
THE STEINBERG REPRESENTATION IS IRREDUCIBLE
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Abstract. We prove that the Steinberg representation of a connected
reductive group over an infinite field is irreducible. For finite fields, this
is a classical theorem of Steinberg and Curtis.
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1. Introduction

Let G be a connected reductive group over a field k, e.g., G = GLn. For
another field F, let St(G;F) be the Steinberg representation of the discrete
group1 G(k) over F. This representation plays a prominent role in the
representation theory of G(k), and also has connections to number theory
and K-theory. When k is finite, St(G;F) is finite dimensional and Steinberg
and Curtis showed that it is usually irreducible. When k is infinite, it is
typically infinite dimensional. Our main theorem is that St(G;F) is always
irreducible when k is infinite. Previously, this was not known in complete
generality even for G = GL2.

1.1. Background. Before explaining the contents of this paper in more
detail, we recall the construction of the Steinberg representation, review
some of its history, and discuss its connections to other topics.
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1The Steinberg representation is not an algebraic representation of G, but just a

representation of the abstract group G(k). However, its definition uses the structure of G
as an algebraic group defined over k, so it would not make sense to write it as St(G(k);F).
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1.1.1. Tits building. A tremendous amount of the structure of G is encoded
in its spherical Tits building T (G). This is a simplicial complex whose
simplices are in bijection with the proper parabolic k-subgroups of G. For
proper parabolic k-subgroups P and P ′, the simplex corresponding to P is
a face of the simplex corresponding to P ′ when P ′ ⊂ P . The conjugation
action of G(k) on itself permutes the parabolic k-subgroups and thus induces
an action of G(k) on T (G). See [1, 41] for more about Tits buildings.

Example 1.1. If G = GLn, then the proper parabolic k-subgroups are the
stabilizers of nontrivial flags

0 ( V0 ( V1 ( · · · ( Vi ( kn,

so T (GLn) is the simplicial complex whose i-simplices are such flags. �

Remark 1.2. It is not obvious that the above description of T (G) specifies a
simplicial complex. However, what we really care about is the homology of
T (G), and for this it is enough to understand its barycentric subdivision,
which is easy to describe completely: it is the simplicial complex whose
i-simplices are decreasing chains

G ) P0 ) P1 ) · · · ) Pi ) 1

of proper parabolic k-subgroups. �

1.1.2. Steinberg representation. Let r be the semisimple k-rank of G, e.g.,
if G = GLn then r = n− 1. By definition, T (G) is an (r − 1)-dimensional
simplicial complex. The Solomon–Tits theorem [35] says that T (G) is
homotopy equivalent to a wedge of (r − 1)-dimensional spheres. For a field
F (or, more generally, a commutative ring), the Steinberg representation of
G(k) over F, denoted St(G;F), is the unique nontrivial reduced homology

group H̃r−1(T (G);F). The action of G(k) on T (G) induces an action of
G(k) on St(G;F), making it into a representation of G(k) over F.

Remark 1.3. It might be the case that G is anisotropic, i.e., has no proper
parabolic k-subgroups. This implies that T (G) = ∅ and that the semisimple
k-rank of G is 0. Our convention then is that

St(G;F) = H̃−1(T (G);F) = H̃−1(∅;F) = F

is the trivial representation. �

1.1.3. Finite fields. The representation St(G;F) was first studied for finite
fields k. In this case, St(G;F) is a finite-dimensional representation of the
finite group G(k) that is usually2 irreducible. For instance, this holds if
char(F) = 0 or if char(F) = char(k). Steinberg [37] initially proved this
for G = GLn, and then generalized it to many other finite groups [38, 39].
Curtis [12] proved the ultimate version for a finite group with a BN-pair.

2There are cases where it is reducible. For example, it is reducible if G = GL2, the field
k is finite of cardinality q, and F has finite characteristic ` with ` | q + 1.
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See [19, 40] for surveys of the fundamental role the Steinberg representation
plays in the representation theory of finite groups of Lie type.

Remark 1.4. The above papers predate the definition of the Steinberg repre-
sentation in terms of the Tits building, which first appeared in [35]. �

1.1.4. Infinite fields. For infinite fields k, the representation St(G;F) is
usually3 an infinite-dimensional representation of the infinite group G(k). In
this context, it first appeared in work of Borel–Serre [6], who proved that for
algebraic number fields k the symmetric space associated to the Lie group
G(k⊗QR) has a G(k)-equivariant bordification whose boundary is homotopy
equivalent to T (G). They used this to show that St(G;F) is the “dualizing
module” for arithmetic subgroups of G(k). This gave rise to a large literature
using St(G;F) to study the cohomology of such arithmetic subgroups. Some
representative papers include [3, 4, 8, 9, 10, 17, 20, 22, 24, 25, 26, 29].

A second important context for St(G;F) when k is infinite is algebraic
K-theory, where Quillen [30] constructed a spectral sequence converging
to the algebraic K-theory of a number ring O whose E2-page involves the
homology of GLn(O) with coefficients in the Steinberg representation. His
main application was to show that these K-groups are finitely generated.
The Steinberg representation and related objects have since appeared in a
variety of K-theoretic and homotopy theoretic contexts. Some representative
papers include [2, 15, 16, 27, 31, 32, 34, 36]

1.1.5. Irreducibility for infinite fields. It is natural to wonder whether St(G;F)
is irreducible when k is infinite. This was first studied by Xi [42], who proved
that St(G;F) is irreducible when G is defined over the algebraic closure
k = Fq of a finite field Fq and F is a field with char(F) ∈ {0, char(k)}. Yang
[43] later removed this restriction on char(F). Both proofs make essential use
of the fact that k is a union of finite fields, and do not appear to generalize
to more general fields k. More recently, Galatius–Kupers–Randal-Williams
[16] proved that St(GLn;F) is an indecomposable4 representation of GLn(k)
for all fields k and F.

1.2. Main theorem. Our main theorem answers this question completely.

Theorem A. Let G be a connected reductive group over an infinite field k
and let F be an arbitrary field. Then the Steinberg representation St(G;F) is
an irreducible G(k)-representation.

Remark 1.5. For a local field k, there is a variant of the Steinberg represen-
tation that takes into account the topology of k (see, e.g., [7]). This variant

3The only time when St(G;F) is finite-dimensional for infinite k is when G is anisotropic,
in which case St(G;F) = F is the trivial representation.

4An indecomposable representation is one that cannot be decomposed as a nontrivial
direct sum of two subrepresentations. When k is infinite, the Steinberg representation is
typically infinite-dimensional and this is a weaker condition than being irreducible even
when F has characteristic 0.
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is irreducible (see [28, Example 7.6] or [44, Example 9.2]), but it is different
enough from the ordinary Steinberg representation that this does not seem
to imply Theorem A when G is defined over a local field. �

Remark 1.6. There are a number of other representations that are similar
to the Steinberg representation. For example, when k is finite and F has
characteristic 0, there is one irreducible unipotent representation of GLn(k)
for each partition of n, with the Steinberg representation corresponding to
the partition (1n). Our methods should be able to prove irreducibility for
these analogous representations, though we have not pursued this. �

1.3. The case where k is finite. In most cases, our proof uses the fact
that k is infinite in a serious way. Since St(G;F) is sometimes reducible
when k is finite, this is inevitable. However, our work does give the most
important special cases of irreducibility for finite k. Let k be a finite field
with char(k) = p.

• When char(F) = p, our proof works in complete generality and many
aspects of it simplify.5

• The case where char(F) = 0 follows from the case where char(F) = p.
To see this, observe that St(G;Z) is a finite-rank free abelian group
with St(G;Fp) = St(G;Z) ⊗ Fp and St(G;F) = St(G;Z) ⊗ F. We
now quote the following standard result:6 if G is a finite group, M
is a Z[G]-module whose underlying abelian group is finite-rank and
free, and M ⊗Fp is irreducible, then M ⊗F is irreducible for all fields
F with char(F) = 0.

1.4. Outline of proof of Theorem A. Let the notation be as in Theorem A.
Let B be a minimal parabolic k-subgroup of G, let U be the unipotent radical
of B, and let T be a maximal k-split torus in B. For example, if G = GLn
then one can take B to be the Borel subgroup of upper triangular matrices,
U to be group of upper triangular matrices with 1’s on the diagonal, and T
to be the group of diagonal matrices.

