∧ b, x′ ∧ b]s ∈ Ksg[a ∧ b,− ∧ b]prim,

as desired. □

28.4. Θ-symmetry. It is inconvenient to require the entries of Θ[a ∧ b, x ∧ b]s and Θ[a ∧
b, a ∧ y]s to appear in a definite order. We therefore define that each of the following terms
equals Θ[a ∧ b, x ∧ b]s:

Θ[a ∧ b, x ∧ b]s, −Θ[b ∧ a, x ∧ b]s, −Θ[a ∧ b, b ∧ x]s, Θ[b ∧ a, b ∧ x]s,
Θ[x ∧ b, a ∧ b]s, −Θ[x ∧ b, b ∧ a]s, −Θ[b ∧ x, a ∧ b]s, Θ[b ∧ x, b ∧ a]s.

Similarly, we define that each of the following terms equals Θ[a ∧ b, a ∧ y]s:

Θ[a ∧ b, a ∧ y]s, −Θ[b ∧ a, a ∧ y]s, −Θ[a ∧ b, y ∧ a]s, Θ[b ∧ a, y ∧ a]s,
Θ[a ∧ y, a ∧ b]s, −Θ[a ∧ y, b ∧ a]s, −Θ[y ∧ a, a ∧ b]s, Θ[y ∧ a, b ∧ a]s.

28.5. Θ-signs. Lemma 28.4 (Θ-linearity) implies that

Θ[a ∧ b, (−x) ∧ b]s = −Θ[a ∧ b, x ∧ b]s and Θ[a ∧ b, a ∧ (−y)]s = −Θ[a ∧ b, a ∧ y]s.

For a symplectic pair a ∧ b, there are three other symplectic pairs obtained by swapping a
and b while multiplying them by ±1, namely (−b) ∧ a and b ∧ (−a) and (−a) ∧ (−b). The
following shows that changing a∧ b to one of these changes Θ[a∧ b, x∧ b]s and Θ[a∧ b, y∧a]s
in the obvious way. The statement uses the notation from §28.4:

Lemma 28.5. Let a ∧ b be a symplectic pair in HZ and let x, y ∈ ⟨a, b⟩⊥. Then

Θ[a ∧ (−b), x ∧ (−b)]s = Θ[a ∧ b, x ∧ b]s, Θ[a ∧ (−b), a ∧ y]s =−Θ[a ∧ b, a ∧ y]s,
Θ[(−a) ∧ b, x ∧ b]s =−Θ[a ∧ b, x ∧ b]s, Θ[(−a) ∧ b, (−a) ∧ y]s = Θ[a ∧ b, a ∧ y]s,

Θ[(−a) ∧ (−b), x ∧ (−b)]s =−Θ[a ∧ b, x ∧ b]s, Θ[(−a) ∧ (−b), (−a) ∧ y]s =−Θ[a ∧ b, a ∧ y]s.
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Proof. These are all proved the same way, so we will give the details for Θ[(−a)∧ b, x∧ b]s =
−Θ[a∧ b, x∧ b]s and leave the others to the reader.37 Here (−a)∧ b is not a symplectic pair,
but b∧(−a) is a symplectic pair. Using the notation from §28.4, we interpret Θ[(−a)∧b, x∧b]s
as38 Θ[b ∧ (−a), b ∧ x]s, so our goal is to prove that Θ[b ∧ (−a), b ∧ x]s = −Θ[a ∧ b, x ∧ b]s.
By definition, Θ[b ∧ (−a), b ∧ x]s equals

Jb ∧ (−a+ x), b ∧ (−a+ x)Ks − Jb ∧ (−a), b ∧ (−a)Ks − Jb ∧ x, b ∧ xKs
= J(a− x) ∧ b, (a− x) ∧ bKs − Ja ∧ b, a ∧ bKs − J(−x) ∧ b, (−x) ∧ bKs.

This last expression equals Θ[a ∧ b,−x ∧ b]s, which by Lemma 28.4 (Θ-linearity) equals
−Θ[a ∧ b, x ∧ b]s. □

28.6. The set S2. We now return to constructing S2. Recall that

T2 = {(ai ∧ bi)·(x ∧ bi), (ai ∧ bi)·(ai ∧ y) | 1 ≤ i ≤ g, x, y ∈ B \ {ai, bi}} .
Define

S2 = {Θ[ai ∧ bi, x ∧ bi]s, Θ[ai ∧ bi, ai ∧ y]s | 1 ≤ i ≤ g, x, y ∈ B \ {ai, bi}} .
Like we did here, we will write elements of ⟨S2⟩ in purple. For example, using Lemma
28.4 (Θ-linearity), for 1 ≤ i ≤ g and z ∈ ⟨ai, bi⟩⊥ we have elements Θ[ai ∧ bi, z ∈ bi]s and
Θ[ai ∧ bi, ai ∧ z]s in ⟨S2⟩. By construction, the linearization map Φ takes S2 bijectively to
T2. Even better:

Lemma 28.6. The linearization map Φ takes ⟨S1, S2⟩ isomorphically to ⟨T1, T2⟩.
Proof. Recall that in Lemma 27.1 we proved that Φ takes ⟨S1⟩ isomorphically onto ⟨T1⟩.
Part of the proof of that lemma was that Φ takes S1 bijectively to T1. It follows that Φ takes
S1 ∪ S2 bijectively to T1 ∪ T2. What we must prove is that all relations between elements of
T1 ∪ T2 lift to relations between S1 ∪ S2.

We constructed all the relations between elements of T = T1 ∪ · · · ∪ T4 in §27.1, and in
fact all of them only involve elements of T1 ∪ T2. Some only involve elements of T1, and as
we observed in the proof of Lemma 27.1 these all lift to relations between elements of S1.
The remaining relations are of the form∑g

i=1
(ai ∧ bi)·(x ∧ y) with x, y ∈ B with x ≺ y and ω(x, y) = 0.

Lemma 28.7 below proves that these do indeed lift to relations between elements of S1∪S2. □

The above proof used the following, which for later use we state in more generality than
we need at the moment:

Lemma 28.7 (Θ-symplectic basis). Let {x1, y1, . . . , xg, yg} be a symplectic basis for HZ, let
1 ≤ n < m ≤ g, and let z ∈ {xn, yn} and w ∈ {xm, ym}. Then

Θ[xn ∧ yn, z ∧ w]s +Θ[xm ∧ ym, z ∧ w]s +
∑

1≤i≤g
i ̸=n,m

Jxi ∧ yi, z ∧ wKs = 0.

Proof. Whether this holds is invariant under the action of Sp2g(Z) on Ksg, so applying an
appropriate element of Sp2g(Z) we can assume that the given symplectic basis is our fixed
symplectic basis B = {a1, b1, . . . , ag, bg}. Moreover, recalling the subgroup SymSpg from §7
we can apply an appropriate element of SymSpg and ensure that n = 1 and m = 2. Our
desired relation is thus

(28.5) Θ[a1 ∧ b1, z ∧ w]s +Θ[a2 ∧ b2, z ∧ w]s +
∑g

i=3
Jai ∧ bi, z ∧ 2Ks = 0.

37We chose this one because it is slightly harder than the other cases.
38There is no sign change here since both (−a)∧ b and x∧ b are flipped and each flip causes a sign change.
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Finally, since Φ restricted to ⟨S1⟩ is injective (Lemma 27.1) and Φ takes (28.5) to a true
relation in Sym2((∧2H)/Q), it is enough to prove that (28.5) holds modulo ⟨S1⟩. In other
words, letting ≡ denote equality modulo ⟨S1⟩ we must prove that

(28.6) Θ[a1 ∧ b1, z ∧ w]s +Θ[a2 ∧ b2, z ∧ w]s ≡ 0.

For concreteness, we will prove this for z = a1 and w = b2. The other cases are similar.
Using Lemma 28.4 (Θ-linearity), the relation (28.6) is equivalent to

(28.7) Θ[a1 ∧ b1, a1 ∧ b2]s −Θ[a2 ∧ b2,−a1 ∧ b2]s ≡ 0.

By definition, we have

2Θ[a1 ∧ b1, a1 ∧ b2]s =Ja1 ∧ (b1 + b2), a1 ∧ (b1 + b2)Ks − Ja1 ∧ b1, a1 ∧ b1Ks
− Ja1 ∧ b2, a1 ∧ b2Ks ≡ Ja1 ∧ (b1 + b2), a1 ∧ (b1 + b2)Ks,

2Θ[a2 ∧ b2,−a1 ∧ b2]s =J(a2 − a1) ∧ b2, (a2 − a1) ∧ b2Ks − Ja2 ∧ b2, a2 ∧ b2Ks
− Ja1 ∧ b2, a1 ∧ b2Ks ≡ J(a2 − a1) ∧ b2, (a2 − a1) ∧ b2Ks.

The relation (28.7) is thus equivalent to

(28.8) Ja1 ∧ (b1 + b2), a1 ∧ (b1 + b2)Ks − J(a2 − a1) ∧ b2, (a2 − a1) ∧ b2Ks ≡ 0.

In (∧2H)/Q, we have

a1 ∧ (b1 + b2) + (a2 − a1) ∧ b2 +
∑g

i=3
ai ∧ bi = 0.

This implies that

Ja1 ∧ (b1 + b2), a1 ∧ (b1 + b2)Ks =− Ja1 ∧ (b1 + b2), (a2 − a1) ∧ b2Ks

−
∑g

i=3
Ja1 ∧ (b1 + b2), ai ∧ biKs

≡− Ja1 ∧ (b1 + b2), (a2 − a1) ∧ b2Ks.

Plugging this into (28.8), we see that our desired relation is equivalent to showing that the
following is equivalent to 0:

Ja1 ∧ (b1 + b2), (a2 − a1) ∧ b2Ks + J(a2 − a1) ∧ b2, (a2 − a1) ∧ b2Ks
=Ja1 ∧ (b1 + b2) + (a2 − a1) ∧ b2, (a2 − a1) ∧ b2Ks

=Ja1 ∧ b1 + a2 ∧ b2, (a2 − a1) ∧ b2Ks = −
∑g

i=3
Jai ∧ bi, (a2 − a1) ∧ b2Ks ≡ 0. □

28.7. Additional bilinearity relations. We close this section by proving some additional
relations between the Θ-elements.

Lemma 28.8 (Θ-bilinearity I). Let a ∧ b be a symplectic pair in HZ and z ∈ ⟨a, b⟩⊥. Then:

• for x ∈ ⟨a, b, z⟩⊥ we have Θ[(a+ z) ∧ b, x ∧ b]s = Θ[a ∧ b, x ∧ b]s + Jz ∧ b, x ∧ bKs.
• for y ∈ ⟨a, b, z⟩⊥ we have Θ[a ∧ (b+ z), a ∧ y]s = Θ[a ∧ b, a ∧ y]s + Ja ∧ z, a ∧ yKs.

Proof. Both are proved the same way, so we prove the first. By Lemma 28.3 (Θ-expansion
I), the element J(a+ z + x) ∧ b, (a+ z + x) ∧ bKs equals

J(a+ z) ∧ b, (a+ z) ∧ bKs + 2Θ[(a+ z) ∧ b, x ∧ b]s + Jx ∧ b, x ∧ bKs
= Ja ∧ b, a ∧ bKs + 2Θ[a ∧ b, z ∧ b]s + Jz ∧ b, z ∧ bKs
+ 2Θ[(a+ z) ∧ b, x ∧ b]s + Jx ∧ b, x ∧ bKs.
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On the other hand, it also equals

Ja ∧ b, a ∧ bKs + 2Θ[a ∧ b, (z + x) ∧ b]s + J(z + x) ∧ b, (z + x) ∧ bKs
= Ja ∧ b, a ∧ bKs + 2Θ[a ∧ b, z ∧ b]s + 2Θ[a ∧ b, x ∧ b]s
+ Jz ∧ b, z ∧ bKs + 2Jz ∧ b, x ∧ bKs + Jx ∧ b, x ∧ bKs.

Here the equality uses Lemma 28.4 (Θ-linearity). The above two displays are thus equal,
and the result follows. □

Lemma 28.8 allows many standard generators of Ksg to be written as the sum of two
Θ-elements:

Lemma 28.9 (Θ-expansion II). Let a ∧ b and a′ ∧ b′ be symplectic pairs in HZ such that
⟨a, b⟩ and ⟨a′, b′⟩ are orthogonal. Then

J(a+ a′) ∧ (b− b′), x ∧ (b− b′)Ks = Θ[a ∧ (b− b′), x ∧ (b− b′)]s + Θ[a′ ∧ (b− b′), x ∧ (b− b′)]s,

J(a+ a′) ∧ (b− b′), (a+ a′) ∧ yKs = Θ[(a+ a′) ∧ b, (a+ a′) ∧ y]s − Θ[(a+ a′) ∧ b′, (a+ a′) ∧ y]s,
J(a+ b′) ∧ (b+ a′), x′ ∧ (b+ a′)Ks = Θ[a ∧ (b+ a′), x′ ∧ (b+ a′)]s + Θ[b′ ∧ (b+ a′), x′ ∧ (b+ a′)]s,

J(a+ b′) ∧ (b+ a′), (a+ b′) ∧ y′Ks = Θ[(a+ b′) ∧ b, (a+ b′) ∧ y′]s + Θ[(a+ b′) ∧ a′, (a+ b′) ∧ y′]s.

for x ∈ ⟨a, a′, b− b′⟩⊥ and y ∈ ⟨b, b′, a+ a′⟩⊥ and x′ ∈ ⟨a, b′, b+ a′⟩ and y′ ∈ ⟨b, a′, a+ b′⟩.

Proof. All are proved the same way, so we will prove the first. Lemma 28.8 (Θ-bilinearity I)
implies that

Θ[(−a′) ∧ (b− b′), x ∧ (b− b′)]s + J(a+ a′) ∧ (b− b′), x ∧ (b− b′)Ks

equals

Θ[(−a′ + (a+ a′)) ∧ (b− b′), x ∧ (b− b′)]s = Θ[a ∧ (b− b′), x ∧ (b− b′)]s.

Rearranging this, we see that

J(a+a′)∧ (b−b′), x∧ (b−b′)Ks = Θ[a∧ (b−b′), x∧ (b−b′)]s+Θ[a′∧ (b−b′), x∧ (b−b′)]s. □

Lemma 28.10 (Θ-bilinearity II). Let a ∧ b be a symplectic pair in HZ and n ∈ Z. Then:

• for x ∈ ⟨a, b⟩⊥ we have

Θ[(a+ nb) ∧ b, x ∧ b]s = Θ[a ∧ b, x ∧ b]s,
Θ[a ∧ (b+ na), x ∧ (b+ na)]s = Θ[a ∧ b, x ∧ b]s + nΘ[a ∧ b, x ∧ a]s.

• for y ∈ ⟨a, b⟩⊥ we have

Θ[a ∧ (b+ na), a ∧ y]s = Θ[a ∧ b, a ∧ y]s,
Θ[(a+ nb) ∧ b, (a+ nb) ∧ y]s = Θ[a ∧ b, a ∧ y]s + nΘ[a ∧ b, b ∧ y]s.

Proof. The two bullet points are proved the same way, so we will prove the second. Observe
first that 2Θ[a ∧ (b+ na), a ∧ y]s equals

Ja ∧ (b+ na+ y), a ∧ (b+ na+ y)Ks − Ja ∧ (b+ na), a ∧ (b+ na)Ks − Ja ∧ y, a ∧ yKs
= Ja ∧ (b+ y), a ∧ (b+ y)Ks − Ja ∧ b, a ∧ bKs − Ja ∧ y, a ∧ yKs,

which equals 2Θ[a ∧ b, a ∧ y]s. This gives the first equation. For the second, by Lemma 28.4
(Θ-linearity) it is enough to prove it for y primitive. We can then find a symplectic basis
{x1, y1, . . . , xg, yg} for HZ such that x1 = a and y1 = b and y2 = y. Our goal is to prove that

Θ[(x1 + ny1) ∧ y1, (x1 + ny1) ∧ y2]s = Θ[x1 ∧ y1, x1 ∧ y2]s + nΘ[x1 ∧ y1, y1 ∧ y2]s.
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Applying Lemma 28.7 (Θ-symplectic basis) to the alternate symplectic basis B′ = {x1 +
ny1, y1, x2, y2, . . . , xg, yg}, we see that

0 =Θ[(x1 + ny1) ∧ y1, (x1 + ny1) ∧ y2]s

+Θ[x2 ∧ y2, (x1 + ny1) ∧ y2]s +
∑g

i=3
Jxi ∧ yi, (x1 + ny1) ∧ y2Ks

From this, we see that Θ[(x1 + ny1) ∧ y1, (x1 + ny1) ∧ y2]s equals

−Θ[x2 ∧ y2, (x1 + ny1) ∧ y2]s −
∑g

i=3
Jxi ∧ yi, (x1 + ny1) ∧ y2Ks

= −
(
Θ[x2 ∧ y2, x1 ∧ y2]s −

∑g

i=3
Jxi ∧ yi, x1 ∧ y2Ks

)
− n

(
Θ[x2 ∧ y2, y1 ∧ y2]s −

∑g

i=3
Jxi ∧ yi, y1 ∧ y2Ks

)
.

The equality here uses Lemma 28.4 (Θ-linearity). Again using Lemma 28.7 (Θ-symplectic
basis), we recognize this as being Θ[x1 ∧ y1, x1 ∧ y2]s + nΘ[x1 ∧ y1, y1 ∧ y2]s, as desired. □

29. Symmetric kernel, symmetric version III: S3 and the Λ-elements

We continue using all the notation from §27 – §28. This section constructs the set S3 that
lifts T3. It consists of what are called Λ-elements of Ksg, and the first part of this section
constructs these in more generality than is needed for S3 alone.

29.1. Definition. Let a ∧ b be a symplectic pair in ∧2HZ and let x, y ∈ ⟨a, b⟩⊥ satisfy
ω(x, y) = 0. The Λ-element Λ[a ∧ y, x ∧ b]s is an element of Ksg that is taken by Φ to

(a ∧ y)·(x ∧ b) ∈ Sym2((∧2H)/Q).

