Math 444/539 : Geometric Topology
Problem Set 4

Students enrolled in Math 539 must do all the problems. Students enrolled in Math 444 can omit problem 6.

Problems :

1. Let \(X \) be a path-connected topological space with abelian fundamental group. Fix two points \(p, q \in X \). Recall that \(\varphi_\gamma : \pi_1(X, q) \to \pi_1(X, p) \) is the homomorphism associated to an equivalence class \(\gamma \) of paths from \(p \) to \(q \). Prove that if \(\gamma \) and \(\gamma' \) are two paths from \(p \) to \(q \), then \(\varphi_\gamma = \varphi_{\gamma'} \).

2. Let \(X \) be a topological space, let \(p, q \in X \) be two points, and let \(f \) and \(g \) be two paths from \(p \) to \(q \). Prove that \(f \) is equivalent to \(g \) if and only if \(f \cdot g \) is equivalent to the constant path \(e_p \).

3. Let \(M \) be a M"obius strip. Find an embedded circle \(C \) in \(M \) such that \(M \) deformation retracts to \(C \).

4. Let \(S \) be an orientable genus \(g \) surface. Find some \(A \subset S \) with the following properties.
 - \(A \) is homeomorphic to a graph.
 - There exists a point \(p \in S \) such that \(S \setminus \{p\} \) deformation retracts onto \(A \).

 Hint : Think of \(S \) as a \(4g \)-gon with sides identified.

5. Let \(X \) be a topological space. Prove that the following three conditions are equivalent.
 (a) Every map \(S^1 \to X \) is homotopic to a constant map.
 (b) For every map \(f : S^1 \to X \), there exists a map \(g : D^2 \to X \) such that \(g|_{\partial D^2} = f \).
 (c) For all \(p \in X \), we have \(\pi_1(X, p) = 1 \).

 Deduce that a space is 1-connected if and only if all maps \(S^1 \to X \) are homotopic. I want the emphasize that in this problem, “homotopic” means “homotopic without regards to basepoints”.

6. Let \(G \) be a topological group. Let \(e \in G \) be the identity element. Prove that \(\pi_1(G, e) \) is abelian. Hint : in addition to the multiplication of loops \(\cdot \) in \(\pi_1(G, e) \), the group structure of \(G \) gives another way of multiplying loops. Namely, for loops \(f \) and \(g \) based at \(e \), we can define \(f \ast g \) to be the loop \(t \mapsto f(t)g(t) \). The first step is to prove that the loop \(f \ast g \) is equivalent to the loop \(g \cdot f \).

7. Let \(X \) be a topological space and let \(\{U_\alpha\} \) be an open covering of \(X \) with the following properties.
 (a) There exists a point \(p \in X \) such that \(p \in U_\alpha \) for all \(\alpha \).
 (b) Each \(U_\alpha \) is simply-connected.
 (c) For \(\alpha \neq \beta \), the set \(U_\alpha \cap U_\beta \) is path-connected.
Prove that X is simply-connected. Hint: consider $\gamma \in \pi_1(X,p)$. Prove that we can write $\gamma = \gamma_1 \cdots \gamma_k$, where $\gamma_i \in \pi_1(X,p)$ can be realized by a loop based at p that lies entirely inside one of the U_α. The notion of the Lebesgue number of a covering from point-set topology will be useful here.

8. Using the previous problem, prove that S^n is simply-connected for $n \geq 2$.