A strengthening of the Solomon–Tits theorem gives a linear isomorphism
ι : St(G;F) → F[U(k)]. The map ι is equivariant for U(k) and T(k),
which act by left multiplication and conjugation on the target, respectively.
However, the action of a general element of G(k) on F[U(k)] is opaque. The
actions of U(k) and T(k) on F[U(k)] preserve the augmentation ideal, i.e.,
the kernel of the augmentation ε : F[U(k)]→ F. We will prove the following:

5In particular, the second ingredient (Proposition 1.8) in the proof outline discussed in
§1.4 is almost trivial in this case; see the very short §4 for details.

6Here is a quick proof. If M ⊗ F is reducible for some F with char(F) = 0, then letting

F be an algebraic closure of F we have that M ⊗ F is reducible. Since they have the same
characters, this implies that M ⊗ L is reducible for any algebraically closed field L with
char(L) = 0; in particular, M ⊗ Qp is reducible. Let V ⊂ M ⊗ Qp be a nonzero proper

subrepresentation. Letting Zp be the ring of integers in Qp, the intersection V ∩(M⊗Zp) is

a nonzero proper direct summand of the Zp-module M ⊗Zp, and hence maps to a nonzero

proper subrepresentation of M ⊗ Fp under the reduction map M ⊗ Zp →M ⊗ Fp.
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Proposition 1.7. Let the notation be as above and let x ∈ St(G;F) be non-
zero. Then there exists g ∈ G(k) such that ι(gx) is not in the augmentation
ideal.

Proposition 1.8. Let the notation be as above and let I ⊂ F[U(k)] be a left
ideal that is stable under T(k) and not contained in the augmentation ideal.
Then I = F[U(k)].

To deduce Theorem A, let V ⊂ St(G;F) be a non-zero subrepresentation.
Then ι(V ) is a T(k)-stable left ideal of F[U(k)] that by Proposition 1.7 is
not contained in the augmentation ideal. Proposition 1.8 thus implies that
ι(V ) = F[U(k)], so V = St(G;F).

1.5. Special case of Proposition 1.7. To prove Proposition 1.7, we must
relate the augmentation map ε : F[U(k)] → F to the structure of the Tits
building T (G). Doing this in general requires introducing a lot of building-
theoretic terminology (chambers, apartments, etc.). To give the basic idea,
we will explain how this works for G = GL2.

1.5.1. Structure of building. We must first construct ι. The parabolic sub-
groups of GL2 are the stabilizers of lines in k2. The Tits building T (GL2) can
thus be identified with the discrete set P1(k). Elements of H0(T (GL2);F) are
formal F-linear combinations of points of P1(k). The Steinberg representation
is the reduced homology:

St(GL2;F) = H̃0(T (GL2);F) =

{
n∑
i=0

ci`i | `i ∈ P1(k), ci ∈ F,

n∑
i=0

ci = 0

}
.

1.5.2. Apartment classes. The Steinberg representation is spanned by ele-
ments of the form `− `′ for distinct `, `′ ∈ P1(k), which are called apartment
classes. These are not linearly independent. Using homogeneous coordinates
on P1(k), the apartment classes of the form [1, 0] − [λ, 1] are a basis for
St(GL2;F). Let U be the unipotent subgroup of upper triangular 2 × 2
matrices with 1’s on the diagonal. We thus have an isomorphism

ι : St(GL2;F)→ F[U(k)], ι ([1, 0]− [λ, 1]) =

(
1 λ
0 1

)
.

1.5.3. Making the augmentation nonzero. Let ε : F[U(k)]→ F be the augmen-
tation. Consider a nonzero x ∈ St(GL2;F). We must find some g ∈ GL2(k)
with ε(ι(gx)) 6= 0. Write

x =

n∑
i=0

ci`i with `i ∈ P1(k), ci ∈ F, and

n∑
i=0

ci = 0

with the `i all distinct and the ci all nonzero. Pick g ∈ GL2(k) with
g`0 = [1, 0]. For 1 ≤ i ≤ n, write g`i = [λi, 1] with λi ∈ k. Since

∑n
i=0 ci = 0,
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it follows that

gx = c0[1, 0] +
n∑
i=1

ci[λi, 1] =
n∑
i=1

−ci ([1, 0]− [λi, 1]) ,

so

ε(ι(gx)) = ε

(
n∑
i=1

−ci
(

1 λi
0 1

))
=

n∑
i=1

−ci = c0 6= 0.

1.6. Special case of Proposition 1.8. We now explain our proof of Propo-
sition 1.8 for G = GL2 when char(k) = 0. Here U is the unipotent group of
upper triangular 2× 2 matrices with 1’s on the diagonal and T is the group
of 2 × 2 diagonal matrices. Let I ⊂ F[U(k)] be a left ideal that is stable
under the conjugation action of T(k) and not contained in the augmentation
ideal. We must prove that I = F[U(k)].

1.6.1. Torus action. Since I 6⊂ ker(ε), we can find x ∈ I with ε(x) = 1. Write
this as

x =
n∑
i=1

ci

(
1 λi
0 1

)
∈ I with λ1, . . . , λn ∈ k, c1, . . . , cn ∈ F, and

n∑
i=1

ci = 1.

Since char(k) = 0, the torus T(k) contains matrices diag(d, 1) for all nonzero
d ∈ Z. We have(

d 0
0 1

)(
1 λ
0 1

)(
d 0
0 1

)−1

=

(
1 dλ
0 1

)
for all λ ∈ k.

Letting xd ∈ I be the result of conjugating x ∈ I by diag(d, 1), we thus have

(1.1) xd =

n∑
i=1

ci

(
1 dλi
0 1

)
∈ I for all nonzero d ∈ Z.

1.6.2. Laurent polynomials. Let Ψ: Z[z±1
1 , . . . , z±1

n ] → F[U(k)] be the ring
homomorphism defined via the formula

(1.2) Ψ(zd11 · · · z
dn
n ) =

(
1 d1λ1 + · · ·+ dnλn
0 1

)
.

Use Ψ to make F[U(k)] into a left module over Z[z±1
1 , . . . , z±1

n ]: for f ∈
Z[z±1

1 , . . . , z±1
n ] and x ∈ F[U(k)], define f · x = Ψ(f)x. Letting id ∈ U(k) be

the identity matrix, we then have

xd =

n∑
i=1

zdi · (ci · id) ∈ I for all nonzero d ∈ Z.

To prove the proposition, it is enough to show that id =
∑n

i=1 ci · id ∈ I.
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1.6.3. Modules over Laurent polynomials. For this, apply the following lemma
with

M = F[U(k)] and N = I and mi = ci · id.

Lemma 1.9. Let R = Z[z±1
1 , . . . , z±1

n ], let M be an R-module, let N ⊂M be
a submodule, and let m1, . . . ,mn ∈M . Assume that zd1 ·m1+· · ·+zdn ·mn ∈ N
for all d ≥ 1. Then m1 + · · ·+mn ∈ N .

Proof. Replacing M by M/N , we can assume that N = 0. Also, replacing
M by the R-span of the mi, we can assume that M is finitely generated. Let
a be a maximal ideal of R and let r ≥ 1. Since R/ar is a finite ring and each
zi is a multiplicative unit in R, we can find some d ≥ 1 such that zdi ≡ 1
(mod ar) for all 1 ≤ i ≤ d. We then have

0 = zd1 ·m1 + · · ·+ zdn ·mn ≡ m1 + · · ·+mn (mod ar),

so m1+· · ·+mn ∈ arM . Since this holds for all r, we see that m1+· · ·+mn ∈⋂
r≥1 a

rM , so by the Krull intersection theorem7 [14, Corollary 5.4] the
element m1 + · · ·+mr maps to 0 in the localization Ma. Since this holds for
all maximal ideals a, it follows that m1 + · · ·+mr = 0, as required. �

Remark 1.10. The following special case of Lemma 1.9 might clarify its
content. Consider a1, . . . , an ∈ C× and b1, . . . , bn ∈ C, and assume that
ad1b1+· · ·+adnbn = 0 for all d ≥ 1. Then Lemma 1.9 implies that b1+· · ·+bn =
0. It is curious that we proved such a simple statement by reduction to finite
characteristic8. When char(k) = 0, our proof of Proposition 1.8 makes use of
a similar reduction to finite characteristic. However, though this might lead
one to expect that the proof when char(k) = p would be easier, in fact our
argument in characteristic p is completely different and significantly more
technical. �

Remark 1.11. Our proof of Lemma 1.9 is a little abstract. It is an instructive
exercise to prove it more concretely by exhibiting appropriate polynomial
identities. For instance, the case n = 3 follows from the identity

z1z2z3(m1 +m2 +m3) =(z1z2 + z1z3 + z2z3)(z1m1 + z2m2 + z3m3)

− (z1 + z2 + z3)(z2
1m1 + z2

2m2 + z2
3m3)

+ (z3
1m1 + z3

2m2 + z3
3m3).