To find it, note that

(a ∧ (b+ y)) · (x ∧ (b+ y)) = (a ∧ (b+ y)) ·(x ∧ y) + (a ∧ b)·(x ∧ b) + (a ∧ y)·(x ∧ b),
((a+ x) ∧ b) · ((a+ x) ∧ y) = ((a+ x) ∧ b) ·(x ∧ y) + (a ∧ b)·(a ∧ y) + (x ∧ b)·(a ∧ y).

This suggests two possible elements of Ksg projecting to (a ∧ y)·(x ∧ b):

Definition 29.1. For a symplectic pair a ∧ b in HZ and x, y ∈ ⟨a, b⟩⊥ with ω(x, y) = 0,
define:

Λ1[a ∧ y, x ∧ b]s = Θ[a ∧ (b+ y), x ∧ (b+ y)]s −Θ[a ∧ b, x ∧ b]s − Ja ∧ (b+ y), x ∧ yKs,
Λ2[a ∧ y, x ∧ b]s = Θ[(a+ x) ∧ b, (a+ x) ∧ y]s −Θ[a ∧ b, a ∧ y]s − J(a+ x) ∧ b, x ∧ yKs.□

See Remark 29.3 below for a caveat about this notation. By construction, we have

Φ(Λ1[a ∧ y, x ∧ b]s) = Φ(Λ2[a ∧ y, x ∧ b]s) = (a ∧ y)·(x ∧ b).
Since we are trying to prove that Φ is an isomorphism, we must prove that these are actually
the same element:

Lemma 29.2. Let a∧ b be a symplectic pair in HZ and let x, y ∈ ⟨a, b⟩⊥ satisfy ω(x, y) = 0.
Then Λ1[a ∧ y, x ∧ b]s = Λ2[a ∧ y, x ∧ b]s.

Proof. We must prove that

Θ[a ∧ (b+ y), x ∧ (b+ y)]s −Θ[a ∧ b, x ∧ b]s − Ja ∧ (b+ y), x ∧ yKs,
=Θ[(a+ x) ∧ b, (a+ x) ∧ y]s −Θ[a ∧ b, a ∧ y]s − J(a+ x) ∧ b, x ∧ yKs.

Since

Ja ∧ (b+ y), x ∧ yKs = Ja ∧ b, x ∧ yKs + Ja ∧ y, x ∧ yKs,
J(a+ x) ∧ b, x ∧ yKs = Ja ∧ b, x ∧ yKs + Jx ∧ b, x ∧ yKs,
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we can rearrange this and see that it is equivalent to prove that

(29.1) Θ[a ∧ (b+ y), x ∧ (b+ y)]s −Θ[(a+ x) ∧ b, (a+ x) ∧ y]s

equals

(29.2) Θ[a ∧ b, x ∧ b]s −Θ[a ∧ b, a ∧ y]s + Ja ∧ y, x ∧ yKs − Jx ∧ b, x ∧ yKs.

Applying Lemma 28.3 (Θ-expansion I) twice, the element J(a+x)∧ (b+y), (a+x)∧ (b+y)Ks
equals

Ja ∧ (b+ y), a ∧ (b+ y)Ks + 2Θ[a ∧ (b+ y), x ∧ (b+ y)]s + Jx ∧ (b+ y), x ∧ (b+ y)Ks
= Ja ∧ b, a ∧ bKs + 2Θ[a ∧ b, a ∧ y]s + Ja ∧ y, a ∧ yKs
+ 2Θ[a ∧ (b+ y), x ∧ (b+ y)]s + Jx ∧ (b+ y), x ∧ (b+ y)Ks.

Applying Lemma 28.3 (Θ-expansion I) twice again but in a different order, the same element
J(a+ x) ∧ (b+ y), (a+ x) ∧ (b+ y)Ks also equals

J(a+ x) ∧ b, (a+ x) ∧ bKs + 2Θ[(a+ x) ∧ b, (a+ x) ∧ y]s + J(a+ x) ∧ y, (a+ x) ∧ y)Ks
= Ja ∧ b, a ∧ bKs + 2Θ[a ∧ b, x ∧ b]s + Jx ∧ b, x ∧ bKs
+ 2Θ[(a+ x) ∧ b, (a+ x) ∧ y]s + J(a+ x) ∧ y, (a+ x) ∧ y)Ks.

Equating the previous two displays and rearranging terms, we deduce that 2 times (29.1)
equals

2Θ[a ∧ b, x ∧ b]s + Jx ∧ b, x ∧ bKs + J(a+ x) ∧ y, (a+ x) ∧ y)Ks
− 2Θ[a ∧ b, a ∧ y]s − Ja ∧ y, a ∧ yKs − Jx ∧ (b+ y), x ∧ (b+ y)Ks,

which using the usual bilinearity relations in Ksg equals

2Θ[a ∧ b, x ∧ b]s − 2Θ[a ∧ b, a ∧ y]s + Jx ∧ b, x ∧ bKs − Ja ∧ y, a ∧ yKs
+ (Ja ∧ y, a ∧ yKs + 2Ja ∧ y, x ∧ yKs + Jx ∧ y, x ∧ yKs)
− (Jx ∧ b, x ∧ bKs + 2Jx ∧ b, x ∧ yKs + Jx ∧ y, x ∧ yKs),

which after canceling terms equals 2 times (29.2). □

In light of this lemma, we will denote the common value of Λ1[a∧y, x∧b]s and Λ2[a∧y, x∧b]s
by Λ[a ∧ y, x ∧ b]s.

Remark 29.3. Just like for the Θ-elements (cf. Remark 28.2), the elements Λ1[a ∧ y, x ∧ b]s
and Λ2[a∧ y, x∧ b]s and Λ[a∧ y, x∧ b]s depend on the ordered tuple (a, y, x, b), not on a∧ y
and x ∧ b. □

29.2. Λ-expansion I. The following is an important way that Λ-elements appear in our
calculations:

Lemma 29.4 (Λ-expansion I). Let a ∧ b be a symplectic pair and let x, y ∈ ⟨a, b⟩⊥ satisfy
ω(x, y) = 0. Then

Θ[a ∧ (b+ y), x ∧ (b+ y)]s = Λ[a ∧ y, x ∧ b]s +Θ[a ∧ b, x ∧ b]s + Ja ∧ (b+ y), x ∧ yKs,
Θ[(a+ x) ∧ b, (a+ x) ∧ y]s = Λ[a ∧ y, x ∧ b]s +Θ[a ∧ b, a ∧ y]s + J(a+ x) ∧ b, x ∧ yKs.

Proof. Immediate from Definition 29.1. □
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29.3. Λ-linearity. The following says that Λ[a ∧ y, x ∧ b]s is linear in both x and y:

Lemma 29.5 (Λ-linearity). Let a ∧ b be a symplectic pair in HZ. Then:

• For x, y1, y2 ∈ ⟨a, b⟩⊥ with ω(x, y1) = ω(x, y2) = 0 and λ1, λ2 ∈ Z, we have

Λ[a ∧ (λ1y1 + λ2y2), x ∧ b]s = λ1Λ[a ∧ y1, x ∧ b]s + λ2Λ[a ∧ y2, x ∧ b]s.
• For x1, x2, y ∈ ⟨a, b⟩⊥ with ω(x1, y) = ω(x2, y) = 0 and λ1, λ2 ∈ Z, we have

Λ[a ∧ y, (λ1x1 + λ2x2) ∧ b]s = λ1Λ[a ∧ y, x1 ∧ b]s + λ2Λ[a ∧ y, x2 ∧ b]s.

In fact, we will prove something more general. Let a∧b be a symplectic pair in HZ. Define

Ks,Λg [a∧−,−∧ b] to be the subspace of Ksg spanned by Λ[a∧ y, x∧ b]s as x and y range over

elements of ⟨a, b⟩⊥ satisfying ω(x, y) = 0. The linearization map Φ: Ksg → Sym2((∧2H)/Q)

takes Ks,Λg [a ∧ −,− ∧ b] into

⟨(a ∧ y)·(x ∧ b) | x, y ∈ ⟨a, b⟩⊥⟩ ∼=
(
⟨a, b⟩⊥Q

)⊗2
.

This isomorphism takes (a ∧ y)·(x ∧ b) to y ⊗ x. The image is in the kernel of map(
⟨a, b⟩⊥Q

)⊗2
−→ Q

induced by ω, which we denote Z(⟨a, b⟩⊥Q) (c.f. §9.2). We will prove the following, which
strengthens Lemma 29.5:

Lemma 29.6 (strong Λ-linearity). Let a∧b and Z(⟨a, b⟩⊥Q) be as above. Then the linearization
map

Φ: Ks,Λg [a ∧ −,− ∧ b] −→ Z(⟨a, b⟩⊥Q).
is an isomorphism.

Proof. Theorem 9.3 gives a presentation for Z(⟨a, b⟩⊥Q). In light of this presentation, it is
enough to prove the following two special cases of Lemma 29.5:

• For x ∈ ⟨a, b⟩⊥ and a partial basis {y1, y2} of ⟨a, b, x⟩⊥, we have

Λ[a ∧ (y1 + y2), x ∧ b]s = Λ[a ∧ y1, x ∧ b]s + Λ[a ∧ y2, x ∧ b]s.
• For y ∈ ⟨a, b⟩⊥ and a partial basis {x1, x2} of ⟨a, b, y⟩⊥, we have

Λ[a ∧ y, (x1 + x2) ∧ b]s = Λ[a ∧ y, x1 ∧ b]s + Λ[a ∧ y, x2 ∧ b]s.
For the first bullet point, Λ[a ∧ (y1 + y2), x ∧ b]s = Λ2[a ∧ (y1 + y2), x ∧ b]s equals
Θ[(a+ x) ∧ b, (a+ x) ∧ (y1 + y2)]s −Θ[a ∧ b, a ∧ (y1 + y2)]s − J(a+ x) ∧ b, x ∧ (y1 + y2)Ks.

Using Lemma 28.4 (Θ-linearity), all three terms are linear in the yi:

Θ[(a+ x) ∧ b, (a+ x) ∧ (y1 + y2)]s =Θ[(a+ x) ∧ b, (a+ x) ∧ y1]s
+Θ[(a+ x) ∧ b, (a+ x) ∧ y2]s,

Θ[a ∧ b, a ∧ (y1 + y2)]s =Θ[a ∧ b, a ∧ y1]s +Θ[a ∧ b, a ∧ y2]s,
J(a+ x) ∧ b, x ∧ (y1 + y2)Ks =J(a+ x) ∧ b, x ∧ y1Ks + J(a+ x) ∧ b, x ∧ y2Ks.

The first bullet point follows. The second bullet point is proved the same way, but using
Λ1[a ∧ −,− ∧ b]s instead of Λ2[a ∧ −,− ∧ b]s. □

29.4. Λ-symmetry. It is inconvenient to require the entries of Λ[a ∧ y, x ∧ b]s to appear in
a definite order. We therefore define that each of the following terms equals Λ[a ∧ y, x ∧ b]s:

Λ[a ∧ y, x ∧ b]s, −Λ[y ∧ a, x ∧ b]s, −Λ[a ∧ y, b ∧ x]s, Λ[y ∧ a, b ∧ x]s,
Λ[x ∧ b, a ∧ y]s, −Λ[x ∧ b, y ∧ a]s, −Λ[b ∧ x, a ∧ y]s, Λ[b ∧ x, y ∧ a]s.
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29.5. Λ-signs. Lemma 29.5 (Λ-linearity) implies that

Λ[a ∧ (−y), x ∧ b]s = −Λ[a ∧ y, x ∧ b]s and Λ[a ∧ y, (−x) ∧ b]s = −Λ[a ∧ y, x ∧ b]s.

For a symplectic pair a ∧ b, there are three other symplectic pairs obtained by swapping a
and b while multiplying them by ±1, namely (−b) ∧ a and b ∧ (−a) and (−a) ∧ (−b). The
following shows that changing a ∧ b to one of these changes Λ[a ∧ y, x ∧ b]s in the obvious
way. The statement uses the notation from §29.4:

Lemma 29.7. Let a∧ b be a symplectic pair in HZ and let x, y ∈ ⟨a, b⟩⊥ satisfy ω(x, y) = 0.
Then

Λ[a ∧ y, x ∧ (−b)]s =−Λ[a ∧ y, x ∧ b]s,
Λ[(−a) ∧ y, x ∧ b]s =−Λ[a ∧ y, x ∧ b]s,

Λ[(−a) ∧ y, x ∧ (−b)]s = Λ[a ∧ y, x ∧ b]s.

Proof. These are all proved the same way, so we will give the details for Λ[a ∧ y, x ∧
(−b)]s = −Λ[a ∧ y, x ∧ b]s and leave the others to the reader. Using the notation from
§29.4, we interpret Λ[a ∧ y, x ∧ (−b)]s as Λ[(−b) ∧ x, y ∧ a]s. Our goal is to prove that
Λ[(−b) ∧ x, y ∧ a]s = −Λ[a ∧ y, x ∧ b]s By the definition of Λ-elements (Definition 29.1),
Λ[(−b) ∧ x, y ∧ a]s = Λ1[(−b) ∧ x, y ∧ a]s equals

Θ[(−b) ∧ (a+ x), y ∧ (a+ x)]s −Θ[(−b) ∧ a, y ∧ a]s − J(−b) ∧ (a+ x), y ∧ xKs
= −Θ[b ∧ (a+ x), y ∧ (a+ x)]s +Θ[b ∧ a, y ∧ a]s + Jb ∧ (a+ x), y ∧ xKs
= −Θ[(a+ x) ∧ b, (a+ x) ∧ y]s +Θ[a ∧ b, a ∧ y]s + J(a+ x) ∧ b, x ∧ yKs.

This last expression equals −Λ2[a ∧ y, x ∧ b]s = −Λ[a ∧ y, x ∧ b]s. □

29.6. The set S3. We now return to constructing S3. Recall that

T3 = {(ai ∧ y)·(x ∧ bi) | 1 ≤ i ≤ g, x, y ∈ B \ {ai, bi}, ω(x, y) = 0} .

Define

S3 = {Λ[ai ∧ y, x ∧ bi]s | 1 ≤ i ≤ g, x, y ∈ B \ {ai, bi}, ω(x, y) = 0} .

Like we did here, we will write elements of ⟨S3⟩ in orange. For example, using Lemma 29.5
(Λ-linearity) the following holds for 1 ≤ i ≤ g. Consider x, y ∈ ⟨ai, bi⟩⊥ with ω(x, y) = 0.
Assume there exist B1,B2 ⊂ B \ {ai, bi} (not necessarily disjoint) with ω(z1, z2) = 0 for all
z1 ∈ B1 and z2 ∈ B2 such that x ∈ ⟨B1⟩ and y ∈ ⟨B2⟩. Then Λ[ai ∧ y, x ∧ bi]s ∈ ⟨S3⟩.

Remark 29.8. It is not true, however, that in general elements of the form Λ[ai ∧ y, x ∧ bi]s
with x, y ∈ ⟨ai, bi⟩⊥ lie in ⟨S3⟩. See §30.2 below. □

By construction, the linearization map Φ takes S3 bijectively to T3. Even better:

Lemma 29.9. The linearization map Φ takes ⟨S1, S2, S3⟩ isomorphically to ⟨T1, T2, T3⟩.

Proof. Recall that in Lemma 28.6 we proved that Φ takes ⟨S1, S2⟩ isomorphically to ⟨T1, T2⟩.
Part of the proof of that lemma was that Φ takes S1 ∪ S2 bijectively to T1 ∪ T2. It follows
that Φ takes S1 ∪ S2 ∪ S3 bijectively to T1 ∪ T2 ∪ T3. What is more, in the proof of Lemma
28.6 we proved that all relations between elements of T1 ∪ · · · ∪ T4 are actually relations
between elements of T1 ∪ T2 and lift to relations between elements of S1 ∪ S2. The lemma
follows. □
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29.7. Additional bilinearity relations. We close this section by proving some additional
relations between the Λ-elements.

Lemma 29.10 (Λ-bilinearity I). Let a ∧ b be a symplectic pair in HZ, let x, y ∈ ⟨a, b⟩⊥
satisfy ω(x, y) = 0, and let z ∈ ⟨a, b, x, y⟩⊥. Then:

Λ[(a+ z) ∧ y, x ∧ b]s = Λ[a ∧ y, x ∧ b]s + Jz ∧ y, x ∧ bKs,
Λ[a ∧ y, x ∧ (b+ z)]s = Λ[a ∧ y, x ∧ b]s + Ja ∧ y, x ∧ zKs.

Proof. Both formulas are proved the same way, so we will prove the first. By definition,
Λ[(a+ z) ∧ y, x ∧ b]s = Λ1[(a+ z) ∧ y, x ∧ b]s equals

Θ[(a+ z) ∧ (b+ y), x ∧ (b+ y)]s −Θ[(a+ z) ∧ b, x ∧ b]s − J(a+ z) ∧ (b+ y), x ∧ yKs.
By Lemma 28.8 (Θ-bilinearity I), this equals

Θ[a ∧ (b+ y), x ∧ (b+ y)]s + Jz ∧ (b+ y), x ∧ (b+ y)Ks −Θ[a ∧ b, x ∧ b]s − Jz ∧ b, x ∧ bKs
− J(a+ z) ∧ (b+ y), x ∧ yKs

=Λ[a ∧ y, x ∧ b]s + Ja ∧ (b+ y), x ∧ yKs + Jz ∧ (b+ y), x ∧ (b+ y)Ks − Jz ∧ b, x ∧ bKs
− Ja ∧ (b+ y), x ∧ yKs − Jz ∧ (b+ y), x ∧ yKs.

All the terms after the first in this can be expanded out and many of the resulting terms
cancel, leaving Λ[a ∧ y, x ∧ b]s + Jz ∧ y, x ∧ bKs. □

Lemma 29.10 allows some standard generators of Ksg to be written as the sum of two

Λ-elements:39

Lemma 29.11 (Λ-expansion II). Let a ∧ b and a′ ∧ b′ be symplectic pairs in HZ such that
⟨a, b⟩ and ⟨a′, b′⟩ are orthogonal and let y, w ∈ ⟨a, b′, b+ a′⟩⊥ satisfy ω(y, w) = 0. Then

J(a+ b′) ∧ y, (b+ a′) ∧ wKs = Λ[a ∧ y, (b+ a′) ∧ w]s + Λ[b′ ∧ y, (b+ a′) ∧ w]s.

