1. This problem concerns the following theorem which was proven in the first lecture.

Theorem. Let \(X \) be a space and let \(\mathcal{I} \subset \mathcal{P}(X) \). There then exists a unique space \(Y \) and a continuous map \(\pi : X \to Y \) such that \(\pi|_I \) is a constant function for all \(I \in \mathcal{I} \) and such that the following holds. If \(\phi : X \to Z \) is such that \(\phi|_I \) is a constant function for all \(I \in \mathcal{I} \), then there exists a unique \(\phi' : Y \to Z \) such that \(\phi = \phi' \circ \pi \).

(a) Prove that \(Y \) and \(\pi : X \to Y \) are unique. Hints: Assume that \(Y' \) and \(\pi' : X \to Y' \) also satisfy the universal mapping property. Use the universal mapping property to construct maps \(f : Y \to Y' \) and \(g : Y' \to Y \), and then use the universal mapping property again to show that \(f \circ g \) and \(g \circ f \) are the identity. Conclude that \(Y \) and \(Y' \) are homeomorphic.

Remark. This proof will appear in different guises several times in this course.

(b) Recall that in the proof of the above theorem, we defined \(E_p = \{ p' \in X \mid \exists q_1, \ldots, q_n \in X \text{ and } I_1, \ldots, I_{n-1} \in \mathcal{I} \text{ such that } p = q_1, p' = q_n, \text{ and } \{q_i, q_{i+1}\} \subset I_i \text{ for } 1 \leq i < n \} \) for \(p \in X \). Prove that for \(p, p' \in X \), either \(E_p = E_{p'} \) or \(E_p \cap E_{p'} = \emptyset \).

(c) Recall that in the proof of the above theorem, we defined \(Y = \{ E_p \mid p \in X \} \) and \(\mathcal{U} = \{ U \subset Y \mid \cup_{E \in U} E \subset X \text{ is open} \} \). Prove that \(\mathcal{U} \) is a topology on \(Y \).

2. Let \(X \) be an \(n \)-dimensional CW complex. Let the interiors of the \(n \)-cells of \(X \) be \(U_1, \ldots, U_n \), and let \(p_i \in U_i \) be arbitrary. Prove that there is a retract \(\pi : X \setminus \{p_1, \ldots, p_n\} \to X^{(n-1)} \).

Recall that a retract of a space \(A \) onto a subspace \(B \) is a continuous map \(f : A \to B \) such that \(f|_B \) is the identity map.

3. (a) For \(a \in \mathbb{R} \), define \(I_a = \{ (x, y) \mid x + y^2 = a \} \subset \mathbb{R}^2 \) and \(\mathcal{I} = \{ I_a \mid a \in \mathbb{R} \} \subset \mathcal{P}(\mathbb{R}^2) \).

Let \(Y \) be the quotient of \(\mathbb{R}^2 \) by \(\mathcal{I} \). The space \(Y \) is a familiar space: what is it?

(b) Repeat part a for \(I_a = \{ (x, y) \mid x^2 + y^2 = a \} \subset \mathbb{R}^2 \) and \(\mathcal{I} = \{ I_a \mid a \in \mathbb{R}, a \geq 0 \} \subset \mathcal{P}(\mathbb{R}^2) \).