Since the right hand side lies in N , the left hand side does as well. As the zi
are units in R, we have m1 +m2 +m3 ∈ N . �

7What the reference [14, Corollary 5.4] actually proves is that there is some z ∈ a such
that 1− z annihilates ∩r≥1a

rM . Since 1− z is invertible in the localization Rα, it follows
that ∩r≥1a

rM maps to 0 in Mα.
8Of course, this statement can be proven directly. However, the proof of the lemma

shows that the conclusion still holds if the stated condition only holds for all d in a cofinal
subset of Z (ordered by divisibility). This stronger statement is not so easy to prove by
hand.
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1.7. Comments on general case of Proposition 1.8. We close the
introduction by saying a few words about the general case of Proposition 1.8.
We actually prove a more general result that applies to arbitrary unipotent
groups.

1.7.1. Key identity. To state this, we must abstract the necessary properties
of the action of T on U. The key identity that powered our proof of
Proposition 1.8 when G = GL2 and char(k) = 0 is(

d 0
0 1

)(
1 λ
0 1

)(
d 0
0 1

)−1

=

(
1 dλ
0 1

)
for nonzero d ∈ Z.

We could also have used the matrices diag(1, d−1), for which the analogous
formula is(

1 0
0 d−1

)(
1 λ
0 1

)(
1 0
0 d−1

)−1

=

(
1 dλ
0 1

)
for nonzero d ∈ Z.

The choice to use d = d1 or d−1 reflects the fact that the weights9 of the
actions of diag(∗, 1) and diag(1, ∗) on the Lie algebra Lie(U) of U are 1 and
−1, respectively.

1.7.2. Positive actions. When dim(U) > 1, there may be more than one
such weight. If we try to imitate the above proof, it turns out that we will
run into trouble if there are both positive and negative weights (roughly, we
won’t be able make a single “choice of d1 or d−1”). Composing a Gm-action
on U with the inversion involution on Gm changes the signs of the weights,
so we might as well assume they are all positive as in the following:

Definition 1.12. An action of Gm on a smooth connected unipotent group
U over a field k is said to be positive if the weights of the induced action of
Gm on the Lie algebra Lie(U) of U are positive. �

We will prove the following.

Theorem B. Let U be a smooth connected unipotent group over an infinite
field k equipped with a positive action of Gm and let F be another field. Let
I ⊂ F[U(k)] be a left ideal that is stable under Gm and not contained in the
augmentation ideal. Then I = F[U(k)].

We will also prove that if U is as in Proposition 1.8, then there is a 1-
parameter subgroup Gm of T whose action is positive, so this includes
Proposition 1.8 as a special case.

9These diagonal subgroups are each isomorphic to the multiplicative group Gm = GL1.
Recall ([5, §III.8.17] or [13, IV.1.1.6]) that if Gm acts algebraically and linearly on a vector
space V , then V decomposes as a direct sum of weight spaces Vd, where Gm(k) = k× acts
on Vd as t · v = tdv for t ∈ k× and v ∈ Vd. The integers d with Vd 6= 0 are called the
weights of the action. A similar result holds for other diagonalizable groups (e.g., the split

tori (Gm)×r)), but with the integral weights replaced by characters.
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1.7.3. Cases. Most of this paper will be devoted to Theorem B. Its proof is
quite different depending on the characteristics of k and F:

(a) char(k) = 0.
(b) char(k) = p is positive and char(F) 6= char(k).
(c) char(k) = p is positive and char(F) = char(k).

Case (c) turns out to be quite easy, and does not even require the positive
action or for k to be infinite. For cases (a) and (b), we need to find appropriate
generalizations of Lemma 1.9.

1.7.4. Characteristic 0. When char(k) = 0, we use deep work of Philip Hall
on representations of nilpotent groups to give a proof that in some sense
is quite similar to the one we gave for Lemma 1.9, though by necessity the
details are more abstract.

1.7.5. Characteristic p. When char(k) = p is positive, new ideas are needed
even for G = GL2 since the matrices diag(d, 1) we used there are not always
invertible. Roughly speaking, we will use the positive action to “compress”
the action of our group onto a small subgroup for which our representation
is understandable. This subgroup must satisfy a lengthy sequence of hard-to-
control polynomial conditions. Since k is infinite, we will be able to use the
Chevalley–Warning theorem to ensure that no matter what those conditions
are, they can always be satisfied: the key point is that, because k is infinite,
it contains a copy of Fnp for all n, and n can be chosen large enough to satisfy
the conditions of Chevalley–Warning.

1.8. Outline. We prove Proposition 1.7 in §2. Next, in §3 we give some
background about unipotent groups and prove that Theorem B implies
Proposition 1.8. Theorem B is then proved in §4–§6.

1.9. Conventions. To avoid cluttering our exposition, unless otherwise
specified all subgroups, morphisms, quotients, etc., we discuss involving an
algebraic group G defined over a field k are themselves defined over k; for
instance, instead of saying that something is a parabolic k-subgroup of G
we will just say that it is a parabolic subgroup of G.

2. Buildings and the augmentation

In this section, we prove Proposition 1.7. Our proof uses the Borel–Tits
structure theory for connected reductive groups, and all results we quote
without proof or reference can be found in [5, Chapter V]. Let G be a
connected reductive group over a field k, and let F be another field. To
quickly understand what we are doing, it might be helpful to assume on a
first reading that G = GLn.
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2.1. Borel subgroups, unipotent radicals, and tori. We start by intro-
ducing some key subgroups of G. See Example 2.2 below for what these are
in the special case G = GLn.

• Let B be a minimal parabolic subgroup of G. Since k is not assumed
to be algebraically closed, B might not be a Borel subgroup, but in
this more general context it serves as a suitable replacement.
• Let T be a maximal split torus contained in B.
• Let ZG(T) be the centralizer of T. If G were a split group like GLn,

then ZG(T) would be T, but in general it can be larger. The group
ZG(T) is a Levi factor of B, and in particular is contained in B.
• Let NG(T) be the normalizer of T.
• Let W = NG(T)/ZG(T) be the relative10 Weyl group. This is a

finite reflection group.
• Let U be the unipotent radical of B.

With this notation, we have B = U o ZG(T).

Remark 2.1. All choices of the pair of subgroups (B,T) are conjugate in
G. �

Example 2.2. For G = GLn, these subgroups are as follows:

• The group B is the Borel subgroup of upper triangular matrices.
• The maximal split torus T is the group of diagonal matrices.
• The centralizer ZG(T) is just T.
• The normalizer NG(T) is the group of monomial matrices, i.e., ma-

trices with a single nonzero entry in each row and column.
• The Weyl group W = NG(T)/ZG(T) = NG(T)/T is the symmet-

ric group on n letters, which can be identified with the group of
permutation matrices.
• The unipotent radical U is the group of upper triangular matrices

with 1’s on the diagonal.

For these, it is clear that B = U o T. �

2.2. Tits building, chambers, and the Steinberg representation. As
described in [41], the Tits building T (G) is the Tits building associated
to the group G(k) with the BN-pair (B(k), NG(T)(k)). See [1, §6] for a
textbook reference on the Tits building associated to a BN-pair11. We will
not need to know the complete construction and structure of T (G), but only
a few properties of it that we will try to isolate.

10The usual (or absolute) Weyl group is what one gets by working over an algebraic

closure k and letting T be a maximal torus defined over k. For split groups like G = GLn
it is the same as the relative Weyl group.

11Be warned that the standard notation in the theory of BN-pairs involves a group
T , but this is not T(k). Instead, it is ZG(T)(k). If k is algebraically closed, then
ZG(T)(k) = T(k), but in general it is larger.
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Letting r be the semisimple rank of G, the building T (G) is an (r − 1)-
dimensional simplicial complex12 whose simplices are in bijection with the
proper parabolic subgroups13 of G. The conjugation action of G(k) on itself
permutes these parabolic subgroups, and thus induces an action of G(k) on
T (G).