Proof. Lemma 29.10 implies that

Λ[(−b′) ∧ y, w ∧ (b+ a′)]s + J(a+ b′) ∧ y, w ∧ (b+ a′)Ks
equals

Λ[(−b′ + (a+ b′)) ∧ y, w ∧ (b+ a′)]s = Λ[a ∧ y, w ∧ (b+ a′)]s.

Rearranging this, we see that

J(a+ b′) ∧ y, (b+ a′) ∧ wKs = Λ[a ∧ y, (b+ a′) ∧ w]s + Λ[b′ ∧ y, (b+ a′) ∧ w]s. □

Lemma 29.12 (Λ-bilinearity II). For a symplectic pair a ∧ b in HZ and x, y ∈ ⟨a, b⟩⊥ with
ω(x, y) = 0 and n ∈ Z, we have

Λ[(a+ nb) ∧ y, x ∧ b]s = Λ[a ∧ y, x ∧ b]s + nJb ∧ y, x ∧ bKs,
Λ[a ∧ y, x ∧ (b+ na)]s = Λ[a ∧ y, x ∧ b]s + nJa ∧ y, x ∧ aKs.

Proof. These two relations are proved in the same way, so we will give the details for the
first. The element Λ[(a+ nb) ∧ y, x ∧ b]s = Λ1[(a+ nb) ∧ y, x ∧ b]s equals

Θ[(a+ nb) ∧ (b+ y), x ∧ (b+ y)]s −Θ[(a+ nb) ∧ b, x ∧ b]s(29.3)

− J(a+ nb) ∧ b, x ∧ yKs − J(a+ nb) ∧ y, x ∧ yKs
= Θ[(a+ nb) ∧ (b+ y), x ∧ (b+ y)]s −Θ[a ∧ b, x ∧ b]s
− Ja ∧ b, x ∧ yKs − Ja ∧ y, x ∧ yKs − nJb ∧ y, x ∧ yKs.

39There are many variants of this in the style of Lemma 28.9, but we give the only one we use.
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Here we use Lemma 28.10 (Θ-bilinearity II). That lemma also implies that Θ[(a+ nb) ∧ (b+
y), x ∧ (b+ y)]s equals

Θ[(a− ny) ∧ (b+ y), x ∧ (b+ y)]s

= Θ[a ∧ (b+ y), x ∧ (b+ y)]s − nJy ∧ (b+ y), x ∧ (b+ y)Ks
= Θ[a ∧ (b+ y), x ∧ (b+ y)]s − nJy ∧ b, x ∧ bKs − nJy ∧ b, x ∧ yKs,

where we are also using Lemma 28.8 (Θ-bilinearity I). Plugging this into (29.3) and canceling
terms gives

Θ[a∧ (b+ y), x∧ (b+ y)]s−Θ[a∧ b, x∧ b]s− Ja∧ b, x∧ yKs− Ja∧ y, x∧ yKs−nJy ∧ b, x∧ bKs,

which equals Λ[a ∧ y, x ∧ b]s + nJb ∧ y, x ∧ bKs. □

Again, Lemma 29.12 allows some standard generators of Ksg to be written as the sum of
two Λ-elements:

Lemma 29.13 (Λ-expansion III). Let a∧ b be a symplectic pair in HZ and let y, w ∈ ⟨a, b⟩⊥
satisfy ω(y, w) = 0. Then for ϵ ∈ {±1} we have

J(a+ ϵb) ∧ y, (a+ ϵb) ∧ wKs = Λ[a ∧ y, (a+ ϵb) ∧ w]s + ϵΛ[b ∧ y, (a+ ϵb) ∧ w]s.

Proof. Lemma 29.10 implies that

Λ[(−ϵb) ∧ y, w ∧ (a+ ϵb)]s + J(a+ ϵb) ∧ y, w ∧ (a+ ϵb)Ks

equals

Λ[(−ϵb+ (a+ ϵb)) ∧ y, w ∧ (a+ ϵb)]s = Λ[a ∧ y, w ∧ (a+ ϵb)]s.

Rearranging this, we see that

J(a+ ϵb) ∧ y, (a+ ϵb) ∧ wKs = Λ[a ∧ y, (a+ ϵb) ∧ w]s + ϵΛ[b ∧ y, (a+ ϵb) ∧ w]s □.

30. Symmetric kernel, symmetric version IV: S4 and the Ω-elements

We continue using all the notation from §27 – §29. This section constructs the set S4 that
lifts T4. It consists of what are called Ω-elements of Ksg, and the first part of this section
constructs these in more generality than is needed for S4 alone.

30.1. Definition. Let a ∧ b and a′ ∧ b′ be symplectic pairs in ∧2HZ such that ⟨a, b⟩ and
⟨a′, b′⟩ are orthogonal. The Ω-element Ω[a ∧ a′, b′ ∧ b]s is an element of Ksg that is taken by
Φ to

(a ∧ a′)·(b′ ∧ b) ∈ Sym2((∧2H)/Q).

To find it, note that (a ∧ (b+ a′)) · ((a+ b′) ∧ (b+ a′)) equals(
a ∧ (b+ a′)

)
·
(
a ∧ (b+ a′)

)
+ (a ∧ b)·(b′ ∧ b)

+ (a ∧ b)·(b′ ∧ a′) + (a ∧ a′)·(b′ ∧ b) + (a ∧ a′)·(b′ ∧ a′).
There are similar formulas involving(

a′ ∧ (a+ b′)
)
·
(
(b+ a′) ∧ (a+ b′)

)
, and(

(a+ b′) ∧ b
)
·
(
(a+ b′) ∧ (b+ a′)

)
, and(

(b+ a′) ∧ b′
)
·
(
(b+ a′) ∧ (a+ b′)

)
.

This suggests four possible elements of Ksg projecting to (a ∧ a′)·(b′ ∧ b):
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Definition 30.1. For symplectic pairs a∧b and a′∧b′ inHZ with ⟨a, b⟩ and ⟨a′, b′⟩ orthogonal,
define

Ω1[a ∧ a′, b′ ∧ b]s =Θ[a ∧ (b+ a′), (a+ b′) ∧ (b+ a′)]s − Ja ∧ (b+ a′), a ∧ (b+ a′)Ks
−Θ[a ∧ b, b′ ∧ b]s − Ja ∧ b, b′ ∧ a′Ks −Θ[a ∧ a′, b′ ∧ a′]s,

Ω2[a ∧ a′, b′ ∧ b]s =Θ[a′ ∧ (a+ b′), (b+ a′) ∧ (a+ b′)]s − Ja′ ∧ (a+ b′), a′ ∧ (a+ b′)Ks
−Θ[a′ ∧ b′, b ∧ b′]s − Ja′ ∧ b′, b ∧ aKs −Θ[a′ ∧ a, b ∧ a]s,

Ω3[a ∧ a′, b′ ∧ b]s =Θ[(a+ b′) ∧ b, (a+ b′) ∧ (b+ a′)]s − J(a+ b′) ∧ b, (a+ b′) ∧ bKs
−Θ[a ∧ b, a ∧ a′]s − Ja ∧ b, b′ ∧ a′Ks −Θ[b′ ∧ b, b′ ∧ a′]s,

Ω4[a ∧ a′, b′ ∧ b]s =Θ[(b+ a′) ∧ b′, (b+ a′) ∧ (a+ b′)]s − J(b+ a′) ∧ b′, (b+ a′) ∧ b′Ks
−Θ[a′ ∧ b′, a′ ∧ a]s − Ja′ ∧ b′, b ∧ aKs −Θ[b ∧ b′, b ∧ a]s. □

See Remark 30.3 below for a caveat about this notation. By construction, we have

Φ(Ωi[a ∧ a′, b′ ∧ b]s) = (a ∧ a′)·(b′ ∧ b) for 1 ≤ i ≤ 4.

Since we are trying to prove that Φ is an isomorphism, we must prove that these are actually
the same element:

Lemma 30.2. Let a ∧ b and a′ ∧ b′ be symplectic pairs in HZ such that ⟨a, b⟩ and ⟨a′, b′⟩
are orthogonal. Then the Ωi[a ∧ a′, b′ ∧ b]s for 1 ≤ i ≤ 4 are all equal.

Proof. Whether or not they are equal is invariant under the action of Sp2g(Z). Recall that
we have our fixed symplectic basis B = {a1, b1, . . . , ag, bg} for HZ. Applying an appropriate
element of Sp2g(Z), we can assume that

a1 = a, b1 = b, a2 = a′, b2 = b′.

Since Φ takes the Ωi[a1∧a2, b2∧b1]s to the same thing and the restriction of Φ to ⟨S1, S2, S3⟩
is injective (Lemma 29.9), it is enough to prove that the Ωi[a1∧a2, b2∧ b1]s are equal modulo
⟨S1, S2, S3⟩. Let ≡ denote equality modulo ⟨S1, S2, S3⟩. We have

Ω1[a1 ∧ a2, b2 ∧ b1]s =Θ[a1 ∧ (b1 + a2), (a1 + b2) ∧ (b1 + a2)]s − Ja1 ∧ (b1 + a2), a1 ∧ (b1 + a2)Ks
−Θ[a1 ∧ b1, b2 ∧ b1]s − Ja1 ∧ b1, b2 ∧ a2Ks −Θ[a1 ∧ a2, b2 ∧ a2]s

≡Θ[a1 ∧ (b1 + a2), (a1 + b2) ∧ (b1 + a2)]s

− (Ja1 ∧ b1, a1 ∧ b1Ks + 2Θ[a1 ∧ b1, a1 ∧ a2]s + Ja1 ∧ a2, a1 ∧ a2Ks)
≡Θ[a1 ∧ (b1 + a2), (a1 + b2) ∧ (b1 + a2)]s.

Similarly,

Ω2[a1 ∧ a2, b2 ∧ b1]s ≡ Θ[a2 ∧ (a1 + b2), (b1 + a2) ∧ (a1 + b2)]s,

Ω3[a1 ∧ a2, b2 ∧ b1]s ≡ Θ[(a1 + b2) ∧ b1, (a1 + b2) ∧ (b1 + a2)]s,

Ω4[a1 ∧ a2, b2 ∧ b1]s ≡ Θ[(b1 + a2) ∧ b2, (b1 + a2) ∧ (a1 + b2)]s.

It is therefore enough to prove the following two claims:

Claim 1. We have Θ[a1∧(b1+a2), (a1+b2)∧(b1+a2)]s ≡ Θ[a2∧(a1+b2), (b1+a2)∧(a1+b2)]s
and Θ[(a1 + b2) ∧ b1, (a1 + b2) ∧ (b1 + a2)]s ≡ Θ[(b1 + a2) ∧ b2, (b1 + a2) ∧ (a1 + b2)]s.

Both equalities are proved the same way, so we will give details for the first. Consider the
symplectic basis {a1, b1+a2, a2, a1+ b2, a3, b3, . . . , ag, bg} for HZ. Lemma 28.7 (Θ-symplectic
basis) implies that

0 =Θ[a1 ∧ (b1 + a2), (a1 + b2) ∧ (b1 + a2)]s +Θ[a2 ∧ (a1 + b2), (a1 + b2) ∧ (b1 + a2)]s

+
∑g

i=3
Θ[ai ∧ bi, (a1 + b2) ∧ (b1 + a2)]s.
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We conclude that

Θ[a1 ∧ (b1 + a2), (a1 + b2) ∧ (b1 + a2)]s ≡ −Θ[a2 ∧ (a1 + b2), (a1 + b2) ∧ (b1 + a2)]s

= Θ[a2 ∧ (a1 + b2), (b1 + a2) ∧ (a1 + b2)]s.

Claim 2. We have Θ[a1∧(b1+a2), (a1+b2)∧(b1+a2)]s ≡ Θ[(b1+a2)∧b2, (b1+a2)∧(a1+b2)]s.

Using Lemma 28.4 (Θ-linearity), we have

−Θ[a1 ∧ (b1 + a2), (a1 + b2) ∧ (b1 + a2)]s = Θ[a1 ∧ (b1 + a2), (−a1 − b2) ∧ (b1 + a2)]s.

By definition (Definition 28.1), this equals

1

2
(J(−b2) ∧ (b1 + a2), (−b2) ∧ (b1 + a2)Ks − Ja1 ∧ (b1 + a2), a1 ∧ (b1 + a2)Ks

− J(a1 + b2) ∧ (b1 + a2), (a1 + b2) ∧ (b1 + a2)Ks).

The term J(−b2) ∧ (b1 + a2), (−b2) ∧ (b1 + a2)Ks equals

Jb2 ∧ b1, b2 ∧ b1Ks + 2Θ[b2 ∧ b1, b2 ∧ a2]s + Jb2 ∧ a2, b2 ∧ a2Ks ≡ 0

and the term Ja1 ∧ (b1 + a2), a1 ∧ (b1 + a2)Ks equals

Ja1 ∧ b1, a1 ∧ b1Ks + 2Θ[a1 ∧ b1, a1 ∧ a2]s + Ja1 ∧ a2, a1 ∧ a2Ks ≡ 0.

We deduce that

Θ[a1 ∧ (b1 + a2), (a1 + b2) ∧ (b1 + a2)]s ≡
1

2
J(a1 + b2) ∧ (b1 + a2), (a1 + b2) ∧ (b1 + a2)Ks.

Lemma 28.9 (Θ-expansion II) implies that

J(a1 + b2) ∧ (b1 + a2), (a1 + b2) ∧ (b1 + a2)Ks =Θ[a1 ∧ (b1 + a2), (a1 + b2) ∧ (b1 + a2)]s

+Θ[b2 ∧ (b1 + a2), (a1 + b2) ∧ (b1 + a2)]s.

Combining this with our previous formula, we conclude that

Θ[a1 ∧ (b1 + a2), (a1 + b2) ∧ (b1 + a2)]s ≡Θ[b2 ∧ (b1 + a2), (a1 + b2) ∧ (b1 + a2)]s

=Θ[(b1 + a2) ∧ b2, (b1 + a2) ∧ (a1 + b2)]s. □

In light of this lemma, we will denote the common value of Ωi[a∧a′, b′∧b]s by Ω[a∧a′, b′∧b]s.

Remark 30.3. Just like for the Θ- and Λ-elements (cf. Remarks 28.2 and 29.3), the elements
Ωi[a ∧ a′, b′ ∧ b]s and Ω[a ∧ a′, b′ ∧ b]s depend on the ordered tuple (a, a′, b′, b), not on a ∧ a′
and b ∧ b′. □

30.2. Relation to Λ-elements. The following lemma shows that the Ω-elements can almost
(but not quite) be written in terms of the Λ-elements:

Lemma 30.4 (Λ to Ω). Let a ∧ b and a′ ∧ b′ and a′′ ∧ b′′ be symplectic pairs in HZ such
that ⟨a, b⟩ and ⟨a′, b′⟩ and ⟨a′′, b′′⟩ are all orthogonal. Then

Λ[a ∧ (a′ + a′′), (b′ − b′′) ∧ b]s − Λ[a ∧ a′′, b′ ∧ b]s + Λ[a ∧ a′, b′′ ∧ b]s
equals Ω[a ∧ a′, b′ ∧ b]s − Ω[a ∧ a′′, b′′ ∧ b]s.

Proof. Whether or not they are equal is invariant under the action of Sp2g(Z). Recall that
we have our fixed symplectic basis B = {a1, b1, . . . , ag, bg} for HZ. Applying an appropriate
element of Sp2g(Z), we can assume that

a1 = a, b1 = b, a2 = a′, b2 = b′, a3 = a′′, b3 = b′′.
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Since Φ takes our two elements to the same thing and the restriction of Φ to ⟨S1, S2, S3⟩ is
injective (Lemma 29.9), it is enough to prove that they are equal modulo ⟨S1, S2, S3⟩. Let
≡ denote equality modulo ⟨S1, S2, S3⟩. The element

Λ[a1 ∧ (a2 + a3), (b2 − b3) ∧ b1]s − Λ[a1 ∧ a2, b2 ∧ b1]s + Λ[a1 ∧ a3, b3 ∧ b1]s
is equivalent to Λ[a1 ∧ (a2 + a3), (b2 − b3) ∧ b1]s, and we must prove that this is equivalent
to Ω[a1 ∧ a2, b2 ∧ b1]s − Ω[a1 ∧ a3, b3 ∧ b1]s. Below we will prove the following three facts:

Λ[a1 ∧ (a2 + a3), (b2 − b3) ∧ b1]s ≡ Θ[a1 ∧ (b1 + a2 + a3), (b2 − b3) ∧ (b1 + a2 + a3)]s,

Ω[a1 ∧ a2, b2 ∧ b1]s ≡ Θ[a1 ∧ (b1 + a2 + a3), (a1 + b2) ∧ (b1 + a2 + a3)]s,

Ω[a1 ∧ a3, b3 ∧ b1]s ≡ Θ[a1 ∧ (b1 + a2 + a3), (a1 + b3) ∧ (b1 + a2 + a3)]s.

These will imply the lemma; indeed, the linearity of Θ-elements will imply that

Ω[a1 ∧ a2, b2 ∧ b1]s − Ω[a1 ∧ a3, b3 ∧ b1]s
≡Θ[a1 ∧ (b1 + a2 + a3), (a1 + b2) ∧ (b1 + a2 + a3)]s

−Θ[a1 ∧ (b1 + a2 + a3), (a1 + b3) ∧ (b1 + a2 + a3)]s

=Θ[a1 ∧ (b1 + a2 + a3), (b2 − b3) ∧ (b1 + a2 + a3)]s

≡Λ[a1 ∧ (a2 + a3), (b2 − b3) ∧ b1]s.

It remains to prove the above three facts:

Claim 1. We have

Λ[a1 ∧ (a2 + a3), (b2 − b3) ∧ b1]s ≡ Θ[a1 ∧ (b1 + a2 + a3), (b2 − b3) ∧ (b1 + a2 + a3)]s.