Let C̃•(T (G);F) be the reduced simplicial chain complex of T (G). The
(r−1)-dimensional simplices of T (G) are in bijection with the minimal proper
parabolic subgroups, and are called the chambers.14 Let Pmin be the set

of minimal proper parabolic subgroups of G, so C̃r−1(T (G);F) ∼= F[Pmin].
Since T (G) is an (r − 1)-dimensional simplicial chain complex, we have

C̃r(T (G);F) = 0 and thus

St(G;F) = H̃r−1(T (G);F)

= ker(C̃r−1(T (G);F)
∂−→ C̃r−2(T (G);F))

= ker(F[Pmin]
∂−→ C̃r−2(T (G);F)).

In particular, St(G;F) is a subrepresentation of F[Pmin].

2.3. Apartments. The homology group St(G;F) is spanned by the apart-
ment classes. These are the homology classes of oriented subcomplexes of
T (G) that are isomorphic to simplicial triangulations of an (r − 1)-sphere.
In fact, these subcomplexes are isomorphic to the Coxeter complex15 of the
Weyl group W . One example of an apartment is as follows. Since W is a
finite reflection group, each w ∈W has a sign (−1)w. Since the group ZG(T)
is contained in B, for w ∈W = NG(T)/ZG(T) the image w ·B = wBw−1

makes sense and is an element of Pmin. We then have an apartment class16

A0 =
∑
w∈W

(−1)ww ·B ∈ St(G;F) ⊂ F[Pmin].

The group G(k) acts transitively on the set of apartment classes.

2.4. Basis for Steinberg. The apartment classes are not linearly indepen-
dent. One version of the Solomon–Tits Theorem (see [1, Theorem 4.73]) says
that St(G;F) has for a basis the set of apartment classes that “contain B” in
the sense that as an element of F[Pmin] their B-coefficient is 1. Letting AB be

12If r = 0, this means that T (G) = ∅; see Remark 1.3 for our conventions about the
empty set.

13For G = GLn, these are the stabilizers of nontrivial flags 0 ( V0 ( · · · ( Vi ( kn.
14For G = GLn, the minimal proper parabolic subgroups are the stabilizers of maximal

flags, or equivalently the conjugates of the Borel subgroup B of upper triangular matrices.
15For G = GLn, the Weyl group is Sn and the Coxeter complex is the first barycentric

subdivision of an (n− 1)-simplex, or equivalently the simplicial complex whose i-simplices
are (i + 1)-element subsets of {1, . . . , n}.

16For G = GLn, the chambers w ·B appearing in this apartment class are the stabilizers
of maximal flags 0 ( V0 ( · · · ( Vn−2 ( kn such that each Vi is the span of (i+1) standard
basis vectors in kn.
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the set of such apartment classes, we thus have a vector space isomorphism
St(G;F) ∼= F[AB]. However, since G(k) does not preserve the set AB, it is
difficult to understand the G(k)-action on St(G;F) using this isomorphism.

2.5. Group-theoretic interpretation. Consider the conjugation action
of G(k) on itself. A standard property of BN-pairs is that the stabilizer of
B(k) in G(k) under this conjugation action acts transitively on AB. Since
B is a parabolic subgroup, we have NB(G) = B, so the stabilizer of B(k)
in G(k) is B(k). It follows that B(k) acts transitively on AB. Another
standard property of BN-pairs is that the stabilizer of the apartment class A0

is ZG(T)(k). Since B(k) is the semi-direct product of U(k) and ZG(T)(k),
the set map α : U(k)→ AB defined by α(g) = g · A0 is a bijection.

The map α is U(k)-equivariant with respect to the left action of U(k) on
itself. It is also ZG(T)(k)-equivariant with respect to its conjugation action
on U(k); indeed, for h ∈ ZG(T)(k) and g ∈ U(k), we have

h · α(g) = hg · A0 = hgh−1 · A0 = α(hgh−1),

where in the second step we used that h stabilizes A0.

2.6. Augmentation. Let ι : St(G;F)→ F[U(k)] be the composition

St(G;F)
∼=−→ F[AB]

α−1

−→ F[U(k)],

so ι is a linear isomorphism. By the above, ι is equivariant for both U(k) and
ZG(T)(k); however, in what follows, we will only use the equivariance for
U(k) and T(k). Let ε : F[U(k)]→ F be the augmentation. The composition
ε ◦ ι : St(G;F) → F is B(k)-invariant but not G(k)-invariant. It has the
following simple interpretation:

Lemma 2.3. Let the notation be as above, and let x ∈ St(G;F). Then
ε(ι(x)) ∈ F is the B-coefficient of x considered as an element of F[Pmin].

Proof. It is enough to check this on the basis AB for St(G;F), so consider
x ∈ AB. By the definition of AB, the B-coefficient of x is 1, so we must
check that ε(ι(x)) = 1. By definition, ι(x) = α−1(x). Since this is an element
of U(k), its image under ε is 1, as desired. �

2.7. Proof of Proposition 1.7. We finally turn to the proof of Proposi-
tion 1.7. Recall that this states that for all nonzero x ∈ St(G;F), there exists
g ∈ G(k) such that ε(ι(gx)) 6= 0.

Proof of Proposition 1.7. Consider a nonzero x ∈ St(G;F). Regarding x as
an element of F[Pmin], some coefficient must be nonzero. Since G(k) acts
transitively on Pmin, there exists g ∈ G(k) such that gx has a nonzero
B-coefficient. By Lemma 2.3, we have ε(ι(gx)) 6= 0. �
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3. Unipotent groups and positive actions

It remains to prove Theorem B and to show that Theorem B implies
Proposition 1.8. The proof of Theorem B starts in §4. This section contains
preliminaries about unipotent groups and positive actions. The final section
(§3.6) proves that Theorem B implies Proposition 1.8. Throughout this
section, we fix a field k. All algebraic groups we discuss are affine algebraic
group schemes over k.

3.1. Generalities about unipotent groups. Recall [13, IV.2.2.1] that
a unipotent group is an algebraic group such that every non-trivial closed
subgroup admits a non-trivial homomorphism to the additive group Ga;
equivalently [13, IV.2.2.5], there exists an embedding into the group of
strictly upper triangular matrices in GLn for some n. If k is an algebraic
closure of k, then an algebraic group U is unipotent if and only if its base
change Uk is [13, IV.2.2.6]. A unipotent group U is split if there exists a
central series

U = U1 BU2 B · · ·BUn BUn+1 = 1,

where the Ui are closed subgroups such that Ui/Ui+1
∼= Ga for 1 ≤ i ≤ n.

If k is algebraically closed, then all smooth connected unipotent groups over
k are split [13, IV.4.3.4, IV.4.3.14]. From this, we deduce the following:

Proposition 3.1. Let U be an n-dimensional smooth connected unipotent
group over a field k. Then U(k) is a nilpotent group. Moreover, if char(k) = p
is positive, then all finitely generated subgroups of U(k) are finite p-groups
of nilpotence class at most n and exponent at most pn.

Proof. Let k be an algebraic closure of k. Then Uk is split, so U(k) has a
central series

U(k) = U1 B U2 B · · ·B Un B Un+1 = 1

with Ui/Ui+1
∼= k for 1 ≤ i ≤ n. This n is the same as the dimension of U.

In particular, U(k) is a nilpotent group. Since U(k) ⊂ U(k), it follows that
U(k) is a nilpotent group.

Assume now that char(k) = p is positive, and let G be a finitely generated
subgroup of U(k). Regard G as a subgroup of U(k), and let Gi = G ∩ Ui.
We thus have a central series

G = G1 BG2 B · · ·BGn BGn+1 = 1

with Gi/Gi+1 a subgroup of k for 1 ≤ i ≤ n. Subgroups of finitely generated
nilpotent groups are finitely generated, so Gi and hence Gi/Gi+1 is finitely
generated. Finitely generated additive subgroups of k are isomorphic to
finite products of Z/pZ. We conclude that G is a finite p-group of nilpotence
class at most n and exponent at most pn. �
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3.2. Splitting off unipotent subgroups. Unipotent groups U can be
studied inductively by identifying normal subgroups U′ and then studying
the unipotent groups U′ and U/U′. The following is helpful for combining
results about U′ and U/U′ into results about U:

Proposition 3.2. Let G be a linear algebraic group and let V CG be a
smooth connected split unipotent normal subgroup. There exists a subvariety
X of G containing the identity such that the map V ×X→ G induced by
the product on G is an isomorphism of varieties.

Proof. Let X = G/V and let π : G→ X be the quotient map. The map π
gives G the structure of a V-torsor over X, and we can embed X into G
as in the proposition precisely when that torsor is trivial. The result thus
follows from two facts: the algebraic group X is affine (see [13, III.3.5.6]),
and all such torsors over affine bases are trivial (see [13, IV.4.3.7]). �

3.3. Weights and positive actions. Recall ([5, §III.8.17] or [13, IV.1.1.6])
that if Gm = GL1 acts algebraically and linearly on a k-vector space V , then
V decomposes as a direct sum of weight spaces Vd, where Gm(k) = k× acts
on Vd as t · v = tdv for t ∈ k× and v ∈ Vd. The integers d with Vd 6= 0 are
called the weights of the action. We say that Gm acts on V with positive
weights if each weight is positive.

For instance, consider an action of Gm on Ga. For t ∈ Gm(k) = k× and
x ∈ Ga(k) = k, write tx for the action of t on x. The action of Gm on Ga is
automatically linear. Indeed, the k-algebra automorphisms of k[x] have the
form x 7→ a+ bx with a, b ∈ k, and so any automorphism of Ga as a group
scheme has the form x 7→ bx. We thus see that the action has a single weight
m ∈ Z, and so tx = tmx for all t and x as above.

Remark 3.3. In finite characteristic, there exist non-linear actions of Gm on
(Ga)

×2. See Remark 3.5 below for an example. �

Next, let U be a smooth connected unipotent group over k equipped with
an action of Gm. For t ∈ Gm(k) and g ∈ U(k), we will denote the action of
t on g by tg. As in the introduction, we say that the action of Gm on U is a
positive action if the induced action on the Lie algebra Lie(U) has positive
weights. We then have the following.

Proposition 3.4. Let U be a smooth connected unipotent group over a field
k equipped with a positive Gm-action. Then there exists a Gm-stable central
subgroup ACU with A ∼= Ga such that Gm acts on A with positive weight.

Proof. First suppose that char(k) = 0. In this case, as discussed in [13,
III.6.3.7] and [13, IV.2.4] we have an isomorphism Lie(U) → U given by
the exponential map (which can be expressed by a finite power series since
our group is nilpotent). The construction of Lie(U)→ U is functorial, and
in particular is Gm-equivariant. We can then take A to be the image of a
1-dimensional weight space of Lie(U) contained in its center.
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Now suppose that char(k) = p is positive. Let U1 be cckp-kernel of U,
i.e., the maximal smooth connected p-torsion central closed subgroup of U;
this exists and is non-trivial [11, §B.3]. The subgroup U1 is stable under
automorphisms of U, and is therefore Gm-stable. Tits [11, Theorem B.4.3]
proved that U1 = U2 ×U3 where U2 and U3 are closed smooth Gm-stable
subgroups of U1 with the following properties:

• The group Gm acts trivially on U2.
• There is vector group V defined over k (i.e., a vector space over k

regarded as an algebraic group via its additive structure) and a linear
action of Gm on V such that U3 is Gm-equivariantly isomorphic to
V.

Since Lie(U) only has positive weights, we have Lie(U2) = 0, so U2 = 1.
Thus U1 = U3 is Gm-equivariantly isomorphic to V. We can now take A
to be a subgroup of U1 corresponding to a weight space of V under this
isomorphism. �

Remark 3.5. If char(k) = p then there are non-linear actions of Gm on vector

spaces over k. For example, let V = (Ga)
×2, let σ be the linear action of

Gm on V given by σ(t)(x, y) = (tx, t2y), and let τ be the automorphism of
V given by τ(x, y) = (x, y + xp). Then conjugating σ by τ gives a non-linear
action of Gm on V . This demonstrates one of the difficulties that Tits’
theorem must handle. �

Remark 3.6. Applying Proposition 3.4 repeatedly, one can show that a
smooth connected unipotent group U over a field k equipped with a positive
Gm-action must be split. This implies in particular that as a variety, U is
isomorphic to an affine space over k. �

3.4. Characteristic 0. The following proposition will be the key to under-
standing positive actions in characteristic 0:

Proposition 3.7. Let U be an n-dimensional smooth connected unipotent
group over a field k of characteristic 0 equipped with a positive Gm-action.
Then there exist Gm-stable subgroups G1, . . . ,Gn of U with the following
properties:

• The map G1 × · · · ×Gn → U arising from the product on U is an
isomorphism of varieties.
• For 1 ≤ i ≤ n, we have Gi

∼= Ga and Gm acts on Gi with positive
weight.

Proof. Let Lie(U) = ⊕ni=1ui be a decomposition into 1-dimensional weight
spaces and let Gi be the image of ui under the exponential map (see [13,
§IV.2.4.5]). �

3.5. Extending positive actions. Let Gm = Spec(k[x]), which is an
algebraic monoid under multiplication; this space is obtained from Gm by
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simply adding the point 0. The following proposition shows that if a Gm-
action on a unipotent group is positive, then it can be extended to an action
of Gm.

Proposition 3.8. Let U be a smooth connected unipotent group over a field
k equipped with a positive Gm-action. Then the Gm-action can be extended
to an action of Gm such that 0g = id for all g ∈ U(k).

Proof. It is enough to prove this for the base change to an algebraic closure
of k, so without loss of generality we can assume that k is algebraically closed.
The proof will be by induction on dim(U). The base case is dim(U) = 1.
Since k is algebraically closed, U is split, so we must have U ∼= Ga. The
single positive weight d ≥ 1 of the action of Gm on Lie(U) ∼= Ga satisfies the
key identity

tx = tdx for t ∈ Gm(k) = k× and x ∈ Ga(k) = k.

Since d is not negative, this also makes sense for t = 0, so this extends to
Gm. Finally, since d 6= 0 this extension satisfies 0x = 0.

Assume now that dim(U) ≥ 2 and that the proposition is true for smaller
dimensions. We will first prove that the Gm action extends to Gm. Let R
be the ring of regular functions f : U(k)→ k. Since Gm acts algebraically
on U, it also acts algebraically and linearly on R. Proving that the action
of Gm on U extends to an action of Gm is equivalent to proving that the
action of Gm on R extends to an action of Gm.

We say that a regular function f : U(k)→ k is a weight function of weight
n if

(3.1) f(tg) = tnf(g) for t ∈ Gm(k) and g ∈ U(k).

Since Gm acts algebraically and linearly on R, as a vector space R decomposes
into a direct sum of 1-dimensional subspaces spanned by weight functions
(see the beginning17 of §3.3). The Gm-action on R extends to Gm if and only
if there are no nonzero weight functions of negative weight: the point is that
just like in the case where dim(U) = 1, this implies that (3.1) also makes
sense for t = 0.

By Proposition 3.4, there exists a Gm-stable central subgroup ACU with
A ∼= Ga such that Gm acts on A with positive weight. Let U′ = U/A, so
we have an exact sequence

1 −→ A −→ U
π−→ U′ −→ 1.

There is a corresponding short exact sequence of Lie algebras, from which
it follows that the induced Gm-action on U′ is positive. By induction on
the dimension, the Gm-action on U′ extends to an action of Gm such that
0g = id for all g ∈ U′(k).

17One might worry that there could be an issue since R is an infinite-dimensional vector
space, but the references given in §3.3 apply in this level of generality. In fact, it follows
from algebraicity that R is a union of finite-dimensional subrepresentations.
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Since the identity element of U′(k) is fixed by Gm, the ideal of regular
functions vanishing on it can be generated by weight functions h1, . . . , hr,
necessarily of nonnegative weights. Let hi = π∗(hi). The hi generate the
ideal I ⊂ R of regular functions on U(k) vanishing on A(k).

Now, suppose f is a weight function on U(k) of negative weight. Then
f |A(k) is a weight function on A(k) of negative weight, so f |A(k) = 0. It

follows that f ∈ I, so we can write f =
∑r

i=1 gihi for regular functions gi; in
fact, we can take the gi to be weight functions such that gihi has the same
weight as f . Since f has negative weight and hi has non-negative weight, it
follows that gi must have negative weight. Hence, by the same argument,
gi ∈ I, so f ∈ I2. Continuing in this manner, we find that

f ∈
⋂
n≥1

In.

Since R is a domain, it follows from the Krull intersection theorem that⋂
n≥1 I

n = 0 (see [14, Corollary 5.4]), so f = 0. We thus find that the

Gm-action on U extends to Gm.
It remains to show that for g ∈ U(k), we have 0g = id. We know this for

U′ by induction, so

π(0g) = 0π(g) = id.