By definition, Λ[a1 ∧ (a2 + a3), (b2 − b3) ∧ b1]s = Λ1[a1 ∧ (a2 + a3), (b2 − b3) ∧ b1]s equals

Θ[a1 ∧ (b1 + a2 + a3), (b2 − b3) ∧ (b1 + a2 + a3)]s

−Θ[a1 ∧ b1, (b2 − b3) ∧ b1]s − Ja1 ∧ (b1 + a2 + a3), (b2 − b3) ∧ (a2 + a3)Ks
≡Θ[a1 ∧ (b1 + a2 + a3), (b2 − b3) ∧ (b1 + a2 + a3)]s

− Ja1 ∧ b1, (b2 − b3) ∧ (a2 + a3)Ks − Ja1 ∧ (a2 + a3), (b2 − b3) ∧ (a2 + a3)Ks
≡Θ[a1 ∧ (b1 + a2 + a3), (b2 − b3) ∧ (b1 + a2 + a3)]s

− J(a2 + a3) ∧ (b2 − b3), (a2 + a3) ∧ a1Ks
To prove the claim, we must show that J(a2 + a3) ∧ (b2 − b3), (a2 + a3) ∧ a1Ks is equivalent
to 0. By Lemma 28.9 (Θ-expansion II), this element equals

Θ[(a2 + a3) ∧ b2, (a2 + a3) ∧ a1]s −Θ[(a2 + a3) ∧ b3, (a2 + a3) ∧ a1]s.

By Lemma 29.4 (Λ-expansion I), the element Θ[(a2 + a3) ∧ b2, (a2 + a3) ∧ a1]s equals

Λ[a2 ∧ a1, a3 ∧ b2]s +Θ[a2 ∧ b2, a2 ∧ a1]s + J(a2 + a3) ∧ b2, a3 ∧ a1Ks ≡ 0.

Similarly, Θ[(a2 + a3) ∧ b3, (a2 + a3) ∧ a1]s ≡ 0. The claim follows.

Claim 2. We have

Ω[a1 ∧ a2, b2 ∧ b1]s ≡ Θ[a1 ∧ (b1 + a2 + a3), (a1 + b2) ∧ (b1 + a2 + a3)]s,

Ω[a1 ∧ a3, b3 ∧ b1]s ≡ Θ[a1 ∧ (b1 + a2 + a3), (a1 + b3) ∧ (b1 + a2 + a3)]s.

Both equalities are proved in the same way, so we will give the details for the first. Consider
the symplectic basis

{a1, b1 + a2 + a3, a2, a1 + b2, a3, a1 + b3, a4, b4, . . . , ag, bg}
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for HZ. Applying Lemma 28.7 (Θ-symplectic basis), we deduce that

Θ[a1 ∧ (b1 + a2 + a3), (a1 + b2) ∧ (b1 + a2 + a3)]s −Θ[a2 ∧ (a1 + b2), (b1 + a2 + a3) ∧ (a1 + b2)]s

+ Ja3 ∧ (a1 + b3), (a1 + b2) ∧ (b1 + a2 + a3)Ks +
∑g

i=4
Jai ∧ bi, (a1 + b2) ∧ (b1 + a2 + a3)Ks

equals 0. Throwing away terms that are equivalent modulo ⟨S1, S2, S3⟩ to 0, we deduce that
Θ[a1 ∧ (b1 + a2 + a3), (a1 + b2) ∧ (b1 + a2 + a3)]s is equivalent to

Θ[a2 ∧ (a1 + b2), (b1 + a2 + a3) ∧ (a1 + b2)]s − Ja3 ∧ (a1 + b3), (a1 + b2) ∧ (b1 + a2 + a3)Ks
=Θ[a2 ∧ (a1 + b2), (b1 + a2) ∧ (a1 + b2)]s +Θ[a2 ∧ (a1 + b2), a3 ∧ (a1 + b2)]s

− Ja3 ∧ (a1 + b3), (a1 + b2) ∧ (b1 + a2 + a3)Ks.

Just like at the beginning of the proof of Lemma 30.2, we have

Θ[a2 ∧ (a1 + b2), (b1 + a2) ∧ (a1 + b2)]s ≡ Ω2[a1 ∧ a2, b2 ∧ b1]s = Ω[a1 ∧ a2, b2 ∧ b1]s.
To prove the claim, we must therefore prove that the other two terms in the above sum are
equivalent to 0.

For Θ[a2 ∧ (a1 + b2), a3 ∧ (a1 + b2)]s, it follows from Lemma 29.4 (Λ-expansion I) that it
equals

Λ[a2 ∧ a1, a3 ∧ b2]s +Θ[a2 ∧ b2, a3 ∧ b2]s + Ja2 ∧ (b2 + a1), a3 ∧ a1Ks ≡ 0.

For Ja3 ∧ (a1 + b3), (a1 + b2) ∧ (b1 + a2 + a3)Ks, it equals

Ja3 ∧ (a1 + b3), (a1 + b2) ∧ a2Ks + Ja3 ∧ (a1 + b3), (a1 + b2) ∧ (b1 + a3)Ks
≡Ja3 ∧ (a1 + b3), a1 ∧ (b1 + a3)Ks + Ja3 ∧ (a1 + b3), b2 ∧ (b1 + a3)Ks.

We must show that both of these terms vanish. For Ja3 ∧ (a1 + b3), a1 ∧ (b1 + a3)Ks, in
(∧2H)/Q we have

a3 ∧ (a1 + b3) + a1 ∧ (b1 + a3) +
∑

2≤i≤g
i ̸=3

ai ∧ bi = 0.

This implies that Ja3 ∧ (a1 + b3), a1 ∧ (b1 + a3)Ks equals

− Ja1 ∧ (b1 + a3), a1 ∧ (b1 + a3)Ks −
∑

2≤i≤g
i ̸=3

Jai ∧ bi, a1 ∧ (b1 + a3)Ks

≡− Ja1 ∧ b1, a1 ∧ b1Ks − 2Θ[a1 ∧ b1, a1 ∧ a3]s − Ja1 ∧ a3, a1 ∧ a3Ks ≡ 0.

For Ja3 ∧ (a1 + b3), b2 ∧ (b1 + a3)Ks, we use the same symplectic basis

{a3, a1 + b3, a1, b1 + a3, a2, b2, a4, b4, . . . , ag, bg}
for HZ, but this time we use Lemma 28.7 (Θ-symplectic basis) to see that

0 =Ja3 ∧ (a1 + b3), b2 ∧ (b1 + a3)Ks +Θ[a1 ∧ (b1 + a3), b2 ∧ (b1 + a3)]s

−Θ[a2 ∧ b2, (b1 + a3) ∧ b2]s +
∑

2≤i≤g
i ̸=3

Jai ∧ bi, b2 ∧ (b1 + a3)Ks.

Throwing away terms that are equivalent to 0, we deduce that

Ja3 ∧ (a1 + b3), b2 ∧ (b1 + a3)Ks ≡ −Θ[a1 ∧ (b1 + a3), b2 ∧ (b1 + a3)]s.

By Lemma 29.4 (Λ-expansion I), this equals −1 times

Λ[a1 ∧ a3, b2 ∧ b1]s +Θ[a1 ∧ b1, b2 ∧ b1]s + Ja1 ∧ (b1 + a3), b2 ∧ a3Ks ≡ 0,

as desired. □
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30.3. Ω-symmetry and signs. It is inconvenient to require the entries of Ω[a ∧ a′, b′ ∧ b]s
to appear in a definite order. We therefore would like to define that each of the following
terms equals Ω[a ∧ a′, b′ ∧ b]s:

Ω[a ∧ a′, b′ ∧ b]s, −Ω[a′ ∧ a, b′ ∧ b]s, −Ω[a ∧ a′, b ∧ b′]s, Ω[a′ ∧ a, b ∧ b′]s,
Ω[b′ ∧ b, a ∧ a′]s, −Ω[b′ ∧ b, a′ ∧ a]s, −Ω[b ∧ b′, a ∧ a′]s, Ω[b ∧ b′, a′ ∧ a]s.

Similarly, we would like to by able to multiply terms by −1 in the usual way and define that
each of the following terms equals Ω[a ∧ a′, b′ ∧ b]s:

Ω[a ∧ a′, b′ ∧ b]s, −Ω[(−a) ∧ a′, b′ ∧ b]s,
−Ω[a ∧ (−a′), b′ ∧ b]s, Ω[(−a) ∧ (−a′), b′ ∧ b]s,
−Ω[a ∧ a′, (−b′) ∧ b]s, Ω[(−a) ∧ a′, (−b′) ∧ b]s,
Ω[a ∧ (−a′), (−b′) ∧ b]s, −Ω[(−a) ∧ (−a′), (−b′) ∧ b]s,

−Ω[a ∧ a′, b′ ∧ (−b)]s, Ω[(−a) ∧ a′, b′ ∧ (−b)]s,
Ω[a ∧ (−a′), b′ ∧ (−b)]s, −Ω[(−a) ∧ (−a′), b′ ∧ (−b)]s,
Ω[a ∧ a′, (−b′) ∧ (−b)]s, −Ω[(−a) ∧ a′, (−b′) ∧ (−b)]s,

−Ω[a ∧ (−a′), (−b′) ∧ (−b)]s, Ω[(−a) ∧ (−a′), (−b′) ∧ (−b)]s.

The problem is that these definitions introduce ambiguity into our notation since some
of these are other Ω-elements. For instance, Ω[a ∧ (−a′), (−b′) ∧ b]s is another Ω-element
associated to the symplectic pairs a ∧ b and (−a′) ∧ (−b′). The following lemma says that
all the possible other Ω-elements obtained in this way are actually the same:

Lemma 30.5. Let a ∧ b and a′ ∧ b′ be symplectic pairs in HZ such that ⟨a, b⟩ and ⟨a′, b′⟩
are orthogonal. Then the following are all equal to Ω[a ∧ a′, b′ ∧ b]s:

Ω[(−a) ∧ a′, b′ ∧ (−b)]s Ω[a′ ∧ a, b ∧ b′]s Ω[(−b) ∧ (−b′), a′ ∧ a]s
Ω[a ∧ (−a′), (−b′) ∧ b]s Ω[(−a′) ∧ a, b ∧ (−b′)]s Ω[b ∧ (−b′), a′ ∧ (−a)]s
Ω[(−a) ∧ (−a′), (−b′) ∧ (−b)]s Ω[a′ ∧ (−a), (−b) ∧ b′]s Ω[(−b) ∧ b′, (−a′) ∧ a]s
Ω[(−b′) ∧ (−b), a ∧ a′]s Ω[(−a′) ∧ (−a), (−b) ∧ (−b′)]s Ω[b ∧ b′, (−a′) ∧ (−a)]s
Ω[b′ ∧ (−b), a ∧ (−a′)]s Ω[(−b′) ∧ b, (−a) ∧ a′]s Ω[b′ ∧ b, (−a) ∧ (−a′)]s

Proof. Below we will prove the following three special cases:

(i) Ω[a ∧ a′, b′ ∧ b]s = Ω[a′ ∧ a, b ∧ b′]s
(ii) Ω[a ∧ a′, b′ ∧ b]s = Ω[a ∧ (−a′), (−b′) ∧ b]s

(iiii) Ω[a ∧ a′, b′ ∧ b]s = Ω[(−b′) ∧ (−b), a ∧ a′]s
As is easily verified, all the other equalities we are trying to prove can be obtained by
composing these three. For instance, to see that Ω[a ∧ a′, b′ ∧ b]s = Ω[(−a) ∧ a′, b′ ∧ (−b)]s
we compose (i) and (ii) and (i):

Ω[a ∧ a′, b′ ∧ b]s = Ω[a′ ∧ a, b ∧ b′]s = Ω[a′ ∧ (−a), (−b) ∧ b′]s = Ω[(−a) ∧ a′, b′ ∧ (−b)]s.

We separate the proofs of (i) and (ii) and (iii) into the following three claims:

Claim 1. Ω[a ∧ a′, b′ ∧ b]s = Ω[a′ ∧ a, b ∧ b′]s.

We can calculate these using any of the Ωi-formulas from Definition 30.1, so the claim follows
from the fact that the following are equal: Ω1[a ∧ a′, b′ ∧ b]s, which is

Θ[a ∧ (b+ a′), (a+ b′) ∧ (b+ a′)]s − Ja ∧ (b+ a′), a ∧ (b+ a′)Ks
−Θ[a ∧ b, b′ ∧ b]s − Ja ∧ b, b′ ∧ a′Ks −Θ[a ∧ a′, b′ ∧ a′]s.
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and Ω2[a
′ ∧ a, b ∧ b′]s, which is

Θ[a ∧ (a′ + b), (b′ + a) ∧ (a′ + b)]s − Ja ∧ (a′ + b), a ∧ (a′ + b)Ks
−Θ[a ∧ b, b′ ∧ b]s − Ja ∧ b, b′ ∧ a′Ks −Θ[a ∧ a′, b′ ∧ a′]s

Claim 2. Ω[a ∧ a′, b′ ∧ b]s = Ω[a ∧ (−a′), (−b′) ∧ b]s.

Since g ≥ 4 (Assumption 25.1), we can find a symplectic pair a′′ ∧ b′′ such that ⟨a′′, b′′⟩ is
orthogonal to both ⟨a, b⟩ and ⟨a′, b′⟩. Lemma 30.4 (Λ to Ω) says that

(30.1) Λ[a ∧ (a′ + a′′), (b′ − b′′) ∧ b]s − Λ[a ∧ a′′, b′ ∧ b]s + Λ[a ∧ a′, b′′ ∧ b]s

equals Ω[a ∧ a′, b′ ∧ b]s − Ω[a ∧ a′′, b′′ ∧ b]s and that

(30.2) Λ[a ∧ (−a′ + a′′), (−b′ − b′′) ∧ b]s − Λ[a ∧ a′′, (−b′) ∧ b]s + Λ[a ∧ (−a′), b′′ ∧ b]s

equals Ω[a ∧ (−a′), (−b′) ∧ b]s − Ω[a ∧ a′′, b′′ ∧ b]s. To prove the claim, it is thus enough to
prove that (30.1) equals (30.2). By Lemma 29.6 (strong Λ-linearity), this is equivalent to
the following identity in (⟨a, b⟩⊥)⊗2:

(a′ + a′′)⊗ (b′ − b′′)− a′′ ⊗ b′ + a′ ⊗ b′′ = (−a′ + a′′)⊗ (−b′ − b′′)− a′′ ⊗ (−b′) + (−a′)⊗ b′′.

In fact, both sides of this equal a′ ⊗ b′ − a′′ ⊗ b′′.

Claim 3. Ω[a ∧ a′, b′ ∧ b]s = Ω[(−b′) ∧ (−b), a ∧ a′]s.

By Claim 2, it is enough to prove instead that Ω[a∧(−a′), (−b′)∧b]s = Ω[(−b′)∧(−b), a∧a′]s.
We can calculate these using any of the Ωi-formulas from Definition 30.1, so the claim follows
from the fact that the following are equal: Ω1[a ∧ (−a′), (−b′) ∧ b]s, which is

Θ[a ∧ (b− a′), (a− b′) ∧ (b− a′)]s − Ja ∧ (b− a′), a ∧ (b− a′)Ks
−Θ[a ∧ b, (−b′) ∧ b]s − Ja ∧ b, (−b′) ∧ (−a′)Ks −Θ[a ∧ (−a′), (−b′) ∧ (−a′)]s,

and Ω4[(−b′) ∧ (−b), a ∧ a′]s, which is

Θ[(a′ − b) ∧ a, (a′ − b) ∧ (−b′ + a)]s − J(a′ − b) ∧ a, (a′ − b) ∧ aKs
−Θ[(−b) ∧ a, (−b) ∧ (−b′)]s − J(−b) ∧ a, a′ ∧ (−b′)Ks −Θ[a′ ∧ a, a′ ∧ (−b′)]s. □

In light of this lemma, we can permute terms and multiply them by −1 as described before
the lemma. For instance, if a ∧ b and a′ ∧ b′ are symplectic pairs such that ⟨a, b⟩ and ⟨a′, b′⟩
are orthogonal, then we can write things in the natural order and discuss Ω[a ∧ a′, b ∧ b′]s,
which equals −Ω[a ∧ a′, b′ ∧ b]s. We only used the unnatural order to avoid signs in our
formulas. We can also now talk about Ω[a ∧ b′, b ∧ a′]s, which equals Ω[a ∧ (−b′), a′ ∧ b]s or
Ω[a ∧ b′, (−a′) ∧ b]s.

30.4. The set S4. We now return to constructing S4. Recall that

T4 = {(ai ∧ aj)·(bi ∧ bj), (ai ∧ bj)·(bi ∧ aj) | 1 ≤ i < j ≤ g} .

Define

S4 = {Ω[ai ∧ aj , bi ∧ bj ]s, Ω[ai ∧ bj , bi ∧ aj ]s | 1 ≤ i < j ≤ g} .
Like we did here, we will write elements of ⟨S4⟩ in green. By construction, the linearization
map Φ takes S4 bijectively to T4. Even better:

Lemma 30.6. The linearization map Φ takes ⟨S1, . . . , S4⟩ isomorphically to Sym2((∧2H)/Q).
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Proof. Recall that in Lemma 29.9 we proved that Φ takes ⟨S1, S2, S3⟩ isomorphically to
⟨T1, T2, T3⟩. Part of the proof of that lemma was that Φ takes S1 ∪ S2 ∪ S3 bijectively to
T1 ∪T2 ∪T3. It follows that Φ takes S1 ∪ · · · ∪S4 bijectively to T1 ∪ · · · ∪T4. As we discussed
in §27, the set T1 ∪ · · · ∪ T4 generates Sym2((∧2H)/Q). In the proof of Lemma 29.9 we
proved that all relations between elements of T1 ∪ · · · ∪ T4 are actually relations between
elements of T1 ∪T2 and lift to relations between elements of S1 ∪S2. The lemma follows. □

30.5. Additional relations. For later use, we record the following. Its statement uses our
fixed symplectic basis B = {a1, b1, . . . , ag, bg}.