It follows that 0g ∈ A(k). Since Gm acts on A with positive weight, a final
application of our inductive hypothesis says that 0h = id for any h ∈ A(k).
Thus 0g = 0(0g) = id, as desired. �

Remark 3.9. The converse also holds: if U is a smooth connected unipotent
group over a field k equipped with an action of Gm that extends to Gm such
that 0g = id for all g ∈ U(k), then the Gm-action is positive. �

3.6. Positive actions on unipotent radicals. Our final result in this
section shows that Theorem B implies Proposition 1.8.

Proposition 3.10. Let G be a connected reductive group over a field k, let
B be a minimal parabolic subgroup of G, let U be the unipotent radical of B,
and let T be a maximal split torus of B. Then there exists a one-parameter
subgroup σ : Gm → T that acts positively on U.

Example 3.11. Suppose G = GLn, the group B is the Borel subgroup
of upper triangular matrices, T is the torus of diagonal matrices, and U
is the unipotent subgroup of upper triangular matrices with 1’s on the
diagonal. We can then take σ : Gm → T to be the 1-parameter subgroup
σ(t) = diag(tn, tn−1, . . . , t1). The key property of σ is that for g ∈ U(k) and
t ∈ Gm(k), the matrix tg = σ(t)g σ(t)−1 is obtained from g by multiplying
every entry above the diagonal by a positive power of t. �

Proof of Proposition 3.10. We start by recalling some basic facts about
relative root systems (see [5, §21]). Let X(T) be the group of charac-
ters χ : T → Gm and let Y (T) be the group of one-parameter subgroups
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γ : Gm → T. For χ ∈ X(T) and γ ∈ Y (T), the composition χ◦γ : Gm → Gm

can be written in the form χ ◦ γ(t) = tn for some n ∈ Z. Define 〈χ, γ〉 = n.
This extends to a nondegenerate pairing between X(T)⊗Q and Y (T)⊗Q.
Let Φrel ⊂ X(T) be the relative root system of T in G. There is a choice
of positive roots Φ+

rel ⊂ Φrel such that Φ+
rel is precisely the set of weights of

the action of T on the Lie algebra of U. Let {χ1, . . . , χn} ⊂ Φ+
rel be the

simple positive roots. These form a basis for X(T)⊗Q, and every element
of Φ+

rel is a nonnegative integer linear combination of the χi. Using the
nondegeneracy of our pairing, we can find some α ∈ Y (T) ⊗ Q such that
〈χi, α〉 = 1 for 1 ≤ i ≤ n. Choosing d ≥ 1 such that dα ∈ Y (T), we can then
take σ = dα. �

4. Ideals and positive actions I: equal characteristic p

We now turn to the proof of Theorem B. The following result implies this
theorem in the special case where char(k) = char(F) = p is positive, but
is more general since it does not require U to be equipped with a positive
action or for k to be infinite:

Proposition 4.1. Let U be a smooth connected unipotent group over a field
k and let F be another field. Assume that char(k) = char(F) = p is positive.
Let I be a left ideal in F[U(k)] that does not lie in the augmentation ideal.
Then I = F[U(k)].

Proof. Let x ∈ I be an element that does does not belong to the augmentation
ideal. Write x =

∑n
i=1 ci[gi] with ci ∈ F and gi ∈ U(k). Let Γ be the subgroup

of U(k) generated by the gi. Proposition 3.1 implies that Γ is a finite p-group.
Let εΓ : F[Γ]→ F be the augmentation. Then ker(εΓ) is the Jacobson radical
of F[Γ], i.e., the intersection of all maximal left ideals (see [21, Corollary
8.8]). Since ker(εΓ) is itself a maximal left ideal, it follows that it is the
unique maximal left ideal. The element x ∈ I ∩ F[Γ] does not lie in ker(εΓ),
so I ∩ F[Γ] = F[Γ]. In particular, [id] ∈ I, so I = F[U(k)]. �

5. Ideals and positive actions II: characteristic 0

In this section, we prove Theorem B when char(k) = 0. The proof is in
§5.4 after three sections of preliminaries.

5.1. Modules over nilpotent groups. Recall that a group G is abelian-
by-nilpotent if there is a normal abelian subgroup A of G such that G/A is
nilpotent. Also, G is residually finite if it injects into its profinite completion,
or equivalently if the intersection of all finite-index normal subgroups of G is
trivial. Hall [18] proved the following. See [23, Theorem 4.3.1] for a textbook
reference.

Theorem 5.1 (Hall). All finitely generated abelian-by-nilpotent groups are
residually finite.
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We will apply Theorem 5.1 in the form of the following corollary. If M
is a module over a ring R, then an R-submodule M ′ of M is said to be
finite-index if the cardinality of M/M ′ is finite. Just like for groups, we say
that M is residually finite if the intersection of all finite-index submodules is
0.

Corollary 5.2. Let G be a finitely generated nilpotent group and let M be a
finitely generated Z[G]-module. Then M is residually finite.

Proof. Set Γ = M o G, so Γ is an abelian-by-nilpotent group. Since G is
finitely generated and M is a finitely generated Z[G]-module, the group Γ
is finitely generated. Theorem 5.1 thus implies that Γ is residually finite,
so the intersection of all elements of F = {∆ | ∆C Γ finite index} is trivial.
This implies that the intersection of all elements of F ′ = {∆ ∩M | ∆ ∈ F}
is 0. Each element of F ′ is a finite-index submodule of M , so we conclude
that M is residually finite. �

5.2. Finitely generated subgroups of unipotent groups. For a group
Γ and d ≥ 1, let Γ(d) be the subgroup of Γ generated by all dth powers.

Proposition 5.3. Let U be a smooth connected unipotent group over a field
k of characteristic 0 equipped with a positive Gm-action. Let S be a finite
subset of U(k). There exists a finitely generated subgroup Γ of U(k) with
S ⊂ Γ such that dg ∈ Γ(d) for all g ∈ Γ and d ≥ 1.

Proof. By Proposition 3.7, there exist Gm-stable subgroups G1, . . . ,Gn of
U such that the following hold:

• The map G1 × · · · ×Gn → U arising from the product on U is an
isomorphism of varieties.
• For 1 ≤ i ≤ n, we have Gi

∼= Ga and Gm acts on Gi with positive
weight mi ≥ 1.

This second condition implies in particular that dx = xd
mi for all x ∈ Gi(k)

and d ≥ 1. For 1 ≤ i ≤ n, choose a finite set Si ⊂ Gi(k) such that every
element of S is a product of elements of the Si. Let Γ be the subgroup of
U(k) generated by S1 ∪ · · · ∪ Sn. We thus have S ⊂ Γ. For g ∈ Γ, we can
write

g = s1 · · · sr with sj ∈ Sij for 1 ≤ j ≤ r,
so for d ≥ 1 we have

dg = ds1 · · · dsr = (s1)d
mi1 · · · (sr)d

mir ∈ Γ(d). �

5.3. Modules over unipotent groups in char 0. The following is our
generalization of Lemma 1.9 to the setting of unipotent groups over fields of
characteristic 0.

Proposition 5.4. Let U be a smooth connected unipotent group over a
field k of characteristic 0 equipped with a positive Gm-action. Let M be a
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Z[U(k)]-module and let N ⊂M be a submodule. For some m1, . . . ,mn ∈M
and g1, . . . , gn ∈ U(k), assume that

dg1 ·m1 + · · ·+ dgn ·mn ∈ N for all d ≥ 1.

Then m1 + · · ·+mn ∈ N .

Proof. Replacing M by M/N , we can assume that N = 0. Proposition 5.3
says there is a finitely generated subgroup Γ of U(k) containing {g1, . . . , gn}
such that dg ∈ Γ(d) for all g ∈ Γ and d ≥ 1. Proposition 3.1 implies that Γ is
a nilpotent group. Let M ′ be the Z[Γ]-submodule of M generated by the mi.
Consider a finite-index submodule M ′′ of M ′. The group of automorphisms
of the finite abelian group underlying M ′/M ′′ is finite. Letting d be its
exponent, the group Γ(d) acts trivially on M ′/M ′′. Thus

0 = dg1 ·m1 + · · ·+ dgn ·mn ≡ m1 + · · ·+mn (mod M ′′),

so m1 + · · ·+mn ∈M ′′. Since M ′′ was an arbitrary finite-index submodule
of M ′, Corollary 5.2 implies that m1 + · · ·+mn = 0, as required. �

5.4. Conclusion. The following is Theorem B in the special case where
char(k) = 0.

Theorem 5.5. Let U be a smooth connected unipotent group over a field
k of characteristic 0 equipped with a positive action of Gm and let F be
another field. Let I ⊂ F[U(k)] be a left ideal that is stable under Gm and not
contained in the augmentation ideal. Then I = F[U(k)].