Lemma 30.7. Let ≡ denote equality modulo ⟨S1, S2, S3⟩. For distinct 1 ≤ i, j ≤ g, we have

J(ai + bj) ∧ (bi + aj), (ai + bj) ∧ (bi + aj)Ks ≡ J(ai − bj) ∧ (bi − aj), (ai − bj) ∧ (bi − aj)Ks
≡ −2Ω[ai ∧ aj , bi ∧ bj ]s

and

J(ai + aj) ∧ (bi − bj), (ai + aj) ∧ (bi − bj)Ks ≡ J(ai − aj) ∧ (bi + bj), (ai − aj) ∧ (bi + bj)Ks
≡ 2Ω[ai ∧ bj , bi ∧ aj ]s.

Proof. Both equalities are proved the same way, so we will give the details for the first.
Lemma 28.9 (Θ-expansion II) implies that J(ai + bj) ∧ (bi + aj), (ai + bj) ∧ (bi + aj)Ks equals

(30.3) Θ[ai ∧ (bi + aj), (ai + bj) ∧ (bi + aj)]s +Θ[bj ∧ (bi + aj), (ai + bj) ∧ (bi + aj)]s

and J(ai − bj) ∧ (bi − aj), (ai − bj) ∧ (bi − aj)Ks equals

(30.4) Θ[ai ∧ (bi − aj), (ai − bj) ∧ (bi − aj)]s + J(−bj) ∧ (bi − aj), (ai − bj) ∧ (bi − aj)Ks.

It is enough to prove that each term in (30.3) and (30.4) is equivalent to−Ω[ai ∧ aj , bi ∧ bj ]s =
Ω[ai ∧ aj , bj ∧ bi]s. For (30.3), we proved in the beginning of the proof of Lemma 30.2 that40

Ω1[ai ∧ aj , bj ∧ bi]s ≡ Θ[ai ∧ (bi + aj), (ai + bj) ∧ (bi + aj)]s,

Ω4[ai ∧ aj , bj ∧ bi]s ≡ Θ[(bi + aj) ∧ bj , (bi + aj) ∧ (ai + bj)]s

= Θ[bj ∧ (bi + aj), (ai + bj) ∧ (bi + aj)]s.

For (30.4), that same argument shows that

Ω1[ai ∧ (−aj), (−bj) ∧ bi]s ≡ Θ[ai ∧ (bi − aj), (ai − bj) ∧ (bi − aj)]s,

Ω4[ai ∧ (−aj), (−bj) ∧ bi]s ≡ Θ[(bi − aj) ∧ (−bj), (bi − aj) ∧ (ai − bj)]s

= Θ[(−bj) ∧ (bi − aj), (ai − bj) ∧ (bi − aj)]s.

Lemma 30.5 implies that Ω[ai∧ (−aj), (−bj)∧ bi]s = Ω[ai∧aj , bj ∧ bi]s, so this is enough. □

31. Symmetric kernel, symmetric version V: skeleton of rest of proof

We continue using all the notation from §27 – §30. Recall that our goal in this part of the
paper is to prove:

Theorem G. For41 g ≥ 4, the linearization map Φ: Ksg → Sym2((∧2H)/Q) is an isomor-
phism.

We prove this using the three step proof technique outlined in §3.

40That lemma only dealt with i = 1 and j = 2, but the proof works in general.
41Note that this is our standing assumption in this part; see Assumption 25.1.
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31.1. Step 1. In the previous four sections, we took the first step towards proving Theorem
G. We accomplished the following, which is a restatement with more details of Lemma 30.6.
Recall that B = {a1, b1, . . . , ag, bg} is our fixed symplectic basis for HZ, which is endowed
with the total order ≺ in which the indicated list is strictly increasing.

Lemma 31.1 (Step 1). Let S = S1 ∪ · · · ∪ S4, where the Si are:

S1 = {Jx ∧ y, z ∧ wKs | x, y, z, w ∈ B, x ≺ y, z ≺ w, c(x ∧ y, z ∧ w) = 0} ,
S2 = {Θ[ai ∧ bi, x ∧ bi]s, Θ[ai ∧ bi, ai ∧ y]s | 1 ≤ i ≤ g, x, y ∈ B \ {ai, bi}} ,
S3 = {Λ[ai ∧ y, x ∧ bi]s | 1 ≤ i ≤ g, x, y ∈ B \ {ai, bi}, ω(x, y) = 0} ,
S4 = {Ω[ai ∧ aj , bi ∧ bj ]s, Ω[ai ∧ bj , bi ∧ aj ]s | 1 ≤ i < j ≤ g} .

Then the restriction of Φ to ⟨S⟩ is an isomorphism.

31.2. Step 2. The next step is:

Lemma 31.2 (Step 2). The Sp2g(Z)-orbit of the set S from Lemma 31.1 spans Ksg.

Proof. Using our original generating set for Ksg from Definition 1.17 together with Lemma
11.2, we see that Ksg is generated by elements of the form Ja ∧ b, a′ ∧ b′Ks, where a ∧ b and
a′ ∧ b′ are symplectic pairs such that ⟨a, b⟩ and ⟨a′, b′⟩ are orthogonal. The group Sp2g(Z)
acts transitively on such elements. The set S contains many such elements; for instance, it
contains Ja1 ∧ b1, a2 ∧ b2Ks. It follows that Sp2g(Z)-orbit of S spans Ksg. □

31.3. Step 3. The following lemma completes the proof of Theorem G.

Lemma 31.3 (Step 3). Let S ⊂ Ksg be the set from Lemma 31.1. Then the action of Sp2g(Z)
on Ksg takes ⟨S⟩ to itself. By Lemma 31.2 this implies that ⟨S⟩ = Ksg, and thus by Lemma
31.1 that Φ is an isomorphism.

We begin the proof of Lemma 31.3, with the main steps postponed to the next 4 sections.

Beginning of proof of Lemma 31.3. Corollary 7.3 says that Sp2g(Z) is generated as a monoid

by SymSpg ∪{X1, X
−1
1 , Y12}. Let f ∈ SymSpg ∪{X1, X

−1
1 , Y12} and let s ∈ S. It is enough

to prove that f(s) ∈ ⟨S⟩.
The first case is f ∈ SymSpg. Assume first that s ∈ S1. Write s = Jx ∧ y, z ∧ wKs with

x, y, z, w ∈ B satisfying x ≺ y and z ≺ w and c(x∧y, z∧w) = 0. There exist x′, y′, z′, w′ ∈ B
and signs ϵ1, . . . , ϵ4 ∈ {±1} such that

f(x) = ϵ1x
′, f(y) = ϵ2y

′, f(z) = ϵ3z
′, f(w) = ϵ4w

′.

We then have that f(s) equals

J(ϵ1x′) ∧ (ϵ2y
′), (ϵ3z

′) ∧ (ϵ4w
′)Ks = ϵ1 · · · ϵ4Jx′ ∧ y′, z′ ∧ w′Ks ∈ ⟨S1⟩.

We remark that it is possible that either y′ ≺ x′ or w′ ≺ z′, so Jx′ ∧ y′, z′ ∧ w′Ks itself might
not lie in S1; however, either it or (−1) times it lies in S1. The cases where s ∈ S2 or s ∈ S3
or s ∈ S4 are handled the same way, using the sign rules for Θ- and Λ- and Ω-elements
discussed in §28.5 and §29.5 and §30.3.

We now must deal with the cases where f ∈ {X1, X
−1
1 , Y12}. These calculations are

lengthy, so we postpone them. We deal with s ∈ S1 in §32, with s ∈ S2 in §33, with s ∈ S3
in §34, and finally with s ∈ S4 in §35. □

32. Symmetric kernel, symmetric version VI: closure of S1

We continue using all the notation from §27 – §31. In this section, we continue the proof
of Lemma 31.3 by proving that for f ∈ {X1, X

−1
1 , Y12} and s ∈ S1, we have f(s) ∈ ⟨S⟩.
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32.1. X-closure. Recall that X1 ∈ Sp2g(Z) takes a1 to a1+ b1 and fixes all other generators
in B. We start with:

Lemma 32.1. Let

s ∈ S1 = {Jx ∧ y, z ∧ wKs | x, y, z, w ∈ B, x ≺ y, z ≺ w, c(x ∧ y, z ∧ w) = 0} .

Then Xϵ
1(s) ∈ ⟨S⟩ for ϵ ∈ {±1}.

Proof. Write s = Jx ∧ y, z ∧ wKs. There is nothing to prove if a1 /∈ {x, y, z, w}. What is
more, the result is obvious if one of {x, y} and {z, w} contains a1 and the other does not.
For instance, we have (c.f. §27.6)

Xϵ
1(Ja1 ∧ a2, a3 ∧ b3Ks) = J(a1 + ϵb1) ∧ a2, a3 ∧ b3Ks ∈ ⟨S1⟩.

Since x ≺ y and z ≺ w, we have reduced ourselves to s = Ja1 ∧ y, a1 ∧ wKs with y, w ∈ B\{a1}
satisfying c(a1 ∧ y, a1 ∧ w) = 0. The condition c(a1 ∧ y, a1 ∧ w) = 0 implies that one of the
following holds:

• y, w ∈ B \ {a1, b1} and ω(y, w) = 0; or
• y = w = b1.

For instance, if w ∈ B \ {a1, b1} then

c(a1 ∧ b1, a1 ∧ w) = a1·w ̸= 0.

We deal with the above cases separately. Let ≡ denote equality modulo ⟨S⟩, so our goal is
to prove that Xϵ

1(s) ≡ 0.

Case 1. s = Ja1 ∧ b1, a1 ∧ b1Ks.

We have

Xϵ
1(Ja1 ∧ b1, a1 ∧ b1Ks) = J(a1 + ϵb1) ∧ b1, (a1 + ϵb1) ∧ b1Ks = Ja1 ∧ b1, a1 ∧ b1Ks ≡ 0.

Case 2. s = Ja1 ∧ y, a1 ∧ wKs with y, w ∈ B \ {a1, b1} satisfying ω(y, w) = 0.

By Lemma 29.13 (Λ-expansion III), we have that Xϵ
1(Ja1 ∧ y, a1 ∧ wKs) equals

J(a1 + ϵb1) ∧ y, (a1 + ϵb1) ∧ wKs = Λ[a1 ∧ y, (a1 + ϵb1) ∧ w]s + ϵΛ[b1 ∧ y, (a1 + ϵb1) ∧ w]s.

By Lemma 29.12 (Λ-bilinearity II), this equals

Ja1 ∧ y, a1 ∧ wKs + ϵΛ[a1 ∧ y, b1 ∧ w]s + ϵΛ[b1 ∧ y, a1 ∧ w]s + ϵ2Jb1 ∧ y, b1 ∧ wKs ≡ 0. □

32.2. 1-2 swaps. Recall that Y12 ∈ Sp2g(Z) takes a1 to a1 + b2 and a2 to a2 + b1 and fixes
all other generators in B. For this element, the indices 1 and 2 are special. The 1-2 swap is
the element σ ∈ SymSpg such that

σ(a1) = a2, σ(b1) = b2, σ(a2) = a1, σ(b2) = b1

and such that σ fixes all other elements of B. It satisfies the following:

Lemma 32.2. Let σ ∈ SymSpg be the 1-2 swap and let z ∈ Ksg. Then Y12(z) ∈ ⟨S⟩ if and
only if Y12(σ(z)) ∈ ⟨S⟩.

Proof. The element σ commutes with Y12, so

(32.1) Y12(σ(z)) = σ(Y12(z)).

We already proved at the end of §31 that SymSpg takes ⟨S⟩ to itself. This holds in particular
for σ. In light of (32.1), the lemma follows. □
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32.3. Y-closure. We now prove:

Lemma 32.3. Let

s ∈ S1 = {Jx ∧ y, z ∧ wKs | x, y, z, w ∈ B, x ≺ y, z ≺ w, c(x ∧ y, z ∧ w) = 0} .
Then Y12(s) ∈ ⟨S⟩.

Proof. Write s = Jx ∧ y, z ∧ wKs. To avoid having the deal with even more special cases, we
relax the conditions x ≺ y and z ≺ w to x ̸= y and z ̸= w.

There are a large number of cases to consider: each of x and y and z and w can either lie
in {a1, b1, a2, b2}, or they can be some other element of B. The condition c(x ∧ y, z ∧w) = 0
eliminates some of these, but there are still far too many cases. To cut this down to something
reasonable, we use the following three symmetries, which we will call the Y12-symmetries:

• Flipping x ∧ y and z ∧ w does not change s.
• Flipping x and y multiplies s by −1, and thus does not change the truth of the
lemma. Similarly, we can flip z and w.

• Finally, by Lemma 32.2 we can apply a 1-2 swap to s without changing whether or
not it lies in ⟨S⟩.

Using these, we will reduce ourselves to six cases as follows.
If a1, a2 /∈ {x, y, z, w}, then there is nothing to prove. Otherwise, after performing a

sequence of Y12-symmetries we can assume that x is either a1 or a2. Applying a 1-2 swap if
necessary, we can assume that x = a1, so s = Ja1 ∧ y, z ∧ wKs.

If a2 /∈ {y, z, w}, then in most cases we have Y12(Ja1 ∧ y, z ∧ wKs) ∈ ⟨S1⟩. For instance,
we have (c.f. §27.6)

Y12(Ja1 ∧ a3, a1 ∧ b2Ks) = J(a1 + b2) ∧ a3, (a1 + b2) ∧ b2Ks ∈ ⟨S1⟩.
Up to flipping z and w, the only case where a2 /∈ {y, z, w} and Y12(Ja1 ∧ y, z ∧ wKs) /∈ ⟨S1⟩
is Ja1 ∧ b1, a1 ∧ b1Ks, which is Case 1 below.

It remains to enumerate the cases where a2 ∈ {y, z, w}. We start by enumerating the cases
where y = a2, so s = Ja1 ∧ a2, z ∧ wKs. If a1, a2 /∈ {z, w}, then Y12(Ja1 ∧ a2, z ∧ wKs) ∈ ⟨S1⟩.
For instance,

Y12(Ja1 ∧ a2, a3 ∧ b3Ks) = J(a1 + b2) ∧ (b1 + a2), a3 ∧ b3Ks ∈ ⟨S1⟩.
If instead either a1 or a2 lie in {z, w}, then up to Y12-symmetries (including possibly a 1-2
swap) we can assume that z = a1. The condition c(a1∧a2, a1∧w) = 0 implies that ω(a1, w) =
ω(a2, w) = 0, so there are two cases: s = Ja1 ∧ a2, a1 ∧ a2Ks, and s = Ja1 ∧ a2, a1 ∧ wKs with
w ∈ B \ {a1, b1, a2, b2}. These are Cases 2 and 3 below. This completes our enumeration of
the cases where y = a2.

The remaining cases are s = Ja1 ∧ y, z ∧ wKs with y ̸= a2 but a2 ∈ {z, w}. After possibly
flipping z and w, we can assume that z = a2. In other words, we have reduced ourselves
to enumerating the cases where s = Ja1 ∧ y, a2 ∧ wKs with y ̸= a2. Up to Y12-symmetries,
we have already handled the case where w = a1, so we can also assume that w ̸= a1. The
condition c(a1 ∧ y, a2 ∧ w) = 0 implies that y ̸= b2 and w ̸= b1. There are now four cases:

• Ja1 ∧ b1, a2 ∧ b2Ks, which is Case 4 below.
• Ja1 ∧ b1, a2 ∧ wKs with w ∈ B \ {a1, b1, a2, b2} and Ja1 ∧ y, a2 ∧ b2Ks with w ∈ B \
{a1, b1, a2, b2}. These differ by Y12-symmetries, so we only need to deal with the
first. This is Case 5 below.

• Ja1 ∧ y, a2 ∧ wKs with y, w ∈ B \ {a1, b1, a2, b2} satisfying ω(y, w) = 0. This is Case
6 below.

It remains to deal with all these cases. Let ≡ denote equality modulo ⟨S⟩, so our goal is to
prove that Y12(s) ≡ 0.
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Case 1. Ja1 ∧ b1, a1 ∧ b1Ks.

By Lemma 28.3 (Θ-expansion I), the element Y12(Ja1 ∧ b1, a2 ∧ b1Ks) = J(a1 + b2) ∧ b1, (a1 +
b2) ∧ b1Ks equals

Ja1 ∧ b1, a1 ∧ b1Ks + 2Θ[a1 ∧ b1, b2 ∧ b1]s + Jb2 ∧ b1, b2 ∧ b1Ks ≡ 0.

Case 2. Ja1 ∧ a2, a1 ∧ a2Ks.

Lemma 30.7 implies that Y12(Ja1 ∧ a2, a1 ∧ a2Ks) = J(a1+b2)∧(b1+a2), (a1+b2)∧(b1+a2)Ks
is equivalent to −2Ω[a1 ∧ a2, b1 ∧ b2]s ≡ 0.

Case 3. Ja1 ∧ a2, a1 ∧ wKs with w ∈ B \ {a1, b1, a2, b2}.

Lemma 28.9 (Θ-expansion II) implies that

Y12(Ja1 ∧ a2, a1 ∧ wKs) = J(a1 + b2) ∧ (b1 + a2), (a1 + b2) ∧ wKs
equals

Θ[(a1 + b2) ∧ b1, (a1 + b2) ∧ w]s +Θ[(a1 + b2) ∧ a2, (a1 + b2) ∧ w]s.
Lemma 29.4 (Λ-expansion I) implies that Θ[(a1 + b2) ∧ b1, (a1 + b2) ∧ w]s equals

Θ[a1 ∧ b1, a1 ∧ w]s + Ja1 ∧ b1, b2 ∧ wKs + Λ[b2 ∧ b1, a1 ∧ w]s + Jb2 ∧ b1, b2 ∧ wKs ≡ 0.

Similarly, Θ[(a1 + b2) ∧ a2, (a1 + b2) ∧ w]s ≡ 0. The case follows.

Case 4. Ja1 ∧ b1, a2 ∧ b2Ks.

In (∧2H)/Q, we have

a2 ∧ b2 = −a1 ∧ b1 −
∑g

i=3
ai ∧ bi.

Plugging this into Ja1 ∧ b1, a2 ∧ b2Ks, we see that

Ja1 ∧ b1, a2 ∧ b2Ks = −Ja1 ∧ b1, a1 ∧ b1Ks −
∑g

i=3
Ja1 ∧ b1, ai ∧ biKs.