Proof. For g ∈ U(k), write [g] for the associated element of F[U(k)]. Let
ε : F[U(k)] → F be the augmentation. Since I is not contained in the
augmentation ideal, there exists some x ∈ I with ε(x) = 1. Write this as

x =
n∑
i=1

ci[gi] ∈ I with g1, . . . , gn ∈ U(k), c1, . . . , cn ∈ F, and
n∑
i=1

ci = 1.

Since I is stable under the action of Gm(k), for all t ∈ Gm(k) we have tx ∈ I,
so

n∑
i=1

ci[
tgi] =

n∑
i=1

tgi · ci[1] ∈ I.

Applying Proposition 5.4 with M = F[U(k)] and N = I, we deduce that
[1] =

∑
i ci[1] ∈ I, so I = F[U(k)]. �

6. Ideals and positive actions III: unequal characteristic p

In this section, we prove Theorem B when char(k) = p and char(F) 6= p.
The proof is in §6.6 after five sections of preliminaries.
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6.1. Finitely generated subgroups. If U is a smooth connected unipotent
group over a field k of positive characteristic, then Proposition 3.1 says that
all finitely generated subgroups of U(k) are finite. The following lemma
says that if one bounds the size of a generating set, then only finitely many
isomorphism classes of finite groups occur:

Proposition 6.1. Let U be a smooth connected unipotent group over a field
k of positive characteristic and let m ≥ 1. Then there only exist finitely many
isomorphism classes of subgroups of U(k) that are generated by m elements.

Proof. Let n = dim(U) and p = char(k). Proposition 3.1 says that all
finitely generated subgroups of U(k) are nilpotent of class at most n and
have exponent at most pn. A cheap way to proceed is to quote the Restricted
Burnside Problem (proved by Zelmanov [45]), which says that there are
only finitely many isomorphism classes of finite groups with m generators
and exponent at most pn. An easier approach18 is as follows. Let Cd be
set of isomorphism classes of finite groups of nilpotence class d that have
m generators and exponent at most pn. We will prove that |Cd| < ∞ by
induction on d.

The base case d = 1 is trivial, so assume that d > 1. Consider G ∈ Cd. Let
γ(G) be the dth term of the lower central series of G, so G/γ(G) ∈ Cd−1. Since
|Cd−1| <∞, it is enough to prove that there are finitely many possibilities
for γ(G). Taking d-fold iterated commutators, we get a surjective map of
abelian groups ∧dGab → γ(G). Since G has m generators and exponent at
most pn, there are finitely many possibilities for Gab, and thus also finitely
many possibilities for γ(G). �

This has the following corollary. Let Fm denote the free group on generators
{x1, . . . , xm}. If G is a group, g1, . . . , gm ∈ G are elements, and w ∈ Fm,
then let w(g1, . . . , gm) ∈ G be the image of w under the homomorphism
Fm → G taking xi to gi for 1 ≤ i ≤ m.

Corollary 6.2. Let U be a smooth connected unipotent group over a field
k of positive characteristic. For all m ≥ 1, there exists a finite set Wm of
elements of Fm such that for all s1, . . . , sm ∈ U(k), the subgroup of U(k)
generated by the si equals {w(s1, . . . , sm) | w ∈ Wm}.

Proof. By Proposition 6.1, there are only finitely many possibilities for the
isomorphism class of the subgroup generated by the si. For each of these
groups and each choice of m-element generating for it, include words in Wm

to express every element in terms of those generators. �

6.2. A-polynomials. Let k be a field of positive characteristic p. A map
λ : k → Fp is an additive map if it is a homomorphism of additive groups. If
X is a variety over k, then an A-polynomial on X is a function f : X(k)→ Fp

18This is actually the first step in the restricted Burnside problem: much of the hard
work in its proof is bounding the nilpotence class of finite p-groups in terms of their
exponent and number of generators.
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of the form λ ◦ φ, where φ : X → A1 is a morphism of varieties over k and
λ : k → Fp is an additive map. Here the “A” stands for “additive”. We will
need to do a sort of algebraic geometry with A-polynomials, and the key
result is as follows:

Proposition 6.3. Let k be an infinite field of positive characteristic p, let
f1, . . . , fr : A1(k)→ Fp be A-polynomials such that fi(0) = 0 for 1 ≤ i ≤ r,
and let a be an infinite additive subgroup of k. Then there exists some nonzero
a ∈ a such that fi(a) = 0 for all 1 ≤ i ≤ r.

Proof. Write fi = λi ◦ φi with φi ∈ k[z] and λi : k → Fp an additive map.
Let di = deg(φi), and set m = 1 +

∑
i di. Regarding a as an infinite-

dimensional vector space over Fp, we can choose Fp-linearly independent
elements v1, . . . , vm ∈ a. For 1 ≤ i ≤ r, define a function

hi : Fmp → Fp, hi(x1, . . . , xm) = fi(x1v1 + · · ·+ xmvm).

We claim that hi is a polynomial of degree at most di. Indeed, φi is a sum
of terms of the form cze with c ∈ k and e ≤ di, so hi is a sum of terms of
the form λi(c(x1v1 + · · ·+ xmvm)e). This can be expanded as∑

j1+···+jm=e

λi

((
e

j1, . . . , jm

)
cxj11 v

j1
1 · · ·x

jm
m vjmm

)

=
∑

j1+···+jm=e

xj11 · · ·x
jm
m λi

((
e

j1, . . . , jm

)
cvj11 · · · v

jm
m

)
,

where the
(

e
j1,...,jm

)
are multinomial coefficients. Here we are using the

fact that λi : k → Fp is an additive map, which implies that it is Fp-linear.
Since fi(0) = 0, we also have hi(0, . . . , 0) = 0. The Chevalley–Warning
theorem [33, Corollary I.2.2.1] thus implies that there exists some nonzero
(x1, . . . , xm) ∈ Fmp such that hi(x1, . . . , xm) = 0 for all 1 ≤ i ≤ r. The desired
a ∈ a is then a = x1v1 + · · ·+ xmvm. �

6.3. Subgroups satisfying A-polynomials. Let U be a smooth connected
unipotent group over an infinite field k of positive characteristic equipped
with a positive action of Gm. By Proposition 3.8, the Gm action on U
extends to an action of Gm satisfying 0g = id for all g ∈ U(k). For a subset
S of U(k) and an additive subgroup a of k, define U(S, a) to be the subgroup
of U(k) generated by {as | s ∈ S, a ∈ a}. The following demonstrates the
flexibility of these subgroups:

Proposition 6.4. Let U be a smooth connected unipotent group over an
infinite field k of positive characteristic p equipped with a positive action of
Gm. Let S be a finite subset of U(k), let a be an infinite additive subgroup of
k, and let f : U(k)→ Fp be an A-polynomial such that f(id) = 0. Then there
exists an infinite additive subgroup b of a such that f vanishes on U(S, b).

Proof. Say that an additive subgroup c of k is f-vanishing if f vanishes on
U(S, c). Below we will construct a strictly increasing chain c1 ( c2 ( · · · of
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f -vanishing finite additive subgroups of a. Having done this, the union b of
the ci will be the desired f -vanishing infinite additive subgroup of a.

Start by setting c1 = 0, so f vanishes on U(S, c1) = id by assumption.
Assume now that we have constructed an f -vanishing finite additive subgroup
ci of a. To construct an f -vanishing finite additive subgroup ci+1 of a with
ci ( ci+1, it is enough to find some nonzero d ∈ a \ ci such that ci + Fpd
is f -vanishing. To simplify our notation, we will let c = ci. Letting d be
an infinite additive subgroup of a with c ∩ d = 0, we will find the desired
nonzero d in d.

For u ∈ c and c ∈ Fp and g ∈ S, define a morphism of varieties

γu,c,g : A1 → U, γu,c,g(t) = u+ctg.

Here have crucially used the fact (Proposition 3.8) that the Gm action
extends to Gm = A1. Enumerate the finite set {γu,c,g | u ∈ c, c ∈ Fp, g ∈ S}
as {γ1, . . . , γN}. By definition, for t ∈ k the group U(S, c + Fpt) is the
subgroup of U(k) generated by {γi(t) | 1 ≤ i ≤ N}. Let WN ⊂ FN be the
finite set provided by Corollary 6.2, and for w ∈ WN define a morphism of
varieties

φw : A1 → U, φw(t) = w(γ1(t), . . . , γN (t)).

It follows that for t ∈ k we have

(6.1) U(S, c + Fpt) = {φw(t) | w ∈ WN} .

Since γu,c,g(0) = ug for all u ∈ c and c ∈ Fp and g ∈ S, we also have

(6.2) U(S, c) = {φw(0) | w ∈ WN} .

For w ∈ WN , the function

fw : A1(k)→ Fp, fw(t) = f(φw(t))

is an A-polynomial. Since c is f -vanishing, (6.2) implies that fw(0) = 0.
Proposition 6.3 thus implies that we can find some nonzero d ∈ d such that
fw(d) = 0 for all w ∈ WN . By (6.1), this implies that c + Fpd is f -vanishing,
as desired. �

6.4. Replacement for Hall’s theorem. Our proof of Theorem B in char-
acteristic 0 crucially relied Hall’s theorem on abelian-by-nilpotent groups via
Corollary 5.2. We now prove a result that will serve as a replacement for
this in positive characteristic. For a group G and a Z[G]-module M , let MG

denote the G-coinvariants of M , i.e., the largest quotient of M on which G
acts trivially. We begin with a lemma.

Lemma 6.5. Let p be a prime, let Λ = Z[1/p], and let G be an abelian group
of exponent p. Let M be a Λ[G]-module and let m ∈ M be nonzero. Then
there exists a subgroup H ⊂ G of index 1 or p such that the image of m in
MH is nonzero.
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Proof. Let I ⊂ Λ[G] be the annihilator of m. Since m 6= 0, this is a proper
ideal, so it is contained in a maximal ideal J . Let µp be the group of pth roots

of unity in the field Λ[G]/J . It is possible for there to be no nontrivial pth

roots of unity in this field, in which case µp = 1. The map Λ[G]→ Λ[G]/J
induces a group homomorphism G → µp; let H be its kernel, which has
index 1 or p in G. Since H acts trivially on Λ[G]/J 6= 0 and the map
Λ[G]/I → Λ[G]/J is surjective, we deduce that (Λ[G]/I)H 6= 0.

Since I is the annihilator of m, there is an injection Λ[G]/I →M whose
image is the Λ[G]-span of m. This induces a map (Λ[G]/I)H →MH whose
image is the Λ[G/H]-span of m in MH . To prove that the image of m in MH

is nonzero, it is enough to show that the map (Λ[G]/I)H →MH is injective.
In fact, we claim that taking H-coinvariants is an exact functor on the

category of Λ[H]-modules. First suppose H is finite. Then it is well-known
that for a Λ[H]-module N , the group homology Hk(H;N) for k > 0 is
annihilated by the order of H, which is a power of p. Since N is a Λ-module,
multiplication by p is an isomorphism on N . It follows that Hk(H;N) = 0
for k > 0. This implies the claim in this case, as group homology is the
derived functor of coinvariants. We now treat the general case. Write
H =

⋃
i∈I Hi where the Hi are finite subgroups of H. Then MH = lim−→MHi .

Since both direct limits and the formation of Hi-coinvariants are exact, the
claim follows. �

The following proposition is our substitute for Corollary 5.2 in positive
characteristic:

Proposition 6.6. Let U be a smooth connected unipotent group over an
infinite field k of positive characteristic p equipped with a positive Gm-action.
Set Λ = Z[1/p]. Let S be a finite subset of U(k), let a be an infinite additive
subgroup of k, let M be a Λ[U(S, a)]-module, and let m ∈ M be nonzero.
Then there exists an infinite additive subgroup c of a such that the image of
m in MU(S,c) is nonzero.

Proof. We will prove this by induction on n = dim(U). The case n = 0 being
trivial, assume that n > 0 and that the lemma is true in smaller dimensions.
Proposition 3.4 says there exists a Gm-stable central subgroup ACU with
A ∼= Ga. Since char(k) = p, the abelian group underlying k has exponent p.
It follows that the intersection

A(k) ∩U(S, a) ⊂ A(k) = k

is an abelian group of exponent p. By Lemma 6.5, there is a subgroup
H ⊂ A(k) ∩U(S, a) of index either 1 or p such that the image of m in MH

is nonzero. Choose an additive homomorphism λ : A(k) → Fp such that
ker(λ) ∩U(S, a) = H.

Since A is (trivially) a split unipotent group, we can apply Proposition 3.2
to (G,V) = (U,A). We deduce that there is a subvariety X of U containing
the identity such that the multiplication map A×X→ U is an isomorphism
of varieties. Using this product structure, let π : U→ A be the projection



THE STEINBERG REPRESENTATION IS IRREDUCIBLE 25

onto the first factor. Since X contains the identity, it follows that π|A is the
identity map. Define f : U(k)→ Fp to be the composition

U(k)
π−→ A(k)

λ−→ Fp.

The map f is an A-polynomial, so by Proposition 6.4 there exists an infinite
additive subgroup b of a such that f vanishes on U(S, b). This implies that
A(k) ∩ U(S, b) ⊂ H, so the image of m in MA(k)∩U(S,b) is nonzero. Let

U = U/A and let S ⊂ U(k) be the image of S ⊂ U(k). The action of U(S, b)
on MA(k)∩U(S,b) factors through U(S, b). Using our inductive hypothesis,
we can find an infinite additive subgroup c of b such that the image of m in(

MA(k)∩U(S,b)

)
U(S,c)

is nonzero. This implies that the image of m in MU(S,c) is nonzero, as
desired. �

6.5. Modules over unipotent groups in char p. The following is our
generalization of Lemma 1.9 to the setting of unipotent groups over fields of
positive characteristic.

Proposition 6.7. Let U be a smooth connected unipotent group over a
field k of positive characteristic p equipped with a positive Gm-action. Set
Λ = Z[1/p]. Let M be a Λ[U(k)]-module and let N ⊂ M be a submodule.
For some m1, . . . ,mn ∈M and g1, . . . , gn ∈ U(k), assume that

tg1 ·m1 + · · ·+ tgn ·mn ∈ N for all t ∈ Gm(k).

Then m1 + · · ·+mn ∈ N .

Proof. Replacing M by M/N , we can assume that N = 0. Let S =
{g1, . . . , gn}, let b be a non-zero additive subgroup of k, and let t ∈ b
be non-zero. Letting ≡ denote equality in the U(S, b)-coinvariants of M ,
since the elements tgi ∈ U(S, b) act trivially on these coinvariants we have

0 = tg1 ·m1 + · · ·+ tgn ·mn ≡ m1 + · · ·+mn.

We thus see that m1 + · · · + mn maps to 0 in MU(S,b) for all non-zero b.
Proposition 6.6 (applied with a = k) implies that m1 + · · ·+mn = 0. �

6.6. Conclusion. The following is Theorem B in the special case where
char(k) is positive and char(F) 6= char(k).

Theorem 6.8. Let U be a smooth connected unipotent group over a field k
of positive characteristic p equipped with a positive action of Gm and let F be
another field with char(F) 6= p. Let I ⊂ F[U(k)] be a left ideal that is stable
under Gm and not contained in the augmentation ideal. Then I = F[U(k)].

Proof. The proof is nearly identical to that of Theorem 5.5. For g ∈ U(k),
write [g] for the associated element of F[U(k)]. Let ε : F[U(k)]→ F be the
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augmentation. Since I is not contained in the augmentation ideal, there
exists some x ∈ I with ε(x) = 1. Write this as

x =
n∑
i=1

ci[gi] ∈ I with g1, . . . , gn ∈ U(k), c1, . . . , cn ∈ F, and
n∑
i=1

ci = 1.

Since I is stable under the action of Gm(k), for all t ∈ Gm(k) we have tx ∈ I,
so

n∑
i=1

ci[
tgi] =

n∑
i=1

tgi · ci[1] ∈ I.

Since char(F) 6= p, the field F is an algebra over Λ = Z[1/p], so we can regard
F[U(k)] as a Λ[U(k)]-module. Applying Proposition 6.7 with M = F[U(k)]
and N = I, we deduce that [1] =

∑
i ci[1] ∈ I, so I = F[U(k)]. �
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