It follows that Y12(Ja1 ∧ b1, a2 ∧ b2Ks) equals

−Y12(Ja1 ∧ b1, a1 ∧ b1Ks)−
∑g

i=3
Y12(Ja1 ∧ b1, ai ∧ biKs).

We proved that Y12(Ja1 ∧ b1, a1 ∧ b1Ks) ≡ 0 in Case 1, and for 3 ≤ i ≤ g we have

Y12(Ja1 ∧ b1, ai ∧ biKs) = J(a1 + b2) ∧ b1, ai ∧ biKs ≡ 0;

see §27.6. The case follows.

Case 5. Ja1 ∧ b1, a2 ∧ wKs with w ∈ B \ {a1, b1, a2, b2}.

To simplify our notation, we will explain how to deal with w = a3. The other cases are
similar. Lemma 28.7 (Θ-symplectic basis) implies that

Ja1 ∧ b1, a2 ∧ a3Ks+Θ[a2 ∧ b2, a2 ∧ a3]s+Θ[a3 ∧ b3, a2 ∧ a3]s+
∑g

i=4
Jai ∧ bi, a2 ∧ a3Ks = 0.

It follows that Y12(Ja1 ∧ b1, a2 ∧ a3Ks) equals

− Y12(Θ[a2 ∧ b2, a2 ∧ a3]s)− Y12(Θ[a3 ∧ b3, a2 ∧ a3]s)−
∑g

i=4
Y12(Jai ∧ bi, a2 ∧ a3Ks)

=−Θ[(a2 + b1) ∧ b2, (a2 + b1) ∧ a3]s

−Θ[a3 ∧ b3, (a2 + b1) ∧ a3]s −
∑g

i=4
Jai ∧ bi, (a2 + b1) ∧ a3Ks

≡−Θ[(a2 + b1) ∧ b2, (a2 + b1) ∧ a3]s.
The last ≡ uses Lemma 28.4 (Θ-linearity) to show that

Θ[a3 ∧ b3, (a2 + b1) ∧ a3]s ∈ ⟨S2⟩.
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This reduces us to proving that Θ[(a2 + b1) ∧ b2, (a2 + b1) ∧ a3]s ≡ 0. For this, Lemma 29.4
(Λ-expansion I) implies that Θ[(a2 + b1) ∧ b2, (a2 + b1) ∧ a3]s equals

Θ[a2 ∧ b2, a2 ∧ a3]s + Ja2 ∧ b2, b1 ∧ a3Ks + Λ[b1 ∧ b2, a2 ∧ a3]s + Jb1 ∧ b2, b1 ∧ a3Ks ≡ 0.

Case 6. Ja1 ∧ y, a2 ∧ wKs with y, w ∈ B \ {a1, b1, a2, b2} satisfying ω(y, w) = 0.

Lemma 29.11 (Λ-expansion II) implies that Y12(Ja1 ∧ y, a2 ∧ wKs) = J(a1+ b2)∧y, (b1+a2)∧
wKs equals

Λ[a1 ∧ y, (b1 + a2) ∧ w]s + Λ[b2 ∧ y, (b1 + a2) ∧ w]s.

Lemma 29.10 (Λ-bilinearity I) shows that

Λ[a1 ∧ y, (b1 + a2) ∧ w]s = Λ[a1 ∧ y, b1 ∧ w]s + Ja1 ∧ y, a2 ∧ wKs ≡ 0.

Similarly, Λ[b2 ∧ y, (b1 + a2) ∧ w]s ≡ 0. The case follows. □

33. Symmetric kernel, symmetric version VII: closure of S2

We continue using all the notation from §27 – §31. In this section, we continue the proof
of Lemma 31.3 by proving that for f ∈ {X1, X

−1
1 , Y12} and s ∈ S2, we have f(s) ∈ ⟨S⟩.

33.1. X-closure. Recall that X1 ∈ Sp2g(Z) takes a1 to a1+ b1 and fixes all other generators
in B. We start with:

Lemma 33.1. Let

s ∈ S2 = {Θ[ai ∧ bi, x ∧ bi]s, Θ[ai ∧ bi, ai ∧ y]s | 1 ≤ i ≤ g, x, y ∈ B \ {ai, bi}} .

Then Xϵ
1(s) ∈ ⟨S⟩ for ϵ ∈ {±1}.

Proof. The lemma is trivial if X1 fixes s. The remaining cases are as follows. Let ≡ denote
equality modulo ⟨S⟩, so our goal is to prove that Xϵ

1(s) ≡ 0.

Case 1. s = Θ[a1 ∧ b1, x ∧ b1]s with x ∈ B \ {a1, b1}.

Lemma 28.10 (Θ-bilinearity II) implies that

Xϵ
1(Θ[a1 ∧ b1, x ∧ b1]s) = Θ[(a1 + ϵb1) ∧ b1, x ∧ b1]s = Θ[a1 ∧ b1, x ∧ b1]s ≡ 0.

Case 2. s = Θ[a1 ∧ b1, a1 ∧ y]s with y ∈ B \ {a1, b1}.

Lemma 28.10 (Θ-bilinearity II) implies that

Xϵ
1(Θ[a1 ∧ b1, a1 ∧ y]s) = Θ[(a1 + ϵb1) ∧ b1, (a1 + ϵb1) ∧ y]s

= Θ[a1 ∧ b1, a1 ∧ y]s + ϵΘ[a1 ∧ b1, b1 ∧ y]s ≡ 0.

Case 3. s = Θ[ai ∧ bi, a1 ∧ bi]s or s = Θ[ai ∧ bi, ai ∧ a1]s for some 2 ≤ i ≤ g.

Both cases are handled identically, so we will give the details for s = Θ[ai ∧ bi, a1 ∧ bi]s. By
Lemma 28.4 (Θ-linearity), we have that Xϵ

1(Θ[ai ∧ bi, a1 ∧ bi]s) = Θ[ai ∧ bi, (a1 + ϵb1) ∧ bi]s
equals

Θ[ai ∧ bi, a1 ∧ bi]s + ϵΘ[ai ∧ bi, b1 ∧ bi]s ≡ 0. □
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33.2. Y-closure. Recall that Y12 ∈ Sp2g(Z) takes a1 to a1 + b2 and a2 to a2 + b1 and fixes
all other generators in B. We next prove:

Lemma 33.2. Let

s ∈ S2 = {Θ[ai ∧ bi, x ∧ bi]s, Θ[ai ∧ bi, ai ∧ y]s | 1 ≤ i ≤ g, x, y ∈ B \ {ai, bi}} .
Then Y12(s) ∈ ⟨S⟩.

Proof. For i ≥ 3, Lemma 28.4 (Θ-linearity) implies that this holds for s = Θ[ai ∧ bi, x ∧ bi]s
and s = Θ[ai ∧ bi, ai ∧ y]s with x, y ∈ B \ {ai, bi}. For instance,

Y12(Θ[a3 ∧ b3, a1 ∧ b3]s) = Θ[a3 ∧ b3, (a1 + b2) ∧ b3]s
= Θ[a3 ∧ b3, a1 ∧ b3]s +Θ[a3 ∧ b3, b2 ∧ b3]s ∈ ⟨S2⟩.

The remaining cases are when i = 1 and i = 2. Applying a 1-2 swap as described in Lemma
32.2, it is enough to deal with the case i = 1. We divide this into the following cases. Let ≡
denote equality modulo ⟨S⟩, so our goal is to prove that Y12(s) ≡ 0.

Case 1. s = Θ[a1 ∧ b1, x ∧ b1]s with x ∈ B \ {a1, b1, a2}.

Lemma 28.8 (Θ-bilinearity I) implies that Y12(Θ[a1 ∧ b1, x ∧ b1]s) = Θ[(a1+ b2)∧ b1, x∧ b1]s)
equals

Θ[a1 ∧ b1, x ∧ b1]s + Jb2 ∧ b1, x ∧ b1Ks ≡ 0.

Case 2. s = Θ[a1 ∧ b1, a1 ∧ y]s with y ∈ B \ {a1, b1, a2}.

By Lemma 29.4 (Λ-expansion I), we have that

Y12(Θ[a1 ∧ b1, a1 ∧ y]s) = Θ[(a1 + b2) ∧ b1, (a1 + b2) ∧ y]s
equals

Θ[a1 ∧ b1, a1 ∧ y]s + Ja1 ∧ b1, b2 ∧ yKs + Λ[b2 ∧ b1, a1 ∧ y]s + Jb2 ∧ b1, b2 ∧ yKs ≡ 0.

Case 3. s = Θ[a1 ∧ b1, a2 ∧ b1]s.

By the definition of Θ-elements (Definition 28.1), we have that

Y12(Θ[a1 ∧ b1, a2 ∧ b1]s) = Θ[(a1 + b2) ∧ b1, (b1 + a2) ∧ b1]s
equals 1/2 times

J(a1 + b2 + b1 + a2) ∧ b1, (a1 + b2 + b1 + a2) ∧ b1Ks − J(a1 + b2) ∧ b1, (a1 + b2) ∧ b1Ks
− J(b1 + a2) ∧ b1, (b1 + a2) ∧ b1Ks

≡J(a1 + b2 + a2) ∧ b1, (a1 + b2 + a2) ∧ b1Ks − Y12(Ja1 ∧ b1, a1 ∧ b1Ks)
≡J(a1 + b2 + a2) ∧ b1, (a1 + b2 + a2) ∧ b1Ks.

The last ≡ uses the fact that we have already proved that Y12(t) ≡ 0 for t ∈ S1 (Lemma
32.3). Lemma 28.3 (Θ-expansion I) along with Lemma 28.4 (Θ-linearity) implies that this
equals

Ja1 ∧ b1, a1 ∧ b1Ks + 2Θ[a1 ∧ b1, (b2 + a2) ∧ b1]s + J(b2 + a2) ∧ b1, (b2 + a2) ∧ b1Ks
≡2Θ[a1 ∧ b1, b2 ∧ b1]s + 2Θ[a1 ∧ b1, a2 ∧ b1]s + J(b2 + a2) ∧ b1, (b2 + a2) ∧ b1Ks
≡J(a2 + b2) ∧ b1, (a2 + b2) ∧ b1Ks.

Applying Lemma 29.13 (Λ-expansion III) and then Lemma 29.12 (Λ-bilinearity II), this
equals

Λ[a2 ∧ b1, (a2 + b2) ∧ b1]s + Λ[b2 ∧ b1, (a2 + b2) ∧ b1]s
=Ja2 ∧ b1, a2 ∧ b1Ks + Λ[a2 ∧ b1, b2 ∧ b1]s + Λ[b2 ∧ b1, a2 ∧ b1]s + Jb2 ∧ b1, b2 ∧ b1Ks ≡ 0.



PRESENTATIONS OF REPRESENTATIONS 99

Case 4. s = Θ[a1 ∧ b1, a1 ∧ a2]s.

We have

Y12(Θ[a1 ∧ b1, a1 ∧ a2]s) = Θ[(a1 + b2) ∧ b1, (a1 + b2) ∧ (b1 + a2)]s.

By Lemma 28.4 (Θ-linearity), it is enough to prove that

Θ[(a1 + b2) ∧ b1, (a1 + b2) ∧ (−b1 − a2)]s ≡ 0.

By the definition of Θ-elements (Definition 28.1), this equals

J(a1 + b2) ∧ (−a2), (a1 + b2) ∧ (−a2)Ks − J(a1 + b2) ∧ b1, (a1 + b2) ∧ b1Ks
− J(a1 + b2) ∧ (−b1 − a2), (a1 + b2) ∧ (−b1 − a2)Ks

=J(a1 + b2) ∧ a2, (a1 + b2) ∧ a2Ks − Y12(Ja1 ∧ b1, a1 ∧ b1Ks)− Y12(Ja1 ∧ a2, a1 ∧ b2Ks)
≡J(a1 + b2) ∧ a2, (a1 + b2) ∧ a2Ks.

The last ≡ uses the fact that we have already proved that Y12(t) ≡ 0 for t ∈ S1 (Lemma
32.3). Lemma 28.3 (Θ-expansion I) says that this equals

Ja1 ∧ a2, a1 ∧ a2Ks + 2Θ[a1 ∧ a2, b2 ∧ a2]s + Jb2 ∧ a2, b2 ∧ a2Ks ≡ 0. □

34. Symmetric kernel, symmetric version VIII: closure of S3

We continue using all the notation from §27 – §31. In this section, we continue the proof
of Lemma 31.3 by proving that for f ∈ {X1, X

−1
1 , Y12} and s ∈ S3, we have f(s) ∈ ⟨S⟩.

34.1. More general Lambda-elements. Recall that

S3 = {Λ[ai ∧ y, x ∧ bi]s | 1 ≤ i ≤ g, x, y ∈ B \ {ai, bi}, ω(x, y) = 0} .
Before we prove our main results, we prove:

Lemma 34.1. Let 1 ≤ i ≤ g and let x, y ∈ ⟨ai, bi⟩⊥ satisfy ω(x, y) = 0. Then Λ[ai ∧ y, x ∧
bi]s ∈ ⟨S⟩.

Proof. Recall that Ks,Λg [ai ∧ −,− ∧ bi] is the subspace of Ksg spanned by Λ-elements as
in the statement of the lemma. It follows from Lemma 29.6 (strong Λ-linearity) that

Ks,Λg [ai ∧ −,− ∧ bi] is spanned by three kinds of elements:

• Elements of the form Λ[ai ∧ y, x ∧ bi]s with x, y ∈ B \ {ai, bi} satisfying ω(x, y) = 0.
These are elements of S3.

• Elements of the form Λ[ai ∧ (aj + ak), (bj − bk) ∧ bi]s for distinct 1 ≤ j, k ≤ g with
j, k ̸= i. By Lemma 30.4 (Λ to Ω), these equal

Ω[ai ∧ aj , bj ∧ ai]s − Ω[ai ∧ ak, bk ∧ bi]s + Λ[ai ∧ ak, bj ∧ bi]s − Λ[ai ∧ aj , bk ∧ bk]s ∈ ⟨S⟩.
• Elements of the form Λ[ai ∧ (aj + bk), (bj + ak) ∧ bi]s for distinct 1 ≤ j, k ≤ g with
j, k ̸= i. Again, Lemma 30.4 (Λ to Ω) implies that these lie in ⟨S⟩. □

34.2. X-closure. Recall that X1 ∈ Sp2g(Z) takes a1 to a1+ b1 and fixes all other generators
in B. We now prove:

Lemma 34.2. Let

s ∈ S3 = {Λ[ai ∧ y, x ∧ bi]s | 1 ≤ i ≤ g, x, y ∈ B \ {ai, bi}, ω(x, y) = 0} .
Then Xϵ

1(s) ∈ ⟨S⟩ for ϵ ∈ {±1}.

Proof. There are two cases. Let ≡ denote equality modulo ⟨S⟩, so our goal is to prove that
Xϵ

1(s) ≡ 0.

Case 1. s = Λ[a1 ∧ y, x ∧ b1]s with x, y ∈ B \ {a1, b1} satisfying ω(x, y) = 0.
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Lemma 29.12 (Λ-bilinearity II) says that Xϵ
1(Λ[a1 ∧ y, x ∧ b1]s) = Λ[(a1 + ϵb1) ∧ y, x ∧ b1]s

equals

Λ[a1 ∧ y, x ∧ b1]s + ϵJb1 ∧ y, x ∧ b1Ks ≡ 0.

Case 2. s = Λ[ai ∧ y, x ∧ bi]s with x, y ∈ B \ {ai, bi} satisfying ω(x, y) = 0.

Lemma 34.1 implies that

Xϵ
1(Λ[ai ∧ y, x ∧ bi]s) = Λ[ai ∧Xϵ

1(y), X
ϵ
1(x) ∧ bi]s ∈ ⟨S⟩. □

34.3. Y-closure. Recall that Y12 ∈ Sp2g(Z) takes a1 to a1 + b2 and a2 to a2 + b1 and fixes
all other generators in B. We next prove:

Lemma 34.3. Let

s ∈ S3 = {Λ[ai ∧ y, x ∧ bi]s | 1 ≤ i ≤ g, x, y ∈ B \ {ai, bi}, ω(x, y) = 0} .

Then Y12(s) ∈ ⟨S⟩.

Proof. Recall that Y12 ∈ Sp2g(Z) takes a1 to a1 + b2 and a2 to a2 + b1 and fixes all other
generators in B. Write s = Λ[ai ∧ y, x ∧ bi]s. The proof is different when i = 1, when i = 2,
and when 3 ≤ i ≤ g. However, applying a 1-2 swap as described in Lemma 32.2 we can
reduce the proof for i = 2 to the proof for i = 1. We divide the cases i = 1 and 3 ≤ i ≤ g
into the following cases. Let ≡ denote equality modulo ⟨S⟩, so our goal is to prove that
Y12(s) ≡ 0.

Case 1. s = Λ[ai ∧ y, x ∧ bi]s with 3 ≤ i ≤ g and y, x ∈ B \ {ai, bi} satisfying ω(x, y) = 0.

Lemma 34.1 implies that

Y12(Λ[ai ∧ y, x ∧ bi]s) = Λ[ai ∧ Y12(y), Y12(x) ∧ bi]s ∈ ⟨S⟩.

Case 2. s = Λ[a1 ∧ y, x ∧ b1]s with x, y ∈ B \ {a1, b1, a2} such that ω(x, y) = 0.

Lemma 29.10 (Λ-bilinearity I) implies that Y12(Λ[a1 ∧ y, x ∧ b1]s = Λ[(a1 + b2) ∧ y, x ∧ b1]s
equals

Λ[a1 ∧ y, x ∧ b1]s + Jb2 ∧ y, x ∧ b1Ks ≡ 0.

Case 3. s = Λ[a1 ∧ a2, x ∧ b1]s with x ∈ B \ {a1, b1, a2, b2}.

We have Y12(Λ[a1 ∧ a2, x ∧ b1]s) = Λ[(a1+b2)∧(b1+a2), x∧b1]s. By Lemma 29.5 (Λ-linearity),
it is enough to prove that

Λ[(a1 + b2) ∧ (−b1 − a2), x ∧ b1]s ≡ 0.

By the definition of Λ-elements (Definition 29.1), the element Λ[(a1+b2)∧(−b1−a2), x∧b1]s =
Λ1[(a1 + b2) ∧ (−b1 − a2), x ∧ b1]s equals

Θ[(a1 + b2) ∧ (−a2), x ∧ (−a2)]s −Θ[(a1 + b2) ∧ b1, x ∧ b1]s
− J(a1 + b2) ∧ (−a2), x ∧ (−b1 − a2)Ks

=Θ[(a1 + b2) ∧ a2, x ∧ a2]s − Y12(Θ[a1 ∧ b1, x ∧ b1]s)− J(a1 + b2) ∧ a2, x ∧ (b1 + a2)Ks
≡Θ[(a1 + b2) ∧ a2, x ∧ a2]s − J(a1 + b2) ∧ a2, x ∧ (b1 + a2)Ks.

The last ≡ uses the fact that we have already proved that Y12(t) ≡ 0 for t ∈ S2 (Lemma 33.2).
We must prove that both of these terms are equivalent to 0. Lemma 28.8 (Θ-bilinearity I)
implies that the first term Θ[(a1 + b2) ∧ a2, x ∧ a2]s equals

Ja1 ∧ a2, x ∧ a2Ks +Θ[b2 ∧ a2, x ∧ a2]s ≡ 0.
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The second term J(a1 + b2) ∧ a2, x ∧ (b1 + a2)Ks equals

J(a1 + b2) ∧ (b1 + a2), x ∧ (b1 + a2)Ks − J(a1 + b2) ∧ b1, x ∧ (b1 + a2)Ks
=Y12(Ja1 ∧ a2, x ∧ a2Ks)− Y12(Ja1 ∧ b1, x ∧ a2Ks) ≡ 0.

The ≡ uses the fact that we have already proved that Y12(t) ≡ 0 for all t ∈ S1 (Lemma 32.1).

Case 4. s = Λ[a1 ∧ y, a2 ∧ b1]s with y ∈ B \ {a1, b1, a2, b2}.

By the definition of Λ-elements (Definition 29.1), Y12(Λ[a1 ∧ y, a2 ∧ b1]s) = Λ2[(a1 + b2) ∧
y, (b1 + a2) ∧ b1]s equals

Θ[(a1 + b2 + b1 + a2) ∧ b1, (a1 + b2 + b1 + a2) ∧ y]s(34.1)

−Θ[(a1 + b2) ∧ b1, (a1 + b2) ∧ y]s − J(a1 + b2 + b1 + a2) ∧ b1, (b1 + a2) ∧ yKs.

We must prove that each term in (34.1) is equivalent to 0. The first is the most difficult, so
we save it for last. The second term Θ[(a1 + b2) ∧ b1, (a1 + b2) ∧ y]s equals

Y12(Θ[a1 ∧ b1, a1 ∧ y]s) ≡ 0

since we have already proved that Y12(t) ≡ 0 for all t ∈ S2 (Lemma 33.1). The third term in
(34.1) is J(a1 + b2 + b1 + a2) ∧ b1, (b1 + a2) ∧ yKs, which equals

J(a1 + b2) ∧ b1, (b1 + a2) ∧ yKs + J(b1 + a2) ∧ b1, (b1 + a2) ∧ yKs
≡Y12(Ja1 ∧ b1, a2 ∧ yKs) ≡ 0.

Here again we used the fact that Y12(t) ≡ 0 for all t ∈ S2 (Lemma 33.1).
It remains to deal with the first term Θ[(a1 + b2 + b1 + a2) ∧ b1, (a1 + b2 + b1 + a2) ∧ y]s

in (34.1). By Lemma 28.10 (Θ-bilinearity II), it equals

(34.2) Θ[(a1 + b2 + a2) ∧ b1, (a1 + b2 + a2) ∧ y]s +Θ[(a1 + b2 + a2) ∧ b1, b1 ∧ y]s.

We must show that both terms of (34.2) are equivalent to 0. Using Lemma 29.4 (Λ-expansion
I) along with Lemma 29.5 (Λ-linearity), the first term of (34.2) equals

Λ[a1 ∧ y, (b2 + a2) ∧ b1]s +Θ[a1 ∧ b1, a1 ∧ y]s + J(a1 + b2 + a2) ∧ b1, (b2 + a2) ∧ yKs
≡Λ[a1 ∧ y, b2 ∧ b1]s + Λ[a1 ∧ y, a2 ∧ b1]s ≡ 0.

For the second term Θ[(a1 + b2 + a2) ∧ b1, b1 ∧ y]s of (34.2), Lemma 28.8 (Θ-bilinearity I)
implies that it equals

Θ[a1 ∧ b1, b1 ∧ y]s + J(b2 + a2) ∧ b1, b1 ∧ yKs ≡ 0.

Case 5. s = Λ[a1 ∧ a2, a2 ∧ b1]s.

By Lemma 29.5 (Λ-linearity), to prove that

Y12(Λ[a1 ∧ a2, a2 ∧ b1]s) = Λ[(a1 + b2) ∧ (b1 + a2), (b1 + a2) ∧ b1]s
is equivalent to 0 it is enough to prove that

Λ[(a1 + b2) ∧ (−b1 − a2), (b1 + a2) ∧ b1]s
is equivalent to 0. By the definition of Λ-elements (Definition 29.1), this equals

Θ[(a1 + b2) ∧ (−a2), (b1 + a2) ∧ (−a2)]s −Θ[(a1 + b2) ∧ b1, (b1 + a2) ∧ b1]s
− J(a1 + b2) ∧ (−a2), (b1 + a2) ∧ (−b1 − a2)Ks.

=Θ[(a1 + b2) ∧ a2, (b1 + a2) ∧ a2]s − Y12(Θ[a1 ∧ b1, a2 ∧ b1]s)
≡Θ[a2 ∧ (a1 + b2), a2 ∧ (b1 + a2)]s.
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Here we used the fact that Y12(t) ≡ 0 for all t ∈ S2 (Lemma 33.1). Expanding this using the
definition of Θ-elements (Definition 28.1), we get 1/2 times

Ja2 ∧ (a1 + b2 + b1 + a2), a2 ∧ (a1 + b2 + b1 + a2)Ks − Ja2 ∧ (a1 + b2), a2 ∧ (a1 + b2)Ks
− Ja2 ∧ (b1 + a2), a2 ∧ (b1 + a2)Ks

≡Ja2 ∧ (b2 + a1 + b1), a2 ∧ (b2 + a1 + b1)Ks − Ja2 ∧ (b2 + a1), a2 ∧ (b2 + a1)Ks

We must prove that both of these terms are equivalent to 0. For the first term Ja2∧ (b2+a1+
b1), a2 ∧ (b2 + a1 + b1)Ks, Lemma 28.3 (Θ-expansion I) along with Lemma 28.4 (Θ-linearity)
implies that it equals

Ja2 ∧ b2, a2 ∧ b2Ks + 2Θ[a2 ∧ b2, a2 ∧ (a1 + b1)]s + Ja2 ∧ (a1 + b1), a2 ∧ (a1 + b1)Ks
≡2Θ[a2 ∧ b2, a2 ∧ a1]s + 2Θ[a2 ∧ b2, a2 ∧ b1]s +X1(Ja2 ∧ a1, a2 ∧ a1Ks) ≡ 0.

The last ≡ uses the fact that we have already proved that X1(t) ≡ 0 for t ∈ S1 (Lemma
32.1). For the second term Ja2 ∧ (b2 + a1), a2 ∧ (b2 + a1)Ks, Lemma 28.3 (Θ-expansion I)
implies that it equals

Ja2 ∧ b2Ks + 2Θ[a2 ∧ b2, a2 ∧ a1]s + Ja2 ∧ a1, a2 ∧ a1Ks ≡ 0. □

35. Symmetric kernel, symmetric version IX: closure of S4

We continue using all the notation from §27 – §31. In this section, we complete the proof
of Lemma 31.3 (and hence also of Theorem G) by proving that for f ∈ {X1, X

−1
1 , Y12} and

s ∈ S4, we have f(s) ∈ ⟨S⟩.

35.1. X-closure. Recall that X1 ∈ Sp2g(Z) takes a1 to a1+ b1 and fixes all other generators
in B. We start with:

Lemma 35.1. Let

s ∈ S4 = {Ω[ai ∧ aj , bi ∧ bj ]s, Ω[ai ∧ bj , bi ∧ aj ]s | 1 ≤ i < j ≤ g}

Then Xϵ
1(s) ∈ ⟨S⟩ for ϵ ∈ {±1}.

Proof. The lemma is trivial if X1 fixes s. The remaining cases are as follows. Let ≡ denote
equality modulo ⟨S⟩, so our goal is to prove that Xϵ

1(s) ≡ 0.

Case 1. s = Ω[a1 ∧ aj , b1 ∧ bj ]s with 2 ≤ j ≤ g.

Since g ≥ 4 (Assumption 25.1), we can pick 2 ≤ k ≤ g with k ̸= j. Lemma 30.4 (Λ to Ω)
implies that Ω[a1 ∧ aj , b1 ∧ bj ]s = −Ω[aj ∧ a1, b1 ∧ bj ]s equals

Λ[aj ∧ (ak + a1), (bk − b1) ∧ bj ]s − Λ[aj ∧ a1, bk ∧ bj ]s
+ Λ[aj ∧ ak, b1 ∧ bj ]s − Ω[aj ∧ ak, bk ∧ bj ]s

Applying Xϵ
1, since X1 fixes {aj , bj , ak, bk} we get

Λ[aj ∧ (ak + a1 + ϵb1), (bk − b1) ∧ bj ]s −Xϵ
1(Λ[aj ∧ a1, bk ∧ bj ]s)

+Xϵ
1(Λ[aj ∧ ak, b1 ∧ bj ]s)− Ω[aj ∧ ak, bk ∧ bj ]s

≡Λ[aj ∧ (ak + a1 + ϵb1), (bk − b1) ∧ bj ]s.

Here we are using the fact that Xϵ
1(t) ≡ 0 for all t ∈ S3 (Lemma 34.2). Lemma 34.1 implies

that Λ[aj ∧ (ak + a1 + ϵb1), (bk − b1) ∧ bj ]s ≡ 0, and we are done.

Case 2. s = Ω[a1 ∧ bj , b1 ∧ aj ]s with 2 ≤ j ≤ g.
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Since g ≥ 4 (Assumption 25.1), we can pick 2 ≤ k ≤ g with k ̸= j. Lemma 30.4 (Λ to Ω)
implies that Ω[a1 ∧ bj , b1 ∧ aj ]s = Ω[(−bj) ∧ a1, b1 ∧ aj ]s equals

Λ[(−bj) ∧ (a1 + ak), (b1 − bk) ∧ aj ]s − Λ[(−bj) ∧ ak, b1 ∧ (aj)]s

+ Λ[(−bj) ∧ a1, bk ∧ aj ]s +Ω[(−bj) ∧ ak, bk ∧ aj ]s
=− Λ[bj ∧ (a1 + ak), (b1 − bk) ∧ aj ]s + Λ[bj ∧ ak, b1 ∧ (aj)]s

− Λ[bj ∧ a1, bk ∧ aj ]s +Ω[ak ∧ bj , bk ∧ aj ]s.
Now proceed as in Case 1. □

35.2. Y-closure. Recall that Y12 ∈ Sp2g(Z) takes a1 to a1 + b2 and a2 to a2 + b1 and fixes
all other generators in B. We next prove the following, which completes the proof of Lemma
31.3 and hence of Theorem G:

Lemma 35.2. Let

s ∈ S4 = {Ω[ai ∧ aj , bi ∧ bj ]s, Ω[ai ∧ bj , bi ∧ aj ]s | 1 ≤ i < j ≤ g}
Then Y12(s) ∈ ⟨S⟩.

Proof. Write S4 = S4(1) ∪ S4(2) ∪ S4(3) ∪ S4(4) with
S4(1) = {Ω[ai ∧ aj , bi ∧ bj ]s, Ω[ai ∧ bj , bi ∧ aj ]s | 3 ≤ i < j ≤ g} ,
S4(2) = {Ω[a1 ∧ aj , b1 ∧ bj ]s, Ω[a1 ∧ bj , b1 ∧ aj ]s | 3 ≤ j ≤ g} ,
S4(3) = {Ω[a2 ∧ aj , b2 ∧ bj ]s, Ω[a2 ∧ bj , b2 ∧ aj ]s | 3 ≤ j ≤ g} ,
S4(4) = {Ω[a1 ∧ a2, b1 ∧ b2]s,Ω[a1 ∧ b2, b1 ∧ a2]s}.

The lemma is trivial for s ∈ S4(1) since in that case Y12(s) = s. For s ∈ S4(2), the lemma
can be proved exactly like Case 1 of the proof of Lemma 35.1. The only necessary change is
that the k in that proof should be chosen such that 3 ≤ k ≤ g and k ̸= j, which is possible
since g ≥ 4 (Assumption 25.1; note that in Case 1 of the proof of Lemma 35.1 we really only
used g ≥ 3). The same argument works for s ∈ S4(3).

It remains to deal with S4(4), which we divide into two cases. Let ≡ denote equality
modulo ⟨S⟩, so our goal is to prove that Y12(s) ≡ 0.

Case 1. s = Ω[a1 ∧ a2, b1 ∧ b2]s.

Set s′ = J(a1 − b2) ∧ (b1 − a2), (a1 − b2) ∧ (b1 − a2)Ks. In Lemma 30.7, we proved that −2s
equals s′ modulo ⟨S1, S2, S3⟩. We have already proved that Y12(t) ≡ 0 for t ∈ S1 ∪ S2 ∪ S3;
see Lemmas 32.3 and 33.2 and 34.3. It is therefore enough to prove that Y12(s

′) ≡ 0:

Y12(J(a1 − b2) ∧ (b1 − a2), (a1 − b2) ∧ (b1 − a2)Ks) = Ja1 ∧ (−a2), a1 ∧ (−a2)Ks ≡ 0.

Case 2. s = Ω[a1 ∧ b2, b1 ∧ a2]s.

Set s′ = J(a1 + a2) ∧ (b1 − b2), (a1 + a2) ∧ (b1 − b2)Ks. In Lemma 30.7, we proved that s
equals s′ modulo ⟨S1, S2, S3⟩. Just like in the previous case, this implies that it is enough to
prove that Y12(s

′) ≡ 0. We calculate:

Y12(J(a1 + a2) ∧ (b1 − b2), (a1 + a2) ∧ (b1 − b2)Ks)
=J(a1 + b2 + a2 + b1) ∧ (b1 − b2), (a1 + b2 + a2 + b1) ∧ (b1 − b2)Ks
=J(a1 + a2 + 2b1) ∧ (b1 − b2), (a1 + a2 + 2b1) ∧ (b1 − b2)Ks = X2

1 (s
′).

In Lemmas 32.1 and 33.1 and 34.2 and 35.1, we proved that Xϵ
1(t) ∈ ⟨S⟩ for ϵ ∈ {±1} and

s ∈ S1 ∪ · · · ∪ S4 = S. This implies that the cyclic group generated by X1 takes ⟨S⟩ to ⟨S⟩.
Lemma 30.7 implies that s′ ∈ S, so X2

1 (s
′) ≡ 0, as desired. □
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Part 5. Appendices

Appendix A. A modified presentation

The goal of this appendix is to transform the presentation for Kg from Definition 10.5 to
the one needed for our work on the Torelli group in [4, 5]. Recall from §1.13 that H = Q2g

and HZ = Z2g, and that ω : H ×H → Q is the standard symplectic form on H.

A.1. Symmetric kernel and contraction. Recall from the introduction that the sym-
metric contraction is the alternating bilinear map

c : ((∧2H)/Q)× ((∧2H)/Q) −→ Sym2(H)

defined by the formula

c(x ∧ y, z ∧ w) = ω(x, z)y·w − ω(x,w)y·z − ω(y, z)x·w + ω(y, w)x·z for x, y, z, w ∈ H.

This induces a map ((∧2H)/Q)⊗2 −→ Sym2(H) whose kernel Kg is the symmetric kernel.
Recall that κ1, κ2 ∈ (∧2H)/Q are sym-orthogonal if

c(κ1, κ2) = −c(κ2, κ1) = 0,

or equivalently if κ1 ⊗ κ2 and κ2 ⊗ κ1 lie in Kg.

A.2. Presentation. We recall the definition of Kg:

Definition A.1. Define Kg to be the Q-vector space with the following presentation:

• Generators. A generator Jκ1, κ2K for all sym-orthogonal κ1, κ2 ∈ (∧2H)/Q such
that either κ1 or κ2 (or both) is a symplectic pair in (∧2HZ)/Z.

• Relations. For all symplectic pairs a ∧ b ∈ (∧2HZ)/Z and all κ1, κ2 ∈ (∧2H)/Q
that are sym-orthogonal to a ∧ b and all λ1, λ2 ∈ Q, the relations

Ja ∧ b, λ1κ1 + λ2κ2K = λ1Ja ∧ b, κ1K + λ2Ja ∧ b, κ2K and

Jλ1κ1 + λ2κ2, a ∧ bK = λ1Jκ1, a ∧ bK + λ2Jκ2, a ∧ bK. □

There is a linearization map Φ: Kg → ((∧2H)/Q)⊗2 defined by Φ(Jκ1, κ2K) = κ1 ⊗ κ2.
This takes relations to relations, and thus gives a well-defined map. Since κ1 and κ2 are sym-
orthogonal, the image of Φ is contained in Kg. Theorem 10.7 says that Φ is an isomorphism
for g ≥ 4.

A.3. Symplectic summands. As we said above, our goal is to modify the presentation of
Kg to the one needed for our papers [4, 5]. This requires some preliminaries. A symplectic

summand of HZ is a subgroup V < HZ such that HZ = V ⊕ V ⊥. A symplectic summand V
of HZ is isomorphic to Z2h for some h called its genus. If V is a symplectic summand of HZ,
then V ⊥ is too.

A.4. Symplectic form. Let W be a symplectic summand of HZ. The symplectic form on
W identifies W with its dual. This allows us to identify alternating bilinear forms on W
with elements of ∧2W ⊂ ∧2HZ. In particular, the symplectic form on W is an element ωW
of ∧2HZ. If {a1, b1, . . . , ah, bh} is a symplectic basis for W , then ωW = a1 ∧ b1+ · · ·+ah ∧ bh.
With this notation, the symplectic form ω on HZ is ω = ωHZ .

A.5. Symplectic pairs. Recall that (∧2H)/Q is the quotient of ∧2H by the Q-span of
ω ∈ ∧2HZ. For a symplectic summand W of HZ, let ωW be the image of ωW ∈ ∧2HZ in
(∧2H)/Q. Since ω = ωW +ωW⊥ , we have ωW⊥ = −ωW . The elements ωW with W a genus-1
symplectic summand of HZ are exactly the symplectic pairs.
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A.6. Generators and summands. Recall that the generators for Kg are as follows:

• Let V be a genus-1 symplectic summand of HZ and let κ ∈ (∧2H)/Q be sym-
orthogonal to ωV . We then have generators JωV , κK and Jκ, ωV K.

The following lemma says that the element ωV is determined by V :

Lemma A.2. Assume that g ≥ 3. Let V and W be genus-1 symplectic summands of HZ
such that ωV = ωW . Then V =W .

Proof. Let ω ∈ ∧2H be the element corresponding to the symplectic form. Since ωV = ωW ,
there exists some λ ∈ Q such that ωV − ωW = λω. The orthogonal complements V ⊥ and
W⊥ in H both have codimension 2. Since g ≥ 3, it follows that H has dimension at least 6
and hence we can find some nonzero x ∈ V ⊥ ∩W⊥. View elements of ∧2H as alternating
bilinear forms on H. Since ω is a nondegenerate pairing on H, we can find y ∈ H such that
ω(x, y) = 1. We then have

0 = ωV (x, y)− ωW (x, y) = λω(x, y) = λ,

so ωV = ωW . The alternating bilinear forms ωV and ωW determine V and W ; for instance,
the kernel of the form ωV is V ⊥ and V = (V ⊥)⊥. We conclude that V =W . □

A.7. Lifting sym-orthogonal subspace. Recall that for a subspace U of ∧2H, we denote
by U the image of U in (∧2H)/Q. Also, for a subgroup V of HZ we write VQ for the subspace
V ⊗Q of H. For a genus-1 symplectic summand V , Lemma 10.1 says that the elements of

(∧2H)/Q that are sym-orthogonal to ωV are those lying in ∧2V ⊥
Q . The following lets us lift

these to elements of ∧2V ⊥
Q :

Lemma A.3. Let V be a genus-1 symplectic summand of HZ. Then the map ∧2V ⊥
Q → ∧2V ⊥

Q
obtained by restricting the projection ∧2H → (∧2H)/Q is an isomorphism.

Proof. Let ω ∈ ∧2H be the element corresponding to the symplectic form. We must
prove that ω /∈ ∧2V ⊥

Q . Let B = {a1, b1, . . . , ag, bg} be a symplectic basis for HZ such

that V = ⟨ag, bg⟩. Let ≺ be the total order on B indicated in the above list. Then

∧2H has the basis {x ∧ y | x, y ∈ B, x ≺ y}, the subspace ∧2V ⊥
Q has for a basis the subset

{x ∧ y | x, y ∈ B \ {ag, bg}, x ≺ y}, and

ω = a1 ∧ b1 + · · ·+ ag ∧ bg.

Since ag ∧ bg is a basis element not included in the basis for ∧2V ⊥
Q , the lemma follows. □

A.8. Symplectic pairs in sym-orthogonal complement. For a genus-1 symplectic

summand V of HZ, we have ωV = −ωV ⊥ ∈ ∧2V ⊥
Q . In particular, by Lemma 10.1 the element

ωV is sym-orthogonal to itself. The following lemma says that this is the only non-obvious
ωW contained in the sym-orthogonal complement of ωV :

Lemma A.4. Let V and W be genus-1 symplectic summand of HZ such ωV and ωW are
sym-orthogonal. Then either W ⊂ V ⊥ or W = V .

Proof. Assume for the sake of contradiction that W ̸= V and W ̸⊂ V ⊥. Since V and W are
both genus-1 symplectic summands of HZ, the assumption W ̸= V implies that W ̸⊂ V .
Since HZ = V ⊕ V ⊥, the assumptions that W ̸⊂ V ⊥ and W ̸⊂ V imply that there exist
nonzero x1 ∈ V and x2 ∈ V ⊥ such that x1 + x2 ∈W .

Since H = VQ ⊕ V ⊥
Q , we have

(A.1) ∧2H =
(
∧2VQ

)
⊕
(
∧2V ⊥

Q

)
⊕
(
VQ ∧ V ⊥

Q

)
.
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Let ω ∈ ∧2H be the symplectic form. Both ωV and ω = ωV + ωV ⊥ lie in the subspace

(A.2)
(
∧2VQ

)
⊕
(
∧2V ⊥

Q

)
of (A.1). Since ωW is sym-orthogonal to ωV , Lemma 10.1 says that ωW ∈ ∧2V ⊥

Q . Equiva-

lently, modulo Qω the element ωW lies in ∧2V ⊥
Q , so ωW lies in (A.2) as well.

Recall that we have nonzero x1 ∈ V and x2 ∈ V ⊥ with x1 + x2 ∈W . Regard x1 + x2 as
an element of WQ. Pick y1 ∈ V and y2 ∈ V ⊥ such that WQ = ⟨x1 + x2, y1 + y2⟩. We have

ωW = (x1 + x2) ∧ (y1 + y2) = x1 ∧ y1 + x2 ∧ y2 + x1 ∧ y2 − y1 ∧ x2.
Since ωW lies in (A.2), we must have x1 ∧ y2 = y1 ∧ x2 in VQ ∧ V ⊥

Q . Since x1 and x2 are
nonzero, this implies that there exists some λ1, λ2 ∈ Q such that y1 = λ1x1 and y2 = λ2x2.
Since ω(x1, x2) = 0, we conclude that

ω(x1 + x2, y1 + y2) = ω(x1 + x2, λ1x1 + λ2x2) = λ1ω(x1, x1) + λ2ω(x2, x2) = 0.

This implies that ω vanishes identically on WQ = ⟨x1 + x2, y1 + y2⟩, contradicting the fact
that it is a symplectic summand. □

A.9. Modified presentation. Define the following:

Definition A.5. Define K′
g to be the vector space with the following presentation:

• Generators. For all genus-1 symplectic summands V of HZ and all κ ∈ ∧2V ⊥
Q ,

generators JV, κK and Jκ, V K.
• Relations. The following families of relations:

– For all genus-1 symplectic summands V of HZ and all κ1, κ2 ∈ ∧2V ⊥
Q and all

λ1, λ2 ∈ Q, the relations

JV, λ1κ1 + λ2κ2K = λ1JV, κ1K + λ2JV, κ2K and

Jλ1κ1 + λ2κ2, V K = λ1Jκ1, V K + λ2Jκ2, V K.

– For all orthogonal genus-1 symplectic summands V and W of HZ, the relation

JV, ωW K = JωV ,W K

– For all genus-1 symplectic summands V of HZ, the relation

JV, ωV ⊥K = JωV ⊥ , V K. □

The actions of Sp2g(Z) on HZ and H induce an action of Sp2g(Z) on K′
g. The main result

of this appendix is:

Theorem A.6. For g ≥ 4, there is an Sp2g(Z)-equivariant isomorphism between K′
g and

the symmetric kernel Kg. In particular, K′
g is a finite-dimensional algebraic representation

of Sp2g(Z).

Proof. By Theorem 10.7, it is enough to construct an Sp2g(Z)-equivariant isomorphism from

K′
g to Kg. For κ ∈ ∧2H, let κ be its image in (∧2H)/Q. Define a map f : K′

g → Kg on
generators via the formulas

f(JV, κK) = JωV , κK and f(Jκ, V K) = Jκ, ωV K.

This takes relations to relations; indeed, the linearity relations are obvious, and the other
relations can be checked as follows:

• Consider orthogonal genus-1 symplectic summands V and W of HZ. We must prove
that

f(JV, ωW K) = JωV , ωW K and f(JωV ,W K) = JωV , ωW K
are equal, which is clear.
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• Consider a genus-1 symplectic summand V of HZ. We must prove that

f(JV, ωV ⊥K) = JωV , ωV ⊥K and f(JωV ⊥ , V K) = JωV ⊥ , ωV K

are equal, which follows from the calculation

JωV , ωV ⊥K = JωV ,−ωV K = −JωV , ωV K = J−ωV , ωV K = JωV ⊥ , ωV K.

This implies that f is a well-defined map.
To prove that f is an isomorphism, we must construct an inverse h : Kg → K′

g. Let V be

a genus-1 symplectic summand of HZ and let κ ∈ (∧2H)/Q be sym-orthogonal to ωV . We

must define h on JωV , κK and Jκ, ωV K. Lemma 10.1 implies that κ ∈ ∧2V ⊥
Q , and Lemma A.3

says that κ can be uniquely lifted to κ̃ ∈ ∧2V ⊥
Q . Lemma A.2 says that ωV determines V , so

we can define
h1(JωV , κK) = JV, κ̃K and h2(Jκ, ωV K) = Jκ̃, V K.

The reason for distinguishing between h1 and h2 is that it is possible for a generator of Kg
to be of both of these forms. To define h, we must check that:

Claim. Let V and W be genus-1 symplectic summands of HZ such that ωV and ωW are
sym-orthogonal. Then h1(JωV , ωW K) = h2(JωV , ωW K).

Proof of claim. Since ωV and ωW are sym-orthogonal, Lemma A.4 implies that one of the
following holds:

• W ⊂ V ⊥. The unique lift of ωW ∈ ∧2V ⊥
Q to ∧2V ⊥

Q is ωW , and the unique lift of

ωV ∈ ∧2W⊥
Q is ωV . We now calculate as follows, where the orange = are applications

of relations in K′
g:

h1(JωV , ωW K) = JV, ωW K=JωV ,W K = h2(JωV , ωW K).
• W = V . The unique lift of

ωV = −ωV ⊥ ∈ ∧2V ⊥
Q

to ∧2V ⊥
Q is −ωV ⊥ . We now calculate as follows, where the orange = are applications

of relations in K′
g:

h1(JωV , ωV K) = JV,−ωV ⊥K=− JV, ωV ⊥K
=− JωV ⊥ , V K=J−ωV ⊥ , V K = h2(JωV , ωV K). □

In light of this claim, we can unambiguously define a map h : Kg → K′
g on generators

Jκ1, κ2K by letting h(Jκ1, κ2K) equal whichever one of h1(Jκ1, κ2K) or h2(Jκ1, κ2K) is defined.
The map h takes relations to relations, and thus gives a well-defined map. By construction,
f and h are inverses to each other. The theorem follows. □

Remark A.7. The isomorphism K′
g → Kg takes JV, κK to ωV ⊗ κ and Jκ, V K to κ⊗ ωV . □

References

[1] B. Farb & D. Margalit, A primer on mapping class groups, Princeton Mathematical Series, 49,
Princeton Univ. Press, Princeton, NJ, 2012. (Cited on page 29.)

[2] W. Fulton & J. Harris, Representation theory, Graduate Texts in Mathematics Readings in
Mathematics, 129, Springer, New York, 1991. (Cited on page 64.)

[3] L. Hua & I. Reiner, On the generators of the symplectic modular group. Trans. Amer. Math.
Soc.65(1949), 415–426. (Cited on pages 16 and 29.)

[4] D. Minahan & A. Putman, Abelian covers of surfaces and the homology of the Torelli group preprint
2024. (Cited on pages 1, 4, 5, 6, and 104.)

[5] D. Minahan & A. Putman, The second rational homology group of the Torelli group, preprint 2024.
(Cited on pages 1, 4, 5, 6, and 104.)



108 DANIEL MINAHAN AND ANDREW PUTMAN

Dept of Mathematics; University of Chicago; Chicago, IL 60637
Email address: dminahan@uchicago.edu

Dept of Mathematics; University of Notre Dame; 255 Hurley Hall; Notre Dame, IN 46556
Email address: andyp@nd.edu


	1. Introduction
	1.1. Special linear group, standard representation
	1.2. Adjoint representation
	1.3. Symplectic group, standard representation
	1.4. Symplectic kernel
	1.5. Symmetric square
	1.6. Quotient representation
	1.7. Symmetric contraction
	1.8. Symmetric kernel
	1.9. Symplectic pairs
	1.10. Symmetric kernel presentation
	1.11. Symmetric square, II
	1.12. Final remarks
	1.13. Notation and conventions
	1.14. Outline

	Part 1. Five easy examples
	2. Special linear group I: standard representation
	3. Outline of proof technique
	4. Special linear group II: adjoint representation
	5. Special linear group I': variant presentation of standard representation
	6. Special linear group II': variant presentation of adjoint representation
	7. Generating the symplectic group
	8. Symplectic group I: standard representation
	9. Symplectic group II: kernel and symmetric representations
	9.1. Non-symmetric presentation
	9.2. Identifying the non-symmetric presentation
	9.3. Consequences


	Part 2. Improving the presentation for the symmetric kernel
	10. Introduction to Part 2
	10.1. Quotient representation
	10.2. Symmetric contraction
	10.3. Symplectic pairs
	10.4. Isotropic pairs
	10.5. Strong isotropic pairs
	10.6. Symmetric kernel presentation
	10.7. Goal of Part 2

	11. Isotropic pairs I: setup
	11.1. Generation by symplectic pairs
	11.2. Right compatible subspaces
	11.3. Calculating the image

	12. Isotropic pairs II: lifting orthogonal elements
	12.1. Separating classes
	12.2. Constructing the lift
	12.3. Properties of the lift
	12.4. Symplectic automorphism group
	12.5. Fixed lift

	13. Isotropic pairs III: isomorphism theorem
	14. Isotropic pairs IV: refining the presentation I
	14.1. Right elements
	14.2. Left elements
	14.3. Ambiguity
	14.4. New generators
	14.5. Summary

	15. Isotropic pairs V: refining the presentation II

	Part 3. Verifying the presentation for the symmetric kernel, alternating version
	16. Symmetric kernel, alternating version: introduction
	16.1. Symmetric kernel and contraction
	16.2. Special pairs
	16.3. Non-symmetric presentation
	16.4. Anti-symmetrizing
	16.5. Goal and outline

	17. Symmetric kernel, alternating version I: fixing the 1st coordinates of generators
	17.1. Setup
	17.2. Image
	17.3. Identification I
	17.4. Identification II

	18. Symmetric kernel, alternating version II: the set S and SymSpg
	18.1. The set S
	18.2. Signed symmetric group
	18.3. Symmetric group
	18.4. Some elements, I
	18.5. Some elements, II
	18.6. Closure under signed symmetric group

	19. Symmetric kernel, alternating version III: eight elements
	19.1. Two vs one
	19.2. Two vs two
	19.3. Three vs two

	20. Symmetric kernel, alternating version IV: the set S spans Kga
	21. Symmetric kernel, alternating version V: S1 and structure of target
	21.1. Generators and relations for target
	21.2. Lifting elements of T1
	21.3. Restricting linearization to S1

	22. Symmetric kernel, alternating version VI: S2 and S12
	22.1. The set T2
	22.2. Lifting T2(a a')
	22.3. The set S2
	22.4. Relations in T3
	22.5. The set S12

	23. Symmetric kernel, alternating version VII: structure of S3
	23.1. Quotients
	23.2. Dimension of target
	23.3. Proof strategy
	23.4. Basic elements
	23.5. Generation by basic elements

	24. Symmetric kernel, alternating version VIII: relations between basic elements
	24.1. Relation I
	24.2. Relation II
	24.3. Relation III

	25. Symmetric kernel, alternating version IX: the proof of Theorem F

	Part 4. Verifying the presentation for the symmetric kernel, symmetric version
	26. Symmetric kernel, symmetric version: introduction
	26.1. Symmetric contraction
	26.2. Special pairs
	26.3. Non-symmetric presentation
	26.4. Symmetrizing
	26.5. Goal and outline

	27. Symmetric kernel, symmetric version I: S1 and structure of target
	27.1. Generators and relations for target
	27.2. Lifting easy generators
	27.3. Lifting easy relations
	27.4. Other relations do not affect T1
	27.5. Remaining generators
	27.6. Obvious blue elements

	28. Symmetric kernel, symmetric version II: S2 and the Theta-elements
	28.1. Definition
	28.2. Theta-expansion I
	28.3. Theta-linearity
	28.4. Theta-symmetry
	28.5. Theta-signs
	28.6. The set S2
	28.7. Additional bilinearity relations

	29. Symmetric kernel, symmetric version III: S3 and the Lambda-elements
	29.1. Definition
	29.2. Lambda-expansion I
	29.3. Lambda-linearity
	29.4. Lambda-symmetry
	29.5. Lambda-signs
	29.6. The set S3
	29.7. Additional bilinearity relations

	30. Symmetric kernel, symmetric version IV: S4 and the Omega-elements
	30.1. Definition
	30.2. Relation to Lambda-elements
	30.3. Omega-symmetry and signs
	30.4. The set S4
	30.5. Additional relations

	31. Symmetric kernel, symmetric version V: skeleton of rest of proof
	31.1. Step 1
	31.2. Step 2
	31.3. Step 3

	32. Symmetric kernel, symmetric version VI: closure of S1
	32.1. X-closure
	32.2. 1-2 swaps
	32.3. Y-closure

	33. Symmetric kernel, symmetric version VII: closure of S2
	33.1. X-closure
	33.2. Y-closure

	34. Symmetric kernel, symmetric version VIII: closure of S3
	34.1. More general Lambda-elements
	34.2. X-closure
	34.3. Y-closure

	35. Symmetric kernel, symmetric version IX: closure of S4
	35.1. X-closure
	35.2. Y-closure


	Part 5. Appendices
	Appendix A. A modified presentation
	A.1. Symmetric kernel and contraction
	A.2. Presentation
	A.3. Symplectic summands
	A.4. Symplectic form
	A.5. Symplectic pairs
	A.6. Generators and summands
	A.7. Lifting sym-orthogonal subspace
	A.8. Symplectic pairs in sym-orthogonal complement
	A.9. Modified presentation

	References


